Added methods for taking real and imaginary parts.
[ginac.git] / ginac / mul.cpp
1 /** @file mul.cpp
2  *
3  *  Implementation of GiNaC's products of expressions. */
4
5 /*
6  *  GiNaC Copyright (C) 1999-2006 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
21  */
22
23 #include <iostream>
24 #include <vector>
25 #include <stdexcept>
26 #include <limits>
27
28 #include "mul.h"
29 #include "add.h"
30 #include "power.h"
31 #include "operators.h"
32 #include "matrix.h"
33 #include "indexed.h"
34 #include "lst.h"
35 #include "archive.h"
36 #include "utils.h"
37
38 namespace GiNaC {
39
40 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(mul, expairseq,
41   print_func<print_context>(&mul::do_print).
42   print_func<print_latex>(&mul::do_print_latex).
43   print_func<print_csrc>(&mul::do_print_csrc).
44   print_func<print_tree>(&mul::do_print_tree).
45   print_func<print_python_repr>(&mul::do_print_python_repr))
46
47
48 //////////
49 // default constructor
50 //////////
51
52 mul::mul()
53 {
54         tinfo_key = &mul::tinfo_static;
55 }
56
57 //////////
58 // other constructors
59 //////////
60
61 // public
62
63 mul::mul(const ex & lh, const ex & rh)
64 {
65         tinfo_key = &mul::tinfo_static;
66         overall_coeff = _ex1;
67         construct_from_2_ex(lh,rh);
68         GINAC_ASSERT(is_canonical());
69 }
70
71 mul::mul(const exvector & v)
72 {
73         tinfo_key = &mul::tinfo_static;
74         overall_coeff = _ex1;
75         construct_from_exvector(v);
76         GINAC_ASSERT(is_canonical());
77 }
78
79 mul::mul(const epvector & v)
80 {
81         tinfo_key = &mul::tinfo_static;
82         overall_coeff = _ex1;
83         construct_from_epvector(v);
84         GINAC_ASSERT(is_canonical());
85 }
86
87 mul::mul(const epvector & v, const ex & oc)
88 {
89         tinfo_key = &mul::tinfo_static;
90         overall_coeff = oc;
91         construct_from_epvector(v);
92         GINAC_ASSERT(is_canonical());
93 }
94
95 mul::mul(std::auto_ptr<epvector> vp, const ex & oc)
96 {
97         tinfo_key = &mul::tinfo_static;
98         GINAC_ASSERT(vp.get()!=0);
99         overall_coeff = oc;
100         construct_from_epvector(*vp);
101         GINAC_ASSERT(is_canonical());
102 }
103
104 mul::mul(const ex & lh, const ex & mh, const ex & rh)
105 {
106         tinfo_key = &mul::tinfo_static;
107         exvector factors;
108         factors.reserve(3);
109         factors.push_back(lh);
110         factors.push_back(mh);
111         factors.push_back(rh);
112         overall_coeff = _ex1;
113         construct_from_exvector(factors);
114         GINAC_ASSERT(is_canonical());
115 }
116
117 //////////
118 // archiving
119 //////////
120
121 DEFAULT_ARCHIVING(mul)
122
123 //////////
124 // functions overriding virtual functions from base classes
125 //////////
126
127 void mul::print_overall_coeff(const print_context & c, const char *mul_sym) const
128 {
129         const numeric &coeff = ex_to<numeric>(overall_coeff);
130         if (coeff.csgn() == -1)
131                 c.s << '-';
132         if (!coeff.is_equal(*_num1_p) &&
133                 !coeff.is_equal(*_num_1_p)) {
134                 if (coeff.is_rational()) {
135                         if (coeff.is_negative())
136                                 (-coeff).print(c);
137                         else
138                                 coeff.print(c);
139                 } else {
140                         if (coeff.csgn() == -1)
141                                 (-coeff).print(c, precedence());
142                         else
143                                 coeff.print(c, precedence());
144                 }
145                 c.s << mul_sym;
146         }
147 }
148
149 void mul::do_print(const print_context & c, unsigned level) const
150 {
151         if (precedence() <= level)
152                 c.s << '(';
153
154         print_overall_coeff(c, "*");
155
156         epvector::const_iterator it = seq.begin(), itend = seq.end();
157         bool first = true;
158         while (it != itend) {
159                 if (!first)
160                         c.s << '*';
161                 else
162                         first = false;
163                 recombine_pair_to_ex(*it).print(c, precedence());
164                 ++it;
165         }
166
167         if (precedence() <= level)
168                 c.s << ')';
169 }
170
171 void mul::do_print_latex(const print_latex & c, unsigned level) const
172 {
173         if (precedence() <= level)
174                 c.s << "{(";
175
176         print_overall_coeff(c, " ");
177
178         // Separate factors into those with negative numeric exponent
179         // and all others
180         epvector::const_iterator it = seq.begin(), itend = seq.end();
181         exvector neg_powers, others;
182         while (it != itend) {
183                 GINAC_ASSERT(is_exactly_a<numeric>(it->coeff));
184                 if (ex_to<numeric>(it->coeff).is_negative())
185                         neg_powers.push_back(recombine_pair_to_ex(expair(it->rest, -(it->coeff))));
186                 else
187                         others.push_back(recombine_pair_to_ex(*it));
188                 ++it;
189         }
190
191         if (!neg_powers.empty()) {
192
193                 // Factors with negative exponent are printed as a fraction
194                 c.s << "\\frac{";
195                 mul(others).eval().print(c);
196                 c.s << "}{";
197                 mul(neg_powers).eval().print(c);
198                 c.s << "}";
199
200         } else {
201
202                 // All other factors are printed in the ordinary way
203                 exvector::const_iterator vit = others.begin(), vitend = others.end();
204                 while (vit != vitend) {
205                         c.s << ' ';
206                         vit->print(c, precedence());
207                         ++vit;
208                 }
209         }
210
211         if (precedence() <= level)
212                 c.s << ")}";
213 }
214
215 void mul::do_print_csrc(const print_csrc & c, unsigned level) const
216 {
217         if (precedence() <= level)
218                 c.s << "(";
219
220         if (!overall_coeff.is_equal(_ex1)) {
