]> www.ginac.de Git - ginac.git/blob - ginac/power.cpp
Changes needed for compilation with -DDO_GINAC_ASSERT:
[ginac.git] / ginac / power.cpp
1 /** @file power.cpp
2  *
3  *  Implementation of GiNaC's symbolic exponentiation (basis^exponent). */
4
5 /*
6  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include <vector>
24 #include <iostream>
25 #include <stdexcept>
26
27 #include "power.h"
28 #include "expairseq.h"
29 #include "add.h"
30 #include "mul.h"
31 #include "numeric.h"
32 #include "inifcns.h"
33 #include "relational.h"
34 #include "symbol.h"
35 #include "print.h"
36 #include "archive.h"
37 #include "debugmsg.h"
38 #include "utils.h"
39
40 namespace GiNaC {
41
42 GINAC_IMPLEMENT_REGISTERED_CLASS(power, basic)
43
44 typedef std::vector<int> intvector;
45
46 //////////
47 // default ctor, dtor, copy ctor assignment operator and helpers
48 //////////
49
50 power::power() : basic(TINFO_power)
51 {
52         debugmsg("power default ctor",LOGLEVEL_CONSTRUCT);
53 }
54
55 void power::copy(const power & other)
56 {
57         inherited::copy(other);
58         basis = other.basis;
59         exponent = other.exponent;
60 }
61
62 DEFAULT_DESTROY(power)
63
64 //////////
65 // other ctors
66 //////////
67
68 power::power(const ex & lh, const ex & rh) : basic(TINFO_power), basis(lh), exponent(rh)
69 {
70         debugmsg("power ctor from ex,ex",LOGLEVEL_CONSTRUCT);
71         GINAC_ASSERT(basis.return_type()==return_types::commutative);
72 }
73
74 power::power(const ex & lh, const numeric & rh) : basic(TINFO_power), basis(lh), exponent(rh)
75 {
76         debugmsg("power ctor from ex,numeric",LOGLEVEL_CONSTRUCT);
77         GINAC_ASSERT(basis.return_type()==return_types::commutative);
78 }
79
80 //////////
81 // archiving
82 //////////
83
84 power::power(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
85 {
86         debugmsg("power ctor from archive_node", LOGLEVEL_CONSTRUCT);
87         n.find_ex("basis", basis, sym_lst);
88         n.find_ex("exponent", exponent, sym_lst);
89 }
90
91 void power::archive(archive_node &n) const
92 {
93         inherited::archive(n);
94         n.add_ex("basis", basis);
95         n.add_ex("exponent", exponent);
96 }
97
98 DEFAULT_UNARCHIVE(power)
99
100 //////////
101 // functions overriding virtual functions from bases classes
102 //////////
103
104 // public
105
106 static void print_sym_pow(const print_context & c, const symbol &x, int exp)
107 {
108         // Optimal output of integer powers of symbols to aid compiler CSE.
109         // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15
110         // to learn why such a hack is really necessary.
