]> www.ginac.de Git - ginac.git/blob - ginac/inifcns_nstdsums.cpp
Added internal code for multivariate factorization.
[ginac.git] / ginac / inifcns_nstdsums.cpp
1 /** @file inifcns_nstdsums.cpp
2  *
3  *  Implementation of some special functions that have a representation as nested sums.
4  *
5  *  The functions are:
6  *    classical polylogarithm              Li(n,x)
7  *    multiple polylogarithm               Li(lst(m_1,...,m_k),lst(x_1,...,x_k))
8  *                                         G(lst(a_1,...,a_k),y) or G(lst(a_1,...,a_k),lst(s_1,...,s_k),y)
9  *    Nielsen's generalized polylogarithm  S(n,p,x)
10  *    harmonic polylogarithm               H(m,x) or H(lst(m_1,...,m_k),x)
11  *    multiple zeta value                  zeta(m) or zeta(lst(m_1,...,m_k))
12  *    alternating Euler sum                zeta(m,s) or zeta(lst(m_1,...,m_k),lst(s_1,...,s_k))
13  *
14  *  Some remarks:
15  *
16  *    - All formulae used can be looked up in the following publications:
17  *      [Kol] Nielsen's Generalized Polylogarithms, K.S.Kolbig, SIAM J.Math.Anal. 17 (1986), pp. 1232-1258.
18  *      [Cra] Fast Evaluation of Multiple Zeta Sums, R.E.Crandall, Math.Comp. 67 (1998), pp. 1163-1172.
19  *      [ReV] Harmonic Polylogarithms, E.Remiddi, J.A.M.Vermaseren, Int.J.Mod.Phys. A15 (2000), pp. 725-754
20  *      [BBB] Special Values of Multiple Polylogarithms, J.Borwein, D.Bradley, D.Broadhurst, P.Lisonek, Trans.Amer.Math.Soc. 353/3 (2001), pp. 907-941
21  *      [VSW] Numerical evaluation of multiple polylogarithms, J.Vollinga, S.Weinzierl, hep-ph/0410259
22  *
23  *    - The order of parameters and arguments of Li and zeta is defined according to the nested sums
24  *      representation. The parameters for H are understood as in [ReV]. They can be in expanded --- only
25  *      0, 1 and -1 --- or in compactified --- a string with zeros in front of 1 or -1 is written as a single
26  *      number --- notation.
27  *
28  *    - All functions can be nummerically evaluated with arguments in the whole complex plane. The parameters
29  *      for Li, zeta and S must be positive integers. If you want to have an alternating Euler sum, you have
30  *      to give the signs of the parameters as a second argument s to zeta(m,s) containing 1 and -1.
31  *
32  *    - The calculation of classical polylogarithms is speeded up by using Bernoulli numbers and 
33  *      look-up tables. S uses look-up tables as well. The zeta function applies the algorithms in
34  *      [Cra] and [BBB] for speed up. Multiple polylogarithms use Hoelder convolution [BBB].
35  *
36  *    - The functions have no means to do a series expansion into nested sums. To do this, you have to convert
37  *      these functions into the appropriate objects from the nestedsums library, do the expansion and convert
38  *      the result back.
39  *
40  *    - Numerical testing of this implementation has been performed by doing a comparison of results
41  *      between this software and the commercial M.......... 4.1. Multiple zeta values have been checked
42  *      by means of evaluations into simple zeta values. Harmonic polylogarithms have been checked by
43  *      comparison to S(n,p,x) for corresponding parameter combinations and by continuity checks
44  *      around |x|=1 along with comparisons to corresponding zeta functions. Multiple polylogarithms were
45  *      checked against H and zeta and by means of shuffle and quasi-shuffle relations.
46  *
47  */
48
49 /*
50  *  GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
51  *
52  *  This program is free software; you can redistribute it and/or modify
53  *  it under the terms of the GNU General Public License as published by
54  *  the Free Software Foundation; either version 2 of the License, or
55  *  (at your option) any later version.
56  *
57  *  This program is distributed in the hope that it will be useful,
58  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
59  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
60  *  GNU General Public License for more details.
61  *
62  *  You should have received a copy of the GNU General Public License
63  *  along with this program; if not, write to the Free Software
64  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
65  */
66
67 #include <sstream>
68 #include <stdexcept>
69 #include <vector>
70 #include <cln/cln.h>
71
72 #include "inifcns.h"
73
74 #include "add.h"
75 #include "constant.h"
76 #include "lst.h"
77 #include "mul.h"
78 #include "numeric.h"
79 #include "operators.h"
80 #include "power.h"
81 #include "pseries.h"
82 #include "relational.h"
83 #include "symbol.h"
84 #include "utils.h"
85 #include "wildcard.h"
86
87
88 namespace GiNaC {
89
90
91 //////////////////////////////////////////////////////////////////////
92 //
93 // Classical polylogarithm  Li(n,x)
94 //
95 // helper functions
96 //
97 //////////////////////////////////////////////////////////////////////
98
99
100 // anonymous namespace for helper functions
101 namespace {
102
103
104 // lookup table for factors built from Bernoulli numbers
105 // see fill_Xn()
106 std::vector<std::vector<cln::cl_N> > Xn;
107 // initial size of Xn that should suffice for 32bit machines (must be even)
108 const int xninitsizestep = 26;
109 int xninitsize = xninitsizestep;
110 int xnsize = 0;
111
112
113 // This function calculates the X_n. The X_n are needed for speed up of classical polylogarithms.
114 // With these numbers the polylogs can be calculated as follows:
115 //   Li_p (x)  =  \sum_{n=0}^\infty X_{p-2}(n) u^{n+1}/(n+1)! with  u = -log(1-x)
116 //   X_0(n) = B_n (Bernoulli numbers)
117 //   X_p(n) = \sum_{k=0}^n binomial(n,k) B_{n-k} / (k+1) * X_{p-1}(k)
118 // The calculation of Xn depends on X0 and X{n-1}.
119 // X_0 is special, it holds only the non-zero Bernoulli numbers with index 2 or greater.
120 // This results in a slightly more complicated algorithm for the X_n.
121 // The first index in Xn corresponds to the index of the polylog minus 2.
122 // The second index in Xn corresponds to the index from the actual sum.
123 void fill_Xn(int n)
124 {
125         if (n>1) {
126                 // calculate X_2 and higher (corresponding to Li_4 and higher)
127                 std::vector<cln::cl_N> buf(xninitsize);
128                 std::vector<cln::cl_N>::iterator it = buf.begin();
129                 cln::cl_N result;
130                 *it = -(cln::expt(cln::cl_I(2),n+1) - 1) / cln::expt(cln::cl_I(2),n+1); // i == 1
131                 it++;
132                 for (int i=2; i<=xninitsize; i++) {
133                         if (i&1) {
134                                 result = 0; // k == 0
135                         } else {
136                                 result = Xn[0][i/2-1]; // k == 0
137                         }
138                         for (int k=1; k<i-1; k++) {
139                                 if ( !(((i-k) & 1) && ((i-k) > 1)) ) {
140                                         result = result + cln::binomial(i,k) * Xn[0][(i-k)/2-1] * Xn[n-1][k-1] / (k+1);
141                                 }
142                         }
143                         result = result - cln::binomial(i,i-1) * Xn[n-1][i-2] / 2 / i; // k == i-1
144                         result = result + Xn[n-1][i-1] / (i+1); // k == i
145                         
146                         *it = result;
147                         it++;
148                 }
149                 Xn.push_back(buf);
150         } else if (n==1) {
151                 // special case to handle the X_0 correct
152                 std::vector<cln::cl_N> buf(xninitsize);
153                 std::vector<cln::cl_N>::iterator it = buf.begin();
154                 cln::cl_N result;
155                 *it = cln::cl_I(-3)/cln::cl_I(4); // i == 1
156                 it++;
157                 *it = cln::cl_I(17)/cln::cl_I(36); // i == 2
158                 it++;
159                 for (int i=3; i<=xninitsize; i++) {
160                         if (i & 1) {
161                                 result = -Xn[0][(i-3)/2]/2;
162                                 *it = (cln::binomial(i,1)/cln::cl_I(2) + cln::binomial(i,i-1)/cln::cl_I(i))*result;
163                                 it++;
164                         } else {
165                                 result = Xn[0][i/2-1] + Xn[0][i/2-1]/(i+1);
166                                 for (int k=1; k<i/2; k++) {
167                                         result = result + cln::binomial(i,k*2) * Xn[0][k-1] * Xn[0][i/2-k-1] / (k*2+1);
168                                 }
169                                 *it = result;
170                                 it++;
171                         }
172                 }
173                 Xn.push_back(buf);
174         } else {
175                 // calculate X_0
176                 std::vector<cln::cl_N> buf(xninitsize/2);
177                 std::vector<cln::cl_N>::iterator it = buf.begin();
178                 for (int i=1; i<=xninitsize/2; i++) {
179                         *it = bernoulli(i*2).to_cl_N();
180                         it++;
181                 }
182                 Xn.push_back(buf);
183         }
184
185         xnsize++;
186 }
187
188 // doubles the number of entries in each Xn[]
189 void double_Xn()
190 {
191         const int pos0 = xninitsize / 2;
192         // X_0
193         for (int i=1; i<=xninitsizestep/2; ++i) {
194                 Xn[0].push_back(bernoulli((i+pos0)*2).to_cl_N());
195         }
196         if (Xn.size() > 1) {
197                 int xend = xninitsize + xninitsizestep;
198                 cln::cl_N result;
199                 // X_1
200                 for (int i=xninitsize+1; i<=xend; ++i) {
201                         if (i & 1) {
202                                 result = -Xn[0][(i-3)/2]/2;
203                                 Xn[1].push_back((cln::binomial(i,1)/cln::cl_I(2) + cln::binomial(i,i-1)/cln::cl_I(i))*result);
204                         } else {
205                                 result = Xn[0][i/2-1] + Xn[0][i/2-1]/(i+1);
206                                 for (int k=1; k<i/2; k++) {
207                                         result = result + cln::binomial(i,k*2) * Xn[0][k-1] * Xn[0][i/2-k-1] / (k*2+1);
208                                 }
209                                 Xn[1].push_back(result);
210                         }
211                 }
212                 // X_n
213                 for (int n=2; n<Xn.size(); ++n) {
214                         for (int i=xninitsize+1; i<=xend; ++i) {
215                                 if (i & 1) {
216                                         result = 0; // k == 0
217                                 } else {
218                                         result = Xn[0][i/2-1]; // k == 0
219                                 }
220                                 for (int k=1; k<i-1; ++k) {
221                                         if ( !(((i-k) & 1) && ((i-k) > 1)) ) {
222                                                 result = result + cln::binomial(i,k) * Xn[0][(i-k)/2-1] * Xn[n-1][k-1] / (k+1);
223                                         }
224                                 }
225                                 result = result - cln::binomial(i,i-1) * Xn[n-1][i-2] / 2 / i; // k == i-1
226                                 result = result + Xn[n-1][i-1] / (i+1); // k == i
227                                 Xn[n].push_back(result);
228                         }
229                 }
230         }
231         xninitsize += xninitsizestep;
232 }
233
234
235 // calculates Li(2,x) without Xn
236 cln::cl_N Li2_do_sum(const cln::cl_N& x)
237 {
238         cln::cl_N res = x;
239         cln::cl_N resbuf;
240         cln::cl_N num = x * cln::cl_float(1, cln::float_format(Digits));
241         cln::cl_I den = 1; // n^2 = 1
242         unsigned i = 3;
243         do {
244                 resbuf = res;
245                 num = num * x;
246                 den = den + i;  // n^2 = 4, 9, 16, ...
