]> www.ginac.de Git - ginac.git/blob - ginac/power.cpp
building in separate directory didn't work
[ginac.git] / ginac / power.cpp
1 /** @file power.cpp
2  *
3  *  Implementation of GiNaC's symbolic exponentiation (basis^exponent). */
4
5 /*
6  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include <vector>
24 #include <iostream>
25 #include <stdexcept>
26
27 #include "power.h"
28 #include "expairseq.h"
29 #include "add.h"
30 #include "mul.h"
31 #include "numeric.h"
32 #include "inifcns.h"
33 #include "relational.h"
34 #include "symbol.h"
35 #include "archive.h"
36 #include "debugmsg.h"
37 #include "utils.h"
38
39 #ifndef NO_NAMESPACE_GINAC
40 namespace GiNaC {
41 #endif // ndef NO_NAMESPACE_GINAC
42
43 GINAC_IMPLEMENT_REGISTERED_CLASS(power, basic)
44
45 typedef std::vector<int> intvector;
46
47 //////////
48 // default constructor, destructor, copy constructor assignment operator and helpers
49 //////////
50
51 // public
52
53 power::power() : basic(TINFO_power)
54 {
55         debugmsg("power default constructor",LOGLEVEL_CONSTRUCT);
56 }
57
58 // protected
59
60 void power::copy(const power & other)
61 {
62         inherited::copy(other);
63         basis=other.basis;
64         exponent=other.exponent;
65 }
66
67 void power::destroy(bool call_parent)
68 {
69         if (call_parent) inherited::destroy(call_parent);
70 }
71
72 //////////
73 // other constructors
74 //////////
75
76 // public
77
78 power::power(const ex & lh, const ex & rh) : basic(TINFO_power), basis(lh), exponent(rh)
79 {
80         debugmsg("power constructor from ex,ex",LOGLEVEL_CONSTRUCT);
81         GINAC_ASSERT(basis.return_type()==return_types::commutative);
82 }
83
84 power::power(const ex & lh, const numeric & rh) : basic(TINFO_power), basis(lh), exponent(rh)
85 {
86         debugmsg("power constructor from ex,numeric",LOGLEVEL_CONSTRUCT);
87         GINAC_ASSERT(basis.return_type()==return_types::commutative);
88 }
89
90 //////////
91 // archiving
92 //////////
93
94 /** Construct object from archive_node. */
95 power::power(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
96 {
97         debugmsg("power constructor from archive_node", LOGLEVEL_CONSTRUCT);
98         n.find_ex("basis", basis, sym_lst);
99         n.find_ex("exponent", exponent, sym_lst);
100 }
101
102 /** Unarchive the object. */
103 ex power::unarchive(const archive_node &n, const lst &sym_lst)
104 {
105         return (new power(n, sym_lst))->setflag(status_flags::dynallocated);
106 }
107
108 /** Archive the object. */
109 void power::archive(archive_node &n) const
110 {
111         inherited::archive(n);
112         n.add_ex("basis", basis);
113         n.add_ex("exponent", exponent);
114 }
115
116 //////////
117 // functions overriding virtual functions from bases classes
118 //////////
119
120 // public
121
122 void power::print(std::ostream & os, unsigned upper_precedence) const
123 {
124         debugmsg("power print",LOGLEVEL_PRINT);
125         if (exponent.is_equal(_ex1_2())) {
126                 os << "sqrt(" << basis << ")";
127         } else {
128                 if (precedence<=upper_precedence) os << "(";
129                 basis.print(os,precedence);
130                 os << "^";
131                 exponent.print(os,precedence);
132                 if (precedence<=upper_precedence) os << ")";
133         }
134 }
135
136 void power::printraw(std::ostream & os) const
137 {
138         debugmsg("power printraw",LOGLEVEL_PRINT);
139
140         os << "power(";
141         basis.printraw(os);
142         os << ",";
143         exponent.printraw(os);
144         os << ",hash=" << hashvalue << ",flags=" << flags << ")";
145 }
146
147 void power::printtree(std::ostream & os, unsigned indent) const
148 {
149         debugmsg("power printtree",LOGLEVEL_PRINT);
150
151         os << std::string(indent,' ') << "power: "
152            << "hash=" << hashvalue
153            << " (0x" << std::hex << hashvalue << std::dec << ")"
154            << ", flags=" << flags << std::endl;
155         basis.printtree(os, indent+delta_indent);
156         exponent.printtree(os, indent+delta_indent);
157 }
158
159 static void print_sym_pow(std::ostream & os, unsigned type, const symbol &x, int exp)
160 {
161         // Optimal output of integer powers of symbols to aid compiler CSE
162         if (exp == 1) {
163                 x.printcsrc(os, type, 0);
164         } else if (exp == 2) {
165                 x.printcsrc(os, type, 0);
166                 os << "*";