111         if (exp == 1) {
112                 x.print(c);
113         } else if (exp == 2) {
114                 x.print(c);
115                 c.s << "*";
116                 x.print(c);
117         } else if (exp & 1) {
118                 x.print(c);
119                 c.s << "*";
120                 print_sym_pow(c, x, exp-1);
121         } else {
122                 c.s << "(";
123                 print_sym_pow(c, x, exp >> 1);
124                 c.s << ")*(";
125                 print_sym_pow(c, x, exp >> 1);
126                 c.s << ")";
127         }
128 }
129
130 void power::print(const print_context & c, unsigned level) const
131 {
132         debugmsg("power print", LOGLEVEL_PRINT);
133
134         if (is_of_type(c, print_tree)) {
135
136                 inherited::print(c, level);
137
138         } else if (is_of_type(c, print_csrc)) {
139
140                 // Integer powers of symbols are printed in a special, optimized way
141                 if (exponent.info(info_flags::integer)
142                  && (is_ex_exactly_of_type(basis, symbol) || is_ex_exactly_of_type(basis, constant))) {
143                         int exp = ex_to_numeric(exponent).to_int();
144                         if (exp > 0)
145                                 c.s << "(";
146                         else {
147                                 exp = -exp;
148                                 if (is_of_type(c, print_csrc_cl_N))
149                                         c.s << "recip(";
150                                 else
151                                         c.s << "1.0/(";
152                         }
153                         print_sym_pow(c, ex_to_symbol(basis), exp);
154                         c.s << ")";
155
156                 // <expr>^-1 is printed as "1.0/<expr>" or with the recip() function of CLN
157                 } else if (exponent.compare(_num_1()) == 0) {
158                         if (is_of_type(c, print_csrc_cl_N))
159                                 c.s << "recip(";
160                         else
161                                 c.s << "1.0/(";
162                         basis.print(c);
163                         c.s << ")";
164
165                 // Otherwise, use the pow() or expt() (CLN) functions
166                 } else {
167                         if (is_of_type(c, print_csrc_cl_N))
168                                 c.s << "expt(";
169                         else
170                                 c.s << "pow(";
171                         basis.print(c);
172                         c.s << ",";
173                         exponent.print(c);
174                         c.s << ")";
175                 }
176
177         } else {
178
179                 if (exponent.is_equal(_ex1_2())) {
180                         if (is_of_type(c, print_latex))
181                                 c.s << "\\sqrt{";
182                         else
183                                 c.s << "sqrt(";
184                         basis.print(c);
185                         if (is_of_type(c, print_latex))
186                                 c.s << "}";
187                         else
188                                 c.s << ")";
189                 } else {
190                         if (precedence <= level) {
191                                 if (is_of_type(c, print_latex))
192                                         c.s << "{(";
193                                 else
194                                         c.s << "(";
195                         }
196                         basis.print(c, precedence);
197                         c.s << "^";
198                         exponent.print(c, precedence);
199                         if (precedence <= level) {
200                                 if (is_of_type(c, print_latex))
201                                         c.s << ")}";
202                                 else
203                                         c.s << ")";
204                         }
205                 }
206         }
207 }
208
209 bool power::info(unsigned inf) const
210 {
211         switch (inf) {
212                 case info_flags::polynomial:
213                 case info_flags::integer_polynomial:
214                 case info_flags::cinteger_polynomial:
215                 case info_flags::rational_polynomial:
216                 case info_flags::crational_polynomial:
217                         return exponent.info(info_flags::nonnegint);
218                 case info_flags::rational_function:
219                         return exponent.info(info_flags::integer);
220                 case info_flags::algebraic:
221                         return (!exponent.info(info_flags::integer) ||
