]> www.ginac.de Git - ginac.git/blob - ginac/power.cpp
degree(), ldegree(), coeff(), lcoeff(), tcoeff() and collect() can now
[ginac.git] / ginac / power.cpp
1 /** @file power.cpp
2  *
3  *  Implementation of GiNaC's symbolic exponentiation (basis^exponent). */
4
5 /*
6  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include <vector>
24 #include <iostream>
25 #include <stdexcept>
26
27 #include "power.h"
28 #include "expairseq.h"
29 #include "add.h"
30 #include "mul.h"
31 #include "numeric.h"
32 #include "inifcns.h"
33 #include "relational.h"
34 #include "symbol.h"
35 #include "archive.h"
36 #include "debugmsg.h"
37 #include "utils.h"
38
39 namespace GiNaC {
40
41 GINAC_IMPLEMENT_REGISTERED_CLASS(power, basic)
42
43 typedef std::vector<int> intvector;
44
45 //////////
46 // default ctor, dtor, copy ctor assignment operator and helpers
47 //////////
48
49 power::power() : basic(TINFO_power)
50 {
51         debugmsg("power default ctor",LOGLEVEL_CONSTRUCT);
52 }
53
54 void power::copy(const power & other)
55 {
56         inherited::copy(other);
57         basis = other.basis;
58         exponent = other.exponent;
59 }
60
61 DEFAULT_DESTROY(power)
62
63 //////////
64 // other ctors
65 //////////
66
67 power::power(const ex & lh, const ex & rh) : basic(TINFO_power), basis(lh), exponent(rh)
68 {
69         debugmsg("power ctor from ex,ex",LOGLEVEL_CONSTRUCT);
70         GINAC_ASSERT(basis.return_type()==return_types::commutative);
71 }
72
73 power::power(const ex & lh, const numeric & rh) : basic(TINFO_power), basis(lh), exponent(rh)
74 {
75         debugmsg("power ctor from ex,numeric",LOGLEVEL_CONSTRUCT);
76         GINAC_ASSERT(basis.return_type()==return_types::commutative);
77 }
78
79 //////////
80 // archiving
81 //////////
82
83 power::power(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
84 {
85         debugmsg("power ctor from archive_node", LOGLEVEL_CONSTRUCT);
86         n.find_ex("basis", basis, sym_lst);
87         n.find_ex("exponent", exponent, sym_lst);
88 }
89
90 void power::archive(archive_node &n) const
91 {
92         inherited::archive(n);
93         n.add_ex("basis", basis);
94         n.add_ex("exponent", exponent);
95 }
96
97 DEFAULT_UNARCHIVE(power)
98
99 //////////
100 // functions overriding virtual functions from bases classes
101 //////////
102
103 // public
104
105 void power::print(std::ostream & os, unsigned upper_precedence) const
106 {
107         debugmsg("power print",LOGLEVEL_PRINT);
108         if (exponent.is_equal(_ex1_2())) {
109                 os << "sqrt(" << basis << ")";
110         } else {
111                 if (precedence<=upper_precedence) os << "(";
112                 basis.print(os,precedence);
113                 os << "^";
114                 exponent.print(os,precedence);
115                 if (precedence<=upper_precedence) os << ")";
116         }
117 }
118
119 void power::printraw(std::ostream & os) const
120 {
121         debugmsg("power printraw",LOGLEVEL_PRINT);
122
123         os << class_name() << "(";
124         basis.printraw(os);
125         os << ",";
126         exponent.printraw(os);
127         os << ",hash=" << hashvalue << ",flags=" << flags << ")";
128 }
129
130 void power::printtree(std::ostream & os, unsigned indent) const
131 {
132         debugmsg("power printtree",LOGLEVEL_PRINT);
133
134         os << std::string(indent,' ') << class_name()
135            << ", hash=" << hashvalue
136            << " (0x" << std::hex << hashvalue << std::dec << ")"
137            << ", flags=" << flags << std::endl;
138         basis.printtree(os, indent+delta_indent);
139         exponent.printtree(os, indent+delta_indent);
140 }
141
142 static void print_sym_pow(std::ostream & os, unsigned type, const symbol &x, int exp)
143 {
144         // Optimal output of integer powers of symbols to aid compiler CSE.