167                 x.printcsrc(os, type, 0);
168         } else if (exp & 1) {
169                 x.printcsrc(os, 0);
170                 os << "*";
171                 print_sym_pow(os, type, x, exp-1);
172         } else {
173                 os << "(";
174                 print_sym_pow(os, type, x, exp >> 1);
175                 os << ")*(";
176                 print_sym_pow(os, type, x, exp >> 1);
177                 os << ")";
178         }
179 }
180
181 void power::printcsrc(std::ostream & os, unsigned type, unsigned upper_precedence) const
182 {
183         debugmsg("power print csrc", LOGLEVEL_PRINT);
184         
185         // Integer powers of symbols are printed in a special, optimized way
186         if (exponent.info(info_flags::integer)
187          && (is_ex_exactly_of_type(basis, symbol) || is_ex_exactly_of_type(basis, constant))) {
188                 int exp = ex_to_numeric(exponent).to_int();
189                 if (exp > 0)
190                         os << "(";
191                 else {
192                         exp = -exp;
193                         if (type == csrc_types::ctype_cl_N)
194                                 os << "recip(";
195                         else
196                                 os << "1.0/(";
197                 }
198                 print_sym_pow(os, type, static_cast<const symbol &>(*basis.bp), exp);
199                 os << ")";
200
201         // <expr>^-1 is printed as "1.0/<expr>" or with the recip() function of CLN
202         } else if (exponent.compare(_num_1()) == 0) {
203                 if (type == csrc_types::ctype_cl_N)
204                         os << "recip(";
205                 else
206                         os << "1.0/(";
207                 basis.bp->printcsrc(os, type, 0);
208                 os << ")";
209
210         // Otherwise, use the pow() or expt() (CLN) functions
211         } else {
212                 if (type == csrc_types::ctype_cl_N)
213                         os << "expt(";
214                 else
215                         os << "pow(";
216                 basis.bp->printcsrc(os, type, 0);
217                 os << ",";
218                 exponent.bp->printcsrc(os, type, 0);
219                 os << ")";
220         }
221 }
222
223 bool power::info(unsigned inf) const
224 {
225         switch (inf) {
226                 case info_flags::polynomial:
227                 case info_flags::integer_polynomial:
228                 case info_flags::cinteger_polynomial:
229                 case info_flags::rational_polynomial:
230                 case info_flags::crational_polynomial:
231                         return exponent.info(info_flags::nonnegint);
232                 case info_flags::rational_function:
233                         return exponent.info(info_flags::integer);
234                 case info_flags::algebraic:
235                         return (!exponent.info(info_flags::integer) ||
236                                         basis.info(inf));
237         }
238         return inherited::info(inf);
239 }
240
241 unsigned power::nops() const
242 {
243         return 2;
244 }
245
246 ex & power::let_op(int i)
247 {
248         GINAC_ASSERT(i>=0);
249         GINAC_ASSERT(i<2);
250
251         return i==0 ? basis : exponent;
252 }
253
254 int power::degree(const symbol & s) const
255 {
256         if (is_exactly_of_type(*exponent.bp,numeric)) {
257                 if ((*basis.bp).compare(s)==0) {
258                         if (ex_to_numeric(exponent).is_integer())
259                                 return ex_to_numeric(exponent).to_int();
260                         else
261                                 return 0;
262                 } else
263                         return basis.degree(s) * ex_to_numeric(exponent).to_int();
264         }
265         return 0;
266 }
267
268 int power::ldegree(const symbol & s) const 
269 {
270         if (is_exactly_of_type(*exponent.bp,numeric)) {
271                 if ((*basis.bp).compare(s)==0) {
272                         if (ex_to_numeric(exponent).is_integer())
273                                 return ex_to_numeric(exponent).to_int();
274                         else
275                                 return 0;
276                 } else
277                         return basis.ldegree(s) * ex_to_numeric(exponent).to_int();
278         }
279         return 0;
280 }
281
282 ex power::coeff(const symbol & s, int n) const
283 {
284         if ((*basis.bp).compare(s)!=0) {
285                 // basis not equal to s
