]> www.ginac.de Git - ginac.git/blob - ginac/power.cpp
Be more careful with conjugate(f(x)) -> f(conjugate(x)).
[ginac.git] / ginac / power.cpp
1 /** @file power.cpp
2  *
3  *  Implementation of GiNaC's symbolic exponentiation (basis^exponent). */
4
5 /*
6  *  GiNaC Copyright (C) 1999-2010 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
21  */
22
23 #include "power.h"
24 #include "expairseq.h"
25 #include "add.h"
26 #include "mul.h"
27 #include "ncmul.h"
28 #include "numeric.h"
29 #include "constant.h"
30 #include "operators.h"
31 #include "inifcns.h" // for log() in power::derivative()
32 #include "matrix.h"
33 #include "indexed.h"
34 #include "symbol.h"
35 #include "lst.h"
36 #include "archive.h"
37 #include "utils.h"
38 #include "relational.h"
39 #include "compiler.h"
40
41 #include <iostream>
42 #include <limits>
43 #include <stdexcept>
44 #include <vector>
45
46 namespace GiNaC {
47
48 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(power, basic,
49   print_func<print_dflt>(&power::do_print_dflt).
50   print_func<print_latex>(&power::do_print_latex).
51   print_func<print_csrc>(&power::do_print_csrc).
52   print_func<print_python>(&power::do_print_python).
53   print_func<print_python_repr>(&power::do_print_python_repr).
54   print_func<print_csrc_cl_N>(&power::do_print_csrc_cl_N))
55
56 typedef std::vector<int> intvector;
57
58 //////////
59 // default constructor
60 //////////
61
62 power::power() { }
63
64 //////////
65 // other constructors
66 //////////
67
68 // all inlined
69
70 //////////
71 // archiving
72 //////////
73
74 void power::read_archive(const archive_node &n, lst &sym_lst)
75 {
76         inherited::read_archive(n, sym_lst);
77         n.find_ex("basis", basis, sym_lst);
78         n.find_ex("exponent", exponent, sym_lst);
79 }
80
81 void power::archive(archive_node &n) const
82 {
83         inherited::archive(n);
84         n.add_ex("basis", basis);
85         n.add_ex("exponent", exponent);
86 }
87
88 //////////
89 // functions overriding virtual functions from base classes
90 //////////
91
92 // public
93
94 void power::print_power(const print_context & c, const char *powersymbol, const char *openbrace, const char *closebrace, unsigned level) const
95 {
96         // Ordinary output of powers using '^' or '**'
97         if (precedence() <= level)
98                 c.s << openbrace << '(';
99         basis.print(c, precedence());
100         c.s << powersymbol;
101         c.s << openbrace;
102         exponent.print(c, precedence());
103         c.s << closebrace;
104         if (precedence() <= level)
105                 c.s << ')' << closebrace;
106 }
107
108 void power::do_print_dflt(const print_dflt & c, unsigned level) const
109 {
110         if (exponent.is_equal(_ex1_2)) {
111
112                 // Square roots are printed in a special way
113                 c.s << "sqrt(";
114                 basis.print(c);
115                 c.s << ')';
116
117         } else
118                 print_power(c, "^", "", "", level);
119 }
120
121 void power::do_print_latex(const print_latex & c, unsigned level) const
122 {
123         if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_negative()) {
124
125                 // Powers with negative numeric exponents are printed as fractions
126                 c.s << "\\frac{1}{";
127                 power(basis, -exponent).eval().print(c);
128                 c.s << '}';
129
130         } else if (exponent.is_equal(_ex1_2)) {
131
132                 // Square roots are printed in a special way
133                 c.s << "\\sqrt{";
134                 basis.print(c);
135                 c.s << '}';
136
137         } else
138                 print_power(c, "^", "{", "}", level);
139 }
140
141 static void print_sym_pow(const print_context & c, const symbol &x, int exp)
142 {
143         // Optimal output of integer powers of symbols to aid compiler CSE.
144         // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15
145         // to learn why such a parenthesation is really necessary.