247                 i += 2;
248                 res = res + num / den;
249         } while (res != resbuf);
250         return res;
251 }
252
253
254 // calculates Li(2,x) with Xn
255 cln::cl_N Li2_do_sum_Xn(const cln::cl_N& x)
256 {
257         std::vector<cln::cl_N>::const_iterator it = Xn[0].begin();
258         std::vector<cln::cl_N>::const_iterator xend = Xn[0].end();
259         cln::cl_N u = -cln::log(1-x);
260         cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
261         cln::cl_N uu = cln::square(u);
262         cln::cl_N res = u - uu/4;
263         cln::cl_N resbuf;
264         unsigned i = 1;
265         do {
266                 resbuf = res;
267                 factor = factor * uu / (2*i * (2*i+1));
268                 res = res + (*it) * factor;
269                 i++;
270                 if (++it == xend) {
271                         double_Xn();
272                         it = Xn[0].begin() + (i-1);
273                         xend = Xn[0].end();
274                 }
275         } while (res != resbuf);
276         return res;
277 }
278
279
280 // calculates Li(n,x), n>2 without Xn
281 cln::cl_N Lin_do_sum(int n, const cln::cl_N& x)
282 {
283         cln::cl_N factor = x * cln::cl_float(1, cln::float_format(Digits));
284         cln::cl_N res = x;
285         cln::cl_N resbuf;
286         int i=2;
287         do {
288                 resbuf = res;
289                 factor = factor * x;
290                 res = res + factor / cln::expt(cln::cl_I(i),n);
291                 i++;
292         } while (res != resbuf);
293         return res;
294 }
295
296
297 // calculates Li(n,x), n>2 with Xn
298 cln::cl_N Lin_do_sum_Xn(int n, const cln::cl_N& x)
299 {
300         std::vector<cln::cl_N>::const_iterator it = Xn[n-2].begin();
301         std::vector<cln::cl_N>::const_iterator xend = Xn[n-2].end();
302         cln::cl_N u = -cln::log(1-x);
303         cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
304         cln::cl_N res = u;
305         cln::cl_N resbuf;
306         unsigned i=2;
307         do {
308                 resbuf = res;
309                 factor = factor * u / i;
310                 res = res + (*it) * factor;
311                 i++;
312                 if (++it == xend) {
313                         double_Xn();
314                         it = Xn[n-2].begin() + (i-2);
315                         xend = Xn[n-2].end();
316                 }
317         } while (res != resbuf);
318         return res;
319 }
320
321
322 // forward declaration needed by function Li_projection and C below
323 const cln::cl_N S_num(int n, int p, const cln::cl_N& x);
324
325
326 // helper function for classical polylog Li
327 cln::cl_N Li_projection(int n, const cln::cl_N& x, const cln::float_format_t& prec)
328 {
329         // treat n=2 as special case
330         if (n == 2) {
331                 // check if precalculated X0 exists
332                 if (xnsize == 0) {
333                         fill_Xn(0);
334                 }
335
336                 if (cln::realpart(x) < 0.5) {
337                         // choose the faster algorithm
338                         // the switching point was empirically determined. the optimal point
339                         // depends on hardware, Digits, ... so an approx value is okay.
340                         // it solves also the problem with precision due to the u=-log(1-x) transformation
341                         if (cln::abs(cln::realpart(x)) < 0.25) {
342                                 
343                                 return Li2_do_sum(x);
344                         } else {
345                                 return Li2_do_sum_Xn(x);
346                         }
347                 } else {
348                         // choose the faster algorithm
349                         if (cln::abs(cln::realpart(x)) > 0.75) {
350                                 return -Li2_do_sum(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
351                         } else {
352                                 return -Li2_do_sum_Xn(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
353                         }
354                 }
355         } else {
356                 // check if precalculated Xn exist
357                 if (n > xnsize+1) {
358                         for (int i=xnsize; i<n-1; i++) {
359                                 fill_Xn(i);
360                         }
361                 }
362
363                 if (cln::realpart(x) < 0.5) {
364                         // choose the faster algorithm
365                         // with n>=12 the "normal" summation always wins against the method with Xn
366                         if ((cln::abs(cln::realpart(x)) < 0.3) || (n >= 12)) {
367                                 return Lin_do_sum(n, x);
368                         } else {
369                                 return Lin_do_sum_Xn(n, x);
370                         }
371                 } else {
372                         cln::cl_N result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
373                         for (int j=0; j<n-1; j++) {
374                                 result = result + (S_num(n-j-1, 1, 1) - S_num(1, n-j-1, 1-x))
375                                                   * cln::expt(cln::log(x), j) / cln::factorial(j);
376                         }
377                         return result;
378                 }
379         }
380 }
381
382 // helper function for classical polylog Li
383 const cln::cl_N Lin_numeric(const int n, const cln::cl_N& x)
384 {
385         if (n == 1) {
386                 // just a log
387                 return -cln::log(1-x);
388         }
389         if (zerop(x)) {
390                 return 0;
391         }
392         if (x == 1) {
393                 // [Kol] (2.22)
394                 return cln::zeta(n);
395         }
396         else if (x == -1) {
397                 // [Kol] (2.22)
398                 return -(1-cln::expt(cln::cl_I(2),1-n)) * cln::zeta(n);
399         }
400         if (cln::abs(realpart(x)) < 0.4 && cln::abs(cln::abs(x)-1) < 0.01) {
401                 cln::cl_N result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
402                 for (int j=0; j<n-1; j++) {
403                         result = result + (S_num(n-j-1, 1, 1) - S_num(1, n-j-1, 1-x))
404                                 * cln::expt(cln::log(x), j) / cln::factorial(j);
405                 }
406                 return result;
407         }
408
409         // what is the desired float format?
410         // first guess: default format
411         cln::float_format_t prec = cln::default_float_format;
412         const cln::cl_N value = x;
413         // second guess: the argument's format
414         if (!instanceof(realpart(x), cln::cl_RA_ring))
415                 prec = cln::float_format(cln::the<cln::cl_F>(cln::realpart(value)));
416         else if (!instanceof(imagpart(x), cln::cl_RA_ring))
417                 prec = cln::float_format(cln::the<cln::cl_F>(cln::imagpart(value)));
418         
419         // [Kol] (5.15)
420         if (cln::abs(value) > 1) {
421                 cln::cl_N result = -cln::expt(cln::log(-value),n) / cln::factorial(n);
422                 // check if argument is complex. if it is real, the new polylog has to be conjugated.
423                 if (cln::zerop(cln::imagpart(value))) {
424                         if (n & 1) {
425                                 result = result + conjugate(Li_projection(n, cln::recip(value), prec));
426                         }
427                         else {
428                                 result = result - conjugate(Li_projection(n, cln::recip(value), prec));
429                         }
430                 }
431                 else {
432                         if (n & 1) {
433                                 result = result + Li_projection(n, cln::recip(value), prec);
434                         }
435                         else {
436                                 result = result - Li_projection(n, cln::recip(value), prec);
437                         }
438                 }
439                 cln::cl_N add;
440                 for (int j=0; j<n-1; j++) {
441                         add = add + (1+cln::expt(cln::cl_I(-1),n-j)) * (1-cln::expt(cln::cl_I(2),1-n+j))
442                                     * Lin_numeric(n-j,1) * cln::expt(cln::log(-value),j) / cln::factorial(j);
443                 }
444                 result = result - add;
445                 return result;
446         }
447         else {
448                 return Li_projection(n, value, prec);
449         }
450 }
451
452
453 } // end of anonymous namespace
454
455
456 //////////////////////////////////////////////////////////////////////
457 //
458 // Multiple polylogarithm  Li(n,x)
459 //
460 // helper function
461 //
462 //////////////////////////////////////////////////////////////////////
463
464
465 // anonymous namespace for helper function
466 namespace {
467
468
469 // performs the actual series summation for multiple polylogarithms
470 cln::cl_N multipleLi_do_sum(const std::vector<int>& s, const std::vector<cln::cl_N>& x)
471 {
472         // ensure all x <> 0.