286                 if (n == 0)
287                         return *this;
288                 else
289                         return _ex0();
290         } else {
291                 // basis equal to s
292                 if (is_exactly_of_type(*exponent.bp, numeric) && ex_to_numeric(exponent).is_integer()) {
293                         // integer exponent
294                         int int_exp = ex_to_numeric(exponent).to_int();
295                         if (n == int_exp)
296                                 return _ex1();
297                         else
298                                 return _ex0();
299                 } else {
300                         // non-integer exponents are treated as zero
301                         if (n == 0)
302                                 return *this;
303                         else
304                                 return _ex0();
305                 }
306         }
307 }
308
309 ex power::eval(int level) const
310 {
311         // simplifications: ^(x,0) -> 1 (0^0 handled here)
312         //                  ^(x,1) -> x
313         //                  ^(0,c1) -> 0 or exception (depending on real value of c1)
314         //                  ^(1,x) -> 1
315         //                  ^(c1,c2) -> *(c1^n,c1^(c2-n)) (c1, c2 numeric(), 0<(c2-n)<1 except if c1,c2 are rational, but c1^c2 is not)
316         //                  ^(^(x,c1),c2) -> ^(x,c1*c2) (c1, c2 numeric(), c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
317         //                  ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
318         //                  ^(*(x,c1),c2) -> ^(x,c2)*c1^c2 (c1, c2 numeric(), c1>0)
319         //                  ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2 (c1, c2 numeric(), c1<0)
320         
321         debugmsg("power eval",LOGLEVEL_MEMBER_FUNCTION);
322         
323         if ((level==1) && (flags & status_flags::evaluated))
324                 return *this;
325         else if (level == -max_recursion_level)
326                 throw(std::runtime_error("max recursion level reached"));
327         
328         const ex & ebasis    = level==1 ? basis    : basis.eval(level-1);
329         const ex & eexponent = level==1 ? exponent : exponent.eval(level-1);
330         
331         bool basis_is_numerical = 0;
332         bool exponent_is_numerical = 0;
333         numeric * num_basis;
334         numeric * num_exponent;
335         
336         if (is_exactly_of_type(*ebasis.bp,numeric)) {
337                 basis_is_numerical = 1;
338                 num_basis = static_cast<numeric *>(ebasis.bp);
339         }
340         if (is_exactly_of_type(*eexponent.bp,numeric)) {
341                 exponent_is_numerical = 1;
342                 num_exponent = static_cast<numeric *>(eexponent.bp);
343         }
344         
345         // ^(x,0) -> 1 (0^0 also handled here)
346         if (eexponent.is_zero())
347                 if (ebasis.is_zero())
348                         throw (std::domain_error("power::eval(): pow(0,0) is undefined"));
349                 else
350                         return _ex1();
351         
352         // ^(x,1) -> x
353         if (eexponent.is_equal(_ex1()))
354                 return ebasis;
355         
356         // ^(0,c1) -> 0 or exception (depending on real value of c1)
357         if (ebasis.is_zero() && exponent_is_numerical) {
358                 if ((num_exponent->real()).is_zero())
359                         throw (std::domain_error("power::eval(): pow(0,I) is undefined"));
360                 else if ((num_exponent->real()).is_negative())
361                         throw (pole_error("power::eval(): division by zero",1));
362                 else
363                         return _ex0();
364         }
365         
366         // ^(1,x) -> 1
367         if (ebasis.is_equal(_ex1()))
368                 return _ex1();
369         
370         if (basis_is_numerical && exponent_is_numerical) {
371                 // ^(c1,c2) -> c1^c2 (c1, c2 numeric(),
372                 // except if c1,c2 are rational, but c1^c2 is not)
373                 bool basis_is_crational = num_basis->is_crational();
374                 bool exponent_is_crational = num_exponent->is_crational();
375                 numeric res = (*num_basis).power(*num_exponent);
376                 
377                 if ((!basis_is_crational || !exponent_is_crational)
378                         || res.is_crational()) {
379                         return res;