146         if (exp == 1) {
147                 x.print(c);
148         } else if (exp == 2) {
149                 x.print(c);
150                 c.s << "*";
151                 x.print(c);
152         } else if (exp & 1) {
153                 x.print(c);
154                 c.s << "*";
155                 print_sym_pow(c, x, exp-1);
156         } else {
157                 c.s << "(";
158                 print_sym_pow(c, x, exp >> 1);
159                 c.s << ")*(";
160                 print_sym_pow(c, x, exp >> 1);
161                 c.s << ")";
162         }
163 }
164
165 void power::do_print_csrc_cl_N(const print_csrc_cl_N& c, unsigned level) const
166 {
167         if (exponent.is_equal(_ex_1)) {
168                 c.s << "recip(";
169                 basis.print(c);
170                 c.s << ')';
171                 return;
172         }
173         c.s << "expt(";
174         basis.print(c);
175         c.s << ", ";
176         exponent.print(c);
177         c.s << ')';
178 }
179
180 void power::do_print_csrc(const print_csrc & c, unsigned level) const
181 {
182         // Integer powers of symbols are printed in a special, optimized way
183         if (exponent.info(info_flags::integer)
184          && (is_a<symbol>(basis) || is_a<constant>(basis))) {
185                 int exp = ex_to<numeric>(exponent).to_int();
186                 if (exp > 0)
187                         c.s << '(';
188                 else {
189                         exp = -exp;
190                         c.s << "1.0/(";
191                 }
192                 print_sym_pow(c, ex_to<symbol>(basis), exp);
193                 c.s << ')';
194
195         // <expr>^-1 is printed as "1.0/<expr>" or with the recip() function of CLN
196         } else if (exponent.is_equal(_ex_1)) {
197                 c.s << "1.0/(";
198                 basis.print(c);
199                 c.s << ')';
200
201         // Otherwise, use the pow() function
202         } else {
203                 c.s << "pow(";
204                 basis.print(c);
205                 c.s << ',';
206                 exponent.print(c);
207                 c.s << ')';
208         }
209 }
210
211 void power::do_print_python(const print_python & c, unsigned level) const
212 {
213         print_power(c, "**", "", "", level);
214 }
215
216 void power::do_print_python_repr(const print_python_repr & c, unsigned level) const
217 {
218         c.s << class_name() << '(';
219         basis.print(c);
220         c.s << ',';
221         exponent.print(c);
222         c.s << ')';
223 }
224
225 bool power::info(unsigned inf) const
226 {
227         switch (inf) {
228                 case info_flags::polynomial:
229                 case info_flags::integer_polynomial:
230                 case info_flags::cinteger_polynomial:
231                 case info_flags::rational_polynomial:
232                 case info_flags::crational_polynomial:
233                         return exponent.info(info_flags::nonnegint) &&
234                                basis.info(inf);
235                 case info_flags::rational_function:
236                         return exponent.info(info_flags::integer) &&
237                                basis.info(inf);
238                 case info_flags::algebraic:
239                         return !exponent.info(info_flags::integer) ||
240                                basis.info(inf);
241                 case info_flags::expanded:
242                         return (flags & status_flags::expanded);
243                 case info_flags::positive:
244                         return basis.info(info_flags::positive) && exponent.info(info_flags::real);
245                 case info_flags::has_indices: {
246                         if (flags & status_flags::has_indices)
247                                 return true;
248                         else if (flags & status_flags::has_no_indices)
249                                 return false;
250                         else if (basis.info(info_flags::has_indices)) {
251                                 setflag(status_flags::has_indices);
252                                 clearflag(status_flags::has_no_indices);
253                                 return true;
254                         } else {
255                                 clearflag(status_flags::has_indices);
256                                 setflag(status_flags::has_no_indices);
257                                 return false;
258                         }
259                 }
260         }
261         return inherited::info(inf);
262 }
263
264 size_t power::nops() const
265 {
266         return 2;
267 }
268
269 ex power::op(size_t i) const
270 {
271         GINAC_ASSERT(i<2);
272
273         return i==0 ? basis : exponent;
274 }
275
276 ex power::map(map_function & f) const
277 {
278         const ex &mapped_basis = f(basis);
279         const ex &mapped_exponent = f(exponent);
280
281         if (!are_ex_trivially_equal(basis, mapped_basis)
282          || !are_ex_trivially_equal(exponent, mapped_exponent))
283                 return (new power(mapped_basis, mapped_exponent))->setflag(status_flags::dynallocated);
284         else
285                 return *this;
286 }
287
288 bool power::is_polynomial(const ex & var) const
289 {
290         if (exponent.has(var))
291                 return false;
292         if (!exponent.info(info_flags::nonnegint))
293                 return false;
294         return basis.is_polynomial(var);
295 }
296
297 int power::degree(const ex & s) const
298 {
299         if (is_equal(ex_to<basic>(s)))
300                 return 1;
301         else if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
302                 if (basis.is_equal(s))
303                         return ex_to<numeric>(exponent).to_int();
304                 else
305                         return basis.degree(s) * ex_to<numeric>(exponent).to_int();
306         } else if (basis.has(s))
307                 throw(std::runtime_error("power::degree(): undefined degree because of non-integer exponent"));
308         else
309                 return 0;
310 }
311
312 int power::ldegree(const ex & s) const 
313 {
314         if (is_equal(ex_to<basic>(s)))
315                 return 1;
316         else if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
317                 if (basis.is_equal(s))
318                         return ex_to<numeric>(exponent).to_int();
319                 else
320                         return basis.ldegree(s) * ex_to<numeric>(exponent).to_int();
321         } else if (basis.has(s))
322                 throw(std::runtime_error("power::ldegree(): undefined degree because of non-integer exponent"));
323         else
324                 return 0;
325 }
326
327 ex power::coeff(const ex & s, int n) const
328 {
329         if (is_equal(ex_to<basic>(s)))
330                 return n==1 ? _ex1 : _ex0;
331         else if (!basis.is_equal(s)) {
332                 // basis not equal to s
333                 if (n == 0)
334                         return *this;
335                 else
336                         return _ex0;
337         } else {
338                 // basis equal to s
339                 if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
340                         // integer exponent
341                         int int_exp = ex_to<numeric>(exponent).to_int();
342                         if (n == int_exp)
343                                 return _ex1;
344                         else
345                                 return _ex0;
346                 } else {
347                         // non-integer exponents are treated as zero
348                         if (n == 0)
349                                 return *this;
350                         else
351                                 return _ex0;
352                 }
353         }
354 }
355
356 /** Perform automatic term rewriting rules in this class.  In the following
357  *  x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2...