222                                         basis.info(inf));
223         }
224         return inherited::info(inf);
225 }
226
227 unsigned power::nops() const
228 {
229         return 2;
230 }
231
232 ex & power::let_op(int i)
233 {
234         GINAC_ASSERT(i>=0);
235         GINAC_ASSERT(i<2);
236
237         return i==0 ? basis : exponent;
238 }
239
240 int power::degree(const ex & s) const
241 {
242         if (is_exactly_of_type(*exponent.bp,numeric)) {
243                 if (basis.is_equal(s)) {
244                         if (ex_to_numeric(exponent).is_integer())
245                                 return ex_to_numeric(exponent).to_int();
246                         else
247                                 return 0;
248                 } else
249                         return basis.degree(s) * ex_to_numeric(exponent).to_int();
250         }
251         return 0;
252 }
253
254 int power::ldegree(const ex & s) const 
255 {
256         if (is_exactly_of_type(*exponent.bp,numeric)) {
257                 if (basis.is_equal(s)) {
258                         if (ex_to_numeric(exponent).is_integer())
259                                 return ex_to_numeric(exponent).to_int();
260                         else
261                                 return 0;
262                 } else
263                         return basis.ldegree(s) * ex_to_numeric(exponent).to_int();
264         }
265         return 0;
266 }
267
268 ex power::coeff(const ex & s, int n) const
269 {
270         if (!basis.is_equal(s)) {
271                 // basis not equal to s
272                 if (n == 0)
273                         return *this;
274                 else
275                         return _ex0();
276         } else {
277                 // basis equal to s
278                 if (is_exactly_of_type(*exponent.bp, numeric) && ex_to_numeric(exponent).is_integer()) {
279                         // integer exponent
280                         int int_exp = ex_to_numeric(exponent).to_int();
281                         if (n == int_exp)
282                                 return _ex1();
283                         else
284                                 return _ex0();
285                 } else {
286                         // non-integer exponents are treated as zero
287                         if (n == 0)
288                                 return *this;
289                         else
290                                 return _ex0();
291                 }
292         }
293 }
294
295 ex power::eval(int level) const
296 {
297         // simplifications: ^(x,0) -> 1 (0^0 handled here)
298         //                  ^(x,1) -> x
299         //                  ^(0,c1) -> 0 or exception (depending on real value of c1)
300         //                  ^(1,x) -> 1
301         //                  ^(c1,c2) -> *(c1^n,c1^(c2-n)) (c1, c2 numeric(), 0<(c2-n)<1 except if c1,c2 are rational, but c1^c2 is not)
302         //                  ^(^(x,c1),c2) -> ^(x,c1*c2) (c1, c2 numeric(), c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
303         //                  ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
304         //                  ^(*(x,c1),c2) -> ^(x,c2)*c1^c2 (c1, c2 numeric(), c1>0)
305         //                  ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2 (c1, c2 numeric(), c1<0)
306         
307         debugmsg("power eval",LOGLEVEL_MEMBER_FUNCTION);
308         
309         if ((level==1) && (flags & status_flags::evaluated))
310                 return *this;
311         else if (level == -max_recursion_level)
312                 throw(std::runtime_error("max recursion level reached"));
313         
314         const ex & ebasis    = level==1 ? basis    : basis.eval(level-1);
315         const ex & eexponent = level==1 ? exponent : exponent.eval(level-1);
316         
317         bool basis_is_numerical = 0;
318         bool exponent_is_numerical = 0;
319         numeric * num_basis;
320         numeric * num_exponent;
321         
322         if (is_exactly_of_type(*ebasis.bp,numeric)) {
323                 basis_is_numerical = 1;
324                 num_basis = static_cast<numeric *>(ebasis.bp);
325         }
326         if (is_exactly_of_type(*eexponent.bp,numeric)) {
327                 exponent_is_numerical = 1;
328                 num_exponent = static_cast<numeric *>(eexponent.bp);
329         }
330         
331         // ^(x,0) -> 1 (0^0 also handled here)
332         if (eexponent.is_zero()) {
333                 if (ebasis.is_zero())
334                         throw (std::domain_error("power::eval(): pow(0,0) is undefined"));
335                 else
336                         return _ex1();
337         }
338         
339         // ^(x,1) -> x
340         if (eexponent.is_equal(_ex1()))