380                 }
381                 GINAC_ASSERT(!num_exponent->is_integer());  // has been handled by now
382                 // ^(c1,n/m) -> *(c1^q,c1^(n/m-q)), 0<(n/m-h)<1, q integer
383                 if (basis_is_crational && exponent_is_crational
384                         && num_exponent->is_real()
385                         && !num_exponent->is_integer()) {
386                         numeric n = num_exponent->numer();
387                         numeric m = num_exponent->denom();
388                         numeric r;
389                         numeric q = iquo(n, m, r);
390                         if (r.is_negative()) {
391                                 r = r.add(m);
392                                 q = q.sub(_num1());
393                         }
394                         if (q.is_zero())  // the exponent was in the allowed range 0<(n/m)<1
395                                 return this->hold();
396                         else {
397                                 epvector res;
398                                 res.push_back(expair(ebasis,r.div(m)));
399                                 return (new mul(res,ex(num_basis->power(q))))->setflag(status_flags::dynallocated | status_flags::evaluated);
400                         }
401                 }
402         }
403         
404         // ^(^(x,c1),c2) -> ^(x,c1*c2)
405         // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1,
406         // case c1==1 should not happen, see below!)
407         if (exponent_is_numerical && is_ex_exactly_of_type(ebasis,power)) {
408                 const power & sub_power = ex_to_power(ebasis);
409                 const ex & sub_basis = sub_power.basis;
410                 const ex & sub_exponent = sub_power.exponent;
411                 if (is_ex_exactly_of_type(sub_exponent,numeric)) {
412                         const numeric & num_sub_exponent = ex_to_numeric(sub_exponent);
413                         GINAC_ASSERT(num_sub_exponent!=numeric(1));
414                         if (num_exponent->is_integer() || abs(num_sub_exponent)<1) {
415                                 return power(sub_basis,num_sub_exponent.mul(*num_exponent));
416                         }
417                 }
418         }
419         
420         // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
421         if (exponent_is_numerical && num_exponent->is_integer() &&
422                 is_ex_exactly_of_type(ebasis,mul)) {
423                 return expand_mul(ex_to_mul(ebasis), *num_exponent);
424         }
425         
426         // ^(*(...,x;c1),c2) -> ^(*(...,x;1),c2)*c1^c2 (c1, c2 numeric(), c1>0)
427         // ^(*(...,x,c1),c2) -> ^(*(...,x;-1),c2)*(-c1)^c2 (c1, c2 numeric(), c1<0)
428         if (exponent_is_numerical && is_ex_exactly_of_type(ebasis,mul)) {
429                 GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above
430                 const mul & mulref=ex_to_mul(ebasis);
431                 if (!mulref.overall_coeff.is_equal(_ex1())) {
432                         const numeric & num_coeff=ex_to_numeric(mulref.overall_coeff);
433                         if (num_coeff.is_real()) {
434                                 if (num_coeff.is_positive()>0) {
435                                         mul * mulp=new mul(mulref);
436                                         mulp->overall_coeff=_ex1();
437                                         mulp->clearflag(status_flags::evaluated);
438                                         mulp->clearflag(status_flags::hash_calculated);
439                                         return (new mul(power(*mulp,exponent),
440                                                         power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated);
441                                 } else {
442                                         GINAC_ASSERT(num_coeff.compare(_num0())<0);
443                                         if (num_coeff.compare(_num_1())!=0) {
444                                                 mul * mulp=new mul(mulref);
445                                                 mulp->overall_coeff=_ex_1();
446                                                 mulp->clearflag(status_flags::evaluated);
447                                                 mulp->clearflag(status_flags::hash_calculated);
448                                                 return (new mul(power(*mulp,exponent),
449                                                                 power(abs(num_coeff),*num_exponent)))->setflag(status_flags::dynallocated);