358  *  stand for such expressions that contain a plain number.
359  *  - ^(x,0) -> 1  (also handles ^(0,0))
360  *  - ^(x,1) -> x
361  *  - ^(0,c) -> 0 or exception  (depending on the real part of c)
362  *  - ^(1,x) -> 1
363  *  - ^(c1,c2) -> *(c1^n,c1^(c2-n))  (so that 0<(c2-n)<1, try to evaluate roots, possibly in numerator and denominator of c1)
364  *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  if x is positive and c1 is real.
365  *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  (c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
366  *  - ^(*(x,y,z),c) -> *(x^c,y^c,z^c)  (if c integer)
367  *  - ^(*(x,c1),c2) -> ^(x,c2)*c1^c2  (c1>0)
368  *  - ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2  (c1<0)
369  *
370  *  @param level cut-off in recursive evaluation */
371 ex power::eval(int level) const
372 {
373         if ((level==1) && (flags & status_flags::evaluated))
374                 return *this;
375         else if (level == -max_recursion_level)
376                 throw(std::runtime_error("max recursion level reached"));
377         
378         const ex & ebasis    = level==1 ? basis    : basis.eval(level-1);
379         const ex & eexponent = level==1 ? exponent : exponent.eval(level-1);
380         
381         const numeric *num_basis = NULL;
382         const numeric *num_exponent = NULL;
383         
384         if (is_exactly_a<numeric>(ebasis)) {
385                 num_basis = &ex_to<numeric>(ebasis);
386         }
387         if (is_exactly_a<numeric>(eexponent)) {
388                 num_exponent = &ex_to<numeric>(eexponent);
389         }
390         
391         // ^(x,0) -> 1  (0^0 also handled here)
392         if (eexponent.is_zero()) {
393                 if (ebasis.is_zero())
394                         throw (std::domain_error("power::eval(): pow(0,0) is undefined"));
395                 else
396                         return _ex1;
397         }
398         
399         // ^(x,1) -> x
400         if (eexponent.is_equal(_ex1))
401                 return ebasis;
402
403         // ^(0,c1) -> 0 or exception  (depending on real value of c1)
404         if ( ebasis.is_zero() && num_exponent ) {
405                 if ((num_exponent->real()).is_zero())
406                         throw (std::domain_error("power::eval(): pow(0,I) is undefined"));
407                 else if ((num_exponent->real()).is_negative())
408                         throw (pole_error("power::eval(): division by zero",1));
409                 else
410                         return _ex0;
411         }
412
413         // ^(1,x) -> 1
414         if (ebasis.is_equal(_ex1))
415                 return _ex1;
416
417         // power of a function calculated by separate rules defined for this function
418         if (is_exactly_a<function>(ebasis))
419                 return ex_to<function>(ebasis).power(eexponent);
420
421         // Turn (x^c)^d into x^(c*d) in the case that x is positive and c is real.
422         if (is_exactly_a<power>(ebasis) && ebasis.op(0).info(info_flags::positive) && ebasis.op(1).info(info_flags::real))
423                 return power(ebasis.op(0), ebasis.op(1) * eexponent);
424
425         if ( num_exponent ) {
426
427                 // ^(c1,c2) -> c1^c2  (c1, c2 numeric(),
428                 // except if c1,c2 are rational, but c1^c2 is not)
429                 if ( num_basis ) {
430                         const bool basis_is_crational = num_basis->is_crational();
431                         const bool exponent_is_crational = num_exponent->is_crational();
432                         if (!basis_is_crational || !exponent_is_crational) {
433                                 // return a plain float
434                                 return (new numeric(num_basis->power(*num_exponent)))->setflag(status_flags::dynallocated |
435                                                                                                status_flags::evaluated |
436                                                                                                status_flags::expanded);
437                         }
438
439                         const numeric res = num_basis->power(*num_exponent);
440                         if (res.is_crational()) {
441                                 return res;
442                         }
443                         GINAC_ASSERT(!num_exponent->is_integer());  // has been handled by now
444
445                         // ^(c1,n/m) -> *(c1^q,c1^(n/m-q)), 0<(n/m-q)<1, q integer
446                         if (basis_is_crational && exponent_is_crational
447                             && num_exponent->is_real()
448                             && !num_exponent->is_integer()) {
449                                 const numeric n = num_exponent->numer();
450                                 const numeric m = num_exponent->denom();
451                                 numeric r;
452                                 numeric q = iquo(n, m, r);
453                                 if (r.is_negative()) {
454                                         r += m;
455                                         --q;
456                                 }
457                                 if (q.is_zero()) {  // the exponent was in the allowed range 0<(n/m)<1
458                                         if (num_basis->is_rational() && !num_basis->is_integer()) {
459                                                 // try it for numerator and denominator separately, in order to
460                                                 // partially simplify things like (5/8)^(1/3) -> 1/2*5^(1/3)
461                                                 const numeric bnum = num_basis->numer();
462                                                 const numeric bden = num_basis->denom();
463                                                 const numeric res_bnum = bnum.power(*num_exponent);
464                                                 const numeric res_bden = bden.power(*num_exponent);
465                                                 if (res_bnum.is_integer())
466                                                         return (new mul(power(bden,-*num_exponent),res_bnum))->setflag(status_flags::dynallocated | status_flags::evaluated);
467                                                 if (res_bden.is_integer())
468                                                         return (new mul(power(bnum,*num_exponent),res_bden.inverse()))->setflag(status_flags::dynallocated | status_flags::evaluated);
469                                         }
470                                         return this->hold();
471                                 } else {
472                                         // assemble resulting product, but allowing for a re-evaluation,
473                                         // because otherwise we'll end up with something like
474                                         //    (7/8)^(4/3)  ->  7/8*(1/2*7^(1/3))
475                                         // instead of 7/16*7^(1/3).