473         for (std::vector<cln::cl_N>::const_iterator it = x.begin(); it != x.end(); ++it) {
474                 if ( *it == 0 ) return cln::cl_float(0, cln::float_format(Digits));
475         }
476
477         const int j = s.size();
478         bool flag_accidental_zero = false;
479
480         std::vector<cln::cl_N> t(j);
481         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
482
483         cln::cl_N t0buf;
484         int q = 0;
485         do {
486                 t0buf = t[0];
487                 q++;
488                 t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
489                 for (int k=j-2; k>=0; k--) {
490                         t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
491                 }
492                 q++;
493                 t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
494                 for (int k=j-2; k>=0; k--) {
495                         flag_accidental_zero = cln::zerop(t[k+1]);
496                         t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
497                 }
498         } while ( (t[0] != t0buf) || cln::zerop(t[0]) || flag_accidental_zero );
499
500         return t[0];
501 }
502
503
504 // converts parameter types and calls multipleLi_do_sum (convenience function for G_numeric)
505 cln::cl_N mLi_do_summation(const lst& m, const lst& x)
506 {
507         std::vector<int> m_int;
508         std::vector<cln::cl_N> x_cln;
509         for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
510                 m_int.push_back(ex_to<numeric>(*itm).to_int());
511                 x_cln.push_back(ex_to<numeric>(*itx).to_cl_N());
512         }
513         return multipleLi_do_sum(m_int, x_cln);
514 }
515
516
517 // forward declaration for Li_eval()
518 lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf);
519
520
521 // type used by the transformation functions for G
522 typedef std::vector<int> Gparameter;
523
524
525 // G_eval1-function for G transformations
526 ex G_eval1(int a, int scale, const exvector& gsyms)
527 {
528         if (a != 0) {
529                 const ex& scs = gsyms[std::abs(scale)];
530                 const ex& as = gsyms[std::abs(a)];
531                 if (as != scs) {
532                         return -log(1 - scs/as);
533                 } else {
534                         return -zeta(1);
535                 }
536         } else {
537                 return log(gsyms[std::abs(scale)]);
538         }
539 }
540
541
542 // G_eval-function for G transformations
543 ex G_eval(const Gparameter& a, int scale, const exvector& gsyms)
544 {
545         // check for properties of G
546         ex sc = gsyms[std::abs(scale)];
547         lst newa;
548         bool all_zero = true;
549         bool all_ones = true;
550         int count_ones = 0;
551         for (Gparameter::const_iterator it = a.begin(); it != a.end(); ++it) {
552                 if (*it != 0) {
553                         const ex sym = gsyms[std::abs(*it)];
554                         newa.append(sym);
555                         all_zero = false;
556                         if (sym != sc) {
557                                 all_ones = false;
558                         }
559                         if (all_ones) {
560                                 ++count_ones;
561                         }
562                 } else {
563                         all_ones = false;
564                 }
565         }
566
567         // care about divergent G: shuffle to separate divergencies that will be canceled
568         // later on in the transformation
569         if (newa.nops() > 1 && newa.op(0) == sc && !all_ones && a.front()!=0) {
570                 // do shuffle
571                 Gparameter short_a;
572                 Gparameter::const_iterator it = a.begin();
573                 ++it;
574                 for (; it != a.end(); ++it) {
575                         short_a.push_back(*it);
576                 }
577                 ex result = G_eval1(a.front(), scale, gsyms) * G_eval(short_a, scale, gsyms);
578                 it = short_a.begin();
579                 for (int i=1; i<count_ones; ++i) {
580                         ++it;
581                 }
582                 for (; it != short_a.end(); ++it) {
583
584                         Gparameter newa;
585                         Gparameter::const_iterator it2 = short_a.begin();
586                         for (--it2; it2 != it;) {
587                                 ++it2;
588                                 newa.push_back(*it2);
589                         }
590                         newa.push_back(a[0]);
591                         ++it2;
592                         for (; it2 != short_a.end(); ++it2) {
593                                 newa.push_back(*it2);   
594                         }
595                         result -= G_eval(newa, scale, gsyms);
596                 }
597                 return result / count_ones;
598         }
599
600         // G({1,...,1};y) -> G({1};y)^k / k!
601         if (all_ones && a.size() > 1) {
602                 return pow(G_eval1(a.front(),scale, gsyms), count_ones) / factorial(count_ones);
603         }
604
605         // G({0,...,0};y) -> log(y)^k / k!
606         if (all_zero) {
607                 return pow(log(gsyms[std::abs(scale)]), a.size()) / factorial(a.size());
608         }
609
610         // no special cases anymore -> convert it into Li
611         lst m;
612         lst x;
613         ex argbuf = gsyms[std::abs(scale)];
614         ex mval = _ex1;
615         for (Gparameter::const_iterator it=a.begin(); it!=a.end(); ++it) {
616                 if (*it != 0) {
617                         const ex& sym = gsyms[std::abs(*it)];
618                         x.append(argbuf / sym);
619                         m.append(mval);
620                         mval = _ex1;
621                         argbuf = sym;
622                 } else {
623                         ++mval;
624                 }
625         }
626         return pow(-1, x.nops()) * Li(m, x);
627 }
628
629
630 // converts data for G: pending_integrals -> a
631 Gparameter convert_pending_integrals_G(const Gparameter& pending_integrals)
632 {
633         GINAC_ASSERT(pending_integrals.size() != 1);
634
635         if (pending_integrals.size() > 0) {
636                 // get rid of the first element, which would stand for the new upper limit
637                 Gparameter new_a(pending_integrals.begin()+1, pending_integrals.end());
638                 return new_a;
639         } else {
640                 // just return empty parameter list
641                 Gparameter new_a;
642                 return new_a;
643         }
644 }
645
646
647 // check the parameters a and scale for G and return information about convergence, depth, etc.
648 // convergent     : true if G(a,scale) is convergent
649 // depth          : depth of G(a,scale)
650 // trailing_zeros : number of trailing zeros of a
651 // min_it         : iterator of a pointing on the smallest element in a
652 Gparameter::const_iterator check_parameter_G(const Gparameter& a, int scale,
653                 bool& convergent, int& depth, int& trailing_zeros, Gparameter::const_iterator& min_it)
654 {
655         convergent = true;
656         depth = 0;
657         trailing_zeros = 0;
658         min_it = a.end();
659         Gparameter::const_iterator lastnonzero = a.end();
660         for (Gparameter::const_iterator it = a.begin(); it != a.end(); ++it) {
661                 if (std::abs(*it) > 0) {
662                         ++depth;
663                         trailing_zeros = 0;
664                         lastnonzero = it;
665                         if (std::abs(*it) < scale) {
666                                 convergent = false;
667                                 if ((min_it == a.end()) || (std::abs(*it) < std::abs(*min_it))) {
668                                         min_it = it;
669                                 }
670                         }
671                 } else {
672                         ++trailing_zeros;
673                 }
674         }
675         return ++lastnonzero;
676 }
677
678
679 // add scale to pending_integrals if pending_integrals is empty
680 Gparameter prepare_pending_integrals(const Gparameter& pending_integrals, int scale)
681 {
682         GINAC_ASSERT(pending_integrals.size() != 1);
683
684         if (pending_integrals.size() > 0) {
685                 return pending_integrals;
686         } else {
687                 Gparameter new_pending_integrals;
688                 new_pending_integrals.push_back(scale);
689                 return new_pending_integrals;
690         }
691 }
692
693
694 // handles trailing zeroes for an otherwise convergent integral
695 ex trailing_zeros_G(const Gparameter& a, int scale, const exvector& gsyms)
696 {
697         bool convergent;
698         int depth, trailing_zeros;
699         Gparameter::const_iterator last, dummyit;
700         last = check_parameter_G(a, scale, convergent, depth, trailing_zeros, dummyit);
701
702         GINAC_ASSERT(convergent);
703
704         if ((trailing_zeros > 0) && (depth > 0)) {
705                 ex result;
706                 Gparameter new_a(a.begin(), a.end()-1);
707                 result += G_eval1(0, scale, gsyms) * trailing_zeros_G(new_a, scale, gsyms);
708                 for (Gparameter::const_iterator it = a.begin(); it != last; ++it) {
709                         Gparameter new_a(a.begin(), it);
710                         new_a.push_back(0);
711                         new_a.insert(new_a.end(), it, a.end()-1);
712                         result -= trailing_zeros_G(new_a, scale, gsyms);
713                 }
714
715                 return result / trailing_zeros;
716         } else {
717                 return G_eval(a, scale, gsyms);
718         }
719 }
720
721
722 // G transformation [VSW] (57),(58)
723 ex depth_one_trafo_G(const Gparameter& pending_integrals, const Gparameter& a, int scale, const exvector& gsyms)
724 {
725         // pendint = ( y1, b1, ..., br )
726         //       a = ( 0, ..., 0, amin )
727         //   scale = y2
728         //
729         // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(0, ..., 0, sr; y2)
730         // where sr replaces amin
731
732         GINAC_ASSERT(a.back() != 0);
733         GINAC_ASSERT(a.size() > 0);
734
735         ex result;
736         Gparameter new_pending_integrals = prepare_pending_integrals(pending_integrals, std::abs(a.back()));
737         const int psize = pending_integrals.size();
738
739         // length == 1
740         // G(sr_{+-}; y2 ) = G(y2_{-+}; sr) - G(0; sr) + ln(-y2_{-+})
741
742         if (a.size() == 1) {
743
744           // ln(-y2_{-+})
745           result += log(gsyms[ex_to<numeric>(scale).to_int()]);
746                 if (a.back() > 0) {
747                         new_pending_integrals.push_back(-scale);
748                         result += I*Pi;
749                 } else {
750                         new_pending_integrals.push_back(scale);
751                         result -= I*Pi;
752                 }
753                 if (psize) {
754                         result *= trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
755                                                    pending_integrals.front(),
756                                                    gsyms);
757                 }
758                 
759                 // G(y2_{-+}; sr)
760                 result += trailing_zeros_G(convert_pending_integrals_G(new_pending_integrals),
761                                            new_pending_integrals.front(),
762                                            gsyms);
763                 
764                 // G(0; sr)
765                 new_pending_integrals.back() = 0;
766                 result -= trailing_zeros_G(convert_pending_integrals_G(new_pending_integrals),
767                                            new_pending_integrals.front(),
768                                            gsyms);
769
770                 return result;
771         }
772
773         // length > 1
774         // G_m(sr_{+-}; y2) = -zeta_m + int_0^y2 dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
775         //                            - int_0^sr dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
776
777         //term zeta_m
778         result -= zeta(a.size());
779         if (psize) {
780                 result *= trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
781                                            pending_integrals.front(),