450                                         }
451                                 }
452                         }
453                 }
454         }
455                 
456         if (are_ex_trivially_equal(ebasis,basis) &&
457                 are_ex_trivially_equal(eexponent,exponent)) {
458                 return this->hold();
459         }
460         return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated |
461                                                                                                    status_flags::evaluated);
462 }
463
464 ex power::evalf(int level) const
465 {
466         debugmsg("power evalf",LOGLEVEL_MEMBER_FUNCTION);
467
468         ex ebasis;
469         ex eexponent;
470         
471         if (level==1) {
472                 ebasis = basis;
473                 eexponent = exponent;
474         } else if (level == -max_recursion_level) {
475                 throw(std::runtime_error("max recursion level reached"));
476         } else {
477                 ebasis = basis.evalf(level-1);
478                 if (!is_ex_exactly_of_type(eexponent,numeric))
479                         eexponent = exponent.evalf(level-1);
480                 else
481                         eexponent = exponent;
482         }
483
484         return power(ebasis,eexponent);
485 }
486
487 ex power::subs(const lst & ls, const lst & lr) const
488 {
489         const ex & subsed_basis=basis.subs(ls,lr);
490         const ex & subsed_exponent=exponent.subs(ls,lr);
491
492         if (are_ex_trivially_equal(basis,subsed_basis)&&
493                 are_ex_trivially_equal(exponent,subsed_exponent)) {
494                 return *this;
495         }
496         
497         return power(subsed_basis, subsed_exponent);
498 }
499
500 ex power::simplify_ncmul(const exvector & v) const
501 {
502         return inherited::simplify_ncmul(v);
503 }
504
505 // protected
506
507 /** Implementation of ex::diff() for a power.
508  *  @see ex::diff */
509 ex power::derivative(const symbol & s) const
510 {
511         if (exponent.info(info_flags::real)) {
512                 // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
513                 epvector newseq;
514                 newseq.reserve(2);
515                 newseq.push_back(expair(basis, exponent - _ex1()));
516                 newseq.push_back(expair(basis.diff(s), _ex1()));
517                 return mul(newseq, exponent);
518         } else {
519                 // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b)
520                 return mul(*this,
521                            add(mul(exponent.diff(s), log(basis)),
522                            mul(mul(exponent, basis.diff(s)), power(basis, _ex_1()))));
523         }
524 }
525
526 int power::compare_same_type(const basic & other) const
527 {
528         GINAC_ASSERT(is_exactly_of_type(other, power));
529         const power & o=static_cast<const power &>(const_cast<basic &>(other));
530
531         int cmpval;
532         cmpval=basis.compare(o.basis);
533         if (cmpval==0) {
534                 return exponent.compare(o.exponent);
535         }
536         return cmpval;
537 }
538
539 unsigned power::return_type(void) const
540 {
541         return basis.return_type();
542 }
543    
544 unsigned power::return_type_tinfo(void) const
545 {
546         return basis.return_type_tinfo();
547 }
548
549 ex power::expand(unsigned options) const
550 {
551         if (flags & status_flags::expanded)
552                 return *this;
553         
554         ex expanded_basis = basis.expand(options);
555         ex expanded_exponent = exponent.expand(options);
556
557         // x^(a+b) -> x^a * x^b
558         if (is_ex_exactly_of_type(expanded_exponent, add)) {
559                 const add &a = ex_to_add(expanded_exponent);
560                 exvector distrseq;
561                 distrseq.reserve(a.seq.size() + 1);
562                 epvector::const_iterator last = a.seq.end();
563                 epvector::const_iterator cit = a.seq.begin();
564                 while (cit!=last) {
565                         distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(*cit)));
566                         cit++;
567                 }
568
569                 // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor
570                 if (ex_to_numeric(a.overall_coeff).is_integer()) {
571                         const numeric &num_exponent = ex_to_numeric(a.overall_coeff);