221                 overall_coeff.print(c, precedence());
222                 c.s << "*";
223         }
224
225         // Print arguments, separated by "*" or "/"
226         epvector::const_iterator it = seq.begin(), itend = seq.end();
227         while (it != itend) {
228
229                 // If the first argument is a negative integer power, it gets printed as "1.0/<expr>"
230                 bool needclosingparenthesis = false;
231                 if (it == seq.begin() && it->coeff.info(info_flags::negint)) {
232                         if (is_a<print_csrc_cl_N>(c)) {
233                                 c.s << "recip(";
234                                 needclosingparenthesis = true;
235                         } else
236                                 c.s << "1.0/";
237                 }
238
239                 // If the exponent is 1 or -1, it is left out
240                 if (it->coeff.is_equal(_ex1) || it->coeff.is_equal(_ex_1))
241                         it->rest.print(c, precedence());
242                 else if (it->coeff.info(info_flags::negint))
243                         // Outer parens around ex needed for broken GCC parser:
244                         (ex(power(it->rest, -ex_to<numeric>(it->coeff)))).print(c, level);
245                 else
246                         // Outer parens around ex needed for broken GCC parser:
247                         (ex(power(it->rest, ex_to<numeric>(it->coeff)))).print(c, level);
248
249                 if (needclosingparenthesis)
250                         c.s << ")";
251
252                 // Separator is "/" for negative integer powers, "*" otherwise
253                 ++it;
254                 if (it != itend) {
255                         if (it->coeff.info(info_flags::negint))
256                                 c.s << "/";
257                         else
258                                 c.s << "*";
259                 }
260         }
261
262         if (precedence() <= level)
263                 c.s << ")";
264 }
265
266 void mul::do_print_python_repr(const print_python_repr & c, unsigned level) const
267 {
268         c.s << class_name() << '(';
269         op(0).print(c);
270         for (size_t i=1; i<nops(); ++i) {
271                 c.s << ',';
272                 op(i).print(c);
273         }
274         c.s << ')';
275 }
276
277 bool mul::info(unsigned inf) const
278 {
279         switch (inf) {
280                 case info_flags::polynomial:
281                 case info_flags::integer_polynomial:
282                 case info_flags::cinteger_polynomial:
283                 case info_flags::rational_polynomial:
284                 case info_flags::crational_polynomial:
285                 case info_flags::rational_function: {
286                         epvector::const_iterator i = seq.begin(), end = seq.end();
287                         while (i != end) {
288                                 if (!(recombine_pair_to_ex(*i).info(inf)))
289                                         return false;
290                                 ++i;
291                         }
292                         return overall_coeff.info(inf);
293                 }
294                 case info_flags::algebraic: {
295                         epvector::const_iterator i = seq.begin(), end = seq.end();
296                         while (i != end) {
297                                 if ((recombine_pair_to_ex(*i).info(inf)))
298                                         return true;
299                                 ++i;
300                         }
301                         return false;
302                 }
303         }
304         return inherited::info(inf);
305 }
306
307 int mul::degree(const ex & s) const
308 {
309         // Sum up degrees of factors
310         int deg_sum = 0;
311         epvector::const_iterator i = seq.begin(), end = seq.end();
312         while (i != end) {
313                 if (ex_to<numeric>(i->coeff).is_integer())
314                         deg_sum += i->rest.degree(s) * ex_to<numeric>(i->coeff).to_int();
315                 ++i;
316         }
317         return deg_sum;
318 }
319
320 int mul::ldegree(const ex & s) const
321 {
322         // Sum up degrees of factors
323         int deg_sum = 0;
324         epvector::const_iterator i = seq.begin(), end = seq.end();
325         while (i != end) {
326                 if (ex_to<numeric>(i->coeff).is_integer())
327                         deg_sum += i->rest.ldegree(s) * ex_to<numeric>(i->coeff).to_int();
328                 ++i;
329         }
330         return deg_sum;
331 }
332
333 ex mul::coeff(const ex & s, int n) const
334 {
335         exvector coeffseq;
336         coeffseq.reserve(seq.size()+1);
337         
338         if (n==0) {
339                 // product of individual coeffs
340                 // if a non-zero power of s is found, the resulting product will be 0
341                 epvector::const_iterator i = seq.begin(), end = seq.end();
342                 while (i != end) {
343                         coeffseq.push_back(recombine_pair_to_ex(*i).coeff(s,n));
344                         ++i;
345                 }
346                 coeffseq.push_back(overall_coeff);
347                 return (new mul(coeffseq))->setflag(status_flags::dynallocated);
348         }
349         
350         epvector::const_iterator i = seq.begin(), end = seq.end();
351         bool coeff_found = false;
352         while (i != end) {
353                 ex t = recombine_pair_to_ex(*i);
354                 ex c = t.coeff(s, n);
355                 if (!c.is_zero()) {
356                         coeffseq.push_back(c);
357                         coeff_found = 1;
358                 } else {
359                         coeffseq.push_back(t);
360                 }
361                 ++i;
362         }
363         if (coeff_found) {
364                 coeffseq.push_back(overall_coeff);
365                 return (new mul(coeffseq))->setflag(status_flags::dynallocated);
366         }
367         
368         return _ex0;
369 }
370
371 /** Perform automatic term rewriting rules in this class.  In the following
372  *  x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2...