145         // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15
146         // to learn why such a hack is really necessary.
147         if (exp == 1) {
148                 x.printcsrc(os, type, 0);
149         } else if (exp == 2) {
150                 x.printcsrc(os, type, 0);
151                 os << "*";
152                 x.printcsrc(os, type, 0);
153         } else if (exp & 1) {
154                 x.printcsrc(os, 0);
155                 os << "*";
156                 print_sym_pow(os, type, x, exp-1);
157         } else {
158                 os << "(";
159                 print_sym_pow(os, type, x, exp >> 1);
160                 os << ")*(";
161                 print_sym_pow(os, type, x, exp >> 1);
162                 os << ")";
163         }
164 }
165
166 void power::printcsrc(std::ostream & os, unsigned type, unsigned upper_precedence) const
167 {
168         debugmsg("power print csrc", LOGLEVEL_PRINT);
169         
170         // Integer powers of symbols are printed in a special, optimized way
171         if (exponent.info(info_flags::integer)
172          && (is_ex_exactly_of_type(basis, symbol) || is_ex_exactly_of_type(basis, constant))) {
173                 int exp = ex_to_numeric(exponent).to_int();
174                 if (exp > 0)
175                         os << "(";
176                 else {
177                         exp = -exp;
178                         if (type == csrc_types::ctype_cl_N)
179                                 os << "recip(";
180                         else
181                                 os << "1.0/(";
182                 }
183                 print_sym_pow(os, type, static_cast<const symbol &>(*basis.bp), exp);
184                 os << ")";
185
186         // <expr>^-1 is printed as "1.0/<expr>" or with the recip() function of CLN
187         } else if (exponent.compare(_num_1()) == 0) {
188                 if (type == csrc_types::ctype_cl_N)
189                         os << "recip(";
190                 else
191                         os << "1.0/(";
192                 basis.bp->printcsrc(os, type, 0);
193                 os << ")";
194
195         // Otherwise, use the pow() or expt() (CLN) functions
196         } else {
197                 if (type == csrc_types::ctype_cl_N)
198                         os << "expt(";
199                 else
200                         os << "pow(";
201                 basis.bp->printcsrc(os, type, 0);
202                 os << ",";
203                 exponent.bp->printcsrc(os, type, 0);
204                 os << ")";
205         }
206 }
207
208 bool power::info(unsigned inf) const
209 {
210         switch (inf) {
211                 case info_flags::polynomial:
212                 case info_flags::integer_polynomial:
213                 case info_flags::cinteger_polynomial:
214                 case info_flags::rational_polynomial:
215                 case info_flags::crational_polynomial:
216                         return exponent.info(info_flags::nonnegint);
217                 case info_flags::rational_function:
218                         return exponent.info(info_flags::integer);
219                 case info_flags::algebraic:
220                         return (!exponent.info(info_flags::integer) ||
221                                         basis.info(inf));
222         }
223         return inherited::info(inf);
224 }
225
226 unsigned power::nops() const
227 {
228         return 2;
229 }
230
231 ex & power::let_op(int i)
232 {
233         GINAC_ASSERT(i>=0);
234         GINAC_ASSERT(i<2);
235
236         return i==0 ? basis : exponent;
237 }
238
239 int power::degree(const ex & s) const
240 {
241         if (is_exactly_of_type(*exponent.bp,numeric)) {
242                 if (basis.is_equal(s)) {
243                         if (ex_to_numeric(exponent).is_integer())
244                                 return ex_to_numeric(exponent).to_int();
245                         else
246                                 return 0;
247                 } else
248                         return basis.degree(s) * ex_to_numeric(exponent).to_int();
249         }
250         return 0;
251 }
252
253 int power::ldegree(const ex & s) const 
254 {
255         if (is_exactly_of_type(*exponent.bp,numeric)) {
256                 if (basis.is_equal(s)) {
257                         if (ex_to_numeric(exponent).is_integer())
258                                 return ex_to_numeric(exponent).to_int();
259                         else
260                                 return 0;
