]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
* As agreed upon at lunch, remove debugmsg since it is hardly of any use.
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23
24 #include <stdexcept>
25
26 #include "pseries.h"
27 #include "add.h"
28 #include "inifcns.h" // for Order function
29 #include "lst.h"
30 #include "mul.h"
31 #include "power.h"
32 #include "relational.h"
33 #include "symbol.h"
34 #include "print.h"
35 #include "archive.h"
36 #include "utils.h"
37
38 namespace GiNaC {
39
40 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
41
42
43 /*
44  *  Default ctor, dtor, copy ctor, assignment operator and helpers
45  */
46
47 pseries::pseries() : inherited(TINFO_pseries) { }
48
49 void pseries::copy(const pseries &other)
50 {
51         inherited::copy(other);
52         seq = other.seq;
53         var = other.var;
54         point = other.point;
55 }
56
57 DEFAULT_DESTROY(pseries)
58
59
60 /*
61  *  Other ctors
62  */
63
64 /** Construct pseries from a vector of coefficients and powers.
65  *  expair.rest holds the coefficient, expair.coeff holds the power.
66  *  The powers must be integers (positive or negative) and in ascending order;
67  *  the last coefficient can be Order(_ex1) to represent a truncated,
68  *  non-terminating series.
69  *
70  *  @param rel_  expansion variable and point (must hold a relational)
71  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
72  *  @return newly constructed pseries */
73 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
74 {
75         GINAC_ASSERT(is_exactly_a<relational>(rel_));
76         GINAC_ASSERT(is_exactly_a<symbol>(rel_.lhs()));
77         point = rel_.rhs();
78         var = rel_.lhs();
79 }
80
81
82 /*
83  *  Archiving
84  */
85
86 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
87 {
88         for (unsigned int i=0; true; ++i) {
89                 ex rest;
90                 ex coeff;
91                 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
92                         seq.push_back(expair(rest, coeff));
93                 else
94                         break;
95         }
96         n.find_ex("var", var, sym_lst);
97         n.find_ex("point", point, sym_lst);
98 }
99
100 void pseries::archive(archive_node &n) const
101 {
102         inherited::archive(n);
103         epvector::const_iterator i = seq.begin(), iend = seq.end();
104         while (i != iend) {
105                 n.add_ex("coeff", i->rest);
106                 n.add_ex("power", i->coeff);
107                 ++i;
108         }
109         n.add_ex("var", var);
110         n.add_ex("point", point);
111 }
112
113 DEFAULT_UNARCHIVE(pseries)
114
115 //////////
116 // functions overriding virtual functions from base classes
117 //////////
118
119 void pseries::print(const print_context & c, unsigned level) const
120 {
121         if (is_a<print_tree>(c)) {
122
123                 c.s << std::string(level, ' ') << class_name()
124                     << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
125                     << std::endl;
126                 unsigned delta_indent = static_cast<const print_tree &>(c).delta_indent;
127                 unsigned num = seq.size();
128                 for (unsigned i=0; i<num; ++i) {
129                         seq[i].rest.print(c, level + delta_indent);
130                         seq[i].coeff.print(c, level + delta_indent);
131                         c.s << std::string(level + delta_indent, ' ') << "-----" << std::endl;
132                 }
133                 var.print(c, level + delta_indent);
134                 point.print(c, level + delta_indent);
135
136         } else {
137
138                 if (precedence() <= level)
139                         c.s << "(";
140                 
141                 std::string par_open = is_a<print_latex>(c) ? "{(" : "(";
142                 std::string par_close = is_a<print_latex>(c) ? ")}" : ")";
143                 
144                 // objects of type pseries must not have any zero entries, so the
145                 // trivial (zero) pseries needs a special treatment here:
146                 if (seq.empty())
147                         c.s << '0';
148                 epvector::const_iterator i = seq.begin(), end = seq.end();
149                 while (i != end) {
150                         // print a sign, if needed
151                         if (i != seq.begin())
152                                 c.s << '+';
153                         if (!is_order_function(i->rest)) {
154                                 // print 'rest', i.e. the expansion coefficient
155                                 if (i->rest.info(info_flags::numeric) &&
156                                         i->rest.info(info_flags::positive)) {
157                                         i->rest.print(c);
158                                 } else {
159                                         c.s << par_open;
160                                         i->rest.print(c);
161                                         c.s << par_close;
162                                 }
163                                 // print 'coeff', something like (x-1)^42
164                                 if (!i->coeff.is_zero()) {
165                                         if (is_a<print_latex>(c))
166                                                 c.s << ' ';
167                                         else
168                                                 c.s << '*';
169                                         if (!point.is_zero()) {
170                                                 c.s << par_open;
171                                                 (var-point).print(c);
172                                                 c.s << par_close;
