]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
* basic::collec() never worked correctly on non-polynomials till now.
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23
24 #include <stdexcept>
25
26 #include "pseries.h"
27 #include "add.h"
28 #include "inifcns.h"
29 #include "lst.h"
30 #include "mul.h"
31 #include "power.h"
32 #include "relational.h"
33 #include "symbol.h"
34 #include "print.h"
35 #include "archive.h"
36 #include "utils.h"
37 #include "debugmsg.h"
38
39 namespace GiNaC {
40
41 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
42
43
44 /*
45  *  Default ctor, dtor, copy ctor, assignment operator and helpers
46  */
47
48 pseries::pseries() : basic(TINFO_pseries)
49 {
50         debugmsg("pseries default ctor", LOGLEVEL_CONSTRUCT);
51 }
52
53 void pseries::copy(const pseries &other)
54 {
55         inherited::copy(other);
56         seq = other.seq;
57         var = other.var;
58         point = other.point;
59 }
60
61 DEFAULT_DESTROY(pseries)
62
63
64 /*
65  *  Other ctors
66  */
67
68 /** Construct pseries from a vector of coefficients and powers.
69  *  expair.rest holds the coefficient, expair.coeff holds the power.
70  *  The powers must be integers (positive or negative) and in ascending order;
71  *  the last coefficient can be Order(_ex1()) to represent a truncated,
72  *  non-terminating series.
73  *
74  *  @param rel_  expansion variable and point (must hold a relational)
75  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
76  *  @return newly constructed pseries */
77 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
78 {
79         debugmsg("pseries ctor from ex,epvector", LOGLEVEL_CONSTRUCT);
80         GINAC_ASSERT(is_ex_exactly_of_type(rel_, relational));
81         GINAC_ASSERT(is_ex_exactly_of_type(rel_.lhs(),symbol));
82         point = rel_.rhs();
83         var = *static_cast<symbol *>(rel_.lhs().bp);
84 }
85
86
87 /*
88  *  Archiving
89  */
90
91 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
92 {
93         debugmsg("pseries ctor from archive_node", LOGLEVEL_CONSTRUCT);
94         for (unsigned int i=0; true; ++i) {
95                 ex rest;
96                 ex coeff;
97                 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
98                         seq.push_back(expair(rest, coeff));
99                 else
100                         break;
101         }
102         n.find_ex("var", var, sym_lst);
103         n.find_ex("point", point, sym_lst);
104 }
105
106 void pseries::archive(archive_node &n) const
107 {
108         inherited::archive(n);
109         epvector::const_iterator i = seq.begin(), iend = seq.end();
110         while (i != iend) {
111                 n.add_ex("coeff", i->rest);
112                 n.add_ex("power", i->coeff);
113                 ++i;
114         }
115         n.add_ex("var", var);
116         n.add_ex("point", point);
117 }
118
119 DEFAULT_UNARCHIVE(pseries)
120
121 //////////
122 // functions overriding virtual functions from bases classes
123 //////////
124
125 void pseries::print(const print_context & c, unsigned level) const
126 {
127         debugmsg("pseries print", LOGLEVEL_PRINT);
128
129         if (is_of_type(c, print_tree)) {
130
131                 c.s << std::string(level, ' ') << class_name()
132                     << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
133                     << std::endl;
134                 unsigned delta_indent = static_cast<const print_tree &>(c).delta_indent;
135                 for (unsigned i=0; i<seq.size(); ++i) {
136                         seq[i].rest.print(c, level + delta_indent);
137                         seq[i].coeff.print(c, level + delta_indent);
138                         c.s << std::string(level + delta_indent, ' ') << "-----" << std::endl;
139                 }
140                 var.print(c, level + delta_indent);
141                 point.print(c, level + delta_indent);
142
143         } else {
144
145                 if (precedence <= level)
146                         c.s << "(";
147                 
148                 std::string par_open = is_of_type(c, print_latex) ? "{(" : "(";
149                 std::string par_close = is_of_type(c, print_latex) ? ")}" : ")";
150                 
151                 // objects of type pseries must not have any zero entries, so the
152                 // trivial (zero) pseries needs a special treatment here:
153                 if (seq.size() == 0)
154                         c.s << '0';
155                 for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
156                         // print a sign, if needed
157                         if (i != seq.begin())
158                                 c.s << '+';
159                         if (!is_order_function(i->rest)) {
160                                 // print 'rest', i.e. the expansion coefficient
161                                 if (i->rest.info(info_flags::numeric) &&
162                                         i->rest.info(info_flags::positive)) {
163                                         i->rest.print(c);
164                                 } else {
165                                         c.s << par_open;