261                 } else
262                         return basis.ldegree(s) * ex_to_numeric(exponent).to_int();
263         }
264         return 0;
265 }
266
267 ex power::coeff(const ex & s, int n) const
268 {
269         if (!basis.is_equal(s)) {
270                 // basis not equal to s
271                 if (n == 0)
272                         return *this;
273                 else
274                         return _ex0();
275         } else {
276                 // basis equal to s
277                 if (is_exactly_of_type(*exponent.bp, numeric) && ex_to_numeric(exponent).is_integer()) {
278                         // integer exponent
279                         int int_exp = ex_to_numeric(exponent).to_int();
280                         if (n == int_exp)
281                                 return _ex1();
282                         else
283                                 return _ex0();
284                 } else {
285                         // non-integer exponents are treated as zero
286                         if (n == 0)
287                                 return *this;
288                         else
289                                 return _ex0();
290                 }
291         }
292 }
293
294 ex power::eval(int level) const
295 {
296         // simplifications: ^(x,0) -> 1 (0^0 handled here)
297         //                  ^(x,1) -> x
298         //                  ^(0,c1) -> 0 or exception (depending on real value of c1)
299         //                  ^(1,x) -> 1
300         //                  ^(c1,c2) -> *(c1^n,c1^(c2-n)) (c1, c2 numeric(), 0<(c2-n)<1 except if c1,c2 are rational, but c1^c2 is not)
301         //                  ^(^(x,c1),c2) -> ^(x,c1*c2) (c1, c2 numeric(), c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
302         //                  ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
303         //                  ^(*(x,c1),c2) -> ^(x,c2)*c1^c2 (c1, c2 numeric(), c1>0)
304         //                  ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2 (c1, c2 numeric(), c1<0)
305         
306         debugmsg("power eval",LOGLEVEL_MEMBER_FUNCTION);
307         
308         if ((level==1) && (flags & status_flags::evaluated))
309                 return *this;
310         else if (level == -max_recursion_level)
311                 throw(std::runtime_error("max recursion level reached"));
312         
313         const ex & ebasis    = level==1 ? basis    : basis.eval(level-1);
314         const ex & eexponent = level==1 ? exponent : exponent.eval(level-1);
315         
316         bool basis_is_numerical = 0;
317         bool exponent_is_numerical = 0;
318         numeric * num_basis;
319         numeric * num_exponent;
320         
321         if (is_exactly_of_type(*ebasis.bp,numeric)) {
322                 basis_is_numerical = 1;
323                 num_basis = static_cast<numeric *>(ebasis.bp);
324         }
325         if (is_exactly_of_type(*eexponent.bp,numeric)) {
326                 exponent_is_numerical = 1;
327                 num_exponent = static_cast<numeric *>(eexponent.bp);
328         }
329         
330         // ^(x,0) -> 1 (0^0 also handled here)
331         if (eexponent.is_zero()) {
332                 if (ebasis.is_zero())
333                         throw (std::domain_error("power::eval(): pow(0,0) is undefined"));
334                 else
335                         return _ex1();
336         }
337         
338         // ^(x,1) -> x
339         if (eexponent.is_equal(_ex1()))
340                 return ebasis;
341         
342         // ^(0,c1) -> 0 or exception (depending on real value of c1)
343         if (ebasis.is_zero() && exponent_is_numerical) {
344                 if ((num_exponent->real()).is_zero())
345                         throw (std::domain_error("power::eval(): pow(0,I) is undefined"));
346                 else if ((num_exponent->real()).is_negative())
347                         throw (pole_error("power::eval(): division by zero",1));
348                 else
349                         return _ex0();
350         }
351         
352         // ^(1,x) -> 1
353         if (ebasis.is_equal(_ex1()))
354                 return _ex1();
355         
356         if (basis_is_numerical && exponent_is_numerical) {
357                 // ^(c1,c2) -> c1^c2 (c1, c2 numeric(),
358                 // except if c1,c2 are rational, but c1^c2 is not)
359                 bool basis_is_crational = num_basis->is_crational();
360                 bool exponent_is_crational = num_exponent->is_crational();
