3 * This file implements several functions that work on univariate and
4 * multivariate polynomials and rational functions.
5 * These functions include polynomial quotient and remainder, GCD and LCM
6 * computation, square-free factorization and rational function normalization. */
9 * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
35 #include "expairseq.h"
44 #include "relational.h"
49 #ifndef NO_NAMESPACE_GINAC
51 #endif // ndef NO_NAMESPACE_GINAC
53 // If comparing expressions (ex::compare()) is fast, you can set this to 1.
54 // Some routines like quo(), rem() and gcd() will then return a quick answer
55 // when they are called with two identical arguments.
56 #define FAST_COMPARE 1
58 // Set this if you want divide_in_z() to use remembering
59 #define USE_REMEMBER 0
61 // Set this if you want divide_in_z() to use trial division followed by
62 // polynomial interpolation (usually slower except for very large problems)
63 #define USE_TRIAL_DIVISION 0
65 // Set this to enable some statistical output for the GCD routines
70 // Statistics variables
71 static int gcd_called = 0;
72 static int sr_gcd_called = 0;
73 static int heur_gcd_called = 0;
74 static int heur_gcd_failed = 0;
76 // Print statistics at end of program
77 static struct _stat_print {
80 cout << "gcd() called " << gcd_called << " times\n";
81 cout << "sr_gcd() called " << sr_gcd_called << " times\n";
82 cout << "heur_gcd() called " << heur_gcd_called << " times\n";
83 cout << "heur_gcd() failed " << heur_gcd_failed << " times\n";
89 /** Return pointer to first symbol found in expression. Due to GiNaC“s
90 * internal ordering of terms, it may not be obvious which symbol this
91 * function returns for a given expression.
93 * @param e expression to search
94 * @param x pointer to first symbol found (returned)
95 * @return "false" if no symbol was found, "true" otherwise */
96 static bool get_first_symbol(const ex &e, const symbol *&x)
98 if (is_ex_exactly_of_type(e, symbol)) {
99 x = static_cast<symbol *>(e.bp);
101 } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) {
102 for (unsigned i=0; i<e.nops(); i++)
103 if (get_first_symbol(e.op(i), x))
105 } else if (is_ex_exactly_of_type(e, power)) {
106 if (get_first_symbol(e.op(0), x))
114 * Statistical information about symbols in polynomials
117 /** This structure holds information about the highest and lowest degrees
118 * in which a symbol appears in two multivariate polynomials "a" and "b".
119 * A vector of these structures with information about all symbols in
120 * two polynomials can be created with the function get_symbol_stats().
122 * @see get_symbol_stats */
124 /** Pointer to symbol */
127 /** Highest degree of symbol in polynomial "a" */
130 /** Highest degree of symbol in polynomial "b" */
133 /** Lowest degree of symbol in polynomial "a" */
136 /** Lowest degree of symbol in polynomial "b" */
139 /** Maximum of deg_a and deg_b (Used for sorting) */
142 /** Commparison operator for sorting */
143 bool operator<(const sym_desc &x) const {return max_deg < x.max_deg;}
146 // Vector of sym_desc structures
147 typedef vector<sym_desc> sym_desc_vec;
149 // Add symbol the sym_desc_vec (used internally by get_symbol_stats())
150 static void add_symbol(const symbol *s, sym_desc_vec &v)
152 sym_desc_vec::iterator it = v.begin(), itend = v.end();
153 while (it != itend) {
154 if (it->sym->compare(*s) == 0) // If it's already in there, don't add it a second time
163 // Collect all symbols of an expression (used internally by get_symbol_stats())
164 static void collect_symbols(const ex &e, sym_desc_vec &v)
166 if (is_ex_exactly_of_type(e, symbol)) {
167 add_symbol(static_cast<symbol *>(e.bp), v);
168 } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) {
169 for (unsigned i=0; i<e.nops(); i++)
170 collect_symbols(e.op(i), v);
171 } else if (is_ex_exactly_of_type(e, power)) {
172 collect_symbols(e.op(0), v);
176 /** Collect statistical information about symbols in polynomials.
177 * This function fills in a vector of "sym_desc" structs which contain
178 * information about the highest and lowest degrees of all symbols that
179 * appear in two polynomials. The vector is then sorted by minimum
180 * degree (lowest to highest). The information gathered by this
181 * function is used by the GCD routines to identify trivial factors
182 * and to determine which variable to choose as the main variable
183 * for GCD computation.
185 * @param a first multivariate polynomial
186 * @param b second multivariate polynomial
187 * @param v vector of sym_desc structs (filled in) */
188 static void get_symbol_stats(const ex &a, const ex &b, sym_desc_vec &v)
190 collect_symbols(a.eval(), v); // eval() to expand assigned symbols
191 collect_symbols(b.eval(), v);
192 sym_desc_vec::iterator it = v.begin(), itend = v.end();
193 while (it != itend) {
194 int deg_a = a.degree(*(it->sym));
195 int deg_b = b.degree(*(it->sym));
198 it->max_deg = max(deg_a, deg_b);
199 it->ldeg_a = a.ldegree(*(it->sym));
200 it->ldeg_b = b.ldegree(*(it->sym));
203 sort(v.begin(), v.end());
205 clog << "Symbols:\n";
206 it = v.begin(); itend = v.end();
207 while (it != itend) {
208 clog << " " << *it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << endl;
209 clog << " lcoeff_a=" << a.lcoeff(*(it->sym)) << ", lcoeff_b=" << b.lcoeff(*(it->sym)) << endl;
217 * Computation of LCM of denominators of coefficients of a polynomial
220 // Compute LCM of denominators of coefficients by going through the
221 // expression recursively (used internally by lcm_of_coefficients_denominators())
222 static numeric lcmcoeff(const ex &e, const numeric &l)
224 if (e.info(info_flags::rational))
225 return lcm(ex_to_numeric(e).denom(), l);
226 else if (is_ex_exactly_of_type(e, add)) {
228 for (unsigned i=0; i<e.nops(); i++)
229 c = lcmcoeff(e.op(i), c);
231 } else if (is_ex_exactly_of_type(e, mul)) {
233 for (unsigned i=0; i<e.nops(); i++)
234 c *= lcmcoeff(e.op(i), _num1());
236 } else if (is_ex_exactly_of_type(e, power))
237 return pow(lcmcoeff(e.op(0), l), ex_to_numeric(e.op(1)));
241 /** Compute LCM of denominators of coefficients of a polynomial.
242 * Given a polynomial with rational coefficients, this function computes
243 * the LCM of the denominators of all coefficients. This can be used
244 * to bring a polynomial from Q[X] to Z[X].
246 * @param e multivariate polynomial (need not be expanded)
247 * @return LCM of denominators of coefficients */
248 static numeric lcm_of_coefficients_denominators(const ex &e)
250 return lcmcoeff(e, _num1());
253 /** Bring polynomial from Q[X] to Z[X] by multiplying in the previously
254 * determined LCM of the coefficient's denominators.