782                                            gsyms);
783         }
784         
785         // term int_0^sr dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
786         //    = int_0^sr dt/t G_{m-1}( t_{+-}; y2 )
787         Gparameter new_a(a.begin()+1, a.end());
788         new_pending_integrals.push_back(0);
789         result -= depth_one_trafo_G(new_pending_integrals, new_a, scale, gsyms);
790         
791         // term int_0^y2 dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
792         //    = int_0^y2 dt/t G_{m-1}( t_{+-}; y2 )
793         Gparameter new_pending_integrals_2;
794         new_pending_integrals_2.push_back(scale);
795         new_pending_integrals_2.push_back(0);
796         if (psize) {
797                 result += trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
798                                            pending_integrals.front(),
799                                            gsyms)
800                           * depth_one_trafo_G(new_pending_integrals_2, new_a, scale, gsyms);
801         } else {
802                 result += depth_one_trafo_G(new_pending_integrals_2, new_a, scale, gsyms);
803         }
804
805         return result;
806 }
807
808
809 // forward declaration
810 ex shuffle_G(const Gparameter & a0, const Gparameter & a1, const Gparameter & a2,
811              const Gparameter& pendint, const Gparameter& a_old, int scale,
812              const exvector& gsyms);
813
814
815 // G transformation [VSW]
816 ex G_transform(const Gparameter& pendint, const Gparameter& a, int scale,
817                const exvector& gsyms)
818 {
819         // main recursion routine
820         //
821         // pendint = ( y1, b1, ..., br )
822         //       a = ( a1, ..., amin, ..., aw )
823         //   scale = y2
824         //
825         // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,sr,...,aw,y2)
826         // where sr replaces amin
827
828         // find smallest alpha, determine depth and trailing zeros, and check for convergence
829         bool convergent;
830         int depth, trailing_zeros;
831         Gparameter::const_iterator min_it;
832         Gparameter::const_iterator firstzero = 
833                 check_parameter_G(a, scale, convergent, depth, trailing_zeros, min_it);
834         int min_it_pos = min_it - a.begin();
835
836         // special case: all a's are zero
837         if (depth == 0) {
838                 ex result;
839
840                 if (a.size() == 0) {
841                   result = 1;
842                 } else {
843                   result = G_eval(a, scale, gsyms);
844                 }
845                 if (pendint.size() > 0) {
846                   result *= trailing_zeros_G(convert_pending_integrals_G(pendint),
847                                              pendint.front(),
848                                              gsyms);
849                 } 
850                 return result;
851         }
852
853         // handle trailing zeros
854         if (trailing_zeros > 0) {
855                 ex result;
856                 Gparameter new_a(a.begin(), a.end()-1);
857                 result += G_eval1(0, scale, gsyms) * G_transform(pendint, new_a, scale, gsyms);
858                 for (Gparameter::const_iterator it = a.begin(); it != firstzero; ++it) {
859                         Gparameter new_a(a.begin(), it);
860                         new_a.push_back(0);
861                         new_a.insert(new_a.end(), it, a.end()-1);
862                         result -= G_transform(pendint, new_a, scale, gsyms);
863                 }
864                 return result / trailing_zeros;
865         }
866
867         // convergence case
868         if (convergent) {
869                 if (pendint.size() > 0) {
870                         return G_eval(convert_pending_integrals_G(pendint),
871                                       pendint.front(), gsyms)*
872                                 G_eval(a, scale, gsyms);
873                 } else {
874                         return G_eval(a, scale, gsyms);
875                 }
876         }
877
878         // call basic transformation for depth equal one
879         if (depth == 1) {
880                 return depth_one_trafo_G(pendint, a, scale, gsyms);
881         }
882
883         // do recursion
884         // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,sr,...,aw,y2)
885         //  =  int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,0,...,aw,y2)
886         //   + int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) int_0^{sr} ds_{r+1} d/ds_{r+1} G(a1,...,s_{r+1},...,aw,y2)
887
888         // smallest element in last place
889         if (min_it + 1 == a.end()) {
890                 do { --min_it; } while (*min_it == 0);
891                 Gparameter empty;
892                 Gparameter a1(a.begin(),min_it+1);
893                 Gparameter a2(min_it+1,a.end());
894
895                 ex result = G_transform(pendint, a2, scale, gsyms)*
896                         G_transform(empty, a1, scale, gsyms);
897
898                 result -= shuffle_G(empty, a1, a2, pendint, a, scale, gsyms);
899                 return result;
900         }
901
902         Gparameter empty;
903         Gparameter::iterator changeit;
904
905         // first term G(a_1,..,0,...,a_w;a_0)
906         Gparameter new_pendint = prepare_pending_integrals(pendint, a[min_it_pos]);
907         Gparameter new_a = a;
908         new_a[min_it_pos] = 0;
909         ex result = G_transform(empty, new_a, scale, gsyms);
910         if (pendint.size() > 0) {
911                 result *= trailing_zeros_G(convert_pending_integrals_G(pendint),
912                                            pendint.front(), gsyms);
913         }
914
915         // other terms
916         changeit = new_a.begin() + min_it_pos;
917         changeit = new_a.erase(changeit);
918         if (changeit != new_a.begin()) {
919                 // smallest in the middle
920                 new_pendint.push_back(*changeit);
921                 result -= trailing_zeros_G(convert_pending_integrals_G(new_pendint),
922                                            new_pendint.front(), gsyms)*
923                         G_transform(empty, new_a, scale, gsyms);
924                 int buffer = *changeit;
925                 *changeit = *min_it;
926                 result += G_transform(new_pendint, new_a, scale, gsyms);
927                 *changeit = buffer;
928                 new_pendint.pop_back();
929                 --changeit;
930                 new_pendint.push_back(*changeit);
931                 result += trailing_zeros_G(convert_pending_integrals_G(new_pendint),
932                                            new_pendint.front(), gsyms)*
933                         G_transform(empty, new_a, scale, gsyms);
934                 *changeit = *min_it;
935                 result -= G_transform(new_pendint, new_a, scale, gsyms);
936         } else {
937                 // smallest at the front
938                 new_pendint.push_back(scale);
939                 result += trailing_zeros_G(convert_pending_integrals_G(new_pendint),
940                                            new_pendint.front(), gsyms)*
941                         G_transform(empty, new_a, scale, gsyms);
942                 new_pendint.back() =  *changeit;
943                 result -= trailing_zeros_G(convert_pending_integrals_G(new_pendint),
944                                            new_pendint.front(), gsyms)*
945                         G_transform(empty, new_a, scale, gsyms);
946                 *changeit = *min_it;
947                 result += G_transform(new_pendint, new_a, scale, gsyms);
948         }
949         return result;
950 }
951
952
953 // shuffles the two parameter list a1 and a2 and calls G_transform for every term except
954 // for the one that is equal to a_old
955 ex shuffle_G(const Gparameter & a0, const Gparameter & a1, const Gparameter & a2,
956              const Gparameter& pendint, const Gparameter& a_old, int scale,
957              const exvector& gsyms) 
958 {
959         if (a1.size()==0 && a2.size()==0) {
960                 // veto the one configuration we don't want
961                 if ( a0 == a_old ) return 0;
962
963                 return G_transform(pendint, a0, scale, gsyms);
964         }
965
966         if (a2.size()==0) {
967                 Gparameter empty;
968                 Gparameter aa0 = a0;
969                 aa0.insert(aa0.end(),a1.begin(),a1.end());
970                 return shuffle_G(aa0, empty, empty, pendint, a_old, scale, gsyms);
971         }
972
973         if (a1.size()==0) {
974                 Gparameter empty;
975                 Gparameter aa0 = a0;
976                 aa0.insert(aa0.end(),a2.begin(),a2.end());
977                 return shuffle_G(aa0, empty, empty, pendint, a_old, scale, gsyms);
978         }
979
980         Gparameter a1_removed(a1.begin()+1,a1.end());
981         Gparameter a2_removed(a2.begin()+1,a2.end());
982
983         Gparameter a01 = a0;
984         Gparameter a02 = a0;
985
986         a01.push_back( a1[0] );
987         a02.push_back( a2[0] );
988
989         return shuffle_G(a01, a1_removed, a2, pendint, a_old, scale, gsyms)
990              + shuffle_G(a02, a1, a2_removed, pendint, a_old, scale, gsyms);
991 }
992
993
994 // handles the transformations and the numerical evaluation of G
995 // the parameter x, s and y must only contain numerics
996 ex G_numeric(const lst& x, const lst& s, const ex& y)
997 {
998         // check for convergence and necessary accelerations
999         bool need_trafo = false;
1000         bool need_hoelder = false;
1001         int depth = 0;
1002         for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1003                 if (!(*it).is_zero()) {
1004                         ++depth;
1005                         if (abs(*it) - y < -pow(10,-Digits+1)) {
1006                                 need_trafo = true;
1007                         }
1008                         if (abs((abs(*it) - y)/y) < 0.01) {
1009                                 need_hoelder = true;
1010                         }
1011                 }
1012         }
1013         if (x.op(x.nops()-1).is_zero()) {
1014                 need_trafo = true;
1015         }
1016         if (depth == 1 && x.nops() == 2 && !need_trafo) {
1017                 return -Li(x.nops(), y / x.op(x.nops()-1)).evalf();
1018         }
1019         
1020         // do acceleration transformation (hoelder convolution [BBB])
1021         if (need_hoelder) {
1022                 
1023                 ex result;
1024                 const int size = x.nops();
1025                 lst newx;
1026                 for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1027                         newx.append(*it / y);
1028                 }
1029                 
1030                 for (int r=0; r<=size; ++r) {
1031                         ex buffer = pow(-1, r);
1032                         ex p = 2;
1033                         bool adjustp;
1034                         do {
1035                                 adjustp = false;
1036                                 for (lst::const_iterator it = newx.begin(); it != newx.end(); ++it) {
1037                                         if (*it == 1/p) {
1038                                                 p += (3-p)/2; 
1039                                                 adjustp = true;
1040                                                 continue;
1041                                         }
1042                                 }
1043                         } while (adjustp);
1044                         ex q = p / (p-1);
1045                         lst qlstx;
1046                         lst qlsts;
1047                         for (int j=r; j>=1; --j) {
1048                                 qlstx.append(1-newx.op(j-1));
1049                                 if (newx.op(j-1).info(info_flags::real) && newx.op(j-1) > 1 && newx.op(j-1) <= 2) {
1050                                         qlsts.append( s.op(j-1));
1051                                 } else {
1052                                         qlsts.append( -s.op(j-1));
1053                                 }
1054                         }
1055                         if (qlstx.nops() > 0) {
1056                                 buffer *= G_numeric(qlstx, qlsts, 1/q);
1057                         }
1058                         lst plstx;
1059                         lst plsts;
1060                         for (int j=r+1; j<=size; ++j) {
1061                                 plstx.append(newx.op(j-1));