166                                         i->rest.print(c);
167                                         c.s << par_close;
168                                 }
169                                 // print 'coeff', something like (x-1)^42
170                                 if (!i->coeff.is_zero()) {
171                                         c.s << '*';
172                                         if (!point.is_zero()) {
173                                                 c.s << par_open;
174                                                 (var-point).print(c);
175                                                 c.s << par_close;
176                                         } else
177                                                 var.print(c);
178                                         if (i->coeff.compare(_ex1())) {
179                                                 c.s << '^';
180                                                 if (i->coeff.info(info_flags::negative)) {
181                                                         c.s << par_open;
182                                                         i->coeff.print(c);
183                                                         c.s << par_close;
184                                                 } else {
185                                                         if (is_of_type(c, print_latex)) {
186                                                                 c.s << '{';
187                                                                 i->coeff.print(c);
188                                                                 c.s << '}';
189                                                         } else
190                                                                 i->coeff.print(c);
191                                                 }
192                                         }
193                                 }
194                         } else
195                                 Order(power(var-point,i->coeff)).print(c);
196                 }
197
198                 if (precedence <= level)
199                         c.s << ")";
200         }
201 }
202
203 int pseries::compare_same_type(const basic & other) const
204 {
205         GINAC_ASSERT(is_of_type(other, pseries));
206         const pseries &o = static_cast<const pseries &>(other);
207         
208         // first compare the lengths of the series...
209         if (seq.size()>o.seq.size())
210                 return 1;
211         if (seq.size()<o.seq.size())
212                 return -1;
213         
214         // ...then the expansion point...
215         int cmpval = var.compare(o.var);
216         if (cmpval)
217                 return cmpval;
218         cmpval = point.compare(o.point);
219         if (cmpval)
220                 return cmpval;
221         
222         // ...and if that failed the individual elements
223         epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
224         while (it!=seq.end() && o_it!=o.seq.end()) {
225                 cmpval = it->compare(*o_it);
226                 if (cmpval)
227                         return cmpval;
228                 ++it;
229                 ++o_it;
230         }
231
232         // so they are equal.
233         return 0;
234 }
235
236 /** Return the number of operands including a possible order term. */
237 unsigned pseries::nops(void) const
238 {
239         return seq.size();
240 }
241
242 /** Return the ith term in the series when represented as a sum. */
243 ex pseries::op(int i) const
244 {
245         if (i < 0 || unsigned(i) >= seq.size())
246                 throw (std::out_of_range("op() out of range"));
247         return seq[i].rest * power(var - point, seq[i].coeff);
248 }
249
250 ex &pseries::let_op(int i)
251 {
252         throw (std::logic_error("let_op not defined for pseries"));
253 }
254
255 /** Return degree of highest power of the series.  This is usually the exponent
256  *  of the Order term.  If s is not the expansion variable of the series, the
257  *  series is examined termwise. */
258 int pseries::degree(const ex &s) const
259 {
260         if (var.is_equal(s)) {
261                 // Return last exponent
262                 if (seq.size())
263                         return ex_to_numeric((*(seq.end() - 1)).coeff).to_int();
264                 else
265                         return 0;
266         } else {
267                 epvector::const_iterator it = seq.begin(), itend = seq.end();
268                 if (it == itend)
269                         return 0;
270                 int max_pow = INT_MIN;
271                 while (it != itend) {
272                         int pow = it->rest.degree(s);
273                         if (pow > max_pow)
274                                 max_pow = pow;
275                         ++it;
276                 }
277                 return max_pow;
278         }
279 }
280
281 /** Return degree of lowest power of the series.  This is usually the exponent
282  *  of the leading term.  If s is not the expansion variable of the series, the
283  *  series is examined termwise.  If s is the expansion variable but the
284  *  expansion point is not zero the series is not expanded to find the degree.