572                         int int_exponent = num_exponent.to_int();
573                         if (int_exponent > 0 && is_ex_exactly_of_type(expanded_basis, add))
574                                 distrseq.push_back(expand_add(ex_to_add(expanded_basis), int_exponent));
575                         else
576                                 distrseq.push_back(power(expanded_basis, a.overall_coeff));
577                 } else
578                         distrseq.push_back(power(expanded_basis, a.overall_coeff));
579
580                 // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
581                 ex r = (new mul(distrseq))->setflag(status_flags::dynallocated);
582                 return r.expand();
583         }
584
585         if (!is_ex_exactly_of_type(expanded_exponent, numeric) ||
586                 !ex_to_numeric(expanded_exponent).is_integer()) {
587                 if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) {
588                         return this->hold();
589                 } else {
590                         return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | status_flags::expanded);
591                 }
592         }
593         
594         // integer numeric exponent
595         const numeric & num_exponent = ex_to_numeric(expanded_exponent);
596         int int_exponent = num_exponent.to_int();
597         
598         // (x+y)^n, n>0
599         if (int_exponent > 0 && is_ex_exactly_of_type(expanded_basis,add)) {
600                 return expand_add(ex_to_add(expanded_basis), int_exponent);
601         }
602         
603         // (x*y)^n -> x^n * y^n
604         if (is_ex_exactly_of_type(expanded_basis,mul)) {
605                 return expand_mul(ex_to_mul(expanded_basis), num_exponent);
606         }
607         
608         // cannot expand further
609         if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) {
610                 return this->hold();
611         } else {
612                 return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | status_flags::expanded);
613         }
614 }
615
616 //////////
617 // new virtual functions which can be overridden by derived classes
618 //////////
619
620 // none
621
622 //////////
623 // non-virtual functions in this class
624 //////////
625
626 /** expand a^n where a is an add and n is an integer.
627  *  @see power::expand */
628 ex power::expand_add(const add & a, int n) const
629 {
630         if (n==2)
631                 return expand_add_2(a);
632         
633         int m = a.nops();
634         exvector sum;
635         sum.reserve((n+1)*(m-1));
636         intvector k(m-1);
637         intvector k_cum(m-1); // k_cum[l]:=sum(i=0,l,k[l]);
638         intvector upper_limit(m-1);
639         int l;
640         
641         for (int l=0; l<m-1; l++) {
642                 k[l] = 0;
643                 k_cum[l] = 0;
644                 upper_limit[l] = n;
645         }
646         
647         while (1) {
648                 exvector term;
649                 term.reserve(m+1);
650                 for (l=0; l<m-1; l++) {
651                         const ex & b = a.op(l);
652                         GINAC_ASSERT(!is_ex_exactly_of_type(b,add));
653                         GINAC_ASSERT(!is_ex_exactly_of_type(b,power) ||
654                                      !is_ex_exactly_of_type(ex_to_power(b).exponent,numeric) ||
655                                      !ex_to_numeric(ex_to_power(b).exponent).is_pos_integer() ||
656                                      !is_ex_exactly_of_type(ex_to_power(b).basis,add) ||
657                                      !is_ex_exactly_of_type(ex_to_power(b).basis,mul) ||
658                                      !is_ex_exactly_of_type(ex_to_power(b).basis,power));
659                         if (is_ex_exactly_of_type(b,mul)) {
660                                 term.push_back(expand_mul(ex_to_mul(b),numeric(k[l])));
661                         } else {
662                                 term.push_back(power(b,k[l]));
663                         }
664                 }
665                 
666                 const ex & b = a.op(l);
667                 GINAC_ASSERT(!is_ex_exactly_of_type(b,add));
668                 GINAC_ASSERT(!is_ex_exactly_of_type(b,power) ||
669                              !is_ex_exactly_of_type(ex_to_power(b).exponent,numeric) ||
670                              !ex_to_numeric(ex_to_power(b).exponent).is_pos_integer() ||