1062                                 plsts.append(s.op(j-1));
1063                         }
1064                         if (plstx.nops() > 0) {
1065                                 buffer *= G_numeric(plstx, plsts, 1/p);
1066                         }
1067                         result += buffer;
1068                 }
1069                 return result;
1070         }
1071         
1072         // convergence transformation
1073         if (need_trafo) {
1074
1075                 // sort (|x|<->position) to determine indices
1076                 std::multimap<ex,int> sortmap;
1077                 int size = 0;
1078                 for (int i=0; i<x.nops(); ++i) {
1079                         if (!x[i].is_zero()) {
1080                                 sortmap.insert(std::pair<ex,int>(abs(x[i]), i));
1081                                 ++size;
1082                         }
1083                 }
1084                 // include upper limit (scale)
1085                 sortmap.insert(std::pair<ex,int>(abs(y), x.nops()));
1086
1087                 // generate missing dummy-symbols
1088                 int i = 1;
1089                 // holding dummy-symbols for the G/Li transformations
1090                 exvector gsyms;
1091                 gsyms.push_back(symbol("GSYMS_ERROR"));
1092                 ex lastentry;
1093                 for (std::multimap<ex,int>::const_iterator it = sortmap.begin(); it != sortmap.end(); ++it) {
1094                         if (it != sortmap.begin()) {
1095                                 if (it->second < x.nops()) {
1096                                         if (x[it->second] == lastentry) {
1097                                                 gsyms.push_back(gsyms.back());
1098                                                 continue;
1099                                         }
1100                                 } else {
1101                                         if (y == lastentry) {
1102                                                 gsyms.push_back(gsyms.back());
1103                                                 continue;
1104                                         }
1105                                 }
1106                         }
1107                         std::ostringstream os;
1108                         os << "a" << i;
1109                         gsyms.push_back(symbol(os.str()));
1110                         ++i;
1111                         if (it->second < x.nops()) {
1112                                 lastentry = x[it->second];
1113                         } else {
1114                                 lastentry = y;
1115                         }
1116                 }
1117
1118                 // fill position data according to sorted indices and prepare substitution list
1119                 Gparameter a(x.nops());
1120                 lst subslst;
1121                 int pos = 1;
1122                 int scale;
1123                 for (std::multimap<ex,int>::const_iterator it = sortmap.begin(); it != sortmap.end(); ++it) {
1124                         if (it->second < x.nops()) {
1125                                 if (s[it->second] > 0) {
1126                                         a[it->second] = pos;
1127                                 } else {
1128                                         a[it->second] = -pos;
1129                                 }
1130                                 subslst.append(gsyms[pos] == x[it->second]);
1131                         } else {
1132                                 scale = pos;
1133                                 subslst.append(gsyms[pos] == y);
1134                         }
1135                         ++pos;
1136                 }
1137
1138                 // do transformation
1139                 Gparameter pendint;
1140                 ex result = G_transform(pendint, a, scale, gsyms);
1141                 // replace dummy symbols with their values
1142                 result = result.eval().expand();
1143                 result = result.subs(subslst).evalf();
1144                 
1145                 return result;
1146         }
1147
1148         // do summation
1149         lst newx;
1150         lst m;
1151         int mcount = 1;
1152         ex sign = 1;
1153         ex factor = y;
1154         for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1155                 if ((*it).is_zero()) {
1156                         ++mcount;
1157                 } else {
1158                         newx.append(factor / (*it));
1159                         factor = *it;
1160                         m.append(mcount);
1161                         mcount = 1;
1162                         sign = -sign;
1163                 }
1164         }
1165
1166         return sign * numeric(mLi_do_summation(m, newx));
1167 }
1168
1169
1170 ex mLi_numeric(const lst& m, const lst& x)
1171 {
1172         // let G_numeric do the transformation
1173         lst newx;
1174         lst s;
1175         ex factor = 1;
1176         for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1177                 for (int i = 1; i < *itm; ++i) {
1178                         newx.append(0);
1179                         s.append(1);
1180                 }
1181                 newx.append(factor / *itx);
1182                 factor /= *itx;
1183                 s.append(1);
1184         }
1185         return pow(-1, m.nops()) * G_numeric(newx, s, _ex1);
1186 }
1187
1188
1189 } // end of anonymous namespace
1190
1191
1192 //////////////////////////////////////////////////////////////////////
1193 //
1194 // Generalized multiple polylogarithm  G(x, y) and G(x, s, y)
1195 //
1196 // GiNaC function
1197 //
1198 //////////////////////////////////////////////////////////////////////
1199
1200
1201 static ex G2_evalf(const ex& x_, const ex& y)
1202 {
1203         if (!y.info(info_flags::positive)) {
1204                 return G(x_, y).hold();
1205         }
1206         lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1207         if (x.nops() == 0) {
1208                 return _ex1;
1209         }
1210         if (x.op(0) == y) {
1211                 return G(x_, y).hold();
1212         }
1213         lst s;
1214         bool all_zero = true;
1215         for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1216                 if (!(*it).info(info_flags::numeric)) {
1217                         return G(x_, y).hold();
1218                 }
1219                 if (*it != _ex0) {
1220                         all_zero = false;
1221                 }
1222                 s.append(+1);
1223         }
1224         if (all_zero) {
1225                 return pow(log(y), x.nops()) / factorial(x.nops());
1226         }
1227         return G_numeric(x, s, y);
1228 }
1229
1230
1231 static ex G2_eval(const ex& x_, const ex& y)
1232 {
1233         //TODO eval to MZV or H or S or Lin
1234
1235         if (!y.info(info_flags::positive)) {
1236                 return G(x_, y).hold();
1237         }
1238         lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1239         if (x.nops() == 0) {
1240                 return _ex1;
1241         }
1242         if (x.op(0) == y) {
1243                 return G(x_, y).hold();
1244         }
1245         lst s;
1246         bool all_zero = true;
1247         bool crational = true;
1248         for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1249                 if (!(*it).info(info_flags::numeric)) {
1250                         return G(x_, y).hold();
1251                 }
1252                 if (!(*it).info(info_flags::crational)) {
1253                         crational = false;
1254                 }
1255                 if (*it != _ex0) {
1256                         all_zero = false;
1257                 }
1258                 s.append(+1);
1259         }
1260         if (all_zero) {
1261                 return pow(log(y), x.nops()) / factorial(x.nops());
1262         }
1263         if (!y.info(info_flags::crational)) {
1264                 crational = false;
1265         }
1266         if (crational) {
1267                 return G(x_, y).hold();
1268         }
1269         return G_numeric(x, s, y);
1270 }
1271
1272
1273 unsigned G2_SERIAL::serial = function::register_new(function_options("G", 2).
1274                                 evalf_func(G2_evalf).
1275                                 eval_func(G2_eval).
1276                                 do_not_evalf_params().
1277                                 overloaded(2));
1278 //TODO
1279 //                                derivative_func(G2_deriv).
1280 //                                print_func<print_latex>(G2_print_latex).
1281
1282
1283 static ex G3_evalf(const ex& x_, const ex& s_, const ex& y)
1284 {
1285         if (!y.info(info_flags::positive)) {
1286                 return G(x_, s_, y).hold();
1287         }
1288         lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1289         lst s = is_a<lst>(s_) ? ex_to<lst>(s_) : lst(s_);
1290         if (x.nops() != s.nops()) {
1291                 return G(x_, s_, y).hold();
1292         }
1293         if (x.nops() == 0) {
1294                 return _ex1;
1295         }
1296         if (x.op(0) == y) {
1297                 return G(x_, s_, y).hold();
1298         }
1299         lst sn;
1300         bool all_zero = true;
1301         for (lst::const_iterator itx = x.begin(), its = s.begin(); itx != x.end(); ++itx, ++its) {
1302                 if (!(*itx).info(info_flags::numeric)) {
1303                         return G(x_, y).hold();
1304                 }
1305                 if (!(*its).info(info_flags::real)) {
1306                         return G(x_, y).hold();
1307                 }
1308                 if (*itx != _ex0) {
1309                         all_zero = false;
1310                 }
1311                 if (*its >= 0) {
1312                         sn.append(+1);
1313                 } else {
1314                         sn.append(-1);
1315                 }
1316         }
1317         if (all_zero) {
1318                 return pow(log(y), x.nops()) / factorial(x.nops());
1319         }
1320         return G_numeric(x, sn, y);
1321 }
1322
1323
1324 static ex G3_eval(const ex& x_, const ex& s_, const ex& y)
1325 {
1326         //TODO eval to MZV or H or S or Lin
1327
1328         if (!y.info(info_flags::positive)) {
1329                 return G(x_, s_, y).hold();
1330         }
1331         lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1332         lst s = is_a<lst>(s_) ? ex_to<lst>(s_) : lst(s_);
1333         if (x.nops() != s.nops()) {
1334                 return G(x_, s_, y).hold();
1335         }
1336         if (x.nops() == 0) {
1337                 return _ex1;
1338         }
1339         if (x.op(0) == y) {
1340                 return G(x_, s_, y).hold();
1341         }
1342         lst sn;
1343         bool all_zero = true;
1344         bool crational = true;
1345         for (lst::const_iterator itx = x.begin(), its = s.begin(); itx != x.end(); ++itx, ++its) {
1346                 if (!(*itx).info(info_flags::numeric)) {
1347                         return G(x_, s_, y).hold();
1348                 }
1349                 if (!(*its).info(info_flags::real)) {
1350                         return G(x_, s_, y).hold();
1351                 }
1352                 if (!(*itx).info(info_flags::crational)) {
1353                         crational = false;
1354                 }
1355                 if (*itx != _ex0) {
1356                         all_zero = false;
1357                 }
1358                 if (*its >= 0) {
1359                         sn.append(+1);
1360                 } else {
1361                         sn.append(-1);
1362                 }
1363         }
1364         if (all_zero) {
1365                 return pow(log(y), x.nops()) / factorial(x.nops());
1366         }
1367         if (!y.info(info_flags::crational)) {
1368                 crational = false;
1369         }
1370         if (crational) {
1371                 return G(x_, s_, y).hold();
1372         }
1373         return G_numeric(x, sn, y);
1374 }
1375
1376
1377 unsigned G3_SERIAL::serial = function::register_new(function_options("G", 3).
1378                                 evalf_func(G3_evalf).
1379                                 eval_func(G3_eval).
1380                                 do_not_evalf_params().
1381                                 overloaded(2));
1382 //TODO
1383 //                                derivative_func(G3_deriv).
1384 //                                print_func<print_latex>(G3_print_latex).