285  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
286 int pseries::ldegree(const ex &s) const
287 {
288         if (var.is_equal(s)) {
289                 // Return first exponent
290                 if (seq.size())
291                         return ex_to_numeric((*(seq.begin())).coeff).to_int();
292                 else
293                         return 0;
294         } else {
295                 epvector::const_iterator it = seq.begin(), itend = seq.end();
296                 if (it == itend)
297                         return 0;
298                 int min_pow = INT_MAX;
299                 while (it != itend) {
300                         int pow = it->rest.ldegree(s);
301                         if (pow < min_pow)
302                                 min_pow = pow;
303                         ++it;
304                 }
305                 return min_pow;
306         }
307 }
308
309 /** Return coefficient of degree n in power series if s is the expansion
310  *  variable.  If the expansion point is nonzero, by definition the n=1
311  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
312  *  the expansion took place in the s in the first place).
313  *  If s is not the expansion variable, an attempt is made to convert the
314  *  series to a polynomial and return the corresponding coefficient from
315  *  there. */
316 ex pseries::coeff(const ex &s, int n) const
317 {
318         if (var.is_equal(s)) {
319                 if (seq.size() == 0)
320                         return _ex0();
321                 
322                 // Binary search in sequence for given power
323                 numeric looking_for = numeric(n);
324                 int lo = 0, hi = seq.size() - 1;
325                 while (lo <= hi) {
326                         int mid = (lo + hi) / 2;
327                         GINAC_ASSERT(is_ex_exactly_of_type(seq[mid].coeff, numeric));
328                         int cmp = ex_to_numeric(seq[mid].coeff).compare(looking_for);
329                         switch (cmp) {
330                                 case -1:
331                                         lo = mid + 1;
332                                         break;
333                                 case 0:
334                                         return seq[mid].rest;
335                                 case 1:
336                                         hi = mid - 1;
337                                         break;
338                                 default:
339                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
340                         }
341                 }
342                 return _ex0();
343         } else
344                 return convert_to_poly().coeff(s, n);
345 }
346
347 /** Does nothing. */
348 ex pseries::collect(const ex &s) const
349 {
350         return *this;
351 }
352
353 /** Evaluate coefficients. */
354 ex pseries::eval(int level) const
355 {
356         if (level == 1)
357                 return this->hold();
358         
359         if (level == -max_recursion_level)
360                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
361         
362         // Construct a new series with evaluated coefficients
363         epvector new_seq;
364         new_seq.reserve(seq.size());
365         epvector::const_iterator it = seq.begin(), itend = seq.end();
366         while (it != itend) {
367                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
368                 ++it;
369         }
370         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
371 }
372
373 /** Evaluate coefficients numerically. */
374 ex pseries::evalf(int level) const
375 {
376         if (level == 1)
377                 return *this;
378         
379         if (level == -max_recursion_level)
380                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
381         
382         // Construct a new series with evaluated coefficients
383         epvector new_seq;
384         new_seq.reserve(seq.size());
385         epvector::const_iterator it = seq.begin(), itend = seq.end();
386         while (it != itend) {
387                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
388                 ++it;
389         }
390         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
391 }
392
393 ex pseries::subs(const lst & ls, const lst & lr) const
394 {
395         // If expansion variable is being substituted, convert the series to a
396         // polynomial and do the substitution there because the result might
397         // no longer be a power series
398         if (ls.has(var))
399                 return convert_to_poly(true).subs(ls, lr);
400         
401         // Otherwise construct a new series with substituted coefficients and
402         // expansion point
403         epvector newseq;
404         newseq.reserve(seq.size());
405         epvector::const_iterator it = seq.begin(), itend = seq.end();
406         while (it != itend) {
407                 newseq.push_back(expair(it->rest.subs(ls, lr), it->coeff));
408                 ++it;
409         }
410         return (new pseries(relational(var,point.subs(ls, lr)), newseq))->setflag(status_flags::dynallocated);
411 }
412
413 /** Implementation of ex::expand() for a power series.  It expands all the
414  *  terms individually and returns the resulting series as a new pseries. */
415 ex pseries::expand(unsigned options) const
416 {
417         epvector newseq;
418         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
419                 ex restexp = i->rest.expand();
420                 if (!restexp.is_zero())
421                         newseq.push_back(expair(restexp, i->coeff));
422         }
423         return (new pseries(relational(var,point), newseq))
424                 ->setflag(status_flags::dynallocated | status_flags::expanded);
425 }
426
427 /** Implementation of ex::diff() for a power series.  It treats the series as a
428  *  polynomial.