671                              !is_ex_exactly_of_type(ex_to_power(b).basis,add) ||
672                              !is_ex_exactly_of_type(ex_to_power(b).basis,mul) ||
673                              !is_ex_exactly_of_type(ex_to_power(b).basis,power));
674                 if (is_ex_exactly_of_type(b,mul)) {
675                         term.push_back(expand_mul(ex_to_mul(b),numeric(n-k_cum[m-2])));
676                 } else {
677                         term.push_back(power(b,n-k_cum[m-2]));
678                 }
679                 
680                 numeric f = binomial(numeric(n),numeric(k[0]));
681                 for (l=1; l<m-1; l++) {
682                         f=f*binomial(numeric(n-k_cum[l-1]),numeric(k[l]));
683                 }
684                 term.push_back(f);
685
686                 /*
687                 cout << "begin term" << endl;
688                 for (int i=0; i<m-1; i++) {
689                         cout << "k[" << i << "]=" << k[i] << endl;
690                         cout << "k_cum[" << i << "]=" << k_cum[i] << endl;
691                         cout << "upper_limit[" << i << "]=" << upper_limit[i] << endl;
692                 }
693                 for (exvector::const_iterator cit=term.begin(); cit!=term.end(); ++cit) {
694                         cout << *cit << endl;
695                 }
696                 cout << "end term" << endl;
697                 */
698
699                 // TODO: optimize this
700                 sum.push_back((new mul(term))->setflag(status_flags::dynallocated));
701                 
702                 // increment k[]
703                 l=m-2;
704                 while ((l>=0)&&((++k[l])>upper_limit[l])) {
705                         k[l]=0;    
706                         l--;
707                 }
708                 if (l<0) break;
709
710                 // recalc k_cum[] and upper_limit[]
711                 if (l==0) {
712                         k_cum[0]=k[0];
713                 } else {
714                         k_cum[l]=k_cum[l-1]+k[l];
715                 }
716                 for (int i=l+1; i<m-1; i++) {
717                         k_cum[i]=k_cum[i-1]+k[i];
718                 }
719
720                 for (int i=l+1; i<m-1; i++) {
721                         upper_limit[i]=n-k_cum[i-1];
722                 }   
723         }
724         return (new add(sum))->setflag(status_flags::dynallocated |
725                                                                    status_flags::expanded );
726 }
727
728
729 /** Special case of power::expand_add. Expands a^2 where a is an add.
730  *  @see power::expand_add */
731 ex power::expand_add_2(const add & a) const
732 {
733         epvector sum;
734         unsigned a_nops=a.nops();
735         sum.reserve((a_nops*(a_nops+1))/2);
736         epvector::const_iterator last=a.seq.end();
737
738         // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c
739         // first part: ignore overall_coeff and expand other terms
740         for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) {
741                 const ex & r=(*cit0).rest;
742                 const ex & c=(*cit0).coeff;
743                 
744                 GINAC_ASSERT(!is_ex_exactly_of_type(r,add));
745                 GINAC_ASSERT(!is_ex_exactly_of_type(r,power) ||
746                              !is_ex_exactly_of_type(ex_to_power(r).exponent,numeric) ||
747                              !ex_to_numeric(ex_to_power(r).exponent).is_pos_integer() ||
748                              !is_ex_exactly_of_type(ex_to_power(r).basis,add) ||
749                              !is_ex_exactly_of_type(ex_to_power(r).basis,mul) ||
750                              !is_ex_exactly_of_type(ex_to_power(r).basis,power));
751
752                 if (are_ex_trivially_equal(c,_ex1())) {
753                         if (is_ex_exactly_of_type(r,mul)) {
754                                 sum.push_back(expair(expand_mul(ex_to_mul(r),_num2()),
755                                                      _ex1()));
756                         } else {
757                                 sum.push_back(expair((new power(r,_ex2()))->setflag(status_flags::dynallocated),
758                                                      _ex1()));
759                         }
760                 } else {
761                         if (is_ex_exactly_of_type(r,mul)) {
762                                 sum.push_back(expair(expand_mul(ex_to_mul(r),_num2()),