256 * @param e multivariate polynomial (need not be expanded)
257 * @param lcm LCM to multiply in */
258 static ex multiply_lcm(const ex &e, const numeric &lcm)
260 if (is_ex_exactly_of_type(e, mul)) {
262 numeric lcm_accum = _num1();
263 for (unsigned i=0; i<e.nops(); i++) {
264 numeric op_lcm = lcmcoeff(e.op(i), _num1());
265 c *= multiply_lcm(e.op(i), op_lcm);
268 c *= lcm / lcm_accum;
270 } else if (is_ex_exactly_of_type(e, add)) {
272 for (unsigned i=0; i<e.nops(); i++)
273 c += multiply_lcm(e.op(i), lcm);
275 } else if (is_ex_exactly_of_type(e, power)) {
276 return pow(multiply_lcm(e.op(0), lcm.power(ex_to_numeric(e.op(1)).inverse())), e.op(1));
282 /** Compute the integer content (= GCD of all numeric coefficients) of an
283 * expanded polynomial.
285 * @param e expanded polynomial
286 * @return integer content */
287 numeric ex::integer_content(void) const
290 return bp->integer_content();
293 numeric basic::integer_content(void) const
298 numeric numeric::integer_content(void) const
303 numeric add::integer_content(void) const
305 epvector::const_iterator it = seq.begin();
306 epvector::const_iterator itend = seq.end();
308 while (it != itend) {
309 GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric));
310 GINAC_ASSERT(is_ex_exactly_of_type(it->coeff,numeric));
311 c = gcd(ex_to_numeric(it->coeff), c);
314 GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
315 c = gcd(ex_to_numeric(overall_coeff),c);
319 numeric mul::integer_content(void) const
321 #ifdef DO_GINAC_ASSERT
322 epvector::const_iterator it = seq.begin();
323 epvector::const_iterator itend = seq.end();
324 while (it != itend) {
325 GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric));
328 #endif // def DO_GINAC_ASSERT
329 GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
330 return abs(ex_to_numeric(overall_coeff));
335 * Polynomial quotients and remainders
338 /** Quotient q(x) of polynomials a(x) and b(x) in Q[x].
339 * It satisfies a(x)=b(x)*q(x)+r(x).
341 * @param a first polynomial in x (dividend)
342 * @param b second polynomial in x (divisor)
343 * @param x a and b are polynomials in x
344 * @param check_args check whether a and b are polynomials with rational
345 * coefficients (defaults to "true")
346 * @return quotient of a and b in Q[x] */
347 ex quo(const ex &a, const ex &b, const symbol &x, bool check_args)
350 throw(std::overflow_error("quo: division by zero"));
351 if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric))
357 if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)))
358 throw(std::invalid_argument("quo: arguments must be polynomials over the rationals"));
360 // Polynomial long division
365 int bdeg = b.degree(x);
366 int rdeg = r.degree(x);
367 ex blcoeff = b.expand().coeff(x, bdeg);
368 bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric);
369 while (rdeg >= bdeg) {
370 ex term, rcoeff = r.coeff(x, rdeg);
371 if (blcoeff_is_numeric)
372 term = rcoeff / blcoeff;
374 if (!divide(rcoeff, blcoeff, term, false))
375 return *new ex(fail());
377 term *= power(x, rdeg - bdeg);
379 r -= (term * b).expand();
388 /** Remainder r(x) of polynomials a(x) and b(x) in Q[x].
389 * It satisfies a(x)=b(x)*q(x)+r(x).
391 * @param a first polynomial in x (dividend)
392 * @param b second polynomial in x (divisor)
393 * @param x a and b are polynomials in x
394 * @param check_args check whether a and b are polynomials with rational
395 * coefficients (defaults to "true")
396 * @return remainder of a(x) and b(x) in Q[x] */
397 ex rem(const ex &a, const ex &b, const symbol &x, bool check_args)
400 throw(std::overflow_error("rem: division by zero"));
401 if (is_ex_exactly_of_type(a, numeric)) {
402 if (is_ex_exactly_of_type(b, numeric))
411 if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)))
412 throw(std::invalid_argument("rem: arguments must be polynomials over the rationals"));
414 // Polynomial long division
418 int bdeg = b.degree(x);
419 int rdeg = r.degree(x);
420 ex blcoeff = b.expand().coeff(x, bdeg);
421 bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric);
422 while (rdeg >= bdeg) {
423 ex term, rcoeff = r.coeff(x, rdeg);
424 if (blcoeff_is_numeric)
425 term = rcoeff / blcoeff;
427 if (!divide(rcoeff, blcoeff, term, false))
428 return *new ex(fail());
430 term *= power(x, rdeg - bdeg);
431 r -= (term * b).expand();
440 /** Pseudo-remainder of polynomials a(x) and b(x) in Z[x].
442 * @param a first polynomial in x (dividend)
443 * @param b second polynomial in x (divisor)
444 * @param x a and b are polynomials in x
445 * @param check_args check whether a and b are polynomials with rational
446 * coefficients (defaults to "true")
447 * @return pseudo-remainder of a(x) and b(x) in Z[x] */
448 ex prem(const ex &a, const ex &b, const symbol &x, bool check_args)
451 throw(std::overflow_error("prem: division by zero"));
452 if (is_ex_exactly_of_type(a, numeric)) {
453 if (is_ex_exactly_of_type(b, numeric))
458 if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)))
459 throw(std::invalid_argument("prem: arguments must be polynomials over the rationals"));
461 // Polynomial long division
464 int rdeg = r.degree(x);
465 int bdeg = eb.degree(x);
468 blcoeff = eb.coeff(x, bdeg);
472 eb -= blcoeff * power(x, bdeg);
476 int delta = rdeg - bdeg + 1, i = 0;
477 while (rdeg >= bdeg && !r.is_zero()) {
478 ex rlcoeff = r.coeff(x, rdeg);
479 ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand();
483 r -= rlcoeff * power(x, rdeg);
484 r = (blcoeff * r).expand() - term;
488 return power(blcoeff, delta - i) * r;
492 /** Exact polynomial division of a(X) by b(X) in Q[X].
494 * @param a first multivariate polynomial (dividend)
495 * @param b second multivariate polynomial (divisor)
496 * @param q quotient (returned)
497 * @param check_args check whether a and b are polynomials with rational
498 * coefficients (defaults to "true")
499 * @return "true" when exact division succeeds (quotient returned in q),
500 * "false" otherwise */
501 bool divide(const ex &a, const ex &b, ex &q, bool check_args)
505 throw(std::overflow_error("divide: division by zero"));
508 if (is_ex_exactly_of_type(b, numeric)) {
511 } else if (is_ex_exactly_of_type(a, numeric))
519 if (check_args && (!a.info(info_flags::rational_polynomial) ||
520 !b.info(info_flags::rational_polynomial)))
521 throw(std::invalid_argument("divide: arguments must be polynomials over the rationals"));
525 if (!get_first_symbol(a, x) && !get_first_symbol(b, x))
526 throw(std::invalid_argument("invalid expression in divide()"));
528 // Polynomial long division (recursive)
532 int bdeg = b.degree(*x);
533 int rdeg = r.degree(*x);
534 ex blcoeff = b.expand().coeff(*x, bdeg);
535 bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric);
536 while (rdeg >= bdeg) {
537 ex term, rcoeff = r.coeff(*x, rdeg);
538 if (blcoeff_is_numeric)
539 term = rcoeff / blcoeff;
541 if (!divide(rcoeff, blcoeff, term, false))
543 term *= power(*x, rdeg - bdeg);
545 r -= (term * b).expand();
559 typedef pair<ex, ex> ex2;
560 typedef pair<ex, bool> exbool;
563 bool operator() (const ex2 p, const ex2 q) const
565 return p.first.compare(q.first) < 0 || (!(q.first.compare(p.first) < 0) && p.second.compare(q.second) < 0);
569 typedef map<ex2, exbool, ex2_less> ex2_exbool_remember;
573 /** Exact polynomial division of a(X) by b(X) in Z[X].