429  *  @see ex::diff */
430 ex pseries::derivative(const symbol & s) const
431 {
432         if (s == var) {
433                 epvector new_seq;
434                 epvector::const_iterator it = seq.begin(), itend = seq.end();
435                 
436                 // FIXME: coeff might depend on var
437                 while (it != itend) {
438                         if (is_order_function(it->rest)) {
439                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
440                         } else {
441                                 ex c = it->rest * it->coeff;
442                                 if (!c.is_zero())
443                                         new_seq.push_back(expair(c, it->coeff - 1));
444                         }
445                         ++it;
446                 }
447                 return pseries(relational(var,point), new_seq);
448         } else {
449                 return *this;
450         }
451 }
452
453 ex pseries::convert_to_poly(bool no_order) const
454 {
455         ex e;
456         epvector::const_iterator it = seq.begin(), itend = seq.end();
457         
458         while (it != itend) {
459                 if (is_order_function(it->rest)) {
460                         if (!no_order)
461                                 e += Order(power(var - point, it->coeff));
462                 } else
463                         e += it->rest * power(var - point, it->coeff);
464                 ++it;
465         }
466         return e;
467 }
468
469 bool pseries::is_terminating(void) const
470 {
471         return seq.size() == 0 || !is_order_function((seq.end()-1)->rest);
472 }
473
474
475 /*
476  *  Implementations of series expansion
477  */
478
479 /** Default implementation of ex::series(). This performs Taylor expansion.
480  *  @see ex::series */
481 ex basic::series(const relational & r, int order, unsigned options) const
482 {
483         epvector seq;
484         numeric fac(1);
485         ex deriv = *this;
486         ex coeff = deriv.subs(r);
487         const symbol &s = static_cast<symbol &>(*r.lhs().bp);
488         
489         if (!coeff.is_zero())
490                 seq.push_back(expair(coeff, numeric(0)));
491         
492         int n;
493         for (n=1; n<order; ++n) {
494                 fac = fac.mul(numeric(n));
495                 deriv = deriv.diff(s).expand();
496                 if (deriv.is_zero()) {
497                         // Series terminates
498                         return pseries(r, seq);
499                 }
500                 coeff = deriv.subs(r);
501                 if (!coeff.is_zero())
502                         seq.push_back(expair(fac.inverse() * coeff, numeric(n)));
503         }
504         
505         // Higher-order terms, if present
506         deriv = deriv.diff(s);
507         if (!deriv.expand().is_zero())
508                 seq.push_back(expair(Order(_ex1()), numeric(n)));
509         return pseries(r, seq);
510 }
511
512
513 /** Implementation of ex::series() for symbols.
514  *  @see ex::series */
515 ex symbol::series(const relational & r, int order, unsigned options) const
516 {
517         epvector seq;
518         const ex point = r.rhs();
519         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
520         ex s = r.lhs();
521         
522         if (this->is_equal(*s.bp)) {
523                 if (order > 0 && !point.is_zero())
524                         seq.push_back(expair(point, _ex0()));
525                 if (order > 1)
526                         seq.push_back(expair(_ex1(), _ex1()));
527                 else
528                         seq.push_back(expair(Order(_ex1()), numeric(order)));
529         } else
530                 seq.push_back(expair(*this, _ex0()));
531         return pseries(r, seq);
532 }
533
534
535 /** Add one series object to another, producing a pseries object that
536  *  represents the sum.