373  *  stand for such expressions that contain a plain number.
374  *  - *(...,x;0) -> 0
375  *  - *(+(x1,x2,...);c) -> *(+(*(x1,c),*(x2,c),...))
376  *  - *(x;1) -> x
377  *  - *(;c) -> c
378  *
379  *  @param level cut-off in recursive evaluation */
380 ex mul::eval(int level) const
381 {
382         std::auto_ptr<epvector> evaled_seqp = evalchildren(level);
383         if (evaled_seqp.get()) {
384                 // do more evaluation later
385                 return (new mul(evaled_seqp, overall_coeff))->
386                            setflag(status_flags::dynallocated);
387         }
388         
389 #ifdef DO_GINAC_ASSERT
390         epvector::const_iterator i = seq.begin(), end = seq.end();
391         while (i != end) {
392                 GINAC_ASSERT((!is_exactly_a<mul>(i->rest)) ||
393                              (!(ex_to<numeric>(i->coeff).is_integer())));
394                 GINAC_ASSERT(!(i->is_canonical_numeric()));
395                 if (is_exactly_a<numeric>(recombine_pair_to_ex(*i)))
396                     print(print_tree(std::cerr));
397                 GINAC_ASSERT(!is_exactly_a<numeric>(recombine_pair_to_ex(*i)));
398                 /* for paranoia */
399                 expair p = split_ex_to_pair(recombine_pair_to_ex(*i));
400                 GINAC_ASSERT(p.rest.is_equal(i->rest));
401                 GINAC_ASSERT(p.coeff.is_equal(i->coeff));
402                 /* end paranoia */
403                 ++i;
404         }
405 #endif // def DO_GINAC_ASSERT
406         
407         if (flags & status_flags::evaluated) {
408                 GINAC_ASSERT(seq.size()>0);
409                 GINAC_ASSERT(seq.size()>1 || !overall_coeff.is_equal(_ex1));
410                 return *this;
411         }
412         
413         int seq_size = seq.size();
414         if (overall_coeff.is_zero()) {
415                 // *(...,x;0) -> 0
416                 return _ex0;
417         } else if (seq_size==0) {
418                 // *(;c) -> c
419                 return overall_coeff;
420         } else if (seq_size==1 && overall_coeff.is_equal(_ex1)) {
421                 // *(x;1) -> x
422                 return recombine_pair_to_ex(*(seq.begin()));
423         } else if ((seq_size==1) &&
424                    is_exactly_a<add>((*seq.begin()).rest) &&
425                    ex_to<numeric>((*seq.begin()).coeff).is_equal(*_num1_p)) {
426                 // *(+(x,y,...);c) -> +(*(x,c),*(y,c),...) (c numeric(), no powers of +())
427                 const add & addref = ex_to<add>((*seq.begin()).rest);
428                 std::auto_ptr<epvector> distrseq(new epvector);
429                 distrseq->reserve(addref.seq.size());
430                 epvector::const_iterator i = addref.seq.begin(), end = addref.seq.end();
431                 while (i != end) {
432                         distrseq->push_back(addref.combine_pair_with_coeff_to_pair(*i, overall_coeff));
433                         ++i;
434                 }
435                 return (new add(distrseq,
436                                 ex_to<numeric>(addref.overall_coeff).