476                                         ex prod = power(*num_basis,r.div(m));
477                                         return prod*power(*num_basis,q);
478                                 }
479                         }
480                 }
481         
482                 // ^(^(x,c1),c2) -> ^(x,c1*c2)
483                 // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1,
484                 // case c1==1 should not happen, see below!)
485                 if (is_exactly_a<power>(ebasis)) {
486                         const power & sub_power = ex_to<power>(ebasis);
487                         const ex & sub_basis = sub_power.basis;
488                         const ex & sub_exponent = sub_power.exponent;
489                         if (is_exactly_a<numeric>(sub_exponent)) {
490                                 const numeric & num_sub_exponent = ex_to<numeric>(sub_exponent);
491                                 GINAC_ASSERT(num_sub_exponent!=numeric(1));
492                                 if (num_exponent->is_integer() || (abs(num_sub_exponent) - (*_num1_p)).is_negative()) {
493                                         return power(sub_basis,num_sub_exponent.mul(*num_exponent));
494                                 }
495                         }
496                 }
497         
498                 // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
499                 if (num_exponent->is_integer() && is_exactly_a<mul>(ebasis)) {
500                         return expand_mul(ex_to<mul>(ebasis), *num_exponent, 0);
501                 }
502
503                 // (2*x + 6*y)^(-4) -> 1/16*(x + 3*y)^(-4)
504                 if (num_exponent->is_integer() && is_exactly_a<add>(ebasis)) {
505                         numeric icont = ebasis.integer_content();
506                         const numeric lead_coeff = 
507                                 ex_to<numeric>(ex_to<add>(ebasis).seq.begin()->coeff).div(icont);
508
509                         const bool canonicalizable = lead_coeff.is_integer();
510                         const bool unit_normal = lead_coeff.is_pos_integer();
511                         if (canonicalizable && (! unit_normal))
512                                 icont = icont.mul(*_num_1_p);
513                         
514                         if (canonicalizable && (icont != *_num1_p)) {
515                                 const add& addref = ex_to<add>(ebasis);
516                                 add* addp = new add(addref);
517                                 addp->setflag(status_flags::dynallocated);
518                                 addp->clearflag(status_flags::hash_calculated);
519                                 addp->overall_coeff = ex_to<numeric>(addp->overall_coeff).div_dyn(icont);
520                                 for (epvector::iterator i = addp->seq.begin(); i != addp->seq.end(); ++i)
521                                         i->coeff = ex_to<numeric>(i->coeff).div_dyn(icont);
522
523                                 const numeric c = icont.power(*num_exponent);
524                                 if (likely(c != *_num1_p))
525                                         return (new mul(power(*addp, *num_exponent), c))->setflag(status_flags::dynallocated);
526                                 else
527                                         return power(*addp, *num_exponent);
528                         }
529                 }
530
531                 // ^(*(...,x;c1),c2) -> *(^(*(...,x;1),c2),c1^c2)  (c1, c2 numeric(), c1>0)
532                 // ^(*(...,x;c1),c2) -> *(^(*(...,x;-1),c2),(-c1)^c2)  (c1, c2 numeric(), c1<0)
533                 if (is_exactly_a<mul>(ebasis)) {
534                         GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above
535                         const mul & mulref = ex_to<mul>(ebasis);
536                         if (!mulref.overall_coeff.is_equal(_ex1)) {
537                                 const numeric & num_coeff = ex_to<numeric>(mulref.overall_coeff);
538                                 if (num_coeff.is_real()) {
539                                         if (num_coeff.is_positive()) {
540                                                 mul *mulp = new mul(mulref);
541                                                 mulp->overall_coeff = _ex1;
542                                                 mulp->clearflag(status_flags::evaluated);
543                                                 mulp->clearflag(status_flags::hash_calculated);
544                                                 return (new mul(power(*mulp,exponent),
545                                                                 power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated);
546                                         } else {
547                                                 GINAC_ASSERT(num_coeff.compare(*_num0_p)<0);
548                                                 if (!num_coeff.is_equal(*_num_1_p)) {
549                                                         mul *mulp = new mul(mulref);
550                                                         mulp->overall_coeff = _ex_1;
551                                                         mulp->clearflag(status_flags::evaluated);