173                                         } else
174                                                 var.print(c);
175                                         if (i->coeff.compare(_ex1)) {
176                                                 c.s << '^';
177                                                 if (i->coeff.info(info_flags::negative)) {
178                                                         c.s << par_open;
179                                                         i->coeff.print(c);
180                                                         c.s << par_close;
181                                                 } else {
182                                                         if (is_a<print_latex>(c)) {
183                                                                 c.s << '{';
184                                                                 i->coeff.print(c);
185                                                                 c.s << '}';
186                                                         } else
187                                                                 i->coeff.print(c);
188                                                 }
189                                         }
190                                 }
191                         } else
192                                 Order(power(var-point,i->coeff)).print(c);
193                         ++i;
194                 }
195
196                 if (precedence() <= level)
197                         c.s << ")";
198         }
199 }
200
201 int pseries::compare_same_type(const basic & other) const
202 {
203         GINAC_ASSERT(is_a<pseries>(other));
204         const pseries &o = static_cast<const pseries &>(other);
205         
206         // first compare the lengths of the series...
207         if (seq.size()>o.seq.size())
208                 return 1;
209         if (seq.size()<o.seq.size())
210                 return -1;
211         
212         // ...then the expansion point...
213         int cmpval = var.compare(o.var);
214         if (cmpval)
215                 return cmpval;
216         cmpval = point.compare(o.point);
217         if (cmpval)
218                 return cmpval;
219         
220         // ...and if that failed the individual elements
221         epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
222         while (it!=seq.end() && o_it!=o.seq.end()) {
223                 cmpval = it->compare(*o_it);
224                 if (cmpval)
225                         return cmpval;
226                 ++it;
227                 ++o_it;
228         }
229
230         // so they are equal.
231         return 0;
232 }
233
234 /** Return the number of operands including a possible order term. */
235 unsigned pseries::nops(void) const
236 {
237         return seq.size();
238 }
239
240 /** Return the ith term in the series when represented as a sum. */
241 ex pseries::op(int i) const
242 {
243         if (i < 0 || unsigned(i) >= seq.size())
244                 throw (std::out_of_range("op() out of range"));
245         return seq[i].rest * power(var - point, seq[i].coeff);
246 }
247
248 ex &pseries::let_op(int i)
249 {
250         throw (std::logic_error("let_op not defined for pseries"));
251 }
252
253 /** Return degree of highest power of the series.  This is usually the exponent
254  *  of the Order term.  If s is not the expansion variable of the series, the
255  *  series is examined termwise. */
256 int pseries::degree(const ex &s) const
257 {
258         if (var.is_equal(s)) {
259                 // Return last exponent
260                 if (seq.size())
261                         return ex_to<numeric>((seq.end()-1)->coeff).to_int();
262                 else
263                         return 0;
264         } else {
265                 epvector::const_iterator it = seq.begin(), itend = seq.end();
266                 if (it == itend)
267                         return 0;
268                 int max_pow = INT_MIN;
269                 while (it != itend) {
270                         int pow = it->rest.degree(s);
271                         if (pow > max_pow)
272                                 max_pow = pow;
273                         ++it;
274                 }
275                 return max_pow;
276         }
277 }
278
279 /** Return degree of lowest power of the series.  This is usually the exponent
280  *  of the leading term.  If s is not the expansion variable of the series, the
281  *  series is examined termwise.  If s is the expansion variable but the
282  *  expansion point is not zero the series is not expanded to find the degree.
283  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
284 int pseries::ldegree(const ex &s) const
285 {
286         if (var.is_equal(s)) {
287                 // Return first exponent
288                 if (seq.size())
289                         return ex_to<numeric>((seq.begin())->coeff).to_int();
290                 else
291                         return 0;
292         } else {
293                 epvector::const_iterator it = seq.begin(), itend = seq.end();
294                 if (it == itend)
295                         return 0;
296                 int min_pow = INT_MAX;
297                 while (it != itend) {
298                         int pow = it->rest.ldegree(s);
299                         if (pow < min_pow)
300                                 min_pow = pow;
301                         ++it;
302                 }
303                 return min_pow;
304         }
305 }
306
307 /** Return coefficient of degree n in power series if s is the expansion
308  *  variable.  If the expansion point is nonzero, by definition the n=1
309  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
310  *  the expansion took place in the s in the first place).