437                                 mul_dyn(ex_to<numeric>(overall_coeff))))
438                       ->setflag(status_flags::dynallocated | status_flags::evaluated);
439         }
440         return this->hold();
441 }
442
443 ex mul::evalf(int level) const
444 {
445         if (level==1)
446                 return mul(seq,overall_coeff);
447         
448         if (level==-max_recursion_level)
449                 throw(std::runtime_error("max recursion level reached"));
450         
451         std::auto_ptr<epvector> s(new epvector);
452         s->reserve(seq.size());
453
454         --level;
455         epvector::const_iterator i = seq.begin(), end = seq.end();
456         while (i != end) {
457                 s->push_back(combine_ex_with_coeff_to_pair(i->rest.evalf(level),
458                                                            i->coeff));
459                 ++i;
460         }
461         return mul(s, overall_coeff.evalf(level));
462 }
463
464 void mul::find_real_imag(ex & rp, ex & ip) const
465 {
466         rp = overall_coeff.real_part();
467         ip = overall_coeff.imag_part();
468         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
469                 ex factor = recombine_pair_to_ex(*i);
470                 ex new_rp = factor.real_part();
471                 ex new_ip = factor.imag_part();
472                 if(new_ip.is_zero()) {
473                         rp *= new_rp;
474                         ip *= new_rp;
475                 } else {
476                         ex temp = rp*new_rp - ip*new_ip;
477                         ip = ip*new_rp + rp*new_ip;
478                         rp = temp;
479                 }
480         }
481         rp = rp.expand();
482         ip = ip.expand();
483 }
484
485 ex mul::real_part() const
486 {
487         ex rp, ip;
488         find_real_imag(rp, ip);
489         return rp;
490 }
491
492 ex mul::imag_part() const
493 {
494         ex rp, ip;
495         find_real_imag(rp, ip);
496         return ip;
497 }
498
499 ex mul::evalm() const
500 {
501         // numeric*matrix
502         if (seq.size() == 1 && seq[0].coeff.is_equal(_ex1)
503          && is_a<matrix>(seq[0].rest))
504                 return ex_to<matrix>(seq[0].rest).mul(ex_to<numeric>(overall_coeff));
505
506         // Evaluate children first, look whether there are any matrices at all
507         // (there can be either no matrices or one matrix; if there were more
508         // than one matrix, it would be a non-commutative product)
509         std::auto_ptr<epvector> s(new epvector);
510         s->reserve(seq.size());
511
512         bool have_matrix = false;
513         epvector::iterator the_matrix;
514
515         epvector::const_iterator i = seq.begin(), end = seq.end();
516         while (i != end) {
517                 const ex &m = recombine_pair_to_ex(*i).evalm();
518                 s->push_back(split_ex_to_pair(m));
519                 if (is_a<matrix>(m)) {
520                         have_matrix = true;
521                         the_matrix = s->end() - 1;
522                 }
523                 ++i;
524         }
525
526         if (have_matrix) {
527
528                 // The product contained a matrix. We will multiply all other factors
529                 // into that matrix.
530                 matrix m = ex_to<matrix>(the_matrix->rest);
531                 s->erase(the_matrix);
532                 ex scalar = (new mul(s, overall_coeff))->setflag(status_flags::dynallocated);
533                 return m.mul_scalar(scalar);
534
535         } else
536                 return (new mul(s, overall_coeff))->setflag(status_flags::dynallocated);
537 }
538
539 ex mul::eval_ncmul(const exvector & v) const
540 {
541         if (seq.empty())
542                 return inherited::eval_ncmul(v);
543
544         // Find first noncommutative element and call its eval_ncmul()
545         epvector::const_iterator i = seq.begin(), end = seq.end();
546         while (i != end) {
547                 if (i->rest.return_type() == return_types::noncommutative)
548                         return i->rest.eval_ncmul(v);
549                 ++i;
550         }
551         return inherited::eval_ncmul(v);
552 }
553
554 bool tryfactsubs(const ex & origfactor, const ex & patternfactor, int & nummatches, lst & repls)
555 {       
556         ex origbase;
557         int origexponent;
558         int origexpsign;
559
560         if (is_exactly_a<power>(origfactor) && origfactor.op(1).info(info_flags::integer)) {
561                 origbase = origfactor.op(0);
562                 int expon = ex_to<numeric>(origfactor.op(1)).to_int();
563                 origexponent = expon > 0 ? expon : -expon;
564                 origexpsign = expon > 0 ? 1 : -1;
565         } else {
566                 origbase = origfactor;
567                 origexponent = 1;
568                 origexpsign = 1;
569         }
570
571         ex patternbase;
572         int patternexponent;
573         int patternexpsign;
574
575         if (is_exactly_a<power>(patternfactor) && patternfactor.op(1).info(info_flags::integer)) {
576                 patternbase = patternfactor.op(0);
577                 int expon = ex_to<numeric>(patternfactor.op(1)).to_int();
578                 patternexponent = expon > 0 ? expon : -expon;
579                 patternexpsign = expon > 0 ? 1 : -1;
580         } else {
581                 patternbase = patternfactor;
582                 patternexponent = 1;
583                 patternexpsign = 1;
584         }
585
586         lst saverepls = repls;
587         if (origexponent < patternexponent || origexpsign != patternexpsign || !origbase.match(patternbase,saverepls))
588                 return false;
589         repls = saverepls;
590
591         int newnummatches = origexponent / patternexponent;
592         if (newnummatches < nummatches)
593                 nummatches = newnummatches;
594         return true;
595 }
596
597 /** Checks wheter e matches to the pattern pat and the (possibly to be updated
598   * list of replacements repls. This matching is in the sense of algebraic
599   * substitutions. Matching starts with pat.op(factor) of the pattern because
600   * the factors before this one have already been matched. The (possibly
601   * updated) number of matches is in nummatches. subsed[i] is true for factors
602   * that already have been replaced by previous substitutions and matched[i]
603   * is true for factors that have been matched by the current match.