341                 return ebasis;
342         
343         // ^(0,c1) -> 0 or exception (depending on real value of c1)
344         if (ebasis.is_zero() && exponent_is_numerical) {
345                 if ((num_exponent->real()).is_zero())
346                         throw (std::domain_error("power::eval(): pow(0,I) is undefined"));
347                 else if ((num_exponent->real()).is_negative())
348                         throw (pole_error("power::eval(): division by zero",1));
349                 else
350                         return _ex0();
351         }
352         
353         // ^(1,x) -> 1
354         if (ebasis.is_equal(_ex1()))
355                 return _ex1();
356         
357         if (basis_is_numerical && exponent_is_numerical) {
358                 // ^(c1,c2) -> c1^c2 (c1, c2 numeric(),
359                 // except if c1,c2 are rational, but c1^c2 is not)
360                 bool basis_is_crational = num_basis->is_crational();
361                 bool exponent_is_crational = num_exponent->is_crational();
362                 numeric res = num_basis->power(*num_exponent);
363                 
364                 if ((!basis_is_crational || !exponent_is_crational)
365                         || res.is_crational()) {
366                         return res;
367                 }
368                 GINAC_ASSERT(!num_exponent->is_integer());  // has been handled by now
369                 // ^(c1,n/m) -> *(c1^q,c1^(n/m-q)), 0<(n/m-h)<1, q integer
370                 if (basis_is_crational && exponent_is_crational
371                         && num_exponent->is_real()
372                         && !num_exponent->is_integer()) {
373                         numeric n = num_exponent->numer();
374                         numeric m = num_exponent->denom();
375                         numeric r;
376                         numeric q = iquo(n, m, r);
377                         if (r.is_negative()) {
378                                 r = r.add(m);
379                                 q = q.sub(_num1());
380                         }
381                         if (q.is_zero())  // the exponent was in the allowed range 0<(n/m)<1
382                                 return this->hold();
383                         else {
384                                 epvector res;
385                                 res.push_back(expair(ebasis,r.div(m)));
386                                 return (new mul(res,ex(num_basis->power_dyn(q))))->setflag(status_flags::dynallocated | status_flags::evaluated);
387                         }
388                 }
389         }
390         
391         // ^(^(x,c1),c2) -> ^(x,c1*c2)
392         // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1,
393         // case c1==1 should not happen, see below!)
394         if (exponent_is_numerical && is_ex_exactly_of_type(ebasis,power)) {
395                 const power & sub_power = ex_to_power(ebasis);
396                 const ex & sub_basis = sub_power.basis;
397                 const ex & sub_exponent = sub_power.exponent;
398                 if (is_ex_exactly_of_type(sub_exponent,numeric)) {
399                         const numeric & num_sub_exponent = ex_to_numeric(sub_exponent);
400                         GINAC_ASSERT(num_sub_exponent!=numeric(1));
401                         if (num_exponent->is_integer() || abs(num_sub_exponent)<1)
402                                 return power(sub_basis,num_sub_exponent.mul(*num_exponent));
403                 }
404         }
405         
406         // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
407         if (exponent_is_numerical && num_exponent->is_integer() &&
408                 is_ex_exactly_of_type(ebasis,mul)) {
409                 return expand_mul(ex_to_mul(ebasis), *num_exponent);
410         }
411         
412         // ^(*(...,x;c1),c2) -> ^(*(...,x;1),c2)*c1^c2 (c1, c2 numeric(), c1>0)
413         // ^(*(...,x,c1),c2) -> ^(*(...,x;-1),c2)*(-c1)^c2 (c1, c2 numeric(), c1<0)
414         if (exponent_is_numerical && is_ex_exactly_of_type(ebasis,mul)) {
415                 GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above
416                 const mul & mulref = ex_to_mul(ebasis);
417                 if (!mulref.overall_coeff.is_equal(_ex1())) {
418                         const numeric & num_coeff = ex_to_numeric(mulref.overall_coeff);
419                         if (num_coeff.is_real()) {
420                                 if (num_coeff.is_positive()) {
421                                         mul * mulp = new mul(mulref);
422                                         mulp->overall_coeff = _ex1();
423                                         mulp->clearflag(status_flags::evaluated);