537  *
538  *  @param other  pseries object to add with
539  *  @return the sum as a pseries */
540 ex pseries::add_series(const pseries &other) const
541 {
542         // Adding two series with different variables or expansion points
543         // results in an empty (constant) series 
544         if (!is_compatible_to(other)) {
545                 epvector nul;
546                 nul.push_back(expair(Order(_ex1()), _ex0()));
547                 return pseries(relational(var,point), nul);
548         }
549         
550         // Series addition
551         epvector new_seq;
552         epvector::const_iterator a = seq.begin();
553         epvector::const_iterator b = other.seq.begin();
554         epvector::const_iterator a_end = seq.end();
555         epvector::const_iterator b_end = other.seq.end();
556         int pow_a = INT_MAX, pow_b = INT_MAX;
557         for (;;) {
558                 // If a is empty, fill up with elements from b and stop
559                 if (a == a_end) {
560                         while (b != b_end) {
561                                 new_seq.push_back(*b);
562                                 ++b;
563                         }
564                         break;
565                 } else
566                         pow_a = ex_to_numeric((*a).coeff).to_int();
567                 
568                 // If b is empty, fill up with elements from a and stop
569                 if (b == b_end) {
570                         while (a != a_end) {
571                                 new_seq.push_back(*a);
572                                 ++a;
573                         }
574                         break;
575                 } else
576                         pow_b = ex_to_numeric((*b).coeff).to_int();
577                 
578                 // a and b are non-empty, compare powers
579                 if (pow_a < pow_b) {
580                         // a has lesser power, get coefficient from a
581                         new_seq.push_back(*a);
582                         if (is_order_function((*a).rest))
583                                 break;
584                         ++a;
585                 } else if (pow_b < pow_a) {
586                         // b has lesser power, get coefficient from b
587                         new_seq.push_back(*b);
588                         if (is_order_function((*b).rest))
589                                 break;
590                         ++b;
591                 } else {
592                         // Add coefficient of a and b
593                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
594                                 new_seq.push_back(expair(Order(_ex1()), (*a).coeff));
595                                 break;  // Order term ends the sequence
596                         } else {
597                                 ex sum = (*a).rest + (*b).rest;
598                                 if (!(sum.is_zero()))
599                                         new_seq.push_back(expair(sum, numeric(pow_a)));
600                                 ++a;
601                                 ++b;
602                         }
603                 }
604         }
605         return pseries(relational(var,point), new_seq);
606 }
607
608
609 /** Implementation of ex::series() for sums. This performs series addition when
610  *  adding pseries objects.
611  *  @see ex::series */
612 ex add::series(const relational & r, int order, unsigned options) const
613 {
614         ex acc; // Series accumulator
615         
616         // Get first term from overall_coeff
617         acc = overall_coeff.series(r, order, options);
618         
619         // Add remaining terms
620         epvector::const_iterator it = seq.begin();
621         epvector::const_iterator itend = seq.end();
622         for (; it!=itend; ++it) {
623                 ex op;
624                 if (is_ex_exactly_of_type(it->rest, pseries))
625                         op = it->rest;
626                 else
627                         op = it->rest.series(r, order, options);
628                 if (!it->coeff.is_equal(_ex1()))
629                         op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff));
630                 
631                 // Series addition
632                 acc = ex_to_pseries(acc).add_series(ex_to_pseries(op));
633         }
634         return acc;
635 }
636
637
638 /** Multiply a pseries object with a numeric constant, producing a pseries
639  *  object that represents the product.
640  *
641  *  @param other  constant to multiply with
642  *  @return the product as a pseries */
643 ex pseries::mul_const(const numeric &other) const
644 {
645         epvector new_seq;
646         new_seq.reserve(seq.size());
647         
648         epvector::const_iterator it = seq.begin(), itend = seq.end();
649         while (it != itend) {
650                 if (!is_order_function(it->rest))
651                         new_seq.push_back(expair(it->rest * other, it->coeff));
652                 else
653                         new_seq.push_back(*it);
654                 ++it;
655         }
656         return pseries(relational(var,point), new_seq);
657 }
658
659
660 /** Multiply one pseries object to another, producing a pseries object that
661  *  represents the product.