361                 numeric res = num_basis->power(*num_exponent);
362                 
363                 if ((!basis_is_crational || !exponent_is_crational)
364                         || res.is_crational()) {
365                         return res;
366                 }
367                 GINAC_ASSERT(!num_exponent->is_integer());  // has been handled by now
368                 // ^(c1,n/m) -> *(c1^q,c1^(n/m-q)), 0<(n/m-h)<1, q integer
369                 if (basis_is_crational && exponent_is_crational
370                         && num_exponent->is_real()
371                         && !num_exponent->is_integer()) {
372                         numeric n = num_exponent->numer();
373                         numeric m = num_exponent->denom();
374                         numeric r;
375                         numeric q = iquo(n, m, r);
376                         if (r.is_negative()) {
377                                 r = r.add(m);
378                                 q = q.sub(_num1());
379                         }
380                         if (q.is_zero())  // the exponent was in the allowed range 0<(n/m)<1
381                                 return this->hold();
382                         else {
383                                 epvector res;
384                                 res.push_back(expair(ebasis,r.div(m)));
385                                 return (new mul(res,ex(num_basis->power_dyn(q))))->setflag(status_flags::dynallocated | status_flags::evaluated);
386                         }
387                 }
388         }
389         
390         // ^(^(x,c1),c2) -> ^(x,c1*c2)
391         // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1,
392         // case c1==1 should not happen, see below!)
393         if (exponent_is_numerical && is_ex_exactly_of_type(ebasis,power)) {
394                 const power & sub_power = ex_to_power(ebasis);
395                 const ex & sub_basis = sub_power.basis;
396                 const ex & sub_exponent = sub_power.exponent;
397                 if (is_ex_exactly_of_type(sub_exponent,numeric)) {
398                         const numeric & num_sub_exponent = ex_to_numeric(sub_exponent);
399                         GINAC_ASSERT(num_sub_exponent!=numeric(1));
400                         if (num_exponent->is_integer() || abs(num_sub_exponent)<1)
401                                 return power(sub_basis,num_sub_exponent.mul(*num_exponent));
402                 }
403         }
404         
405         // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
406         if (exponent_is_numerical && num_exponent->is_integer() &&
407                 is_ex_exactly_of_type(ebasis,mul)) {
408                 return expand_mul(ex_to_mul(ebasis), *num_exponent);
409         }
410         
411         // ^(*(...,x;c1),c2) -> ^(*(...,x;1),c2)*c1^c2 (c1, c2 numeric(), c1>0)
412         // ^(*(...,x,c1),c2) -> ^(*(...,x;-1),c2)*(-c1)^c2 (c1, c2 numeric(), c1<0)
413         if (exponent_is_numerical && is_ex_exactly_of_type(ebasis,mul)) {
414                 GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above
415                 const mul & mulref = ex_to_mul(ebasis);
416                 if (!mulref.overall_coeff.is_equal(_ex1())) {
417                         const numeric & num_coeff = ex_to_numeric(mulref.overall_coeff);
418                         if (num_coeff.is_real()) {
419                                 if (num_coeff.is_positive()) {
420                                         mul * mulp = new mul(mulref);
421                                         mulp->overall_coeff = _ex1();
422                                         mulp->clearflag(status_flags::evaluated);
423                                         mulp->clearflag(status_flags::hash_calculated);
424                                         return (new mul(power(*mulp,exponent),
425                                                         power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated);
426                                 } else {
427                                         GINAC_ASSERT(num_coeff.compare(_num0())<0);
428                                         if (num_coeff.compare(_num_1())!=0) {
429                                                 mul * mulp = new mul(mulref);
430                                                 mulp->overall_coeff = _ex_1();
431                                                 mulp->clearflag(status_flags::evaluated);
432                                                 mulp->clearflag(status_flags::hash_calculated);