424                                         mulp->clearflag(status_flags::hash_calculated);
425                                         return (new mul(power(*mulp,exponent),
426                                                         power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated);
427                                 } else {
428                                         GINAC_ASSERT(num_coeff.compare(_num0())<0);
429                                         if (num_coeff.compare(_num_1())!=0) {
430                                                 mul * mulp = new mul(mulref);
431                                                 mulp->overall_coeff = _ex_1();
432                                                 mulp->clearflag(status_flags::evaluated);
433                                                 mulp->clearflag(status_flags::hash_calculated);
434                                                 return (new mul(power(*mulp,exponent),
435                                                                 power(abs(num_coeff),*num_exponent)))->setflag(status_flags::dynallocated);
436                                         }
437                                 }
438                         }
439                 }
440         }
441         
442         if (are_ex_trivially_equal(ebasis,basis) &&
443                 are_ex_trivially_equal(eexponent,exponent)) {
444                 return this->hold();
445         }
446         return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated |
447                                                                                                    status_flags::evaluated);
448 }
449
450 ex power::evalf(int level) const
451 {
452         debugmsg("power evalf",LOGLEVEL_MEMBER_FUNCTION);
453
454         ex ebasis;
455         ex eexponent;
456         
457         if (level==1) {
458                 ebasis = basis;
459                 eexponent = exponent;
460         } else if (level == -max_recursion_level) {
461                 throw(std::runtime_error("max recursion level reached"));
462         } else {
463                 ebasis = basis.evalf(level-1);
464                 if (!is_ex_exactly_of_type(eexponent,numeric))
465                         eexponent = exponent.evalf(level-1);
466                 else
467                         eexponent = exponent;
468         }
469
470         return power(ebasis,eexponent);
471 }
472
473 ex power::subs(const lst & ls, const lst & lr) const
474 {
475         const ex & subsed_basis=basis.subs(ls,lr);
476         const ex & subsed_exponent=exponent.subs(ls,lr);
477
478         if (are_ex_trivially_equal(basis,subsed_basis)&&
479                 are_ex_trivially_equal(exponent,subsed_exponent)) {
480                 return inherited::subs(ls, lr);
481         }
482         
483         return power(subsed_basis, subsed_exponent);
484 }
485
486 ex power::simplify_ncmul(const exvector & v) const
487 {
488         return inherited::simplify_ncmul(v);
489 }
490
491 // protected
492
493 /** Implementation of ex::diff() for a power.
494  *  @see ex::diff */
495 ex power::derivative(const symbol & s) const
496 {
497         if (exponent.info(info_flags::real)) {
498                 // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
499                 epvector newseq;
500                 newseq.reserve(2);
501                 newseq.push_back(expair(basis, exponent - _ex1()));
502                 newseq.push_back(expair(basis.diff(s), _ex1()));
503                 return mul(newseq, exponent);
504         } else {
505                 // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b)
506                 return mul(*this,
507                            add(mul(exponent.diff(s), log(basis)),
508                            mul(mul(exponent, basis.diff(s)), power(basis, _ex_1()))));
509         }
510 }
511
512 int power::compare_same_type(const basic & other) const
513 {
514         GINAC_ASSERT(is_exactly_of_type(other, power));
515         const power & o=static_cast<const power &>(const_cast<basic &>(other));
516
517         int cmpval;
518         cmpval=basis.compare(o.basis);
519         if (cmpval==0) {
520                 return exponent.compare(o.exponent);
521         }
522         return cmpval;
523 }
524
525 unsigned power::return_type(void) const
526 {
527         return basis.return_type();
528 }
529    
530 unsigned power::return_type_tinfo(void) const
531 {
532         return basis.return_type_tinfo();
533 }
534
535 ex power::expand(unsigned options) const
536 {
537         if (flags & status_flags::expanded)
538                 return *this;
539         
540         ex expanded_basis = basis.expand(options);
541         ex expanded_exponent = exponent.expand(options);