574 * This functions works like divide() but the input and output polynomials are
575 * in Z[X] instead of Q[X] (i.e. they have integer coefficients). Unlike
576 * divide(), it doesn“t check whether the input polynomials really are integer
577 * polynomials, so be careful of what you pass in. Also, you have to run
578 * get_symbol_stats() over the input polynomials before calling this function
579 * and pass an iterator to the first element of the sym_desc vector. This
580 * function is used internally by the heur_gcd().
582 * @param a first multivariate polynomial (dividend)
583 * @param b second multivariate polynomial (divisor)
584 * @param q quotient (returned)
585 * @param var iterator to first element of vector of sym_desc structs
586 * @return "true" when exact division succeeds (the quotient is returned in
587 * q), "false" otherwise.
588 * @see get_symbol_stats, heur_gcd */
589 static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_iterator var)
593 throw(std::overflow_error("divide_in_z: division by zero"));
594 if (b.is_equal(_ex1())) {
598 if (is_ex_exactly_of_type(a, numeric)) {
599 if (is_ex_exactly_of_type(b, numeric)) {
601 return q.info(info_flags::integer);
614 static ex2_exbool_remember dr_remember;
615 ex2_exbool_remember::const_iterator remembered = dr_remember.find(ex2(a, b));
616 if (remembered != dr_remember.end()) {
617 q = remembered->second.first;
618 return remembered->second.second;
623 const symbol *x = var->sym;
626 int adeg = a.degree(*x), bdeg = b.degree(*x);
630 #if USE_TRIAL_DIVISION
632 // Trial division with polynomial interpolation
635 // Compute values at evaluation points 0..adeg
636 vector<numeric> alpha; alpha.reserve(adeg + 1);
637 exvector u; u.reserve(adeg + 1);
638 numeric point = _num0();
640 for (i=0; i<=adeg; i++) {
641 ex bs = b.subs(*x == point);
642 while (bs.is_zero()) {
644 bs = b.subs(*x == point);
646 if (!divide_in_z(a.subs(*x == point), bs, c, var+1))
648 alpha.push_back(point);
654 vector<numeric> rcp; rcp.reserve(adeg + 1);
655 rcp.push_back(_num0());
656 for (k=1; k<=adeg; k++) {
657 numeric product = alpha[k] - alpha[0];
659 product *= alpha[k] - alpha[i];
660 rcp.push_back(product.inverse());
663 // Compute Newton coefficients
664 exvector v; v.reserve(adeg + 1);
666 for (k=1; k<=adeg; k++) {
668 for (i=k-2; i>=0; i--)
669 temp = temp * (alpha[k] - alpha[i]) + v[i];
670 v.push_back((u[k] - temp) * rcp[k]);
673 // Convert from Newton form to standard form
675 for (k=adeg-1; k>=0; k--)
676 c = c * (*x - alpha[k]) + v[k];
678 if (c.degree(*x) == (adeg - bdeg)) {
686 // Polynomial long division (recursive)
692 ex blcoeff = eb.coeff(*x, bdeg);
693 while (rdeg >= bdeg) {
694 ex term, rcoeff = r.coeff(*x, rdeg);
695 if (!divide_in_z(rcoeff, blcoeff, term, var+1))
697 term = (term * power(*x, rdeg - bdeg)).expand();
699 r -= (term * eb).expand();
702 dr_remember[ex2(a, b)] = exbool(q, true);
709 dr_remember[ex2(a, b)] = exbool(q, false);
718 * Separation of unit part, content part and primitive part of polynomials
721 /** Compute unit part (= sign of leading coefficient) of a multivariate
722 * polynomial in Z[x]. The product of unit part, content part, and primitive
723 * part is the polynomial itself.
725 * @param x variable in which to compute the unit part
727 * @see ex::content, ex::primpart */
728 ex ex::unit(const symbol &x) const
730 ex c = expand().lcoeff(x);
731 if (is_ex_exactly_of_type(c, numeric))
732 return c < _ex0() ? _ex_1() : _ex1();
735 if (get_first_symbol(c, y))
738 throw(std::invalid_argument("invalid expression in unit()"));
743 /** Compute content part (= unit normal GCD of all coefficients) of a
744 * multivariate polynomial in Z[x]. The product of unit part, content part,
745 * and primitive part is the polynomial itself.
747 * @param x variable in which to compute the content part
748 * @return content part
749 * @see ex::unit, ex::primpart */
750 ex ex::content(const symbol &x) const
754 if (is_ex_exactly_of_type(*this, numeric))
755 return info(info_flags::negative) ? -*this : *this;
760 // First, try the integer content
761 ex c = e.integer_content();
763 ex lcoeff = r.lcoeff(x);
764 if (lcoeff.info(info_flags::integer))
767 // GCD of all coefficients
768 int deg = e.degree(x);
769 int ldeg = e.ldegree(x);
771 return e.lcoeff(x) / e.unit(x);
773 for (int i=ldeg; i<=deg; i++)
774 c = gcd(e.coeff(x, i), c, NULL, NULL, false);
779 /** Compute primitive part of a multivariate polynomial in Z[x].
780 * The product of unit part, content part, and primitive part is the
783 * @param x variable in which to compute the primitive part
784 * @return primitive part
785 * @see ex::unit, ex::content */
786 ex ex::primpart(const symbol &x) const
790 if (is_ex_exactly_of_type(*this, numeric))
797 if (is_ex_exactly_of_type(c, numeric))
798 return *this / (c * u);
800 return quo(*this, c * u, x, false);
804 /** Compute primitive part of a multivariate polynomial in Z[x] when the
805 * content part is already known. This function is faster in computing the
806 * primitive part than the previous function.
808 * @param x variable in which to compute the primitive part
809 * @param c previously computed content part
810 * @return primitive part */
811 ex ex::primpart(const symbol &x, const ex &c) const
817 if (is_ex_exactly_of_type(*this, numeric))
821 if (is_ex_exactly_of_type(c, numeric))
822 return *this / (c * u);
824 return quo(*this, c * u, x, false);
829 * GCD of multivariate polynomials
832 /** Compute GCD of multivariate polynomials using the Euclidean PRS algorithm
833 * (not really suited for multivariate GCDs). This function is only provided
834 * for testing purposes.
836 * @param a first multivariate polynomial
837 * @param b second multivariate polynomial
838 * @param x pointer to symbol (main variable) in which to compute the GCD in
839 * @return the GCD as a new expression
842 static ex eu_gcd(const ex &a, const ex &b, const symbol *x)
844 //clog << "eu_gcd(" << a << "," << b << ")\n";
846 // Sort c and d so that c has higher degree
848 int adeg = a.degree(*x), bdeg = b.degree(*x);
857 // Euclidean algorithm
860 //clog << " d = " << d << endl;
861 r = rem(c, d, *x, false);
863 return d.primpart(*x);
870 /** Compute GCD of multivariate polynomials using the Euclidean PRS algorithm
871 * with pseudo-remainders ("World's Worst GCD Algorithm", staying in Z[X]).