433                                                 return (new mul(power(*mulp,exponent),
434                                                                 power(abs(num_coeff),*num_exponent)))->setflag(status_flags::dynallocated);
435                                         }
436                                 }
437                         }
438                 }
439         }
440         
441         if (are_ex_trivially_equal(ebasis,basis) &&
442                 are_ex_trivially_equal(eexponent,exponent)) {
443                 return this->hold();
444         }
445         return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated |
446                                                                                                    status_flags::evaluated);
447 }
448
449 ex power::evalf(int level) const
450 {
451         debugmsg("power evalf",LOGLEVEL_MEMBER_FUNCTION);
452
453         ex ebasis;
454         ex eexponent;
455         
456         if (level==1) {
457                 ebasis = basis;
458                 eexponent = exponent;
459         } else if (level == -max_recursion_level) {
460                 throw(std::runtime_error("max recursion level reached"));
461         } else {
462                 ebasis = basis.evalf(level-1);
463                 if (!is_ex_exactly_of_type(eexponent,numeric))
464                         eexponent = exponent.evalf(level-1);
465                 else
466                         eexponent = exponent;
467         }
468
469         return power(ebasis,eexponent);
470 }
471
472 ex power::subs(const lst & ls, const lst & lr) const
473 {
474         const ex & subsed_basis=basis.subs(ls,lr);
475         const ex & subsed_exponent=exponent.subs(ls,lr);
476
477         if (are_ex_trivially_equal(basis,subsed_basis)&&
478                 are_ex_trivially_equal(exponent,subsed_exponent)) {
479                 return *this;
480         }
481         
482         return power(subsed_basis, subsed_exponent);
483 }
484
485 ex power::simplify_ncmul(const exvector & v) const
486 {
487         return inherited::simplify_ncmul(v);
488 }
489
490 // protected
491
492 /** Implementation of ex::diff() for a power.
493  *  @see ex::diff */
494 ex power::derivative(const symbol & s) const
495 {
496         if (exponent.info(info_flags::real)) {
497                 // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
498                 epvector newseq;
499                 newseq.reserve(2);
500                 newseq.push_back(expair(basis, exponent - _ex1()));
501                 newseq.push_back(expair(basis.diff(s), _ex1()));
502                 return mul(newseq, exponent);
503         } else {
504                 // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b)
505                 return mul(*this,
506                            add(mul(exponent.diff(s), log(basis)),
507                            mul(mul(exponent, basis.diff(s)), power(basis, _ex_1()))));
508         }
509 }
510
511 int power::compare_same_type(const basic & other) const
512 {
513         GINAC_ASSERT(is_exactly_of_type(other, power));
514         const power & o=static_cast<const power &>(const_cast<basic &>(other));
515
516         int cmpval;
517         cmpval=basis.compare(o.basis);
518         if (cmpval==0) {
519                 return exponent.compare(o.exponent);
520         }
521         return cmpval;
522 }
523
524 unsigned power::return_type(void) const
525 {
526         return basis.return_type();
527 }
528    
529 unsigned power::return_type_tinfo(void) const
530 {
531         return basis.return_type_tinfo();
532 }
533
534 ex power::expand(unsigned options) const
535 {
536         if (flags & status_flags::expanded)
537                 return *this;
538         
539         ex expanded_basis = basis.expand(options);
540         ex expanded_exponent = exponent.expand(options);
541         
542         // x^(a+b) -> x^a * x^b
543         if (is_ex_exactly_of_type(expanded_exponent, add)) {
544                 const add &a = ex_to_add(expanded_exponent);
545                 exvector distrseq;
546                 distrseq.reserve(a.seq.size() + 1);
547                 epvector::const_iterator last = a.seq.end();
548                 epvector::const_iterator cit = a.seq.begin();
549                 while (cit!=last) {
550                         distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(*cit)));
551                         cit++;
552                 }
553                 