552                                                         mulp->clearflag(status_flags::hash_calculated);
553                                                         return (new mul(power(*mulp,exponent),
554                                                                         power(abs(num_coeff),*num_exponent)))->setflag(status_flags::dynallocated);
555                                                 }
556                                         }
557                                 }
558                         }
559                 }
560
561                 // ^(nc,c1) -> ncmul(nc,nc,...) (c1 positive integer, unless nc is a matrix)
562                 if (num_exponent->is_pos_integer() &&
563                     ebasis.return_type() != return_types::commutative &&
564                     !is_a<matrix>(ebasis)) {
565                         return ncmul(exvector(num_exponent->to_int(), ebasis), true);
566                 }
567         }
568         
569         if (are_ex_trivially_equal(ebasis,basis) &&
570             are_ex_trivially_equal(eexponent,exponent)) {
571                 return this->hold();
572         }
573         return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated |
574                                                        status_flags::evaluated);
575 }
576
577 ex power::evalf(int level) const
578 {
579         ex ebasis;
580         ex eexponent;
581         
582         if (level==1) {
583                 ebasis = basis;
584                 eexponent = exponent;
585         } else if (level == -max_recursion_level) {
586                 throw(std::runtime_error("max recursion level reached"));
587         } else {
588                 ebasis = basis.evalf(level-1);
589                 if (!is_exactly_a<numeric>(exponent))
590                         eexponent = exponent.evalf(level-1);
591                 else
592                         eexponent = exponent;
593         }
594
595         return power(ebasis,eexponent);
596 }
597
598 ex power::evalm() const
599 {
600         const ex ebasis = basis.evalm();
601         const ex eexponent = exponent.evalm();
602         if (is_a<matrix>(ebasis)) {
603                 if (is_exactly_a<numeric>(eexponent)) {
604                         return (new matrix(ex_to<matrix>(ebasis).pow(eexponent)))->setflag(status_flags::dynallocated);
605                 }
606         }
607         return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated);
608 }
609
610 bool power::has(const ex & other, unsigned options) const
611 {
612         if (!(options & has_options::algebraic))
613                 return basic::has(other, options);
614         if (!is_a<power>(other))
615                 return basic::has(other, options);
616         if (!exponent.info(info_flags::integer)
617                         || !other.op(1).info(info_flags::integer))
618                 return basic::has(other, options);
619         if (exponent.info(info_flags::posint)
620                         && other.op(1).info(info_flags::posint)
621                         && ex_to<numeric>(exponent).to_int()
622                                         > ex_to<numeric>(other.op(1)).to_int()
623                         && basis.match(other.op(0)))
624                 return true;
625         if (exponent.info(info_flags::negint)
626                         && other.op(1).info(info_flags::negint)
627                         && ex_to<numeric>(exponent).to_int()
628                                         < ex_to<numeric>(other.op(1)).to_int()
629                         && basis.match(other.op(0)))
630                 return true;
631         return basic::has(other, options);
632 }
633
634 // from mul.cpp
635 extern bool tryfactsubs(const ex &, const ex &, int &, exmap&);
636
637 ex power::subs(const exmap & m, unsigned options) const
638 {       
639         const ex &subsed_basis = basis.subs(m, options);
640         const ex &subsed_exponent = exponent.subs(m, options);
641
642         if (!are_ex_trivially_equal(basis, subsed_basis)
643          || !are_ex_trivially_equal(exponent, subsed_exponent)) 
644                 return power(subsed_basis, subsed_exponent).subs_one_level(m, options);
645
646         if (!(options & subs_options::algebraic))
647                 return subs_one_level(m, options);
648
649         for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) {
650                 int nummatches = std::numeric_limits<int>::max();
651                 exmap repls;
652                 if (tryfactsubs(*this, it->first, nummatches, repls)) {
653                         ex anum = it->second.subs(repls, subs_options::no_pattern);
654                         ex aden = it->first.subs(repls, subs_options::no_pattern);
655                         ex result = (*this)*power(anum/aden, nummatches);
656                         return (ex_to<basic>(result)).subs_one_level(m, options);
657                 }
658         }
659
660         return subs_one_level(m, options);
661 }
662
663 ex power::eval_ncmul(const exvector & v) const
664 {
665         return inherited::eval_ncmul(v);
666 }
667
668 ex power::conjugate() const
669 {
670         // conjugate(pow(x,y))==pow(conjugate(x),conjugate(y)) unless on the
671         // branch cut which runs along the negative real axis.