604   */
605 bool algebraic_match_mul_with_mul(const mul &e, const ex &pat, lst &repls,
606                 int factor, int &nummatches, const std::vector<bool> &subsed,
607                 std::vector<bool> &matched)
608 {
609         if (factor == pat.nops())
610                 return true;
611
612         for (size_t i=0; i<e.nops(); ++i) {
613                 if(subsed[i] || matched[i])
614                         continue;
615                 lst newrepls = repls;
616                 int newnummatches = nummatches;
617                 if (tryfactsubs(e.op(i), pat.op(factor), newnummatches, newrepls)) {
618                         matched[i] = true;
619                         if (algebraic_match_mul_with_mul(e, pat, newrepls, factor+1,
620                                         newnummatches, subsed, matched)) {
621                                 repls = newrepls;
622                                 nummatches = newnummatches;
623                                 return true;
624                         }
625                         else
626                                 matched[i] = false;
627                 }
628         }
629
630         return false;
631 }
632
633 bool mul::has(const ex & pattern, unsigned options) const
634 {
635         if(!(options&has_options::algebraic))
636                 return basic::has(pattern,options);
637         if(is_a<mul>(pattern)) {
638                 lst repls;
639                 int nummatches = std::numeric_limits<int>::max();
640                 std::vector<bool> subsed(seq.size(), false);
641                 std::vector<bool> matched(seq.size(), false);
642                 if(algebraic_match_mul_with_mul(*this, pattern, repls, 0, nummatches,
643                                 subsed, matched))
644                         return true;
645         }
646         return basic::has(pattern, options);
647 }
648
649 ex mul::algebraic_subs_mul(const exmap & m, unsigned options) const
650 {       
651         std::vector<bool> subsed(seq.size(), false);
652         exvector subsresult(seq.size());
653
654         for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) {
655
656                 if (is_exactly_a<mul>(it->first)) {
657 retry1:
658                         int nummatches = std::numeric_limits<int>::max();
659                         std::vector<bool> currsubsed(seq.size(), false);
660                         bool succeed = true;
661                         lst repls;
662                         
663                         if(!algebraic_match_mul_with_mul(*this, it->first, repls, 0, nummatches, subsed, currsubsed))
664                                 continue;
665
666                         bool foundfirstsubsedfactor = false;
667                         for (size_t j=0; j<subsed.size(); j++) {
668                                 if (currsubsed[j]) {
669                                         if (foundfirstsubsedfactor)
670                                                 subsresult[j] = op(j);
671                                         else {
672                                                 foundfirstsubsedfactor = true;
673                                                 subsresult[j] = op(j) * power(it->second.subs(ex(repls), subs_options::no_pattern) / it->first.subs(ex(repls), subs_options::no_pattern), nummatches);
674                                         }
675                                         subsed[j] = true;
676                                 }
677                         }
678                         goto retry1;
679
680                 } else {
681 retry2:
682                         int nummatches = std::numeric_limits<int>::max();
683                         lst repls;
684
685                         for (size_t j=0; j<this->nops(); j++) {
686                                 if (!subsed[j] && tryfactsubs(op(j), it->first, nummatches, repls)) {
687                                         subsed[j] = true;
688                                         subsresult[j] = op(j) * power(it->second.subs(ex(repls), subs_options::no_pattern) / it->first.subs(ex(repls), subs_options::no_pattern), nummatches);
689                                         goto retry2;
690                                 }
691                         }
692                 }
693         }
694
695         bool subsfound = false;
696         for (size_t i=0; i<subsed.size(); i++) {
697                 if (subsed[i]) {
698                         subsfound = true;
699                         break;
700                 }
701         }
702         if (!subsfound)
703                 return subs_one_level(m, options | subs_options::algebraic);
704
705         exvector ev; ev.reserve(nops());
706         for (size_t i=0; i<nops(); i++) {
707                 if (subsed[i])
708                         ev.push_back(subsresult[i]);
709                 else
710                         ev.push_back(op(i));
711         }
712
713         return (new mul(ev))->setflag(status_flags::dynallocated);
714 }
715
716 // protected
717
718 /** Implementation of ex::diff() for a product.  It applies the product rule.