311  *  If s is not the expansion variable, an attempt is made to convert the
312  *  series to a polynomial and return the corresponding coefficient from
313  *  there. */
314 ex pseries::coeff(const ex &s, int n) const
315 {
316         if (var.is_equal(s)) {
317                 if (seq.empty())
318                         return _ex0;
319                 
320                 // Binary search in sequence for given power
321                 numeric looking_for = numeric(n);
322                 int lo = 0, hi = seq.size() - 1;
323                 while (lo <= hi) {
324                         int mid = (lo + hi) / 2;
325                         GINAC_ASSERT(is_exactly_a<numeric>(seq[mid].coeff));
326                         int cmp = ex_to<numeric>(seq[mid].coeff).compare(looking_for);
327                         switch (cmp) {
328                                 case -1:
329                                         lo = mid + 1;
330                                         break;
331                                 case 0:
332                                         return seq[mid].rest;
333                                 case 1:
334                                         hi = mid - 1;
335                                         break;
336                                 default:
337                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
338                         }
339                 }
340                 return _ex0;
341         } else
342                 return convert_to_poly().coeff(s, n);
343 }
344
345 /** Does nothing. */
346 ex pseries::collect(const ex &s, bool distributed) const
347 {
348         return *this;
349 }
350
351 /** Perform coefficient-wise automatic term rewriting rules in this class. */
352 ex pseries::eval(int level) const
353 {
354         if (level == 1)
355                 return this->hold();
356         
357         if (level == -max_recursion_level)
358                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
359         
360         // Construct a new series with evaluated coefficients
361         epvector new_seq;
362         new_seq.reserve(seq.size());
363         epvector::const_iterator it = seq.begin(), itend = seq.end();
364         while (it != itend) {
365                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
366                 ++it;
367         }
368         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
369 }
370
371 /** Evaluate coefficients numerically. */
372 ex pseries::evalf(int level) const
373 {
374         if (level == 1)
375                 return *this;
376         
377         if (level == -max_recursion_level)
378                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
379         
380         // Construct a new series with evaluated coefficients
381         epvector new_seq;
382         new_seq.reserve(seq.size());
383         epvector::const_iterator it = seq.begin(), itend = seq.end();
384         while (it != itend) {
385                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
386                 ++it;
387         }
388         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
389 }
390
391 ex pseries::subs(const lst & ls, const lst & lr, bool no_pattern) const
392 {
393         // If expansion variable is being substituted, convert the series to a
394         // polynomial and do the substitution there because the result might
395         // no longer be a power series
396         if (ls.has(var))
397                 return convert_to_poly(true).subs(ls, lr, no_pattern);
398         
399         // Otherwise construct a new series with substituted coefficients and
400         // expansion point
401         epvector newseq;
402         newseq.reserve(seq.size());
403         epvector::const_iterator it = seq.begin(), itend = seq.end();
404         while (it != itend) {
405                 newseq.push_back(expair(it->rest.subs(ls, lr, no_pattern), it->coeff));
406                 ++it;
407         }
408         return (new pseries(relational(var,point.subs(ls, lr, no_pattern)), newseq))->setflag(status_flags::dynallocated);
409 }
410
411 /** Implementation of ex::expand() for a power series.  It expands all the
412  *  terms individually and returns the resulting series as a new pseries. */
413 ex pseries::expand(unsigned options) const
414 {
415         epvector newseq;
416         epvector::const_iterator i = seq.begin(), end = seq.end();
417         while (i != end) {
418                 ex restexp = i->rest.expand();
419                 if (!restexp.is_zero())
420                         newseq.push_back(expair(restexp, i->coeff));
421                 ++i;
422         }
423         return (new pseries(relational(var,point), newseq))
424                 ->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
425 }
426
427 /** Implementation of ex::diff() for a power series.  It treats the series as a
428  *  polynomial.