662  *
663  *  @param other  pseries object to multiply with
664  *  @return the product as a pseries */
665 ex pseries::mul_series(const pseries &other) const
666 {
667         // Multiplying two series with different variables or expansion points
668         // results in an empty (constant) series 
669         if (!is_compatible_to(other)) {
670                 epvector nul;
671                 nul.push_back(expair(Order(_ex1()), _ex0()));
672                 return pseries(relational(var,point), nul);
673         }
674         
675         // Series multiplication
676         epvector new_seq;
677         
678         int a_max = degree(var);
679         int b_max = other.degree(var);
680         int a_min = ldegree(var);
681         int b_min = other.ldegree(var);
682         int cdeg_min = a_min + b_min;
683         int cdeg_max = a_max + b_max;
684         
685         int higher_order_a = INT_MAX;
686         int higher_order_b = INT_MAX;
687         if (is_order_function(coeff(var, a_max)))
688                 higher_order_a = a_max + b_min;
689         if (is_order_function(other.coeff(var, b_max)))
690                 higher_order_b = b_max + a_min;
691         int higher_order_c = std::min(higher_order_a, higher_order_b);
692         if (cdeg_max >= higher_order_c)
693                 cdeg_max = higher_order_c - 1;
694         
695         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
696                 ex co = _ex0();
697                 // c(i)=a(0)b(i)+...+a(i)b(0)
698                 for (int i=a_min; cdeg-i>=b_min; ++i) {
699                         ex a_coeff = coeff(var, i);
700                         ex b_coeff = other.coeff(var, cdeg-i);
701                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
702                                 co += a_coeff * b_coeff;
703                 }
704                 if (!co.is_zero())
705                         new_seq.push_back(expair(co, numeric(cdeg)));
706         }
707         if (higher_order_c < INT_MAX)
708                 new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c)));
709         return pseries(relational(var, point), new_seq);
710 }
711
712
713 /** Implementation of ex::series() for product. This performs series
714  *  multiplication when multiplying series.
715  *  @see ex::series */
716 ex mul::series(const relational & r, int order, unsigned options) const
717 {
718         ex acc; // Series accumulator
719         
720         // Get first term from overall_coeff
721         acc = overall_coeff.series(r, order, options);
722         
723         // Multiply with remaining terms
724         epvector::const_iterator it = seq.begin();
725         epvector::const_iterator itend = seq.end();
726         for (; it!=itend; ++it) {
727                 ex op = it->rest;
728                 if (op.info(info_flags::numeric)) {
729                         // series * const (special case, faster)
730                         ex f = power(op, it->coeff);
731                         acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f));
732                         continue;
733                 } else if (!is_ex_exactly_of_type(op, pseries))
734                         op = op.series(r, order, options);
735                 if (!it->coeff.is_equal(_ex1()))
736                         op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order);
737
738                 // Series multiplication
739                 acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op));
740         }
741         return acc;
742 }
743
744
745 /** Compute the p-th power of a series.
746  *
747  *  @param p  power to compute
748  *  @param deg  truncation order of series calculation */
749 ex pseries::power_const(const numeric &p, int deg) const
750 {
751         // method:
752         // let A(x) be this series and for the time being let it start with a
753         // constant (later we'll generalize):
754         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
755         // We want to compute
756         //     C(x) = A(x)^p
757         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
758         // Taking the derivative on both sides and multiplying with A(x) one
759         // immediately arrives at
760         //     C'(x)*A(x) = p*C(x)*A'(x)
761         // Multiplying this out and comparing coefficients we get the recurrence
762         // formula
763         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
764         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
765         // which can easily be solved given the starting value c_0 = (a_0)^p.
766         // For the more general case where the leading coefficient of A(x) is not
767         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
768         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
769         // then of course x^(p*m) but the recurrence formula still holds.
770         
771         if (seq.size()==0) {
772                 // as a spacial case, handle the empty (zero) series honoring the
773                 // usual power laws such as implemented in power::eval()
774                 if (p.real().is_zero())
775                         throw (std::domain_error("pseries::power_const(): pow(0,I) is undefined"));
776                 else if (p.real().is_negative())
777                         throw (pole_error("pseries::power_const(): division by zero",1));
778                 else
779                         return *this;
780         }
781         
782         int ldeg = ldegree(var);
783         
784         // Compute coefficients of the powered series
785         exvector co;
786         co.reserve(deg);
787         co.push_back(power(coeff(var, ldeg), p));
788         bool all_sums_zero = true;
789         for (int i=1; i<deg; ++i) {
790                 ex sum = _ex0();
791                 for (int j=1; j<=i; ++j) {
792                         ex c = coeff(var, j + ldeg);
793                         if (is_order_function(c)) {
794                                 co.push_back(Order(_ex1()));
795                                 break;
796                         } else
797                                 sum += (p * j - (i - j)) * co[i - j] * c;
798                 }
799                 if (!sum.is_zero())
800                         all_sums_zero = false;
801                 co.push_back(sum / coeff(var, ldeg) / numeric(i));
802         }
803         
804         // Construct new series (of non-zero coefficients)
805         epvector new_seq;
806         bool higher_order = false;
807         for (int i=0; i<deg; ++i) {
808                 if (!co[i].is_zero())
809                         new_seq.push_back(expair(co[i], numeric(i) + p * ldeg));
810                 if (is_order_function(co[i])) {
811                         higher_order = true;
812                         break;
813                 }
814         }
815         if (!higher_order && !all_sums_zero)
816                 new_seq.push_back(expair(Order(_ex1()), numeric(deg) + p * ldeg));
817         return pseries(relational(var,point), new_seq);
818 }
819
820
821 /** Return a new pseries object with the powers shifted by deg. */
822 pseries pseries::shift_exponents(int deg) const
823 {
824         epvector newseq(seq);
825         for (epvector::iterator i=newseq.begin(); i!=newseq.end(); ++i)
826                 i->coeff = i->coeff + deg;
827         return pseries(relational(var, point), newseq);
828 }
829
830
831 /** Implementation of ex::series() for powers. This performs Laurent expansion
832  *  of reciprocals of series at singularities.