1385
1386
1387 //////////////////////////////////////////////////////////////////////
1388 //
1389 // Classical polylogarithm and multiple polylogarithm  Li(m,x)
1390 //
1391 // GiNaC function
1392 //
1393 //////////////////////////////////////////////////////////////////////
1394
1395
1396 static ex Li_evalf(const ex& m_, const ex& x_)
1397 {
1398         // classical polylogs
1399         if (m_.info(info_flags::posint)) {
1400                 if (x_.info(info_flags::numeric)) {
1401                         int m__ = ex_to<numeric>(m_).to_int();
1402                         const cln::cl_N x__ = ex_to<numeric>(x_).to_cl_N();
1403                         const cln::cl_N result = Lin_numeric(m__, x__);
1404                         return numeric(result);
1405                 } else {
1406                         // try to numerically evaluate second argument
1407                         ex x_val = x_.evalf();
1408                         if (x_val.info(info_flags::numeric)) {
1409                                 int m__ = ex_to<numeric>(m_).to_int();
1410                                 const cln::cl_N x__ = ex_to<numeric>(x_val).to_cl_N();
1411                                 const cln::cl_N result = Lin_numeric(m__, x__);
1412                                 return numeric(result);
1413                         }
1414                 }
1415         }
1416         // multiple polylogs
1417         if (is_a<lst>(m_) && is_a<lst>(x_)) {
1418
1419                 const lst& m = ex_to<lst>(m_);
1420                 const lst& x = ex_to<lst>(x_);
1421                 if (m.nops() != x.nops()) {
1422                         return Li(m_,x_).hold();
1423                 }
1424                 if (x.nops() == 0) {
1425                         return _ex1;
1426                 }
1427                 if ((m.op(0) == _ex1) && (x.op(0) == _ex1)) {
1428                         return Li(m_,x_).hold();
1429                 }
1430
1431                 for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1432                         if (!(*itm).info(info_flags::posint)) {
1433                                 return Li(m_, x_).hold();
1434                         }
1435                         if (!(*itx).info(info_flags::numeric)) {
1436                                 return Li(m_, x_).hold();
1437                         }
1438                         if (*itx == _ex0) {
1439                                 return _ex0;
1440                         }
1441                 }
1442
1443                 return mLi_numeric(m, x);
1444         }
1445
1446         return Li(m_,x_).hold();
1447 }
1448
1449
1450 static ex Li_eval(const ex& m_, const ex& x_)
1451 {
1452         if (is_a<lst>(m_)) {
1453                 if (is_a<lst>(x_)) {
1454                         // multiple polylogs
1455                         const lst& m = ex_to<lst>(m_);
1456                         const lst& x = ex_to<lst>(x_);
1457                         if (m.nops() != x.nops()) {
1458                                 return Li(m_,x_).hold();
1459                         }
1460                         if (x.nops() == 0) {
1461                                 return _ex1;
1462                         }
1463                         bool is_H = true;
1464                         bool is_zeta = true;
1465                         bool do_evalf = true;
1466                         bool crational = true;
1467                         for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1468                                 if (!(*itm).info(info_flags::posint)) {
1469                                         return Li(m_,x_).hold();
1470                                 }
1471                                 if ((*itx != _ex1) && (*itx != _ex_1)) {
1472                                         if (itx != x.begin()) {
1473                                                 is_H = false;
1474                                         }
1475                                         is_zeta = false;
1476                                 }
1477                                 if (*itx == _ex0) {
1478                                         return _ex0;
1479                                 }
1480                                 if (!(*itx).info(info_flags::numeric)) {
1481                                         do_evalf = false;
1482                                 }
1483                                 if (!(*itx).info(info_flags::crational)) {
1484                                         crational = false;
1485                                 }
1486                         }
1487                         if (is_zeta) {
1488                                 return zeta(m_,x_);
1489                         }
1490                         if (is_H) {
1491                                 ex prefactor;
1492                                 lst newm = convert_parameter_Li_to_H(m, x, prefactor);
1493                                 return prefactor * H(newm, x[0]);
1494                         }
1495                         if (do_evalf && !crational) {
1496                                 return mLi_numeric(m,x);
1497                         }
1498                 }
1499                 return Li(m_, x_).hold();
1500         } else if (is_a<lst>(x_)) {
1501                 return Li(m_, x_).hold();
1502         }
1503
1504         // classical polylogs
1505         if (x_ == _ex0) {
1506                 return _ex0;
1507         }
1508         if (x_ == _ex1) {
1509                 return zeta(m_);
1510         }
1511         if (x_ == _ex_1) {
1512                 return (pow(2,1-m_)-1) * zeta(m_);
1513         }
1514         if (m_ == _ex1) {
1515                 return -log(1-x_);
1516         }
1517         if (m_ == _ex2) {
1518                 if (x_.is_equal(I)) {
1519                         return power(Pi,_ex2)/_ex_48 + Catalan*I;
1520                 }
1521                 if (x_.is_equal(-I)) {
1522                         return power(Pi,_ex2)/_ex_48 - Catalan*I;
1523                 }
1524         }
1525         if (m_.info(info_flags::posint) && x_.info(info_flags::numeric) && !x_.info(info_flags::crational)) {
1526                 int m__ = ex_to<numeric>(m_).to_int();
1527                 const cln::cl_N x__ = ex_to<numeric>(x_).to_cl_N();
1528                 const cln::cl_N result = Lin_numeric(m__, x__);
1529                 return numeric(result);
1530         }
1531
1532         return Li(m_, x_).hold();
1533 }
1534
1535
1536 static ex Li_series(const ex& m, const ex& x, const relational& rel, int order, unsigned options)
1537 {
1538         if (is_a<lst>(m) || is_a<lst>(x)) {
1539                 // multiple polylog
1540                 epvector seq;
1541                 seq.push_back(expair(Li(m, x), 0));
1542                 return pseries(rel, seq);
1543         }
1544         
1545         // classical polylog
1546         const ex x_pt = x.subs(rel, subs_options::no_pattern);
1547         if (m.info(info_flags::numeric) && x_pt.info(info_flags::numeric)) {
1548                 // First special case: x==0 (derivatives have poles)
1549                 if (x_pt.is_zero()) {
1550                         const symbol s;
1551                         ex ser;
1552                         // manually construct the primitive expansion
1553                         for (int i=1; i<order; ++i)
1554                                 ser += pow(s,i) / pow(numeric(i), m);
1555                         // substitute the argument's series expansion
1556                         ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
1557                         // maybe that was terminating, so add a proper order term
1558                         epvector nseq;
1559                         nseq.push_back(expair(Order(_ex1), order));
1560                         ser += pseries(rel, nseq);
1561                         // reexpanding it will collapse the series again
1562                         return ser.series(rel, order);
1563                 }
1564                 // TODO special cases: x==1 (branch point) and x real, >=1 (branch cut)
1565                 throw std::runtime_error("Li_series: don't know how to do the series expansion at this point!");
1566         }
1567         // all other cases should be safe, by now:
1568         throw do_taylor();  // caught by function::series()
1569 }
1570
1571
1572 static ex Li_deriv(const ex& m_, const ex& x_, unsigned deriv_param)
1573 {
1574         GINAC_ASSERT(deriv_param < 2);
1575         if (deriv_param == 0) {
1576                 return _ex0;
1577         }
1578         if (m_.nops() > 1) {
1579                 throw std::runtime_error("don't know how to derivate multiple polylogarithm!");
1580         }
1581         ex m;
1582         if (is_a<lst>(m_)) {
1583                 m = m_.op(0);
1584         } else {
1585                 m = m_;
1586         }
1587         ex x;
1588         if (is_a<lst>(x_)) {
1589                 x = x_.op(0);
1590         } else {
1591                 x = x_;
1592         }
1593         if (m > 0) {
1594                 return Li(m-1, x) / x;
1595         } else {
1596                 return 1/(1-x);
1597         }
1598 }
1599
1600
1601 static void Li_print_latex(const ex& m_, const ex& x_, const print_context& c)
1602 {
1603         lst m;
1604         if (is_a<lst>(m_)) {
1605                 m = ex_to<lst>(m_);
1606         } else {
1607                 m = lst(m_);
1608         }
1609         lst x;
1610         if (is_a<lst>(x_)) {
1611                 x = ex_to<lst>(x_);
1612         } else {
1613                 x = lst(x_);
1614         }
1615         c.s << "\\mbox{Li}_{";
1616         lst::const_iterator itm = m.begin();
1617         (*itm).print(c);
1618         itm++;
1619         for (; itm != m.end(); itm++) {
1620                 c.s << ",";
1621                 (*itm).print(c);
1622         }
1623         c.s << "}(";
1624         lst::const_iterator itx = x.begin();
1625         (*itx).print(c);
1626         itx++;
1627         for (; itx != x.end(); itx++) {
1628                 c.s << ",";
1629                 (*itx).print(c);
1630         }
1631         c.s << ")";
1632 }
1633
1634
1635 REGISTER_FUNCTION(Li,
1636                   evalf_func(Li_evalf).
1637                   eval_func(Li_eval).
1638                   series_func(Li_series).
1639                   derivative_func(Li_deriv).
1640                   print_func<print_latex>(Li_print_latex).
1641                   do_not_evalf_params());
1642
1643
1644 //////////////////////////////////////////////////////////////////////
1645 //
1646 // Nielsen's generalized polylogarithm  S(n,p,x)
1647 //
1648 // helper functions
1649 //
1650 //////////////////////////////////////////////////////////////////////
1651
1652
1653 // anonymous namespace for helper functions
1654 namespace {
1655
1656
1657 // lookup table for special Euler-Zagier-Sums (used for S_n,p(x))
1658 // see fill_Yn()
1659 std::vector<std::vector<cln::cl_N> > Yn;
1660 int ynsize = 0; // number of Yn[]
1661 int ynlength = 100; // initial length of all Yn[i]
1662
1663
1664 // This function calculates the Y_n. The Y_n are needed for the evaluation of S_{n,p}(x).
1665 // The Y_n are basically Euler-Zagier sums with all m_i=1. They are subsums in the Z-sum
1666 // representing S_{n,p}(x).
1667 // The first index in Y_n corresponds to the parameter p minus one, i.e. the depth of the
1668 // equivalent Z-sum.
1669 // The second index in Y_n corresponds to the running index of the outermost sum in the full Z-sum
1670 // representing S_{n,p}(x).
1671 // The calculation of Y_n uses the values from Y_{n-1}.
1672 void fill_Yn(int n, const cln::float_format_t& prec)
1673 {
1674         const int initsize = ynlength;
1675         //const int initsize = initsize_Yn;
1676         cln::cl_N one = cln::cl_float(1, prec);
1677
1678         if (n) {
1679                 std::vector<cln::cl_N> buf(initsize);
1680                 std::vector<cln::cl_N>::iterator it = buf.begin();
1681                 std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
1682                 *it = (*itprev) / cln::cl_N(n+1) * one;
1683                 it++;
1684                 itprev++;
1685                 // sums with an index smaller than the depth are zero and need not to be calculated.
1686                 // calculation starts with depth, which is n+2)
1687                 for (int i=n+2; i<=initsize+n; i++) {
1688                         *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
1689                         it++;
1690                         itprev++;
1691                 }
1692                 Yn.push_back(buf);
1693         } else {
1694                 std::vector<cln::cl_N> buf(initsize);
1695                 std::vector<cln::cl_N>::iterator it = buf.begin();
1696                 *it = 1 * one;
1697                 it++;
1698                 for (int i=2; i<=initsize; i++) {
1699                         *it = *(it-1) + 1 / cln::cl_N(i) * one;
1700                         it++;
1701                 }
1702                 Yn.push_back(buf);
1703         }
1704         ynsize++;
1705 }
1706
1707
1708 // make Yn longer ... 