719  *  @see ex::diff */
720 ex mul::derivative(const symbol & s) const
721 {
722         size_t num = seq.size();
723         exvector addseq;
724         addseq.reserve(num);
725         
726         // D(a*b*c) = D(a)*b*c + a*D(b)*c + a*b*D(c)
727         epvector mulseq = seq;
728         epvector::const_iterator i = seq.begin(), end = seq.end();
729         epvector::iterator i2 = mulseq.begin();
730         while (i != end) {
731                 expair ep = split_ex_to_pair(power(i->rest, i->coeff - _ex1) *
732                                              i->rest.diff(s));
733                 ep.swap(*i2);
734                 addseq.push_back((new mul(mulseq, overall_coeff * i->coeff))->setflag(status_flags::dynallocated));
735                 ep.swap(*i2);
736                 ++i; ++i2;
737         }
738         return (new add(addseq))->setflag(status_flags::dynallocated);
739 }
740
741 int mul::compare_same_type(const basic & other) const
742 {
743         return inherited::compare_same_type(other);
744 }
745
746 unsigned mul::return_type() const
747 {
748         if (seq.empty()) {
749                 // mul without factors: should not happen, but commutates
750                 return return_types::commutative;
751         }
752         
753         bool all_commutative = true;
754         epvector::const_iterator noncommutative_element; // point to first found nc element
755         
756         epvector::const_iterator i = seq.begin(), end = seq.end();
757         while (i != end) {
758                 unsigned rt = i->rest.return_type();
759                 if (rt == return_types::noncommutative_composite)
760                         return rt; // one ncc -> mul also ncc
761                 if ((rt == return_types::noncommutative) && (all_commutative)) {
762                         // first nc element found, remember position
763                         noncommutative_element = i;
764                         all_commutative = false;
765                 }
766                 if ((rt == return_types::noncommutative) && (!all_commutative)) {
767                         // another nc element found, compare type_infos
768                         if (noncommutative_element->rest.return_type_tinfo() != i->rest.return_type_tinfo()) {
769                                         // different types -> mul is ncc
770                                         return return_types::noncommutative_composite;
771                         }
772                 }
773                 ++i;
774         }
775         // all factors checked
776         return all_commutative ? return_types::commutative : return_types::noncommutative;
777 }
778    
779 tinfo_t mul::return_type_tinfo() const
780 {
781         if (seq.empty())
782                 return this;  // mul without factors: should not happen
783         
784         // return type_info of first noncommutative element
785         epvector::const_iterator i = seq.begin(), end = seq.end();
786         while (i != end) {
787                 if (i->rest.return_type() == return_types::noncommutative)
788                         return i->rest.return_type_tinfo();
789                 ++i;
790         }
791         // no noncommutative element found, should not happen
792         return this;
793 }
794
795 ex mul::thisexpairseq(const epvector & v, const ex & oc) const
796 {
797         return (new mul(v, oc))->setflag(status_flags::dynallocated);
798 }
799
800 ex mul::thisexpairseq(std::auto_ptr<epvector> vp, const ex & oc) const
801 {
802         return (new mul(vp, oc))->setflag(status_flags::dynallocated);
803 }
804
805 expair mul::split_ex_to_pair(const ex & e) const
806 {
807         if (is_exactly_a<power>(e)) {
808                 const power & powerref = ex_to<power>(e);
809                 if (is_exactly_a<numeric>(powerref.exponent))
810                         return expair(powerref.basis,powerref.exponent);
811         }
812         return expair(e,_ex1);
813 }
814         
815 expair mul::combine_ex_with_coeff_to_pair(const ex & e,
816                                           const ex & c) const
817 {
818         // to avoid duplication of power simplification rules,
819         // we create a temporary power object
820         // otherwise it would be hard to correctly evaluate
821         // expression like (4^(1/3))^(3/2)
822         if (c.is_equal(_ex1))
823                 return split_ex_to_pair(e);
824
825         return split_ex_to_pair(power(e,c));
826 }
827         
828 expair mul::combine_pair_with_coeff_to_pair(const expair & p,
829                                             const ex & c) const
830 {
831         // to avoid duplication of power simplification rules,
832         // we create a temporary power object
833         // otherwise it would be hard to correctly evaluate
834         // expression like (4^(1/3))^(3/2)
835         if (c.is_equal(_ex1))
836                 return p;
837
838         return split_ex_to_pair(power(recombine_pair_to_ex(p),c));
839 }
840         
841 ex mul::recombine_pair_to_ex(const expair & p) const
842 {
843         if (ex_to<numeric>(p.coeff).is_equal(*_num1_p)) 
844                 return p.rest;
845         else
846                 return (new power(p.rest,p.coeff))->setflag(status_flags::dynallocated);
847 }
848
849 bool mul::expair_needs_further_processing(epp it)
850 {
851         if (is_exactly_a<mul>(it->rest) &&
852                 ex_to<numeric>(it->coeff).is_integer()) {
853                 // combined pair is product with integer power -> expand it
854                 *it = split_ex_to_pair(recombine_pair_to_ex(*it));
855                 return true;
856         }
857         if (is_exactly_a<numeric>(it->rest)) {
858                 expair ep = split_ex_to_pair(recombine_pair_to_ex(*it));
859                 if (!ep.is_equal(*it)) {
860                         // combined pair is a numeric power which can be simplified
861                         *it = ep;
862                         return true;
863                 }
864                 if (it->coeff.is_equal(_ex1)) {
865                         // combined pair has coeff 1 and must be moved to the end
866                         return true;
867                 }
868         }
869         return false;
870 }       
871
872 ex mul::default_overall_coeff() const
873 {
874         return _ex1;
875 }
876
877 void mul::combine_overall_coeff(const ex & c)
878 {
879         GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
880         GINAC_ASSERT(is_exactly_a<numeric>(c));
881         overall_coeff = ex_to<numeric>(overall_coeff).mul_dyn(ex_to<numeric>(c));
882 }
883
884 void mul::combine_overall_coeff(const ex & c1, const ex & c2)
885 {
886         GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