429  *  @see ex::diff */
430 ex pseries::derivative(const symbol & s) const
431 {
432         if (s == var) {
433                 epvector new_seq;
434                 epvector::const_iterator it = seq.begin(), itend = seq.end();
435                 
436                 // FIXME: coeff might depend on var
437                 while (it != itend) {
438                         if (is_order_function(it->rest)) {
439                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
440                         } else {
441                                 ex c = it->rest * it->coeff;
442                                 if (!c.is_zero())
443                                         new_seq.push_back(expair(c, it->coeff - 1));
444                         }
445                         ++it;
446                 }
447                 return pseries(relational(var,point), new_seq);
448         } else {
449                 return *this;
450         }
451 }
452
453 ex pseries::convert_to_poly(bool no_order) const
454 {
455         ex e;
456         epvector::const_iterator it = seq.begin(), itend = seq.end();
457         
458         while (it != itend) {
459                 if (is_order_function(it->rest)) {
460                         if (!no_order)
461                                 e += Order(power(var - point, it->coeff));
462                 } else
463                         e += it->rest * power(var - point, it->coeff);
464                 ++it;
465         }
466         return e;
467 }
468
469 bool pseries::is_terminating(void) const
470 {
471         return seq.empty() || !is_order_function((seq.end()-1)->rest);
472 }
473
474
475 /*
476  *  Implementations of series expansion
477  */
478
479 /** Default implementation of ex::series(). This performs Taylor expansion.
480  *  @see ex::series */
481 ex basic::series(const relational & r, int order, unsigned options) const
482 {
483         epvector seq;
484         numeric fac = 1;
485         ex deriv = *this;
486         ex coeff = deriv.subs(r);
487         const symbol &s = ex_to<symbol>(r.lhs());
488         
489         if (!coeff.is_zero())
490                 seq.push_back(expair(coeff, _ex0));
491         
492         int n;
493         for (n=1; n<order; ++n) {
494                 fac = fac.mul(n);
495                 // We need to test for zero in order to see if the series terminates.
496                 // The problem is that there is no such thing as a perfect test for
497                 // zero.  Expanding the term occasionally helps a little...
498                 deriv = deriv.diff(s).expand();
499                 if (deriv.is_zero())  // Series terminates
500                         return pseries(r, seq);
501
502                 coeff = deriv.subs(r);
503                 if (!coeff.is_zero())
504                         seq.push_back(expair(fac.inverse() * coeff, n));
505         }
506         
507         // Higher-order terms, if present
508         deriv = deriv.diff(s);
509         if (!deriv.expand().is_zero())
510                 seq.push_back(expair(Order(_ex1), n));
511         return pseries(r, seq);
512 }
513
514
515 /** Implementation of ex::series() for symbols.
516  *  @see ex::series */
517 ex symbol::series(const relational & r, int order, unsigned options) const
518 {
519         epvector seq;
520         const ex point = r.rhs();
521         GINAC_ASSERT(is_exactly_a<symbol>(r.lhs()));
522
523         if (this->is_equal_same_type(ex_to<symbol>(r.lhs()))) {
524                 if (order > 0 && !point.is_zero())
525                         seq.push_back(expair(point, _ex0));
526                 if (order > 1)
527                         seq.push_back(expair(_ex1, _ex1));
528                 else
529                         seq.push_back(expair(Order(_ex1), numeric(order)));
530         } else
531                 seq.push_back(expair(*this, _ex0));
532         return pseries(r, seq);
533 }
534
535
536 /** Add one series object to another, producing a pseries object that
537  *  represents the sum.