1709 void make_Yn_longer(int newsize, const cln::float_format_t& prec)
1710 {
1711
1712         cln::cl_N one = cln::cl_float(1, prec);
1713
1714         Yn[0].resize(newsize);
1715         std::vector<cln::cl_N>::iterator it = Yn[0].begin();
1716         it += ynlength;
1717         for (int i=ynlength+1; i<=newsize; i++) {
1718                 *it = *(it-1) + 1 / cln::cl_N(i) * one;
1719                 it++;
1720         }
1721
1722         for (int n=1; n<ynsize; n++) {
1723                 Yn[n].resize(newsize);
1724                 std::vector<cln::cl_N>::iterator it = Yn[n].begin();
1725                 std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
1726                 it += ynlength;
1727                 itprev += ynlength;
1728                 for (int i=ynlength+n+1; i<=newsize+n; i++) {
1729                         *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
1730                         it++;
1731                         itprev++;
1732                 }
1733         }
1734         
1735         ynlength = newsize;
1736 }
1737
1738
1739 // helper function for S(n,p,x)
1740 // [Kol] (7.2)
1741 cln::cl_N C(int n, int p)
1742 {
1743         cln::cl_N result;
1744
1745         for (int k=0; k<p; k++) {
1746                 for (int j=0; j<=(n+k-1)/2; j++) {
1747                         if (k == 0) {
1748                                 if (n & 1) {
1749                                         if (j & 1) {
1750                                                 result = result - 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1) / cln::factorial(2*j);
1751                                         }
1752                                         else {
1753                                                 result = result + 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1) / cln::factorial(2*j);
1754                                         }
1755                                 }
1756                         }
1757                         else {
1758                                 if (k & 1) {
1759                                         if (j & 1) {
1760                                                 result = result + cln::factorial(n+k-1)
1761                                                                   * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1762                                                                   / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1763                                         }
1764                                         else {
1765                                                 result = result - cln::factorial(n+k-1)
1766                                                                   * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1767                                                                   / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1768                                         }
1769                                 }
1770                                 else {
1771                                         if (j & 1) {
1772                                                 result = result - cln::factorial(n+k-1) * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1773                                                                   / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1774                                         }
1775                                         else {
1776                                                 result = result + cln::factorial(n+k-1)
1777                                                                   * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1778                                                                   / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1779                                         }
1780                                 }
1781                         }
1782                 }
1783         }
1784         int np = n+p;
1785         if ((np-1) & 1) {
1786                 if (((np)/2+n) & 1) {
1787                         result = -result - cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
1788                 }
1789                 else {
1790                         result = -result + cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
1791                 }
1792         }
1793
1794         return result;
1795 }
1796
1797
1798 // helper function for S(n,p,x)
1799 // [Kol] remark to (9.1)
1800 cln::cl_N a_k(int k)
1801 {
1802         cln::cl_N result;
1803
1804         if (k == 0) {
1805                 return 1;
1806         }
1807
1808         result = result;
1809         for (int m=2; m<=k; m++) {
1810                 result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * a_k(k-m);
1811         }
1812
1813         return -result / k;
1814 }
1815
1816
1817 // helper function for S(n,p,x)
1818 // [Kol] remark to (9.1)
1819 cln::cl_N b_k(int k)
1820 {
1821         cln::cl_N result;
1822
1823         if (k == 0) {
1824                 return 1;
1825         }
1826
1827         result = result;
1828         for (int m=2; m<=k; m++) {
1829                 result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * b_k(k-m);
1830         }
1831
1832         return result / k;
1833 }
1834
1835
1836 // helper function for S(n,p,x)
1837 cln::cl_N S_do_sum(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
1838 {
1839         static cln::float_format_t oldprec = cln::default_float_format;
1840
1841         if (p==1) {
1842                 return Li_projection(n+1, x, prec);
1843         }
1844
1845         // precision has changed, we need to clear lookup table Yn
1846         if ( oldprec != prec ) {
1847                 Yn.clear();
1848                 ynsize = 0;
1849                 ynlength = 100;
1850                 oldprec = prec;
1851         }
1852                 
1853         // check if precalculated values are sufficient
1854         if (p > ynsize+1) {
1855                 for (int i=ynsize; i<p-1; i++) {
1856                         fill_Yn(i, prec);
1857                 }
1858         }
1859
1860         // should be done otherwise
1861         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
1862         cln::cl_N xf = x * one;
1863         //cln::cl_N xf = x * cln::cl_float(1, prec);
1864
1865         cln::cl_N res;
1866         cln::cl_N resbuf;
1867         cln::cl_N factor = cln::expt(xf, p);
1868         int i = p;
1869         do {
1870                 resbuf = res;
1871                 if (i-p >= ynlength) {
1872                         // make Yn longer
1873                         make_Yn_longer(ynlength*2, prec);
1874                 }
1875                 res = res + factor / cln::expt(cln::cl_I(i),n+1) * Yn[p-2][i-p]; // should we check it? or rely on magic number? ...
1876                 //res = res + factor / cln::expt(cln::cl_I(i),n+1) * (*it); // should we check it? or rely on magic number? ...
1877                 factor = factor * xf;
1878                 i++;
1879         } while (res != resbuf);
1880         
1881         return res;
1882 }
1883
1884
1885 // helper function for S(n,p,x)
1886 cln::cl_N S_projection(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
1887 {
1888         // [Kol] (5.3)
1889         if (cln::abs(cln::realpart(x)) > cln::cl_F("0.5")) {
1890
1891                 cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(x),n)
1892                                    * cln::expt(cln::log(1-x),p) / cln::factorial(n) / cln::factorial(p);
1893
1894                 for (int s=0; s<n; s++) {
1895                         cln::cl_N res2;
1896                         for (int r=0; r<p; r++) {
1897                                 res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-x),r)
1898                                               * S_do_sum(p-r,n-s,1-x,prec) / cln::factorial(r);
1899                         }
1900                         result = result + cln::expt(cln::log(x),s) * (S_num(n-s,p,1) - res2) / cln::factorial(s);
1901                 }
1902
1903                 return result;
1904         }
1905         
1906         return S_do_sum(n, p, x, prec);
1907 }
1908
1909
1910 // helper function for S(n,p,x)
1911 const cln::cl_N S_num(int n, int p, const cln::cl_N& x)
1912 {
1913         if (x == 1) {
1914                 if (n == 1) {
1915                     // [Kol] (2.22) with (2.21)
1916                         return cln::zeta(p+1);
1917                 }
1918
1919                 if (p == 1) {
1920                     // [Kol] (2.22)
1921                         return cln::zeta(n+1);
1922                 }
1923
1924                 // [Kol] (9.1)
1925                 cln::cl_N result;
1926                 for (int nu=0; nu<n; nu++) {
1927                         for (int rho=0; rho<=p; rho++) {
1928                                 result = result + b_k(n-nu-1) * b_k(p-rho) * a_k(nu+rho+1)
1929                                                   * cln::factorial(nu+rho+1) / cln::factorial(rho) / cln::factorial(nu+1);
1930                         }
1931                 }
1932                 result = result * cln::expt(cln::cl_I(-1),n+p-1);
1933
1934                 return result;
1935         }
1936         else if (x == -1) {
1937                 // [Kol] (2.22)
1938                 if (p == 1) {
1939                         return -(1-cln::expt(cln::cl_I(2),-n)) * cln::zeta(n+1);
1940                 }
1941 //              throw std::runtime_error("don't know how to evaluate this function!");
1942         }
1943
1944         // what is the desired float format?
1945         // first guess: default format
1946         cln::float_format_t prec = cln::default_float_format;
1947         const cln::cl_N value = x;
1948         // second guess: the argument's format
1949         if (!instanceof(realpart(value), cln::cl_RA_ring))
1950                 prec = cln::float_format(cln::the<cln::cl_F>(cln::realpart(value)));
1951         else if (!instanceof(imagpart(value), cln::cl_RA_ring))
1952                 prec = cln::float_format(cln::the<cln::cl_F>(cln::imagpart(value)));
1953
1954         // [Kol] (5.3)
1955         if ((cln::realpart(value) < -0.5) || (n == 0) || ((cln::abs(value) <= 1) && (cln::abs(value) > 0.95))) {
1956
1957                 cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(value),n)
1958                                    * cln::expt(cln::log(1-value),p) / cln::factorial(n) / cln::factorial(p);
1959
1960                 for (int s=0; s<n; s++) {
1961                         cln::cl_N res2;
1962                         for (int r=0; r<p; r++) {
1963                                 res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-value),r)
1964                                               * S_num(p-r,n-s,1-value) / cln::factorial(r);
1965                         }
1966                         result = result + cln::expt(cln::log(value),s) * (S_num(n-s,p,1) - res2) / cln::factorial(s);
1967                 }
1968
1969                 return result;
1970                 
1971         }
1972         // [Kol] (5.12)
1973         if (cln::abs(value) > 1) {
1974                 
1975                 cln::cl_N result;
1976
1977                 for (int s=0; s<p; s++) {
1978                         for (int r=0; r<=s; r++) {
1979                                 result = result + cln::expt(cln::cl_I(-1),s) * cln::expt(cln::log(-value),r) * cln::factorial(n+s-r-1)
1980                                                   / cln::factorial(r) / cln::factorial(s-r) / cln::factorial(n-1)
1981                                                   * S_num(n+s-r,p-s,cln::recip(value));
1982                         }
1983                 }
1984                 result = result * cln::expt(cln::cl_I(-1),n);
1985
1986                 cln::cl_N res2;
1987                 for (int r=0; r<n; r++) {
1988                         res2 = res2 + cln::expt(cln::log(-value),r) * C(n-r,p) / cln::factorial(r);
1989                 }
1990                 res2 = res2 + cln::expt(cln::log(-value),n+p) / cln::factorial(n+p);
1991
1992                 result = result + cln::expt(cln::cl_I(-1),p) * res2;
1993
1994                 return result;
1995         }
1996         else {
1997                 return S_projection(n, p, value, prec);
1998         }
1999 }
2000
2001
2002 } // end of anonymous namespace
2003
2004
2005 //////////////////////////////////////////////////////////////////////
2006 //
2007 // Nielsen's generalized polylogarithm  S(n,p,x)
2008 //
2009 // GiNaC function
2010 //
2011 //////////////////////////////////////////////////////////////////////
2012
2013
2014 static ex S_evalf(const ex& n, const ex& p, const ex& x)
2015 {
2016         if (n.info(info_flags::posint) && p.info(info_flags::posint)) {
2017                 const int n_ = ex_to<numeric>(n).to_int();
2018                 const int p_ = ex_to<numeric>(p).to_int();
2019                 if (is_a<numeric>(x)) {
2020                         const cln::cl_N x_ = ex_to<numeric>(x).to_cl_N();
2021                         const cln::cl_N result = S_num(n_, p_, x_);
2022                         return numeric(result);
2023                 } else {
2024                         ex x_val = x.evalf();
2025                         if (is_a<numeric>(x_val)) {
2026                                 const cln::cl_N x_val_ = ex_to<numeric>(x_val).to_cl_N();
2027                                 const cln::cl_N result = S_num(n_, p_, x_val_);
2028                                 return numeric(result);
2029                         }
2030                 }
2031         }