887         GINAC_ASSERT(is_exactly_a<numeric>(c1));
888         GINAC_ASSERT(is_exactly_a<numeric>(c2));
889         overall_coeff = ex_to<numeric>(overall_coeff).mul_dyn(ex_to<numeric>(c1).power(ex_to<numeric>(c2)));
890 }
891
892 bool mul::can_make_flat(const expair & p) const
893 {
894         GINAC_ASSERT(is_exactly_a<numeric>(p.coeff));
895         // this assertion will probably fail somewhere
896         // it would require a more careful make_flat, obeying the power laws
897         // probably should return true only if p.coeff is integer
898         return ex_to<numeric>(p.coeff).is_equal(*_num1_p);
899 }
900
901 bool mul::can_be_further_expanded(const ex & e)
902 {
903         if (is_exactly_a<mul>(e)) {
904                 for (epvector::const_iterator cit = ex_to<mul>(e).seq.begin(); cit != ex_to<mul>(e).seq.end(); ++cit) {
905                         if (is_exactly_a<add>(cit->rest) && cit->coeff.info(info_flags::posint))
906                                 return true;
907                 }
908         } else if (is_exactly_a<power>(e)) {
909                 if (is_exactly_a<add>(e.op(0)) && e.op(1).info(info_flags::posint))
910                         return true;
911         }
912         return false;
913 }
914
915 ex mul::expand(unsigned options) const
916 {
917         // First, expand the children
918         std::auto_ptr<epvector> expanded_seqp = expandchildren(options);
919         const epvector & expanded_seq = (expanded_seqp.get() ? *expanded_seqp : seq);
920
921         // Now, look for all the factors that are sums and multiply each one out
922         // with the next one that is found while collecting the factors which are
923         // not sums
924         ex last_expanded = _ex1;
925
926         epvector non_adds;
927         non_adds.reserve(expanded_seq.size());
928
929         for (epvector::const_iterator cit = expanded_seq.begin(); cit != expanded_seq.end(); ++cit) {
930                 if (is_exactly_a<add>(cit->rest) &&
931                         (cit->coeff.is_equal(_ex1))) {
932                         if (is_exactly_a<add>(last_expanded)) {
933
934                                 // Expand a product of two sums, aggressive version.
935                                 // Caring for the overall coefficients in separate loops can
936                                 // sometimes give a performance gain of up to 15%!
937
938                                 const int sizedifference = ex_to<add>(last_expanded).seq.size()-ex_to<add>(cit->rest).seq.size();
939                                 // add2 is for the inner loop and should be the bigger of the two sums
940                                 // in the presence of asymptotically good sorting:
941                                 const add& add1 = (sizedifference<0 ? ex_to<add>(last_expanded) : ex_to<add>(cit->rest));
942                                 const add& add2 = (sizedifference<0 ? ex_to<add>(cit->rest) : ex_to<add>(last_expanded));
943                                 const epvector::const_iterator add1begin = add1.seq.begin();
944                                 const epvector::const_iterator add1end   = add1.seq.end();
945                                 const epvector::const_iterator add2begin = add2.seq.begin();
946                                 const epvector::const_iterator add2end   = add2.seq.end();
947                                 epvector distrseq;
948                                 distrseq.reserve(add1.seq.size()+add2.seq.size());
949
950                                 // Multiply add2 with the overall coefficient of add1 and append it to distrseq:
951                                 if (!add1.overall_coeff.is_zero()) {
952                                         if (add1.overall_coeff.is_equal(_ex1))
953                                                 distrseq.insert(distrseq.end(),add2begin,add2end);
954                                         else
955                                                 for (epvector::const_iterator i=add2begin; i!=add2end; ++i)
956                                                         distrseq.push_back(expair(i->rest, ex_to<numeric>(i->coeff).mul_dyn(ex_to<numeric>(add1.overall_coeff))));
957                                 }
958
959                                 // Multiply add1 with the overall coefficient of add2 and append it to distrseq:
960                                 if (!add2.overall_coeff.is_zero()) {
961                                         if (add2.overall_coeff.is_equal(_ex1))
962                                                 distrseq.insert(distrseq.end(),add1begin,add1end);
963                                         else
964                                                 for (epvector::const_iterator i=add1begin; i!=add1end; ++i)
965                                                         distrseq.push_back(expair(i->rest, ex_to<numeric>(i->coeff).mul_dyn(ex_to<numeric>(add2.overall_coeff))));
966                                 }
967
968                                 // Compute the new overall coefficient and put it together:
969                                 ex tmp_accu = (new add(distrseq, add1.overall_coeff*add2.overall_coeff))->setflag(status_flags::dynallocated);
970
971                                 exvector add1_dummy_indices, add2_dummy_indices, add_indices;
972
973                                 for (epvector::const_iterator i=add1begin; i!=add1end; ++i) {
974                                         add_indices = get_all_dummy_indices(i->rest);
975                                         add1_dummy_indices.insert(add1_dummy_indices.end(), add_indices.begin(), add_indices.end());
976                                 }
977                                 for (epvector::const_iterator i=add2begin; i!=add2end; ++i) {
978                                         add_indices = get_all_dummy_indices(i->rest);
979                                         add2_dummy_indices.insert(add2_dummy_indices.end(), add_indices.begin(), add_indices.end());
980                                 }
981
982                                 sort(add1_dummy_indices.begin(), add1_dummy_indices.end(), ex_is_less());
983                                 sort(add2_dummy_indices.begin(), add2_dummy_indices.end(), ex_is_less());
984                                 lst dummy_subs = rename_dummy_indices_uniquely(add1_dummy_indices, add2_dummy_indices);
985
986                                 // Multiply explicitly all non-numeric terms of add1 and add2:
987                                 for (epvector::const_iterator i2=add2begin; i2!=add2end; ++i2) {
988                                         // We really have to combine terms here in order to compactify
989                                         // the result.  Otherwise it would become waayy tooo bigg.