833  *  @see ex::series */
834 ex power::series(const relational & r, int order, unsigned options) const
835 {
836         ex e;
837         if (!is_ex_exactly_of_type(basis, pseries)) {
838                 // Basis is not a series, may there be a singularity?
839                 bool must_expand_basis = false;
840                 try {
841                         basis.subs(r);
842                 } catch (pole_error) {
843                         must_expand_basis = true;
844                 }
845                 
846                 // Is the expression of type something^(-int)?
847                 if (!must_expand_basis && !exponent.info(info_flags::negint))
848                         return basic::series(r, order, options);
849                 
850                 // Is the expression of type 0^something?
851                 if (!must_expand_basis && !basis.subs(r).is_zero())
852                         return basic::series(r, order, options);
853                 
854                 // Singularity encountered, expand basis into series
855                 e = basis.series(r, order, options);
856         } else {
857                 // Basis is a series
858                 e = basis;
859         }
860         
861         // Power e
862         return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order);
863 }
864
865
866 /** Re-expansion of a pseries object. */
867 ex pseries::series(const relational & r, int order, unsigned options) const
868 {
869         const ex p = r.rhs();
870         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
871         const symbol &s = static_cast<symbol &>(*r.lhs().bp);
872         
873         if (var.is_equal(s) && point.is_equal(p)) {
874                 if (order > degree(s))
875                         return *this;
876                 else {
877                         epvector new_seq;
878                         epvector::const_iterator it = seq.begin(), itend = seq.end();
879                         while (it != itend) {
880                                 int o = ex_to_numeric(it->coeff).to_int();
881                                 if (o >= order) {
882                                         new_seq.push_back(expair(Order(_ex1()), o));
883                                         break;
884                                 }
885                                 new_seq.push_back(*it);
886                                 ++it;
887                         }
888                         return pseries(r, new_seq);
889                 }
890         } else
891                 return convert_to_poly().series(r, order, options);
892 }
893
894
895 /** Compute the truncated series expansion of an expression.
896  *  This function returns an expression containing an object of class pseries 
897  *  to represent the series. If the series does not terminate within the given
898  *  truncation order, the last term of the series will be an order term.
899  *
900  *  @param r  expansion relation, lhs holds variable and rhs holds point
901  *  @param order  truncation order of series calculations
902  *  @param options  of class series_options
903  *  @return an expression holding a pseries object */
904 ex ex::series(const ex & r, int order, unsigned options) const
905 {
906         GINAC_ASSERT(bp!=0);
907         ex e;
908         relational rel_;
909         
910         if (is_ex_exactly_of_type(r,relational))
911                 rel_ = ex_to_relational(r);
912         else if (is_ex_exactly_of_type(r,symbol))
913                 rel_ = relational(r,_ex0());
914         else
915                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
916         
917         try {
918                 e = bp->series(rel_, order, options);
919         } catch (std::exception &x) {
920                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
921         }
922         return e;
923 }
924
925 //////////
926 // static member variables
927 //////////
928
929 // protected
930
931 unsigned pseries::precedence = 38;  // for clarity just below add::precedence
932
933 } // namespace GiNaC