763                                                      ex_to_numeric(c).power_dyn(_num2())));
764                         } else {
765                                 sum.push_back(expair((new power(r,_ex2()))->setflag(status_flags::dynallocated),
766                                                      ex_to_numeric(c).power_dyn(_num2())));
767                         }
768                 }
769                         
770                 for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) {
771                         const ex & r1=(*cit1).rest;
772                         const ex & c1=(*cit1).coeff;
773                         sum.push_back(a.combine_ex_with_coeff_to_pair((new mul(r,r1))->setflag(status_flags::dynallocated),
774                                                                       _num2().mul(ex_to_numeric(c)).mul_dyn(ex_to_numeric(c1))));
775                 }
776         }
777
778         GINAC_ASSERT(sum.size()==(a.seq.size()*(a.seq.size()+1))/2);
779
780         // second part: add terms coming from overall_factor (if != 0)
781         if (!a.overall_coeff.is_equal(_ex0())) {
782                 for (epvector::const_iterator cit=a.seq.begin(); cit!=a.seq.end(); ++cit) {
783                         sum.push_back(a.combine_pair_with_coeff_to_pair(*cit,ex_to_numeric(a.overall_coeff).mul_dyn(_num2())));
784                 }
785                 sum.push_back(expair(ex_to_numeric(a.overall_coeff).power_dyn(_num2()),_ex1()));
786         }
787                 
788         GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2);
789         
790         return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded);
791 }
792
793 /** Expand factors of m in m^n where m is a mul and n is and integer
794  *  @see power::expand */
795 ex power::expand_mul(const mul & m, const numeric & n) const
796 {
797         if (n.is_equal(_num0()))
798                 return _ex1();
799         
800         epvector distrseq;
801         distrseq.reserve(m.seq.size());
802         epvector::const_iterator last = m.seq.end();
803         epvector::const_iterator cit = m.seq.begin();
804         while (cit!=last) {
805                 if (is_ex_exactly_of_type((*cit).rest,numeric)) {
806                         distrseq.push_back(m.combine_pair_with_coeff_to_pair(*cit,n));
807                 } else {
808                         // it is safe not to call mul::combine_pair_with_coeff_to_pair()
809                         // since n is an integer
810                         distrseq.push_back(expair((*cit).rest, ex_to_numeric((*cit).coeff).mul(n)));
811                 }
812                 ++cit;
813         }
814         return (new mul(distrseq,ex_to_numeric(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated);
815 }
816
817 /*
818 ex power::expand_commutative_3(const ex & basis, const numeric & exponent,
819                                unsigned options) const
820 {
821         // obsolete
822
823         exvector distrseq;
824         epvector splitseq;
825
826         const add & addref=static_cast<const add &>(*basis.bp);
827
828         splitseq=addref.seq;
829         splitseq.pop_back();
830         ex first_operands=add(splitseq);
831         ex last_operand=addref.recombine_pair_to_ex(*(addref.seq.end()-1));
832         
833         int n=exponent.to_int();
834         for (int k=0; k<=n; k++) {
835                 distrseq.push_back(binomial(n,k) * power(first_operands,numeric(k))
836                                                  * power(last_operand,numeric(n-k)));
837         }
838         return ex((new add(distrseq))->setflag(status_flags::expanded | status_flags::dynallocated)).expand(options);
839 }
840 */
841
842 /*
843 ex power::expand_noncommutative(const ex & basis, const numeric & exponent,
844                                                                 unsigned options) const
845 {
846         ex rest_power = ex(power(basis,exponent.add(_num_1()))).
847                         expand(options | expand_options::internal_do_not_expand_power_operands);
848
849         return ex(mul(rest_power,basis),0).
850                expand(options | expand_options::internal_do_not_expand_mul_operands);
851 }
852 */
853
854 //////////
855 // static member variables
856 //////////
857
858 // protected
859
860 unsigned power::precedence = 60;
861
862 // helper function
863
864 ex sqrt(const ex & a)
865 {
866         return power(a,_ex1_2());
867 }
868
869 #ifndef NO_NAMESPACE_GINAC
870 } // namespace GiNaC
871 #endif // ndef NO_NAMESPACE_GINAC