872 * This function is only provided for testing purposes.
874 * @param a first multivariate polynomial
875 * @param b second multivariate polynomial
876 * @param x pointer to symbol (main variable) in which to compute the GCD in
877 * @return the GCD as a new expression
880 static ex euprem_gcd(const ex &a, const ex &b, const symbol *x)
882 //clog << "euprem_gcd(" << a << "," << b << ")\n";
884 // Sort c and d so that c has higher degree
886 int adeg = a.degree(*x), bdeg = b.degree(*x);
895 // Euclidean algorithm with pseudo-remainders
898 //clog << " d = " << d << endl;
899 r = prem(c, d, *x, false);
901 return d.primpart(*x);
908 /** Compute GCD of multivariate polynomials using the primitive Euclidean
909 * PRS algorithm (complete content removal at each step). This function is
910 * only provided for testing purposes.
912 * @param a first multivariate polynomial
913 * @param b second multivariate polynomial
914 * @param x pointer to symbol (main variable) in which to compute the GCD in
915 * @return the GCD as a new expression
918 static ex peu_gcd(const ex &a, const ex &b, const symbol *x)
920 //clog << "peu_gcd(" << a << "," << b << ")\n";
922 // Sort c and d so that c has higher degree
924 int adeg = a.degree(*x), bdeg = b.degree(*x);
936 // Remove content from c and d, to be attached to GCD later
937 ex cont_c = c.content(*x);
938 ex cont_d = d.content(*x);
939 ex gamma = gcd(cont_c, cont_d, NULL, NULL, false);
942 c = c.primpart(*x, cont_c);
943 d = d.primpart(*x, cont_d);
945 // Euclidean algorithm with content removal
948 //clog << " d = " << d << endl;
949 r = prem(c, d, *x, false);
958 /** Compute GCD of multivariate polynomials using the reduced PRS algorithm.
959 * This function is only provided for testing purposes.
961 * @param a first multivariate polynomial
962 * @param b second multivariate polynomial
963 * @param x pointer to symbol (main variable) in which to compute the GCD in
964 * @return the GCD as a new expression
967 static ex red_gcd(const ex &a, const ex &b, const symbol *x)
969 //clog << "red_gcd(" << a << "," << b << ")\n";
971 // Sort c and d so that c has higher degree
973 int adeg = a.degree(*x), bdeg = b.degree(*x);
987 // Remove content from c and d, to be attached to GCD later
988 ex cont_c = c.content(*x);
989 ex cont_d = d.content(*x);
990 ex gamma = gcd(cont_c, cont_d, NULL, NULL, false);
993 c = c.primpart(*x, cont_c);
994 d = d.primpart(*x, cont_d);
996 // First element of subresultant sequence
998 int delta = cdeg - ddeg;
1001 // Calculate polynomial pseudo-remainder
1002 //clog << " d = " << d << endl;
1003 r = prem(c, d, *x, false);
1005 return gamma * d.primpart(*x);
1009 if (!divide(r, pow(ri, delta), d, false))
1010 throw(std::runtime_error("invalid expression in red_gcd(), division failed"));
1011 ddeg = d.degree(*x);
1013 if (is_ex_exactly_of_type(r, numeric))
1016 return gamma * r.primpart(*x);
1019 ri = c.expand().lcoeff(*x);
1020 delta = cdeg - ddeg;
1025 /** Compute GCD of multivariate polynomials using the subresultant PRS
1026 * algorithm. This function is used internally by gcd().
1028 * @param a first multivariate polynomial
1029 * @param b second multivariate polynomial
1030 * @param x pointer to symbol (main variable) in which to compute the GCD in
1031 * @return the GCD as a new expression
1033 static ex sr_gcd(const ex &a, const ex &b, const symbol *x)
1035 //clog << "sr_gcd(" << a << "," << b << ")\n";
1040 // Sort c and d so that c has higher degree
1042 int adeg = a.degree(*x), bdeg = b.degree(*x);
1056 // Remove content from c and d, to be attached to GCD later
1057 ex cont_c = c.content(*x);
1058 ex cont_d = d.content(*x);
1059 ex gamma = gcd(cont_c, cont_d, NULL, NULL, false);
1062 c = c.primpart(*x, cont_c);
1063 d = d.primpart(*x, cont_d);
1064 //clog << " content " << gamma << " removed, continuing with sr_gcd(" << c << "," << d << ")\n";
1066 // First element of subresultant sequence
1067 ex r = _ex0(), ri = _ex1(), psi = _ex1();
1068 int delta = cdeg - ddeg;
1071 // Calculate polynomial pseudo-remainder
1072 //clog << " start of loop, psi = " << psi << ", calculating pseudo-remainder...\n";
1073 //clog << " d = " << d << endl;
1074 r = prem(c, d, *x, false);
1076 return gamma * d.primpart(*x);
1079 //clog << " dividing...\n";
1080 if (!divide(r, ri * pow(psi, delta), d, false))
1081 throw(std::runtime_error("invalid expression in sr_gcd(), division failed"));
1082 ddeg = d.degree(*x);
1084 if (is_ex_exactly_of_type(r, numeric))
1087 return gamma * r.primpart(*x);
1090 // Next element of subresultant sequence
1091 //clog << " calculating next subresultant...\n";
1092 ri = c.expand().lcoeff(*x);
1096 divide(pow(ri, delta), pow(psi, delta-1), psi, false);
1097 delta = cdeg - ddeg;
1102 /** Return maximum (absolute value) coefficient of a polynomial.
1103 * This function is used internally by heur_gcd().
1105 * @param e expanded multivariate polynomial
1106 * @return maximum coefficient
1108 numeric ex::max_coefficient(void) const
1110 GINAC_ASSERT(bp!=0);
1111 return bp->max_coefficient();
1114 numeric basic::max_coefficient(void) const
1119 numeric numeric::max_coefficient(void) const
1124 numeric add::max_coefficient(void) const
1126 epvector::const_iterator it = seq.begin();
1127 epvector::const_iterator itend = seq.end();
1128 GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
1129 numeric cur_max = abs(ex_to_numeric(overall_coeff));
1130 while (it != itend) {
1132 GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric));
1133 a = abs(ex_to_numeric(it->coeff));
1141 numeric mul::max_coefficient(void) const
1143 #ifdef DO_GINAC_ASSERT
1144 epvector::const_iterator it = seq.begin();
1145 epvector::const_iterator itend = seq.end();
1146 while (it != itend) {
1147 GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric));
1150 #endif // def DO_GINAC_ASSERT
1151 GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
1152 return abs(ex_to_numeric(overall_coeff));
1156 /** Apply symmetric modular homomorphism to a multivariate polynomial.
1157 * This function is used internally by heur_gcd().