542         
543         // x^(a+b) -> x^a * x^b
544         if (is_ex_exactly_of_type(expanded_exponent, add)) {
545                 const add &a = ex_to_add(expanded_exponent);
546                 exvector distrseq;
547                 distrseq.reserve(a.seq.size() + 1);
548                 epvector::const_iterator last = a.seq.end();
549                 epvector::const_iterator cit = a.seq.begin();
550                 while (cit!=last) {
551                         distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(*cit)));
552                         cit++;
553                 }
554                 
555                 // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor
556                 if (ex_to_numeric(a.overall_coeff).is_integer()) {
557                         const numeric &num_exponent = ex_to_numeric(a.overall_coeff);
558                         int int_exponent = num_exponent.to_int();
559                         if (int_exponent > 0 && is_ex_exactly_of_type(expanded_basis, add))
560                                 distrseq.push_back(expand_add(ex_to_add(expanded_basis), int_exponent));
561                         else
562                                 distrseq.push_back(power(expanded_basis, a.overall_coeff));
563                 } else
564                         distrseq.push_back(power(expanded_basis, a.overall_coeff));
565                 
566                 // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
567                 ex r = (new mul(distrseq))->setflag(status_flags::dynallocated);
568                 return r.expand();
569         }
570         
571         if (!is_ex_exactly_of_type(expanded_exponent, numeric) ||
572                 !ex_to_numeric(expanded_exponent).is_integer()) {
573                 if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) {
574                         return this->hold();
575                 } else {
576                         return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | status_flags::expanded);
577                 }
578         }
579         
580         // integer numeric exponent
581         const numeric & num_exponent = ex_to_numeric(expanded_exponent);
582         int int_exponent = num_exponent.to_int();
583         
584         // (x+y)^n, n>0
585         if (int_exponent > 0 && is_ex_exactly_of_type(expanded_basis,add))
586                 return expand_add(ex_to_add(expanded_basis), int_exponent);
587         
588         // (x*y)^n -> x^n * y^n
589         if (is_ex_exactly_of_type(expanded_basis,mul))
590                 return expand_mul(ex_to_mul(expanded_basis), num_exponent);
591         
592         // cannot expand further
593         if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent))
594                 return this->hold();
595         else
596                 return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | status_flags::expanded);
597 }
598
599 //////////
600 // new virtual functions which can be overridden by derived classes
601 //////////
602
603 // none
604
605 //////////
606 // non-virtual functions in this class
607 //////////
608
609 /** expand a^n where a is an add and n is an integer.
610  *  @see power::expand */
611 ex power::expand_add(const add & a, int n) const
612 {
613         if (n==2)
614                 return expand_add_2(a);
615         
616         int m = a.nops();
617         exvector sum;
618         sum.reserve((n+1)*(m-1));
619         intvector k(m-1);
620         intvector k_cum(m-1); // k_cum[l]:=sum(i=0,l,k[l]);
621         intvector upper_limit(m-1);
622         int l;
623         
624         for (int l=0; l<m-1; l++) {
625                 k[l] = 0;
626                 k_cum[l] = 0;
627                 upper_limit[l] = n;
628         }
629         
630         while (1) {
631                 exvector term;
632                 term.reserve(m+1);
633                 for (l=0; l<m-1; l++) {
634                         const ex & b = a.op(l);
635                         GINAC_ASSERT(!is_ex_exactly_of_type(b,add));
636                         GINAC_ASSERT(!is_ex_exactly_of_type(b,power) ||
637                                      !is_ex_exactly_of_type(ex_to_power(b).exponent,numeric) ||
638                                      !ex_to_numeric(ex_to_power(b).exponent).is_pos_integer() ||
639                                      !is_ex_exactly_of_type(ex_to_power(b).basis,add) ||
640                                      !is_ex_exactly_of_type(ex_to_power(b).basis,mul) ||
641                                      !is_ex_exactly_of_type(ex_to_power(b).basis,power));
642                         if (is_ex_exactly_of_type(b,mul))
643                                 term.push_back(expand_mul(ex_to_mul(b),numeric(k[l])));