672         if (basis.info(info_flags::positive)) {
673                 ex newexponent = exponent.conjugate();
674                 if (are_ex_trivially_equal(exponent, newexponent)) {
675                         return *this;
676                 }
677                 return (new power(basis, newexponent))->setflag(status_flags::dynallocated);
678         }
679         if (exponent.info(info_flags::integer)) {
680                 ex newbasis = basis.conjugate();
681                 if (are_ex_trivially_equal(basis, newbasis)) {
682                         return *this;
683                 }
684                 return (new power(newbasis, exponent))->setflag(status_flags::dynallocated);
685         }
686         return conjugate_function(*this).hold();
687 }
688
689 ex power::real_part() const
690 {
691         if (exponent.info(info_flags::integer)) {
692                 ex basis_real = basis.real_part();
693                 if (basis_real == basis)
694                         return *this;
695                 realsymbol a("a"),b("b");
696                 ex result;
697                 if (exponent.info(info_flags::posint))
698                         result = power(a+I*b,exponent);
699                 else
700                         result = power(a/(a*a+b*b)-I*b/(a*a+b*b),-exponent);
701                 result = result.expand();
702                 result = result.real_part();
703                 result = result.subs(lst( a==basis_real, b==basis.imag_part() ));
704                 return result;
705         }
706         
707         ex a = basis.real_part();
708         ex b = basis.imag_part();
709         ex c = exponent.real_part();
710         ex d = exponent.imag_part();
711         return power(abs(basis),c)*exp(-d*atan2(b,a))*cos(c*atan2(b,a)+d*log(abs(basis)));
712 }
713
714 ex power::imag_part() const
715 {
716         if (exponent.info(info_flags::integer)) {
717                 ex basis_real = basis.real_part();
718                 if (basis_real == basis)
719                         return 0;
720                 realsymbol a("a"),b("b");
721                 ex result;
722                 if (exponent.info(info_flags::posint))
723                         result = power(a+I*b,exponent);
724                 else
725                         result = power(a/(a*a+b*b)-I*b/(a*a+b*b),-exponent);
726                 result = result.expand();
727                 result = result.imag_part();
728                 result = result.subs(lst( a==basis_real, b==basis.imag_part() ));
729                 return result;
730         }
731         
732         ex a=basis.real_part();
733         ex b=basis.imag_part();
734         ex c=exponent.real_part();
735         ex d=exponent.imag_part();
736         return
737                 power(abs(basis),c)*exp(-d*atan2(b,a))*sin(c*atan2(b,a)+d*log(abs(basis)));
738 }
739
740 // protected
741
742 // protected
743
744 /** Implementation of ex::diff() for a power.
745  *  @see ex::diff */
746 ex power::derivative(const symbol & s) const
747 {
748         if (is_a<numeric>(exponent)) {
749                 // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
750                 epvector newseq;
751                 newseq.reserve(2);
752                 newseq.push_back(expair(basis, exponent - _ex1));
753                 newseq.push_back(expair(basis.diff(s), _ex1));
754                 return mul(newseq, exponent);
755         } else {
756                 // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b)
757                 return mul(*this,
758                            add(mul(exponent.diff(s), log(basis)),
759                            mul(mul(exponent, basis.diff(s)), power(basis, _ex_1))));
760         }
761 }
762
763 int power::compare_same_type(const basic & other) const
764 {
765         GINAC_ASSERT(is_exactly_a<power>(other));
766         const power &o = static_cast<const power &>(other);
767
768         int cmpval = basis.compare(o.basis);
769         if (cmpval)
770                 return cmpval;
771         else
772                 return exponent.compare(o.exponent);
773 }
774
775 unsigned power::return_type() const
776 {
777         return basis.return_type();
778 }
779
780 return_type_t power::return_type_tinfo() const
781 {
782         return basis.return_type_tinfo();
783 }
784
785 ex power::expand(unsigned options) const
786 {
787         if (is_a<symbol>(basis) && exponent.info(info_flags::integer)) {
788                 // A special case worth optimizing.
789                 setflag(status_flags::expanded);
790                 return *this;
791         }
792
793         const ex expanded_basis = basis.expand(options);
794         const ex expanded_exponent = exponent.expand(options);
795         
796         // x^(a+b) -> x^a * x^b
797         if (is_exactly_a<add>(expanded_exponent)) {
798                 const add &a = ex_to<add>(expanded_exponent);
799                 exvector distrseq;
800                 distrseq.reserve(a.seq.size() + 1);
801                 epvector::const_iterator last = a.seq.end();
802                 epvector::const_iterator cit = a.seq.begin();
803                 while (cit!=last) {
804                         distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(*cit)));
805                         ++cit;
806                 }
807                 
808                 // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor
809                 if (ex_to<numeric>(a.overall_coeff).is_integer()) {
810                         const numeric &num_exponent = ex_to<numeric>(a.overall_coeff);
811                         int int_exponent = num_exponent.to_int();
812                         if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
813                                 distrseq.push_back(expand_add(ex_to<add>(expanded_basis), int_exponent, options));
814                         else
815                                 distrseq.push_back(power(expanded_basis, a.overall_coeff));
816                 } else
817                         distrseq.push_back(power(expanded_basis, a.overall_coeff));
818                 
819                 // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
820                 ex r = (new mul(distrseq))->setflag(status_flags::dynallocated);
821                 return r.expand(options);
822         }
823         
824         if (!is_exactly_a<numeric>(expanded_exponent) ||
825                 !ex_to<numeric>(expanded_exponent).is_integer()) {
826                 if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) {
827                         return this->hold();
828                 } else {
829                         return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
830                 }
831         }
832         
833         // integer numeric exponent
834         const numeric & num_exponent = ex_to<numeric>(expanded_exponent);
835         int int_exponent = num_exponent.to_int();
836         
837         // (x+y)^n, n>0
838         if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
839                 return expand_add(ex_to<add>(expanded_basis), int_exponent, options);
840         
841         // (x*y)^n -> x^n * y^n
842         if (is_exactly_a<mul>(expanded_basis))
843                 return expand_mul(ex_to<mul>(expanded_basis), num_exponent, options, true);
844         
845         // cannot expand further
846         if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent))
847                 return this->hold();
848         else
849                 return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
850 }
851
852 //////////
853 // new virtual functions which can be overridden by derived classes
854 //////////
855
856 // none
857
858 //////////
859 // non-virtual functions in this class
860 //////////
861
862 /** expand a^n where a is an add and n is a positive integer.