1159 * @param e expanded multivariate polynomial
1161 * @return mapped polynomial
1163 ex ex::smod(const numeric &xi) const
1165 GINAC_ASSERT(bp!=0);
1166 return bp->smod(xi);
1169 ex basic::smod(const numeric &xi) const
1174 ex numeric::smod(const numeric &xi) const
1176 #ifndef NO_NAMESPACE_GINAC
1177 return GiNaC::smod(*this, xi);
1178 #else // ndef NO_NAMESPACE_GINAC
1179 return ::smod(*this, xi);
1180 #endif // ndef NO_NAMESPACE_GINAC
1183 ex add::smod(const numeric &xi) const
1186 newseq.reserve(seq.size()+1);
1187 epvector::const_iterator it = seq.begin();
1188 epvector::const_iterator itend = seq.end();
1189 while (it != itend) {
1190 GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric));
1191 #ifndef NO_NAMESPACE_GINAC
1192 numeric coeff = GiNaC::smod(ex_to_numeric(it->coeff), xi);
1193 #else // ndef NO_NAMESPACE_GINAC
1194 numeric coeff = ::smod(ex_to_numeric(it->coeff), xi);
1195 #endif // ndef NO_NAMESPACE_GINAC
1196 if (!coeff.is_zero())
1197 newseq.push_back(expair(it->rest, coeff));
1200 GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
1201 #ifndef NO_NAMESPACE_GINAC
1202 numeric coeff = GiNaC::smod(ex_to_numeric(overall_coeff), xi);
1203 #else // ndef NO_NAMESPACE_GINAC
1204 numeric coeff = ::smod(ex_to_numeric(overall_coeff), xi);
1205 #endif // ndef NO_NAMESPACE_GINAC
1206 return (new add(newseq,coeff))->setflag(status_flags::dynallocated);
1209 ex mul::smod(const numeric &xi) const
1211 #ifdef DO_GINAC_ASSERT
1212 epvector::const_iterator it = seq.begin();
1213 epvector::const_iterator itend = seq.end();
1214 while (it != itend) {
1215 GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric));
1218 #endif // def DO_GINAC_ASSERT
1219 mul * mulcopyp=new mul(*this);
1220 GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
1221 #ifndef NO_NAMESPACE_GINAC
1222 mulcopyp->overall_coeff = GiNaC::smod(ex_to_numeric(overall_coeff),xi);
1223 #else // ndef NO_NAMESPACE_GINAC
1224 mulcopyp->overall_coeff = ::smod(ex_to_numeric(overall_coeff),xi);
1225 #endif // ndef NO_NAMESPACE_GINAC
1226 mulcopyp->clearflag(status_flags::evaluated);
1227 mulcopyp->clearflag(status_flags::hash_calculated);
1228 return mulcopyp->setflag(status_flags::dynallocated);
1232 /** Exception thrown by heur_gcd() to signal failure. */
1233 class gcdheu_failed {};
1235 /** Compute GCD of multivariate polynomials using the heuristic GCD algorithm.
1236 * get_symbol_stats() must have been called previously with the input
1237 * polynomials and an iterator to the first element of the sym_desc vector
1238 * passed in. This function is used internally by gcd().
1240 * @param a first multivariate polynomial (expanded)
1241 * @param b second multivariate polynomial (expanded)
1242 * @param ca cofactor of polynomial a (returned), NULL to suppress
1243 * calculation of cofactor
1244 * @param cb cofactor of polynomial b (returned), NULL to suppress
1245 * calculation of cofactor
1246 * @param var iterator to first element of vector of sym_desc structs
1247 * @return the GCD as a new expression
1249 * @exception gcdheu_failed() */
1250 static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const_iterator var)
1252 //clog << "heur_gcd(" << a << "," << b << ")\n";
1257 // GCD of two numeric values -> CLN
1258 if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) {
1259 numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b));
1264 *ca = ex_to_numeric(a).mul(rg);
1266 *cb = ex_to_numeric(b).mul(rg);
1270 // The first symbol is our main variable
1271 const symbol *x = var->sym;
1273 // Remove integer content
1274 numeric gc = gcd(a.integer_content(), b.integer_content());
1275 numeric rgc = gc.inverse();
1278 int maxdeg = max(p.degree(*x), q.degree(*x));
1280 // Find evaluation point
1281 numeric mp = p.max_coefficient(), mq = q.max_coefficient();
1284 xi = mq * _num2() + _num2();
1286 xi = mp * _num2() + _num2();
1289 for (int t=0; t<6; t++) {
1290 if (xi.int_length() * maxdeg > 100000) {
1291 //clog << "giving up heur_gcd, xi.int_length = " << xi.int_length() << ", maxdeg = " << maxdeg << endl;
1292 throw gcdheu_failed();
1295 // Apply evaluation homomorphism and calculate GCD
1296 ex gamma = heur_gcd(p.subs(*x == xi), q.subs(*x == xi), NULL, NULL, var+1).expand();
1297 if (!is_ex_exactly_of_type(gamma, fail)) {
1299 // Reconstruct polynomial from GCD of mapped polynomials
1301 numeric rxi = xi.inverse();
1302 for (int i=0; !gamma.is_zero(); i++) {
1303 ex gi = gamma.smod(xi);
1304 g += gi * power(*x, i);
1305 gamma = (gamma - gi) * rxi;
1307 // Remove integer content
1308 g /= g.integer_content();
1310 // If the calculated polynomial divides both a and b, this is the GCD
1312 if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) {
1314 ex lc = g.lcoeff(*x);
1315 if (is_ex_exactly_of_type(lc, numeric) && ex_to_numeric(lc).is_negative())
1322 // Next evaluation point
1323 xi = iquo(xi * isqrt(isqrt(xi)) * numeric(73794), numeric(27011));
1325 return *new ex(fail());
1329 /** Compute GCD (Greatest Common Divisor) of multivariate polynomials a(X)
1332 * @param a first multivariate polynomial
1333 * @param b second multivariate polynomial
1334 * @param check_args check whether a and b are polynomials with rational
1335 * coefficients (defaults to "true")
1336 * @return the GCD as a new expression */
1337 ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args)
1339 //clog << "gcd(" << a << "," << b << ")\n";
1344 // GCD of numerics -> CLN
1345 if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) {
1346 numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b));
1348 *ca = ex_to_numeric(a) / g;
1350 *cb = ex_to_numeric(b) / g;
1355 if (check_args && !a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) {
1356 throw(std::invalid_argument("gcd: arguments must be polynomials over the rationals"));
1359 // Partially factored cases (to avoid expanding large expressions)
1360 if (is_ex_exactly_of_type(a, mul)) {
1361 if (is_ex_exactly_of_type(b, mul) && b.nops() > a.nops())
1367 for (unsigned i=0; i<a.nops(); i++) {
1368 ex part_ca, part_cb;
1369 g *= gcd(a.op(i), part_b, &part_ca, &part_cb, check_args);
1378 } else if (is_ex_exactly_of_type(b, mul)) {
1379 if (is_ex_exactly_of_type(a, mul) && a.nops() > b.nops())
1385 for (unsigned i=0; i<b.nops(); i++) {
1386 ex part_ca, part_cb;
1387 g *= gcd(part_a, b.op(i), &part_ca, &part_cb, check_args);
1399 // Input polynomials of the form poly^n are sometimes also trivial
1400 if (is_ex_exactly_of_type(a, power)) {
1402 if (is_ex_exactly_of_type(b, power)) {
1403 if (p.is_equal(b.op(0))) {
1404 // a = p^n, b = p^m, gcd = p^min(n, m)