644                         else
645                                 term.push_back(power(b,k[l]));
646                 }
647                 
648                 const ex & b = a.op(l);
649                 GINAC_ASSERT(!is_ex_exactly_of_type(b,add));
650                 GINAC_ASSERT(!is_ex_exactly_of_type(b,power) ||
651                              !is_ex_exactly_of_type(ex_to_power(b).exponent,numeric) ||
652                              !ex_to_numeric(ex_to_power(b).exponent).is_pos_integer() ||
653                              !is_ex_exactly_of_type(ex_to_power(b).basis,add) ||
654                              !is_ex_exactly_of_type(ex_to_power(b).basis,mul) ||
655                              !is_ex_exactly_of_type(ex_to_power(b).basis,power));
656                 if (is_ex_exactly_of_type(b,mul))
657                         term.push_back(expand_mul(ex_to_mul(b),numeric(n-k_cum[m-2])));
658                 else
659                         term.push_back(power(b,n-k_cum[m-2]));
660                 
661                 numeric f = binomial(numeric(n),numeric(k[0]));
662                 for (l=1; l<m-1; l++)
663                         f *= binomial(numeric(n-k_cum[l-1]),numeric(k[l]));
664                 
665                 term.push_back(f);
666                 
667                 /*
668                 cout << "begin term" << endl;
669                 for (int i=0; i<m-1; i++) {
670                         cout << "k[" << i << "]=" << k[i] << endl;
671                         cout << "k_cum[" << i << "]=" << k_cum[i] << endl;
672                         cout << "upper_limit[" << i << "]=" << upper_limit[i] << endl;
673                 }
674                 for (exvector::const_iterator cit=term.begin(); cit!=term.end(); ++cit) {
675                         cout << *cit << endl;
676                 }
677                 cout << "end term" << endl;
678                 */
679                 
680                 // TODO: optimize this
681                 sum.push_back((new mul(term))->setflag(status_flags::dynallocated));
682                 
683                 // increment k[]
684                 l = m-2;
685                 while ((l>=0)&&((++k[l])>upper_limit[l])) {
686                         k[l] = 0;    
687                         l--;
688                 }
689                 if (l<0) break;
690                 
691                 // recalc k_cum[] and upper_limit[]
692                 if (l==0)
693                         k_cum[0] = k[0];
694                 else
695                         k_cum[l] = k_cum[l-1]+k[l];
696                 
697                 for (int i=l+1; i<m-1; i++)
698                         k_cum[i] = k_cum[i-1]+k[i];
699                 
700                 for (int i=l+1; i<m-1; i++)
701                         upper_limit[i] = n-k_cum[i-1];
702         }
703         return (new add(sum))->setflag(status_flags::dynallocated |
704                                                                    status_flags::expanded );
705 }
706
707
708 /** Special case of power::expand_add. Expands a^2 where a is an add.
709  *  @see power::expand_add */
710 ex power::expand_add_2(const add & a) const
711 {
712         epvector sum;
713         unsigned a_nops = a.nops();
714         sum.reserve((a_nops*(a_nops+1))/2);
715         epvector::const_iterator last = a.seq.end();
716         
717         // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c
718         // first part: ignore overall_coeff and expand other terms
719         for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) {
720                 const ex & r = (*cit0).rest;
721                 const ex & c = (*cit0).coeff;
722                 
723                 GINAC_ASSERT(!is_ex_exactly_of_type(r,add));
724                 GINAC_ASSERT(!is_ex_exactly_of_type(r,power) ||
725                              !is_ex_exactly_of_type(ex_to_power(r).exponent,numeric) ||
726                              !ex_to_numeric(ex_to_power(r).exponent).is_pos_integer() ||
727                              !is_ex_exactly_of_type(ex_to_power(r).basis,add) ||
728                              !is_ex_exactly_of_type(ex_to_power(r).basis,mul) ||
729                              !is_ex_exactly_of_type(ex_to_power(r).basis,power));
730                 
731                 if (are_ex_trivially_equal(c,_ex1())) {
732                         if (is_ex_exactly_of_type(r,mul)) {
733                                 sum.push_back(expair(expand_mul(ex_to_mul(r),_num2()),
734                                                      _ex1()));
735                         } else {
736                                 sum.push_back(expair((new power(r,_ex2()))->setflag(status_flags::dynallocated),