554                 // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor
555                 if (ex_to_numeric(a.overall_coeff).is_integer()) {
556                         const numeric &num_exponent = ex_to_numeric(a.overall_coeff);
557                         int int_exponent = num_exponent.to_int();
558                         if (int_exponent > 0 && is_ex_exactly_of_type(expanded_basis, add))
559                                 distrseq.push_back(expand_add(ex_to_add(expanded_basis), int_exponent));
560                         else
561                                 distrseq.push_back(power(expanded_basis, a.overall_coeff));
562                 } else
563                         distrseq.push_back(power(expanded_basis, a.overall_coeff));
564                 
565                 // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
566                 ex r = (new mul(distrseq))->setflag(status_flags::dynallocated);
567                 return r.expand();
568         }
569         
570         if (!is_ex_exactly_of_type(expanded_exponent, numeric) ||
571                 !ex_to_numeric(expanded_exponent).is_integer()) {
572                 if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) {
573                         return this->hold();
574                 } else {
575                         return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | status_flags::expanded);
576                 }
577         }
578         
579         // integer numeric exponent
580         const numeric & num_exponent = ex_to_numeric(expanded_exponent);
581         int int_exponent = num_exponent.to_int();
582         
583         // (x+y)^n, n>0
584         if (int_exponent > 0 && is_ex_exactly_of_type(expanded_basis,add))
585                 return expand_add(ex_to_add(expanded_basis), int_exponent);
586         
587         // (x*y)^n -> x^n * y^n
588         if (is_ex_exactly_of_type(expanded_basis,mul))
589                 return expand_mul(ex_to_mul(expanded_basis), num_exponent);
590         
591         // cannot expand further
592         if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent))
593                 return this->hold();
594         else
595                 return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | status_flags::expanded);
596 }
597
598 //////////
599 // new virtual functions which can be overridden by derived classes
600 //////////
601
602 // none
603
604 //////////
605 // non-virtual functions in this class
606 //////////
607
608 /** expand a^n where a is an add and n is an integer.
609  *  @see power::expand */
610 ex power::expand_add(const add & a, int n) const
611 {
612         if (n==2)
613                 return expand_add_2(a);
614         
615         int m = a.nops();
616         exvector sum;
617         sum.reserve((n+1)*(m-1));
618         intvector k(m-1);
619         intvector k_cum(m-1); // k_cum[l]:=sum(i=0,l,k[l]);
620         intvector upper_limit(m-1);
621         int l;
622         
623         for (int l=0; l<m-1; l++) {
624                 k[l] = 0;
625                 k_cum[l] = 0;
626                 upper_limit[l] = n;
627         }
628         
629         while (1) {
630                 exvector term;
631                 term.reserve(m+1);
632                 for (l=0; l<m-1; l++) {
633                         const ex & b = a.op(l);
634                         GINAC_ASSERT(!is_ex_exactly_of_type(b,add));
635                         GINAC_ASSERT(!is_ex_exactly_of_type(b,power) ||
636                                      !is_ex_exactly_of_type(ex_to_power(b).exponent,numeric) ||
637                                      !ex_to_numeric(ex_to_power(b).exponent).is_pos_integer() ||
638                                      !is_ex_exactly_of_type(ex_to_power(b).basis,add) ||
639                                      !is_ex_exactly_of_type(ex_to_power(b).basis,mul) ||
640                                      !is_ex_exactly_of_type(ex_to_power(b).basis,power));
641                         if (is_ex_exactly_of_type(b,mul))
642                                 term.push_back(expand_mul(ex_to_mul(b),numeric(k[l])));
643                         else
644                                 term.push_back(power(b,k[l]));
645                 }
646                 
647                 const ex & b = a.op(l);
648                 GINAC_ASSERT(!is_ex_exactly_of_type(b,add));
649                 GINAC_ASSERT(!is_ex_exactly_of_type(b,power) ||
650                              !is_ex_exactly_of_type(ex_to_power(b).exponent,numeric) ||