1405 ex exp_a = a.op(1), exp_b = b.op(1);
1406 if (exp_a < exp_b) {
1410 *cb = power(p, exp_b - exp_a);
1411 return power(p, exp_a);
1414 *ca = power(p, exp_a - exp_b);
1417 return power(p, exp_b);
1421 if (p.is_equal(b)) {
1422 // a = p^n, b = p, gcd = p
1424 *ca = power(p, a.op(1) - 1);
1430 } else if (is_ex_exactly_of_type(b, power)) {
1432 if (p.is_equal(a)) {
1433 // a = p, b = p^n, gcd = p
1437 *cb = power(p, b.op(1) - 1);
1443 // Some trivial cases
1444 ex aex = a.expand(), bex = b.expand();
1445 if (aex.is_zero()) {
1452 if (bex.is_zero()) {
1459 if (aex.is_equal(_ex1()) || bex.is_equal(_ex1())) {
1467 if (a.is_equal(b)) {
1476 // Gather symbol statistics
1477 sym_desc_vec sym_stats;
1478 get_symbol_stats(a, b, sym_stats);
1480 // The symbol with least degree is our main variable
1481 sym_desc_vec::const_iterator var = sym_stats.begin();
1482 const symbol *x = var->sym;
1484 // Cancel trivial common factor
1485 int ldeg_a = var->ldeg_a;
1486 int ldeg_b = var->ldeg_b;
1487 int min_ldeg = min(ldeg_a, ldeg_b);
1489 ex common = power(*x, min_ldeg);
1490 //clog << "trivial common factor " << common << endl;
1491 return gcd((aex / common).expand(), (bex / common).expand(), ca, cb, false) * common;
1494 // Try to eliminate variables
1495 if (var->deg_a == 0) {
1496 //clog << "eliminating variable " << *x << " from b" << endl;
1497 ex c = bex.content(*x);
1498 ex g = gcd(aex, c, ca, cb, false);
1500 *cb *= bex.unit(*x) * bex.primpart(*x, c);
1502 } else if (var->deg_b == 0) {
1503 //clog << "eliminating variable " << *x << " from a" << endl;
1504 ex c = aex.content(*x);
1505 ex g = gcd(c, bex, ca, cb, false);
1507 *ca *= aex.unit(*x) * aex.primpart(*x, c);
1513 // Try heuristic algorithm first, fall back to PRS if that failed
1515 g = heur_gcd(aex, bex, ca, cb, var);
1516 } catch (gcdheu_failed) {
1517 g = *new ex(fail());
1519 if (is_ex_exactly_of_type(g, fail)) {
1520 //clog << "heuristics failed" << endl;
1525 // g = heur_gcd(aex, bex, ca, cb, var);
1526 // g = eu_gcd(aex, bex, x);
1527 // g = euprem_gcd(aex, bex, x);
1528 // g = peu_gcd(aex, bex, x);
1529 // g = red_gcd(aex, bex, x);
1530 g = sr_gcd(aex, bex, x);
1531 if (g.is_equal(_ex1())) {
1532 // Keep cofactors factored if possible
1539 divide(aex, g, *ca, false);
1541 divide(bex, g, *cb, false);
1545 if (g.is_equal(_ex1())) {
1546 // Keep cofactors factored if possible
1558 /** Compute LCM (Least Common Multiple) of multivariate polynomials in Z[X].
1560 * @param a first multivariate polynomial
1561 * @param b second multivariate polynomial
1562 * @param check_args check whether a and b are polynomials with rational
1563 * coefficients (defaults to "true")
1564 * @return the LCM as a new expression */
1565 ex lcm(const ex &a, const ex &b, bool check_args)
1567 if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric))
1568 return lcm(ex_to_numeric(a), ex_to_numeric(b));
1569 if (check_args && !a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))
1570 throw(std::invalid_argument("lcm: arguments must be polynomials over the rationals"));
1573 ex g = gcd(a, b, &ca, &cb, false);
1579 * Square-free factorization
1582 // Univariate GCD of polynomials in Q[x] (used internally by sqrfree()).
1583 // a and b can be multivariate polynomials but they are treated as univariate polynomials in x.
1584 static ex univariate_gcd(const ex &a, const ex &b, const symbol &x)
1590 if (a.is_equal(_ex1()) || b.is_equal(_ex1()))
1592 if (is_ex_of_type(a, numeric) && is_ex_of_type(b, numeric))
1593 return gcd(ex_to_numeric(a), ex_to_numeric(b));
1594 if (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))
1595 throw(std::invalid_argument("univariate_gcd: arguments must be polynomials over the rationals"));
1597 // Euclidean algorithm
1599 if (a.degree(x) >= b.degree(x)) {
1607 r = rem(c, d, x, false);
1613 return d / d.lcoeff(x);
1617 /** Compute square-free factorization of multivariate polynomial a(x) using
1620 * @param a multivariate polynomial
1621 * @param x variable to factor in
1622 * @return factored polynomial */
1623 ex sqrfree(const ex &a, const symbol &x)
1628 ex c = univariate_gcd(a, b, x);
1630 if (c.is_equal(_ex1())) {
1634 ex y = quo(b, c, x);
1635 ex z = y - w.diff(x);
1636 while (!z.is_zero()) {
1637 ex g = univariate_gcd(w, z, x);
1645 return res * power(w, i);
1650 * Normal form of rational functions
1654 * Note: The internal normal() functions (= basic::normal() and overloaded
1655 * functions) all return lists of the form {numerator, denominator}. This
1656 * is to get around mul::eval()'s automatic expansion of numeric coefficients.
1657 * E.g. (a+b)/3 is automatically converted to a/3+b/3 but we want to keep
1658 * the information that (a+b) is the numerator and 3 is the denominator.
1661 /** Create a symbol for replacing the expression "e" (or return a previously
1662 * assigned symbol). The symbol is appended to sym_lst and returned, the
1663 * expression is appended to repl_lst.
1664 * @see ex::normal */
1665 static ex replace_with_symbol(const ex &e, lst &sym_lst, lst &repl_lst)
1667 // Expression already in repl_lst? Then return the assigned symbol
1668 for (unsigned i=0; i<repl_lst.nops(); i++)
1669 if (repl_lst.op(i).is_equal(e))
1670 return sym_lst.op(i);
1672 // Otherwise create new symbol and add to list, taking care that the
1673 // replacement expression doesn't contain symbols from the sym_lst
1674 // because subs() is not recursive
1677 ex e_replaced = e.subs(sym_lst, repl_lst);
1679 repl_lst.append(e_replaced);
1683 /** Create a symbol for replacing the expression "e" (or return a previously
1684 * assigned symbol). An expression of the form "symbol == expression" is added
1685 * to repl_lst and the symbol is returned.
1686 * @see ex::to_rational */
1687 static ex replace_with_symbol(const ex &e, lst &repl_lst)
1689 // Expression already in repl_lst? Then return the assigned symbol
1690 for (unsigned i=0; i<repl_lst.nops(); i++)
1691 if (repl_lst.op(i).op(1).is_equal(e))
1692 return repl_lst.op(i).op(0);
1694 // Otherwise create new symbol and add to list, taking care that the
1695 // replacement expression doesn't contain symbols from the sym_lst
1696 // because subs() is not recursive
1699 ex e_replaced = e.subs(repl_lst);
1700 repl_lst.append(es == e_replaced);
1704 /** Default implementation of ex::normal(). It replaces the object with a
1706 * @see ex::normal */
1707 ex basic::normal(lst &sym_lst, lst &repl_lst, int level) const
1709 return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated);
1713 /** Implementation of ex::normal() for symbols. This returns the unmodified symbol.