538  *
539  *  @param other  pseries object to add with
540  *  @return the sum as a pseries */
541 ex pseries::add_series(const pseries &other) const
542 {
543         // Adding two series with different variables or expansion points
544         // results in an empty (constant) series 
545         if (!is_compatible_to(other)) {
546                 epvector nul;
547                 nul.push_back(expair(Order(_ex1), _ex0));
548                 return pseries(relational(var,point), nul);
549         }
550         
551         // Series addition
552         epvector new_seq;
553         epvector::const_iterator a = seq.begin();
554         epvector::const_iterator b = other.seq.begin();
555         epvector::const_iterator a_end = seq.end();
556         epvector::const_iterator b_end = other.seq.end();
557         int pow_a = INT_MAX, pow_b = INT_MAX;
558         for (;;) {
559                 // If a is empty, fill up with elements from b and stop
560                 if (a == a_end) {
561                         while (b != b_end) {
562                                 new_seq.push_back(*b);
563                                 ++b;
564                         }
565                         break;
566                 } else
567                         pow_a = ex_to<numeric>((*a).coeff).to_int();
568                 
569                 // If b is empty, fill up with elements from a and stop
570                 if (b == b_end) {
571                         while (a != a_end) {
572                                 new_seq.push_back(*a);
573                                 ++a;
574                         }
575                         break;
576                 } else
577                         pow_b = ex_to<numeric>((*b).coeff).to_int();
578                 
579                 // a and b are non-empty, compare powers
580                 if (pow_a < pow_b) {
581                         // a has lesser power, get coefficient from a
582                         new_seq.push_back(*a);
583                         if (is_order_function((*a).rest))
584                                 break;
585                         ++a;
586                 } else if (pow_b < pow_a) {
587                         // b has lesser power, get coefficient from b
588                         new_seq.push_back(*b);
589                         if (is_order_function((*b).rest))
590                                 break;
591                         ++b;
592                 } else {
593                         // Add coefficient of a and b
594                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
595                                 new_seq.push_back(expair(Order(_ex1), (*a).coeff));
596                                 break;  // Order term ends the sequence
597                         } else {
598                                 ex sum = (*a).rest + (*b).rest;
599                                 if (!(sum.is_zero()))
600                                         new_seq.push_back(expair(sum, numeric(pow_a)));
601                                 ++a;
602                                 ++b;
603                         }
604                 }
605         }
606         return pseries(relational(var,point), new_seq);
607 }
608
609
610 /** Implementation of ex::series() for sums. This performs series addition when
611  *  adding pseries objects.
612  *  @see ex::series */
613 ex add::series(const relational & r, int order, unsigned options) const
614 {
615         ex acc; // Series accumulator
616         
617         // Get first term from overall_coeff
618         acc = overall_coeff.series(r, order, options);
619         
620         // Add remaining terms
621         epvector::const_iterator it = seq.begin();
622         epvector::const_iterator itend = seq.end();
623         for (; it!=itend; ++it) {
624                 ex op;
625                 if (is_ex_exactly_of_type(it->rest, pseries))
626                         op = it->rest;
627                 else
628                         op = it->rest.series(r, order, options);
629                 if (!it->coeff.is_equal(_ex1))
630                         op = ex_to<pseries>(op).mul_const(ex_to<numeric>(it->coeff));
631                 
632                 // Series addition
633                 acc = ex_to<pseries>(acc).add_series(ex_to<pseries>(op));
634         }
635         return acc;
636 }
637
638
639 /** Multiply a pseries object with a numeric constant, producing a pseries
640  *  object that represents the product.
641  *
642  *  @param other  constant to multiply with
643  *  @return the product as a pseries */
644 ex pseries::mul_const(const numeric &other) const
645 {
646         epvector new_seq;
647         new_seq.reserve(seq.size());
648         
649         epvector::const_iterator it = seq.begin(), itend = seq.end();
650         while (it != itend) {
651                 if (!is_order_function(it->rest))
652                         new_seq.push_back(expair(it->rest * other, it->coeff));
653                 else
654                         new_seq.push_back(*it);
655                 ++it;
656         }
657         return pseries(relational(var,point), new_seq);
658 }
659
660
661 /** Multiply one pseries object to another, producing a pseries object that
662  *  represents the product.
663  *
664  *  @param other  pseries object to multiply with
665  *  @return the product as a pseries */
666 ex pseries::mul_series(const pseries &other) const
667 {
668         // Multiplying two series with different variables or expansion points
669         // results in an empty (constant) series 
670         if (!is_compatible_to(other)) {
671                 epvector nul;
672                 nul.push_back(expair(Order(_ex1), _ex0));
673                 return pseries(relational(var,point), nul);
674         }
675         
676         // Series multiplication
677         epvector new_seq;
678         int a_max = degree(var);
679         int b_max = other.degree(var);
680         int a_min = ldegree(var);
681         int b_min = other.ldegree(var);
682         int cdeg_min = a_min + b_min;
683         int cdeg_max = a_max + b_max;
684         
685         int higher_order_a = INT_MAX;
686         int higher_order_b = INT_MAX;
687         if (is_order_function(coeff(var, a_max)))
688                 higher_order_a = a_max + b_min;
689         if (is_order_function(other.coeff(var, b_max)))
690                 higher_order_b = b_max + a_min;
691         int higher_order_c = std::min(higher_order_a, higher_order_b);
692         if (cdeg_max >= higher_order_c)
693                 cdeg_max = higher_order_c - 1;
694         
695         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
696                 ex co = _ex0;
697                 // c(i)=a(0)b(i)+...+a(i)b(0)
698                 for (int i=a_min; cdeg-i>=b_min; ++i) {
699                         ex a_coeff = coeff(var, i);
700                         ex b_coeff = other.coeff(var, cdeg-i);
701                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
702                                 co += a_coeff * b_coeff;
703                 }
704                 if (!co.is_zero())
705                         new_seq.push_back(expair(co, numeric(cdeg)));
706         }
707         if (higher_order_c < INT_MAX)
708                 new_seq.push_back(expair(Order(_ex1), numeric(higher_order_c)));
709         return pseries(relational(var, point), new_seq);
710 }
711
712
713 /** Implementation of ex::series() for product. This performs series
714  *  multiplication when multiplying series.