863  *  @see power::expand */
864 ex power::expand_add(const add & a, int n, unsigned options) const
865 {
866         if (n==2)
867                 return expand_add_2(a, options);
868
869         const size_t m = a.nops();
870         exvector result;
871         // The number of terms will be the number of combinatorial compositions,
872         // i.e. the number of unordered arrangements of m nonnegative integers
873         // which sum up to n.  It is frequently written as C_n(m) and directly
874         // related with binomial coefficients:
875         result.reserve(binomial(numeric(n+m-1), numeric(m-1)).to_int());
876         intvector k(m-1);
877         intvector k_cum(m-1); // k_cum[l]:=sum(i=0,l,k[l]);
878         intvector upper_limit(m-1);
879
880         for (size_t l=0; l<m-1; ++l) {
881                 k[l] = 0;
882                 k_cum[l] = 0;
883                 upper_limit[l] = n;
884         }
885
886         while (true) {
887                 exvector term;
888                 term.reserve(m+1);
889                 for (std::size_t l = 0; l < m - 1; ++l) {
890                         const ex & b = a.op(l);
891                         GINAC_ASSERT(!is_exactly_a<add>(b));
892                         GINAC_ASSERT(!is_exactly_a<power>(b) ||
893                                      !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
894                                      !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
895                                      !is_exactly_a<add>(ex_to<power>(b).basis) ||
896                                      !is_exactly_a<mul>(ex_to<power>(b).basis) ||
897                                      !is_exactly_a<power>(ex_to<power>(b).basis));
898                         if (is_exactly_a<mul>(b))
899                                 term.push_back(expand_mul(ex_to<mul>(b), numeric(k[l]), options, true));
900                         else
901                                 term.push_back(power(b,k[l]));
902                 }
903
904                 const ex & b = a.op(m - 1);
905                 GINAC_ASSERT(!is_exactly_a<add>(b));
906                 GINAC_ASSERT(!is_exactly_a<power>(b) ||
907                              !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
908                              !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
909                              !is_exactly_a<add>(ex_to<power>(b).basis) ||
910                              !is_exactly_a<mul>(ex_to<power>(b).basis) ||
911                              !is_exactly_a<power>(ex_to<power>(b).basis));
912                 if (is_exactly_a<mul>(b))
913                         term.push_back(expand_mul(ex_to<mul>(b), numeric(n-k_cum[m-2]), options, true));
914                 else
915                         term.push_back(power(b,n-k_cum[m-2]));
916
917                 numeric f = binomial(numeric(n),numeric(k[0]));
918                 for (std::size_t l = 1; l < m - 1; ++l)
919                         f *= binomial(numeric(n-k_cum[l-1]),numeric(k[l]));
920
921                 term.push_back(f);
922
923                 result.push_back(ex((new mul(term))->setflag(status_flags::dynallocated)).expand(options));
924
925                 // increment k[]
926                 bool done = false;
927                 std::size_t l = m - 2;
928                 while ((++k[l]) > upper_limit[l]) {
929                         k[l] = 0;
930                         if (l != 0)
931                                 --l;
932                         else {
933                                 done = true;
934                                 break;
935                         }
936                 }
937                 if (done)
938                         break;
939
940                 // recalc k_cum[] and upper_limit[]
941                 k_cum[l] = (l==0 ? k[0] : k_cum[l-1]+k[l]);
942
943                 for (size_t i=l+1; i<m-1; ++i)
944                         k_cum[i] = k_cum[i-1]+k[i];
945
946                 for (size_t i=l+1; i<m-1; ++i)
947                         upper_limit[i] = n-k_cum[i-1];
948         }
949
950         return (new add(result))->setflag(status_flags::dynallocated |
951                                           status_flags::expanded);
952 }
953
954
955 /** Special case of power::expand_add. Expands a^2 where a is an add.