1714 * @see ex::normal */
1715 ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const
1717 return (new lst(*this, _ex1()))->setflag(status_flags::dynallocated);
1721 /** Implementation of ex::normal() for a numeric. It splits complex numbers
1722 * into re+I*im and replaces I and non-rational real numbers with a temporary
1724 * @see ex::normal */
1725 ex numeric::normal(lst &sym_lst, lst &repl_lst, int level) const
1727 numeric num = numer();
1730 if (num.is_real()) {
1731 if (!num.is_integer())
1732 numex = replace_with_symbol(numex, sym_lst, repl_lst);
1734 numeric re = num.real(), im = num.imag();
1735 ex re_ex = re.is_rational() ? re : replace_with_symbol(re, sym_lst, repl_lst);
1736 ex im_ex = im.is_rational() ? im : replace_with_symbol(im, sym_lst, repl_lst);
1737 numex = re_ex + im_ex * replace_with_symbol(I, sym_lst, repl_lst);
1740 // Denominator is always a real integer (see numeric::denom())
1741 return (new lst(numex, denom()))->setflag(status_flags::dynallocated);
1745 /** Fraction cancellation.
1746 * @param n numerator
1747 * @param d denominator
1748 * @return cancelled fraction {n, d} as a list */
1749 static ex frac_cancel(const ex &n, const ex &d)
1753 numeric pre_factor = _num1();
1755 //clog << "frac_cancel num = " << num << ", den = " << den << endl;
1757 // Handle special cases where numerator or denominator is 0
1759 return (new lst(_ex0(), _ex1()))->setflag(status_flags::dynallocated);
1760 if (den.expand().is_zero())
1761 throw(std::overflow_error("frac_cancel: division by zero in frac_cancel"));
1763 // Bring numerator and denominator to Z[X] by multiplying with
1764 // LCM of all coefficients' denominators
1765 numeric num_lcm = lcm_of_coefficients_denominators(num);
1766 numeric den_lcm = lcm_of_coefficients_denominators(den);
1767 num = multiply_lcm(num, num_lcm);
1768 den = multiply_lcm(den, den_lcm);
1769 pre_factor = den_lcm / num_lcm;
1771 // Cancel GCD from numerator and denominator
1773 if (gcd(num, den, &cnum, &cden, false) != _ex1()) {
1778 // Make denominator unit normal (i.e. coefficient of first symbol
1779 // as defined by get_first_symbol() is made positive)
1781 if (get_first_symbol(den, x)) {
1782 GINAC_ASSERT(is_ex_exactly_of_type(den.unit(*x),numeric));
1783 if (ex_to_numeric(den.unit(*x)).is_negative()) {
1789 // Return result as list
1790 //clog << " returns num = " << num << ", den = " << den << ", pre_factor = " << pre_factor << endl;
1791 return (new lst(num * pre_factor.numer(), den * pre_factor.denom()))->setflag(status_flags::dynallocated);
1795 /** Implementation of ex::normal() for a sum. It expands terms and performs
1796 * fractional addition.
1797 * @see ex::normal */
1798 ex add::normal(lst &sym_lst, lst &repl_lst, int level) const
1800 // Normalize and expand children, chop into summands
1802 o.reserve(seq.size()+1);
1803 epvector::const_iterator it = seq.begin(), itend = seq.end();
1804 while (it != itend) {
1806 // Normalize and expand child
1807 ex n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1).expand();
1809 // If numerator is a sum, chop into summands
1810 if (is_ex_exactly_of_type(n.op(0), add)) {
1811 epvector::const_iterator bit = ex_to_add(n.op(0)).seq.begin(), bitend = ex_to_add(n.op(0)).seq.end();
1812 while (bit != bitend) {
1813 o.push_back((new lst(recombine_pair_to_ex(*bit), n.op(1)))->setflag(status_flags::dynallocated));
1817 // The overall_coeff is already normalized (== rational), we just
1818 // split it into numerator and denominator
1819 GINAC_ASSERT(ex_to_numeric(ex_to_add(n.op(0)).overall_coeff).is_rational());
1820 numeric overall = ex_to_numeric(ex_to_add(n.op(0)).overall_coeff);
1821 o.push_back((new lst(overall.numer(), overall.denom() * n.op(1)))->setflag(status_flags::dynallocated));
1826 o.push_back(overall_coeff.bp->normal(sym_lst, repl_lst, level-1));
1828 // o is now a vector of {numerator, denominator} lists
1830 // Determine common denominator
1832 exvector::const_iterator ait = o.begin(), aitend = o.end();
1833 //clog << "add::normal uses the following summands:\n";
1834 while (ait != aitend) {
1835 //clog << " num = " << ait->op(0) << ", den = " << ait->op(1) << endl;
1836 den = lcm(ait->op(1), den, false);
1839 //clog << " common denominator = " << den << endl;
1842 if (den.is_equal(_ex1())) {
1844 // Common denominator is 1, simply add all numerators
1846 for (ait=o.begin(); ait!=aitend; ait++) {
1847 num_seq.push_back(ait->op(0));
1849 return (new lst((new add(num_seq))->setflag(status_flags::dynallocated), den))->setflag(status_flags::dynallocated);
1853 // Perform fractional addition
1855 for (ait=o.begin(); ait!=aitend; ait++) {
1857 if (!divide(den, ait->op(1), q, false)) {
1858 // should not happen
1859 throw(std::runtime_error("invalid expression in add::normal, division failed"));
1861 num_seq.push_back((ait->op(0) * q).expand());
1863 ex num = (new add(num_seq))->setflag(status_flags::dynallocated);
1865 // Cancel common factors from num/den
1866 return frac_cancel(num, den);
1871 /** Implementation of ex::normal() for a product. It cancels common factors
1873 * @see ex::normal() */
1874 ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const
1876 // Normalize children, separate into numerator and denominator
1880 epvector::const_iterator it = seq.begin(), itend = seq.end();
1881 while (it != itend) {
1882 n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1);
1887 n = overall_coeff.bp->normal(sym_lst, repl_lst, level-1);
1891 // Perform fraction cancellation
1892 return frac_cancel(num, den);
1896 /** Implementation of ex::normal() for powers. It normalizes the basis,
1897 * distributes integer exponents to numerator and denominator, and replaces
1898 * non-integer powers by temporary symbols.