651                              !ex_to_numeric(ex_to_power(b).exponent).is_pos_integer() ||
652                              !is_ex_exactly_of_type(ex_to_power(b).basis,add) ||
653                              !is_ex_exactly_of_type(ex_to_power(b).basis,mul) ||
654                              !is_ex_exactly_of_type(ex_to_power(b).basis,power));
655                 if (is_ex_exactly_of_type(b,mul))
656                         term.push_back(expand_mul(ex_to_mul(b),numeric(n-k_cum[m-2])));
657                 else
658                         term.push_back(power(b,n-k_cum[m-2]));
659                 
660                 numeric f = binomial(numeric(n),numeric(k[0]));
661                 for (l=1; l<m-1; l++)
662                         f *= binomial(numeric(n-k_cum[l-1]),numeric(k[l]));
663                 
664                 term.push_back(f);
665                 
666                 /*
667                 cout << "begin term" << endl;
668                 for (int i=0; i<m-1; i++) {
669                         cout << "k[" << i << "]=" << k[i] << endl;
670                         cout << "k_cum[" << i << "]=" << k_cum[i] << endl;
671                         cout << "upper_limit[" << i << "]=" << upper_limit[i] << endl;
672                 }
673                 for (exvector::const_iterator cit=term.begin(); cit!=term.end(); ++cit) {
674                         cout << *cit << endl;
675                 }
676                 cout << "end term" << endl;
677                 */
678                 
679                 // TODO: optimize this
680                 sum.push_back((new mul(term))->setflag(status_flags::dynallocated));
681                 
682                 // increment k[]
683                 l = m-2;
684                 while ((l>=0)&&((++k[l])>upper_limit[l])) {
685                         k[l] = 0;    
686                         l--;
687                 }
688                 if (l<0) break;
689                 
690                 // recalc k_cum[] and upper_limit[]
691                 if (l==0)
692                         k_cum[0] = k[0];
693                 else
694                         k_cum[l] = k_cum[l-1]+k[l];
695                 
696                 for (int i=l+1; i<m-1; i++)
697                         k_cum[i] = k_cum[i-1]+k[i];
698                 
699                 for (int i=l+1; i<m-1; i++)
700                         upper_limit[i] = n-k_cum[i-1];
701         }
702         return (new add(sum))->setflag(status_flags::dynallocated |
703                                                                    status_flags::expanded );
704 }
705
706
707 /** Special case of power::expand_add. Expands a^2 where a is an add.
708  *  @see power::expand_add */
709 ex power::expand_add_2(const add & a) const
710 {
711         epvector sum;
712         unsigned a_nops = a.nops();
713         sum.reserve((a_nops*(a_nops+1))/2);
714         epvector::const_iterator last = a.seq.end();
715         
716         // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c
717         // first part: ignore overall_coeff and expand other terms
718         for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) {
719                 const ex & r = (*cit0).rest;
720                 const ex & c = (*cit0).coeff;
721                 
722                 GINAC_ASSERT(!is_ex_exactly_of_type(r,add));
723                 GINAC_ASSERT(!is_ex_exactly_of_type(r,power) ||
724                              !is_ex_exactly_of_type(ex_to_power(r).exponent,numeric) ||
725                              !ex_to_numeric(ex_to_power(r).exponent).is_pos_integer() ||
726                              !is_ex_exactly_of_type(ex_to_power(r).basis,add) ||
727                              !is_ex_exactly_of_type(ex_to_power(r).basis,mul) ||
728                              !is_ex_exactly_of_type(ex_to_power(r).basis,power));
729                 
730                 if (are_ex_trivially_equal(c,_ex1())) {
731                         if (is_ex_exactly_of_type(r,mul)) {
732                                 sum.push_back(expair(expand_mul(ex_to_mul(r),_num2()),
733                                                      _ex1()));
734                         } else {
735                                 sum.push_back(expair((new power(r,_ex2()))->setflag(status_flags::dynallocated),
736                                                      _ex1()));
737                         }
738                 } else {
739                         if (is_ex_exactly_of_type(r,mul)) {