737                                                      _ex1()));
738                         }
739                 } else {
740                         if (is_ex_exactly_of_type(r,mul)) {
741                                 sum.push_back(expair(expand_mul(ex_to_mul(r),_num2()),
742                                                      ex_to_numeric(c).power_dyn(_num2())));
743                         } else {
744                                 sum.push_back(expair((new power(r,_ex2()))->setflag(status_flags::dynallocated),
745                                                      ex_to_numeric(c).power_dyn(_num2())));
746                         }
747                 }
748                         
749                 for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) {
750                         const ex & r1 = (*cit1).rest;
751                         const ex & c1 = (*cit1).coeff;
752                         sum.push_back(a.combine_ex_with_coeff_to_pair((new mul(r,r1))->setflag(status_flags::dynallocated),
753                                                                       _num2().mul(ex_to_numeric(c)).mul_dyn(ex_to_numeric(c1))));
754                 }
755         }
756         
757         GINAC_ASSERT(sum.size()==(a.seq.size()*(a.seq.size()+1))/2);
758         
759         // second part: add terms coming from overall_factor (if != 0)
760         if (!a.overall_coeff.is_zero()) {
761                 for (epvector::const_iterator cit=a.seq.begin(); cit!=a.seq.end(); ++cit) {
762                         sum.push_back(a.combine_pair_with_coeff_to_pair(*cit,ex_to_numeric(a.overall_coeff).mul_dyn(_num2())));
763                 }
764                 sum.push_back(expair(ex_to_numeric(a.overall_coeff).power_dyn(_num2()),_ex1()));
765         }
766         
767         GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2);
768         
769         return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded);
770 }
771
772 /** Expand factors of m in m^n where m is a mul and n is and integer
773  *  @see power::expand */
774 ex power::expand_mul(const mul & m, const numeric & n) const
775 {
776         if (n.is_zero())
777                 return _ex1();
778         
779         epvector distrseq;
780         distrseq.reserve(m.seq.size());
781         epvector::const_iterator last = m.seq.end();
782         epvector::const_iterator cit = m.seq.begin();
783         while (cit!=last) {
784                 if (is_ex_exactly_of_type((*cit).rest,numeric)) {
785                         distrseq.push_back(m.combine_pair_with_coeff_to_pair(*cit,n));
786                 } else {
787                         // it is safe not to call mul::combine_pair_with_coeff_to_pair()
788                         // since n is an integer
789                         distrseq.push_back(expair((*cit).rest, ex_to_numeric((*cit).coeff).mul(n)));
790                 }
791                 ++cit;
792         }
793         return (new mul(distrseq,ex_to_numeric(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated);
794 }
795
796 /*
797 ex power::expand_commutative_3(const ex & basis, const numeric & exponent,
798                                unsigned options) const
799 {
800         // obsolete
801
802         exvector distrseq;
803         epvector splitseq;
804
805         const add & addref=static_cast<const add &>(*basis.bp);
806
807         splitseq=addref.seq;
808         splitseq.pop_back();
809         ex first_operands=add(splitseq);
810         ex last_operand=addref.recombine_pair_to_ex(*(addref.seq.end()-1));
811         
812         int n=exponent.to_int();
813         for (int k=0; k<=n; k++) {
814                 distrseq.push_back(binomial(n,k) * power(first_operands,numeric(k))
815                                                  * power(last_operand,numeric(n-k)));
816         }
817         return ex((new add(distrseq))->setflag(status_flags::expanded | status_flags::dynallocated)).expand(options);
818 }
819 */
820
821 /*
822 ex power::expand_noncommutative(const ex & basis, const numeric & exponent,
823                                                                 unsigned options) const
824 {
825         ex rest_power = ex(power(basis,exponent.add(_num_1()))).
826                         expand(options | expand_options::internal_do_not_expand_power_operands);
827
828         return ex(mul(rest_power,basis),0).
829                expand(options | expand_options::internal_do_not_expand_mul_operands);
830 }
831 */
832
833 //////////
834 // static member variables
835 //////////
836
837 // protected
838
839 unsigned power::precedence = 60;
840
841 // helper function
842
843 ex sqrt(const ex & a)
844 {
845         return power(a,_ex1_2());
846 }
847
848 } // namespace GiNaC