956  *  @see power::expand_add */
957 ex power::expand_add_2(const add & a, unsigned options) const
958 {
959         epvector sum;
960         size_t a_nops = a.nops();
961         sum.reserve((a_nops*(a_nops+1))/2);
962         epvector::const_iterator last = a.seq.end();
963
964         // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c
965         // first part: ignore overall_coeff and expand other terms
966         for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) {
967                 const ex & r = cit0->rest;
968                 const ex & c = cit0->coeff;
969                 
970                 GINAC_ASSERT(!is_exactly_a<add>(r));
971                 GINAC_ASSERT(!is_exactly_a<power>(r) ||
972                              !is_exactly_a<numeric>(ex_to<power>(r).exponent) ||
973                              !ex_to<numeric>(ex_to<power>(r).exponent).is_pos_integer() ||
974                              !is_exactly_a<add>(ex_to<power>(r).basis) ||
975                              !is_exactly_a<mul>(ex_to<power>(r).basis) ||
976                              !is_exactly_a<power>(ex_to<power>(r).basis));
977                 
978                 if (c.is_equal(_ex1)) {
979                         if (is_exactly_a<mul>(r)) {
980                                 sum.push_back(expair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
981                                                      _ex1));
982                         } else {
983                                 sum.push_back(expair((new power(r,_ex2))->setflag(status_flags::dynallocated),
984                                                      _ex1));
985                         }
986                 } else {
987                         if (is_exactly_a<mul>(r)) {
988                                 sum.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
989                                                      ex_to<numeric>(c).power_dyn(*_num2_p)));
990                         } else {
991                                 sum.push_back(a.combine_ex_with_coeff_to_pair((new power(r,_ex2))->setflag(status_flags::dynallocated),
992                                                      ex_to<numeric>(c).power_dyn(*_num2_p)));
993                         }
994                 }
995
996                 for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) {
997                         const ex & r1 = cit1->rest;
998                         const ex & c1 = cit1->coeff;
999                         sum.push_back(a.combine_ex_with_coeff_to_pair((new mul(r,r1))->setflag(status_flags::dynallocated),
1000                                                                       _num2_p->mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
1001                 }
1002         }
1003         
1004         GINAC_ASSERT(sum.size()==(a.seq.size()*(a.seq.size()+1))/2);
1005         
1006         // second part: add terms coming from overall_factor (if != 0)
1007         if (!a.overall_coeff.is_zero()) {
1008                 epvector::const_iterator i = a.seq.begin(), end = a.seq.end();
1009                 while (i != end) {
1010                         sum.push_back(a.combine_pair_with_coeff_to_pair(*i, ex_to<numeric>(a.overall_coeff).mul_dyn(*_num2_p)));
1011                         ++i;
1012                 }
1013                 sum.push_back(expair(ex_to<numeric>(a.overall_coeff).power_dyn(*_num2_p),_ex1));
1014         }
1015         
1016         GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2);
1017         
1018         return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded);
1019 }
1020
1021 /** Expand factors of m in m^n where m is a mul and n is an integer.
1022  *  @see power::expand */
1023 ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool from_expand) const
1024 {
1025         GINAC_ASSERT(n.is_integer());
1026
1027         if (n.is_zero()) {
1028                 return _ex1;
1029         }
1030
1031         // do not bother to rename indices if there are no any.
1032         if ((!(options & expand_options::expand_rename_idx)) 
1033                         && m.info(info_flags::has_indices))
1034                 options |= expand_options::expand_rename_idx;
1035         // Leave it to multiplication since dummy indices have to be renamed
1036         if ((options & expand_options::expand_rename_idx) &&
1037                 (get_all_dummy_indices(m).size() > 0) && n.is_positive()) {
1038                 ex result = m;
1039                 exvector va = get_all_dummy_indices(m);
1040                 sort(va.begin(), va.end(), ex_is_less());
1041
1042                 for (int i=1; i < n.to_int(); i++)
1043                         result *= rename_dummy_indices_uniquely(va, m);
1044                 return result;
1045         }
1046
1047         epvector distrseq;
1048         distrseq.reserve(m.seq.size());
1049         bool need_reexpand = false;
1050
1051         epvector::const_iterator last = m.seq.end();
1052         epvector::const_iterator cit = m.seq.begin();
1053         while (cit!=last) {
1054                 expair p = m.combine_pair_with_coeff_to_pair(*cit, n);
1055                 if (from_expand && is_exactly_a<add>(cit->rest) && ex_to<numeric>(p.coeff).is_pos_integer()) {
1056                         // this happens when e.g. (a+b)^(1/2) gets squared and
1057                         // the resulting product needs to be reexpanded
1058                         need_reexpand = true;
1059                 }
1060                 distrseq.push_back(p);
1061                 ++cit;
1062         }
1063
1064         const mul & result = static_cast<const mul &>((new mul(distrseq, ex_to<numeric>(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated));
1065         if (need_reexpand)
1066                 return ex(result).expand(options);
1067         if (from_expand)
1068                 return result.setflag(status_flags::expanded);
1069         return result;
1070 }
1071
1072 GINAC_BIND_UNARCHIVER(power);
1073
1074 } // namespace GiNaC