1899 * @see ex::normal */
1900 ex power::normal(lst &sym_lst, lst &repl_lst, int level) const
1903 ex n = basis.bp->normal(sym_lst, repl_lst, level-1);
1905 if (exponent.info(info_flags::integer)) {
1907 if (exponent.info(info_flags::positive)) {
1909 // (a/b)^n -> {a^n, b^n}
1910 return (new lst(power(n.op(0), exponent), power(n.op(1), exponent)))->setflag(status_flags::dynallocated);
1912 } else if (exponent.info(info_flags::negative)) {
1914 // (a/b)^-n -> {b^n, a^n}
1915 return (new lst(power(n.op(1), -exponent), power(n.op(0), -exponent)))->setflag(status_flags::dynallocated);
1920 if (exponent.info(info_flags::positive)) {
1922 // (a/b)^x -> {sym((a/b)^x), 1}
1923 return (new lst(replace_with_symbol(power(n.op(0) / n.op(1), exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated);
1925 } else if (exponent.info(info_flags::negative)) {
1927 if (n.op(1).is_equal(_ex1())) {
1929 // a^-x -> {1, sym(a^x)}
1930 return (new lst(_ex1(), replace_with_symbol(power(n.op(0), -exponent), sym_lst, repl_lst)))->setflag(status_flags::dynallocated);
1934 // (a/b)^-x -> {sym((b/a)^x), 1}
1935 return (new lst(replace_with_symbol(power(n.op(1) / n.op(0), -exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated);
1938 } else { // exponent not numeric
1940 // (a/b)^x -> {sym((a/b)^x, 1}
1941 return (new lst(replace_with_symbol(power(n.op(0) / n.op(1), exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated);
1947 /** Implementation of ex::normal() for pseries. It normalizes each coefficient and
1948 * replaces the series by a temporary symbol.
1949 * @see ex::normal */
1950 ex pseries::normal(lst &sym_lst, lst &repl_lst, int level) const
1953 new_seq.reserve(seq.size());
1955 epvector::const_iterator it = seq.begin(), itend = seq.end();
1956 while (it != itend) {
1957 new_seq.push_back(expair(it->rest.normal(), it->coeff));
1960 ex n = pseries(relational(var,point), new_seq);
1961 return (new lst(replace_with_symbol(n, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated);
1965 /** Implementation of ex::normal() for relationals. It normalizes both sides.
1966 * @see ex::normal */
1967 ex relational::normal(lst &sym_lst, lst &repl_lst, int level) const
1969 return (new lst(relational(lh.normal(), rh.normal(), o), _ex1()))->setflag(status_flags::dynallocated);
1973 /** Normalization of rational functions.
1974 * This function converts an expression to its normal form
1975 * "numerator/denominator", where numerator and denominator are (relatively
1976 * prime) polynomials. Any subexpressions which are not rational functions
1977 * (like non-rational numbers, non-integer powers or functions like sin(),
1978 * cos() etc.) are replaced by temporary symbols which are re-substituted by
1979 * the (normalized) subexpressions before normal() returns (this way, any
1980 * expression can be treated as a rational function). normal() is applied
1981 * recursively to arguments of functions etc.
1983 * @param level maximum depth of recursion
1984 * @return normalized expression */
1985 ex ex::normal(int level) const
1987 lst sym_lst, repl_lst;
1989 ex e = bp->normal(sym_lst, repl_lst, level);
1990 GINAC_ASSERT(is_ex_of_type(e, lst));
1992 // Re-insert replaced symbols
1993 if (sym_lst.nops() > 0)
1994 e = e.subs(sym_lst, repl_lst);
1996 // Convert {numerator, denominator} form back to fraction
1997 return e.op(0) / e.op(1);
2000 /** Numerator of an expression. If the expression is not of the normal form
2001 * "numerator/denominator", it is first converted to this form and then the
2002 * numerator is returned.
2005 * @return numerator */
2006 ex ex::numer(void) const
2008 lst sym_lst, repl_lst;
2010 ex e = bp->normal(sym_lst, repl_lst, 0);
2011 GINAC_ASSERT(is_ex_of_type(e, lst));
2013 // Re-insert replaced symbols
2014 if (sym_lst.nops() > 0)
2015 return e.op(0).subs(sym_lst, repl_lst);
2020 /** Denominator of an expression. If the expression is not of the normal form
2021 * "numerator/denominator", it is first converted to this form and then the
2022 * denominator is returned.
2025 * @return denominator */
2026 ex ex::denom(void) const
2028 lst sym_lst, repl_lst;
2030 ex e = bp->normal(sym_lst, repl_lst, 0);
2031 GINAC_ASSERT(is_ex_of_type(e, lst));
2033 // Re-insert replaced symbols
2034 if (sym_lst.nops() > 0)
2035 return e.op(1).subs(sym_lst, repl_lst);
2041 /** Default implementation of ex::to_rational(). It replaces the object with a
2043 * @see ex::to_rational */
2044 ex basic::to_rational(lst &repl_lst) const
2046 return replace_with_symbol(*this, repl_lst);
2050 /** Implementation of ex::to_rational() for symbols. This returns the
2051 * unmodified symbol.
2052 * @see ex::to_rational */
2053 ex symbol::to_rational(lst &repl_lst) const
2059 /** Implementation of ex::to_rational() for a numeric. It splits complex
2060 * numbers into re+I*im and replaces I and non-rational real numbers with a
2062 * @see ex::to_rational */
2063 ex numeric::to_rational(lst &repl_lst) const
2067 return replace_with_symbol(*this, repl_lst);
2069 numeric re = real();
2070 numeric im = imag();
2071 ex re_ex = re.is_rational() ? re : replace_with_symbol(re, repl_lst);
2072 ex im_ex = im.is_rational() ? im : replace_with_symbol(im, repl_lst);
2073 return re_ex + im_ex * replace_with_symbol(I, repl_lst);
2079 /** Implementation of ex::to_rational() for powers. It replaces non-integer
2080 * powers by temporary symbols.
2081 * @see ex::to_rational */
2082 ex power::to_rational(lst &repl_lst) const
2084 if (exponent.info(info_flags::integer))
2085 return power(basis.to_rational(repl_lst), exponent);
2087 return replace_with_symbol(*this, repl_lst);
2091 /** Implementation of ex::to_rational() for expairseqs.
2092 * @see ex::to_rational */
2093 ex expairseq::to_rational(lst &repl_lst) const
2096 s.reserve(seq.size());
2097 for (epvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) {
2098 s.push_back(split_ex_to_pair(recombine_pair_to_ex(*it).to_rational(repl_lst)));
2099 // s.push_back(combine_ex_with_coeff_to_pair((*it).rest.to_rational(repl_lst),
2101 ex oc = overall_coeff.to_rational(repl_lst);
2102 if (oc.info(info_flags::numeric))
2103 return thisexpairseq(s, overall_coeff);
2104 else s.push_back(combine_ex_with_coeff_to_pair(oc,_ex1()));
2105 return thisexpairseq(s, default_overall_coeff());
2109 /** Rationalization of non-rational functions.
2110 * This function converts a general expression to a rational polynomial
2111 * by replacing all non-rational subexpressions (like non-rational numbers,
2112 * non-integer powers or functions like sin(), cos() etc.) to temporary
2113 * symbols. This makes it possible to use functions like gcd() and divide()
2114 * on non-rational functions by applying to_rational() on the arguments,
2115 * calling the desired function and re-substituting the temporary symbols
2116 * in the result. To make the last step possible, all temporary symbols and
2117 * their associated expressions are collected in the list specified by the
2118 * repl_lst parameter in the form {symbol == expression}, ready to be passed
2119 * as an argument to ex::subs().
2121 * @param repl_lst collects a list of all temporary symbols and their replacements
2122 * @return rationalized expression */
2123 ex ex::to_rational(lst &repl_lst) const
2125 return bp->to_rational(repl_lst);
2129 #ifndef NO_NAMESPACE_GINAC
2130 } // namespace GiNaC
2131 #endif // ndef NO_NAMESPACE_GINAC