715  *  @see ex::series */
716 ex mul::series(const relational & r, int order, unsigned options) const
717 {
718         pseries acc; // Series accumulator
719
720         // Multiply with remaining terms
721         const epvector::const_iterator itbeg = seq.begin();
722         const epvector::const_iterator itend = seq.end();
723         for (epvector::const_iterator it=itbeg; it!=itend; ++it) {
724                 ex op = recombine_pair_to_ex(*it).series(r, order, options);
725
726                 // Series multiplication
727                 if (it==itbeg)
728                         acc = ex_to<pseries>(op);
729                 else
730                         acc = ex_to<pseries>(acc.mul_series(ex_to<pseries>(op)));
731         }
732         return acc.mul_const(ex_to<numeric>(overall_coeff));
733 }
734
735
736 /** Compute the p-th power of a series.
737  *
738  *  @param p  power to compute
739  *  @param deg  truncation order of series calculation */
740 ex pseries::power_const(const numeric &p, int deg) const
741 {
742         // method:
743         // (due to Leonhard Euler)
744         // let A(x) be this series and for the time being let it start with a
745         // constant (later we'll generalize):
746         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
747         // We want to compute
748         //     C(x) = A(x)^p
749         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
750         // Taking the derivative on both sides and multiplying with A(x) one
751         // immediately arrives at
752         //     C'(x)*A(x) = p*C(x)*A'(x)
753         // Multiplying this out and comparing coefficients we get the recurrence
754         // formula
755         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
756         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
757         // which can easily be solved given the starting value c_0 = (a_0)^p.
758         // For the more general case where the leading coefficient of A(x) is not
759         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
760         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
761         // then of course x^(p*m) but the recurrence formula still holds.
762         
763         if (seq.empty()) {
764                 // as a special case, handle the empty (zero) series honoring the
765                 // usual power laws such as implemented in power::eval()
766                 if (p.real().is_zero())
767                         throw std::domain_error("pseries::power_const(): pow(0,I) is undefined");
768                 else if (p.real().is_negative())
769                         throw pole_error("pseries::power_const(): division by zero",1);
770                 else
771                         return *this;
772         }
773         
774         const int ldeg = ldegree(var);
775         if (!(p*ldeg).is_integer())
776                 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
777
778         // O(x^n)^(-m) is undefined
779         if (seq.size() == 1 && is_order_function(seq[0].rest) && p.real().is_negative())
780                 throw pole_error("pseries::power_const(): division by zero",1);
781         
782         // Compute coefficients of the powered series
783         exvector co;
784         co.reserve(deg);
785         co.push_back(power(coeff(var, ldeg), p));
786         bool all_sums_zero = true;
787         for (int i=1; i<deg; ++i) {
788                 ex sum = _ex0;
789                 for (int j=1; j<=i; ++j) {
790                         ex c = coeff(var, j + ldeg);
791                         if (is_order_function(c)) {
792                                 co.push_back(Order(_ex1));
793                                 break;
794                         } else
795                                 sum += (p * j - (i - j)) * co[i - j] * c;
796                 }
797                 if (!sum.is_zero())
798                         all_sums_zero = false;
799                 co.push_back(sum / coeff(var, ldeg) / i);
800         }
801         
802         // Construct new series (of non-zero coefficients)
803         epvector new_seq;
804         bool higher_order = false;
805         for (int i=0; i<deg; ++i) {
806                 if (!co[i].is_zero())
807                         new_seq.push_back(expair(co[i], p * ldeg + i));
808                 if (is_order_function(co[i])) {
809                         higher_order = true;
810                         break;
811                 }
812         }
813         if (!higher_order && !all_sums_zero)
814                 new_seq.push_back(expair(Order(_ex1), p * ldeg + deg));
815         return pseries(relational(var,point), new_seq);
816 }
817
818
819 /** Return a new pseries object with the powers shifted by deg. */
820 pseries pseries::shift_exponents(int deg) const
821 {
822         epvector newseq = seq;
823         epvector::iterator i = newseq.begin(), end  = newseq.end();
824         while (i != end) {
825                 i->coeff += deg;
826                 ++i;
827         }
828         return pseries(relational(var, point), newseq);
829 }
830
831
832 /** Implementation of ex::series() for powers. This performs Laurent expansion
833  *  of reciprocals of series at singularities.