990                                         numeric oc;
991                                         distrseq.clear();
992                                         ex i2_new = (dummy_subs.op(0).nops()>0? 
993                                                                  i2->rest.subs((lst)dummy_subs.op(0), (lst)dummy_subs.op(1), subs_options::no_pattern) : i2->rest);
994                                         for (epvector::const_iterator i1=add1begin; i1!=add1end; ++i1) {
995                                                 // Don't push_back expairs which might have a rest that evaluates to a numeric,
996                                                 // since that would violate an invariant of expairseq:
997                                                 const ex rest = (new mul(i1->rest, i2_new))->setflag(status_flags::dynallocated);
998                                                 if (is_exactly_a<numeric>(rest)) {
999                                                         oc += ex_to<numeric>(rest).mul(ex_to<numeric>(i1->coeff).mul(ex_to<numeric>(i2->coeff)));
1000                                                 } else {
1001                                                         distrseq.push_back(expair(rest, ex_to<numeric>(i1->coeff).mul_dyn(ex_to<numeric>(i2->coeff))));
1002                                                 }
1003                                         }
1004                                         tmp_accu += (new add(distrseq, oc))->setflag(status_flags::dynallocated);
1005                                 }
1006                                 last_expanded = tmp_accu;
1007
1008                         } else {
1009                                 if (!last_expanded.is_equal(_ex1))
1010                                         non_adds.push_back(split_ex_to_pair(last_expanded));
1011                                 last_expanded = cit->rest;
1012                         }
1013
1014                 } else {
1015                         non_adds.push_back(*cit);
1016                 }
1017         }
1018
1019         // Now the only remaining thing to do is to multiply the factors which
1020         // were not sums into the "last_expanded" sum
1021         if (is_exactly_a<add>(last_expanded)) {
1022                 size_t n = last_expanded.nops();
1023                 exvector distrseq;
1024                 distrseq.reserve(n);
1025                 exvector va = get_all_dummy_indices(mul(non_adds));
1026                 sort(va.begin(), va.end(), ex_is_less());
1027
1028                 for (size_t i=0; i<n; ++i) {
1029                         epvector factors = non_adds;
1030                         factors.push_back(split_ex_to_pair(rename_dummy_indices_uniquely(va, last_expanded.op(i))));
1031                         ex term = (new mul(factors, overall_coeff))->setflag(status_flags::dynallocated);
1032                         if (can_be_further_expanded(term)) {
1033                                 distrseq.push_back(term.expand());
1034                         } else {
1035                                 if (options == 0)
1036                                         ex_to<basic>(term).setflag(status_flags::expanded);
1037                                 distrseq.push_back(term);
1038                         }
1039                 }
1040
1041                 return ((new add(distrseq))->
1042                         setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)));
1043         }
1044
1045         non_adds.push_back(split_ex_to_pair(last_expanded));
1046         ex result = (new mul(non_adds, overall_coeff))->setflag(status_flags::dynallocated);
1047         if (can_be_further_expanded(result)) {
1048                 return result.expand();
1049         } else {
1050                 if (options == 0)
1051                         ex_to<basic>(result).setflag(status_flags::expanded);
1052                 return result;
1053         }
1054 }
1055
1056   
1057 //////////
1058 // new virtual functions which can be overridden by derived classes
1059 //////////
1060
1061 // none
1062
1063 //////////
1064 // non-virtual functions in this class
1065 //////////
1066
1067
1068 /** Member-wise expand the expairs representing this sequence.  This must be
1069  *  overridden from expairseq::expandchildren() and done iteratively in order
1070  *  to allow for early cancallations and thus safe memory.
1071  *
1072  *  @see mul::expand()
1073  *  @return pointer to epvector containing expanded representation or zero
1074  *  pointer, if sequence is unchanged. */
1075 std::auto_ptr<epvector> mul::expandchildren(unsigned options) const
1076 {
1077         const epvector::const_iterator last = seq.end();
1078         epvector::const_iterator cit = seq.begin();
1079         while (cit!=last) {
1080                 const ex & factor = recombine_pair_to_ex(*cit);
1081                 const ex & expanded_factor = factor.expand(options);
1082                 if (!are_ex_trivially_equal(factor,expanded_factor)) {
1083                         
1084                         // something changed, copy seq, eval and return it
1085                         std::auto_ptr<epvector> s(new epvector);
1086                         s->reserve(seq.size());
1087                         
1088                         // copy parts of seq which are known not to have changed
1089                         epvector::const_iterator cit2 = seq.begin();
1090                         while (cit2!=cit) {
1091                                 s->push_back(*cit2);
1092                                 ++cit2;
1093                         }
1094
1095                         // copy first changed element
1096                         s->push_back(split_ex_to_pair(expanded_factor));
1097                         ++cit2;
1098
1099                         // copy rest
1100                         while (cit2!=last) {
1101                                 s->push_back(split_ex_to_pair(recombine_pair_to_ex(*cit2).expand(options)));
1102                                 ++cit2;
1103                         }
1104                         return s;
1105                 }
1106                 ++cit;
1107         }
1108         
1109         return std::auto_ptr<epvector>(0); // nothing has changed
1110 }
1111
1112 } // namespace GiNaC