740                                 sum.push_back(expair(expand_mul(ex_to_mul(r),_num2()),
741                                                      ex_to_numeric(c).power_dyn(_num2())));
742                         } else {
743                                 sum.push_back(expair((new power(r,_ex2()))->setflag(status_flags::dynallocated),
744                                                      ex_to_numeric(c).power_dyn(_num2())));
745                         }
746                 }
747                         
748                 for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) {
749                         const ex & r1 = (*cit1).rest;
750                         const ex & c1 = (*cit1).coeff;
751                         sum.push_back(a.combine_ex_with_coeff_to_pair((new mul(r,r1))->setflag(status_flags::dynallocated),
752                                                                       _num2().mul(ex_to_numeric(c)).mul_dyn(ex_to_numeric(c1))));
753                 }
754         }
755         
756         GINAC_ASSERT(sum.size()==(a.seq.size()*(a.seq.size()+1))/2);
757         
758         // second part: add terms coming from overall_factor (if != 0)
759         if (!a.overall_coeff.is_zero()) {
760                 for (epvector::const_iterator cit=a.seq.begin(); cit!=a.seq.end(); ++cit) {
761                         sum.push_back(a.combine_pair_with_coeff_to_pair(*cit,ex_to_numeric(a.overall_coeff).mul_dyn(_num2())));
762                 }
763                 sum.push_back(expair(ex_to_numeric(a.overall_coeff).power_dyn(_num2()),_ex1()));
764         }
765         
766         GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2);
767         
768         return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded);
769 }
770
771 /** Expand factors of m in m^n where m is a mul and n is and integer
772  *  @see power::expand */
773 ex power::expand_mul(const mul & m, const numeric & n) const
774 {
775         if (n.is_zero())
776                 return _ex1();
777         
778         epvector distrseq;
779         distrseq.reserve(m.seq.size());
780         epvector::const_iterator last = m.seq.end();
781         epvector::const_iterator cit = m.seq.begin();
782         while (cit!=last) {
783                 if (is_ex_exactly_of_type((*cit).rest,numeric)) {
784                         distrseq.push_back(m.combine_pair_with_coeff_to_pair(*cit,n));
785                 } else {
786                         // it is safe not to call mul::combine_pair_with_coeff_to_pair()
787                         // since n is an integer
788                         distrseq.push_back(expair((*cit).rest, ex_to_numeric((*cit).coeff).mul(n)));
789                 }
790                 ++cit;
791         }
792         return (new mul(distrseq,ex_to_numeric(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated);
793 }
794
795 /*
796 ex power::expand_commutative_3(const ex & basis, const numeric & exponent,
797                                unsigned options) const
798 {
799         // obsolete
800
801         exvector distrseq;
802         epvector splitseq;
803
804         const add & addref=static_cast<const add &>(*basis.bp);
805
806         splitseq=addref.seq;
807         splitseq.pop_back();
808         ex first_operands=add(splitseq);
809         ex last_operand=addref.recombine_pair_to_ex(*(addref.seq.end()-1));
810         
811         int n=exponent.to_int();
812         for (int k=0; k<=n; k++) {
813                 distrseq.push_back(binomial(n,k) * power(first_operands,numeric(k))
814                                                  * power(last_operand,numeric(n-k)));
815         }
816         return ex((new add(distrseq))->setflag(status_flags::expanded | status_flags::dynallocated)).expand(options);
817 }
818 */
819
820 /*
821 ex power::expand_noncommutative(const ex & basis, const numeric & exponent,
822                                                                 unsigned options) const
823 {
824         ex rest_power = ex(power(basis,exponent.add(_num_1()))).
825                         expand(options | expand_options::internal_do_not_expand_power_operands);
826
827         return ex(mul(rest_power,basis),0).
828                expand(options | expand_options::internal_do_not_expand_mul_operands);
829 }
830 */
831
832 //////////
833 // static member variables
834 //////////
835
836 // protected
837
838 unsigned power::precedence = 60;
839
840 // helper function
841
842 ex sqrt(const ex & a)
843 {
844         return power(a,_ex1_2());
845 }
846
847 } // namespace GiNaC