834  *  @see ex::series */
835 ex power::series(const relational & r, int order, unsigned options) const
836 {
837         // If basis is already a series, just power it
838         if (is_ex_exactly_of_type(basis, pseries))
839                 return ex_to<pseries>(basis).power_const(ex_to<numeric>(exponent), order);
840
841         // Basis is not a series, may there be a singularity?
842         bool must_expand_basis = false;
843         try {
844                 basis.subs(r);
845         } catch (pole_error) {
846                 must_expand_basis = true;
847         }
848                 
849         // Is the expression of type something^(-int)?
850         if (!must_expand_basis && !exponent.info(info_flags::negint))
851                 return basic::series(r, order, options);
852                 
853         // Is the expression of type 0^something?
854         if (!must_expand_basis && !basis.subs(r).is_zero())
855                 return basic::series(r, order, options);
856
857         // Singularity encountered, is the basis equal to (var - point)?
858         if (basis.is_equal(r.lhs() - r.rhs())) {
859                 epvector new_seq;
860                 if (ex_to<numeric>(exponent).to_int() < order)
861                         new_seq.push_back(expair(_ex1, exponent));
862                 else
863                         new_seq.push_back(expair(Order(_ex1), exponent));
864                 return pseries(r, new_seq);
865         }
866
867         // No, expand basis into series
868         ex e = basis.series(r, order, options);
869         return ex_to<pseries>(e).power_const(ex_to<numeric>(exponent), order);
870 }
871
872
873 /** Re-expansion of a pseries object. */
874 ex pseries::series(const relational & r, int order, unsigned options) const
875 {
876         const ex p = r.rhs();
877         GINAC_ASSERT(is_exactly_a<symbol>(r.lhs()));
878         const symbol &s = ex_to<symbol>(r.lhs());
879         
880         if (var.is_equal(s) && point.is_equal(p)) {
881                 if (order > degree(s))
882                         return *this;
883                 else {
884                         epvector new_seq;
885                         epvector::const_iterator it = seq.begin(), itend = seq.end();
886                         while (it != itend) {
887                                 int o = ex_to<numeric>(it->coeff).to_int();
888                                 if (o >= order) {
889                                         new_seq.push_back(expair(Order(_ex1), o));
890                                         break;
891                                 }
892                                 new_seq.push_back(*it);
893                                 ++it;
894                         }
895                         return pseries(r, new_seq);
896                 }
897         } else
898                 return convert_to_poly().series(r, order, options);
899 }
900
901
902 /** Compute the truncated series expansion of an expression.
903  *  This function returns an expression containing an object of class pseries 
904  *  to represent the series. If the series does not terminate within the given
905  *  truncation order, the last term of the series will be an order term.
906  *
907  *  @param r  expansion relation, lhs holds variable and rhs holds point
908  *  @param order  truncation order of series calculations
909  *  @param options  of class series_options
910  *  @return an expression holding a pseries object */
911 ex ex::series(const ex & r, int order, unsigned options) const
912 {
913         GINAC_ASSERT(bp!=0);
914         ex e;
915         relational rel_;
916         
917         if (is_ex_exactly_of_type(r,relational))
918                 rel_ = ex_to<relational>(r);
919         else if (is_ex_exactly_of_type(r,symbol))
920                 rel_ = relational(r,_ex0);
921         else
922                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
923         
924         try {
925                 e = bp->series(rel_, order, options);
926         } catch (std::exception &x) {
927                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
928         }
929         return e;
930 }
931
932 } // namespace GiNaC