2032         return S(n, p, x).hold();
2033 }
2034
2035
2036 static ex S_eval(const ex& n, const ex& p, const ex& x)
2037 {
2038         if (n.info(info_flags::posint) && p.info(info_flags::posint)) {
2039                 if (x == 0) {
2040                         return _ex0;
2041                 }
2042                 if (x == 1) {
2043                         lst m(n+1);
2044                         for (int i=ex_to<numeric>(p).to_int()-1; i>0; i--) {
2045                                 m.append(1);
2046                         }
2047                         return zeta(m);
2048                 }
2049                 if (p == 1) {
2050                         return Li(n+1, x);
2051                 }
2052                 if (x.info(info_flags::numeric) && (!x.info(info_flags::crational))) {
2053                         int n_ = ex_to<numeric>(n).to_int();
2054                         int p_ = ex_to<numeric>(p).to_int();
2055                         const cln::cl_N x_ = ex_to<numeric>(x).to_cl_N();
2056                         const cln::cl_N result = S_num(n_, p_, x_);
2057                         return numeric(result);
2058                 }
2059         }
2060         if (n.is_zero()) {
2061                 // [Kol] (5.3)
2062                 return pow(-log(1-x), p) / factorial(p);
2063         }
2064         return S(n, p, x).hold();
2065 }
2066
2067
2068 static ex S_series(const ex& n, const ex& p, const ex& x, const relational& rel, int order, unsigned options)
2069 {
2070         if (p == _ex1) {
2071                 return Li(n+1, x).series(rel, order, options);
2072         }
2073
2074         const ex x_pt = x.subs(rel, subs_options::no_pattern);
2075         if (n.info(info_flags::posint) && p.info(info_flags::posint) && x_pt.info(info_flags::numeric)) {
2076                 // First special case: x==0 (derivatives have poles)
2077                 if (x_pt.is_zero()) {
2078                         const symbol s;
2079                         ex ser;
2080                         // manually construct the primitive expansion
2081                         // subsum = Euler-Zagier-Sum is needed
2082                         // dirty hack (slow ...) calculation of subsum:
2083                         std::vector<ex> presubsum, subsum;
2084                         subsum.push_back(0);
2085                         for (int i=1; i<order-1; ++i) {
2086                                 subsum.push_back(subsum[i-1] + numeric(1, i));
2087                         }
2088                         for (int depth=2; depth<p; ++depth) {
2089                                 presubsum = subsum;
2090                                 for (int i=1; i<order-1; ++i) {
2091                                         subsum[i] = subsum[i-1] + numeric(1, i) * presubsum[i-1];
2092                                 }
2093                         }
2094                                 
2095                         for (int i=1; i<order; ++i) {
2096                                 ser += pow(s,i) / pow(numeric(i), n+1) * subsum[i-1];
2097                         }
2098                         // substitute the argument's series expansion
2099                         ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
2100                         // maybe that was terminating, so add a proper order term
2101                         epvector nseq;
2102                         nseq.push_back(expair(Order(_ex1), order));
2103                         ser += pseries(rel, nseq);
2104                         // reexpanding it will collapse the series again
2105                         return ser.series(rel, order);
2106                 }
2107                 // TODO special cases: x==1 (branch point) and x real, >=1 (branch cut)
2108                 throw std::runtime_error("S_series: don't know how to do the series expansion at this point!");
2109         }
2110         // all other cases should be safe, by now:
2111         throw do_taylor();  // caught by function::series()
2112 }
2113
2114
2115 static ex S_deriv(const ex& n, const ex& p, const ex& x, unsigned deriv_param)
2116 {
2117         GINAC_ASSERT(deriv_param < 3);
2118         if (deriv_param < 2) {
2119                 return _ex0;
2120         }
2121         if (n > 0) {
2122                 return S(n-1, p, x) / x;
2123         } else {
2124                 return S(n, p-1, x) / (1-x);
2125         }
2126 }
2127
2128
2129 static void S_print_latex(const ex& n, const ex& p, const ex& x, const print_context& c)
2130 {
2131         c.s << "\\mbox{S}_{";
2132         n.print(c);
2133         c.s << ",";
2134         p.print(c);
2135         c.s << "}(";
2136         x.print(c);
2137         c.s << ")";
2138 }
2139
2140
2141 REGISTER_FUNCTION(S,
2142                   evalf_func(S_evalf).
2143                   eval_func(S_eval).
2144                   series_func(S_series).
2145                   derivative_func(S_deriv).
2146                   print_func<print_latex>(S_print_latex).
2147                   do_not_evalf_params());
2148
2149
2150 //////////////////////////////////////////////////////////////////////
2151 //
2152 // Harmonic polylogarithm  H(m,x)
2153 //
2154 // helper functions
2155 //
2156 //////////////////////////////////////////////////////////////////////
2157
2158
2159 // anonymous namespace for helper functions
2160 namespace {
2161
2162         
2163 // regulates the pole (used by 1/x-transformation)
2164 symbol H_polesign("IMSIGN");
2165
2166
2167 // convert parameters from H to Li representation
2168 // parameters are expected to be in expanded form, i.e. only 0, 1 and -1
2169 // returns true if some parameters are negative
2170 bool convert_parameter_H_to_Li(const lst& l, lst& m, lst& s, ex& pf)
2171 {
2172         // expand parameter list
2173         lst mexp;
2174         for (lst::const_iterator it = l.begin(); it != l.end(); it++) {
2175                 if (*it > 1) {
2176                         for (ex count=*it-1; count > 0; count--) {
2177                                 mexp.append(0);
2178                         }
2179                         mexp.append(1);
2180                 } else if (*it < -1) {
2181                         for (ex count=*it+1; count < 0; count++) {
2182                                 mexp.append(0);
2183                         }
2184                         mexp.append(-1);
2185                 } else {
2186                         mexp.append(*it);
2187                 }
2188         }
2189         
2190         ex signum = 1;
2191         pf = 1;
2192         bool has_negative_parameters = false;
2193         ex acc = 1;
2194         for (lst::const_iterator it = mexp.begin(); it != mexp.end(); it++) {
2195                 if (*it == 0) {
2196                         acc++;
2197                         continue;
2198                 }
2199                 if (*it > 0) {
2200                         m.append((*it+acc-1) * signum);
2201                 } else {
2202                         m.append((*it-acc+1) * signum);
2203                 }
2204                 acc = 1;
2205                 signum = *it;
2206                 pf *= *it;
2207                 if (pf < 0) {
2208                         has_negative_parameters = true;
2209                 }
2210         }
2211         if (has_negative_parameters) {
2212                 for (int i=0; i<m.nops(); i++) {
2213                         if (m.op(i) < 0) {
2214                                 m.let_op(i) = -m.op(i);
2215                                 s.append(-1);
2216                         } else {
2217                                 s.append(1);
2218                         }
2219                 }
2220         }
2221         
2222         return has_negative_parameters;
2223 }
2224
2225
2226 // recursivly transforms H to corresponding multiple polylogarithms
2227 struct map_trafo_H_convert_to_Li : public map_function
2228 {
2229         ex operator()(const ex& e)
2230         {
2231                 if (is_a<add>(e) || is_a<mul>(e)) {
2232                         return e.map(*this);
2233                 }
2234                 if (is_a<function>(e)) {
2235                         std::string name = ex_to<function>(e).get_name();
2236                         if (name == "H") {
2237                                 lst parameter;
2238                                 if (is_a<lst>(e.op(0))) {
2239                                                 parameter = ex_to<lst>(e.op(0));
2240                                 } else {
2241                                         parameter = lst(e.op(0));
2242                                 }
2243                                 ex arg = e.op(1);
2244
2245                                 lst m;
2246                                 lst s;
2247                                 ex pf;
2248                                 if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
2249                                         s.let_op(0) = s.op(0) * arg;
2250                                         return pf * Li(m, s).hold();
2251                                 } else {
2252                                         for (int i=0; i<m.nops(); i++) {
2253                                                 s.append(1);
2254                                         }
2255                                         s.let_op(0) = s.op(0) * arg;
2256                                         return Li(m, s).hold();
2257                                 }
2258                         }
2259                 }
2260                 return e;
2261         }
2262 };
2263
2264
2265 // recursivly transforms H to corresponding zetas
2266 struct map_trafo_H_convert_to_zeta : public map_function
2267 {
2268         ex operator()(const ex& e)
2269         {
2270                 if (is_a<add>(e) || is_a<mul>(e)) {
2271                         return e.map(*this);
2272                 }
2273                 if (is_a<function>(e)) {
2274                         std::string name = ex_to<function>(e).get_name();
2275                         if (name == "H") {
2276                                 lst parameter;
2277                                 if (is_a<lst>(e.op(0))) {
2278                                                 parameter = ex_to<lst>(e.op(0));
2279                                 } else {
2280                                         parameter = lst(e.op(0));
2281                                 }
2282
2283                                 lst m;
2284                                 lst s;
2285                                 ex pf;
2286                                 if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
2287                                         return pf * zeta(m, s);
2288                                 } else {
2289                                         return zeta(m);
2290                                 }
2291                         }
2292                 }
2293                 return e;
2294         }
2295 };
2296
2297
2298 // remove trailing zeros from H-parameters
2299 struct map_trafo_H_reduce_trailing_zeros : public map_function
2300 {
2301         ex operator()(const ex& e)
2302         {
2303                 if (is_a<add>(e) || is_a<mul>(e)) {
2304                         return e.map(*this);
2305                 }
2306                 if (is_a<function>(e)) {
2307                         std::string name = ex_to<function>(e).get_name();
2308                         if (name == "H") {
2309                                 lst parameter;
2310                                 if (is_a<lst>(e.op(0))) {
2311                                         parameter = ex_to<lst>(e.op(0));
2312                                 } else {
2313                                         parameter = lst(e.op(0));
2314                                 }
2315                                 ex arg = e.op(1);
2316                                 if (parameter.op(parameter.nops()-1) == 0) {
2317                                         
2318                                         //
2319                                         if (parameter.nops() == 1) {
2320                                                 return log(arg);
2321                                         }
2322                                         
2323                                         //
2324                                         lst::const_iterator it = parameter.begin();
2325                                         while ((it != parameter.end()) && (*it == 0)) {
2326                                                 it++;
2327                                         }
2328                                         if (it == parameter.end()) {
2329                                                 return pow(log(arg),parameter.nops()) / factorial(parameter.nops());
2330                                         }
2331                                         
2332                                         //
2333                                         parameter.remove_last();
2334                                         int lastentry = parameter.nops();
2335                                         while ((lastentry > 0) && (parameter[lastentry-1] == 0)) {
2336                                                 lastentry--;
2337                                         }
2338                                         
2339                                         //
2340                                         ex result = log(arg) * H(parameter,arg).hold();
2341                                         ex acc = 0;
2342                                         for (ex i=0; i<lastentry; i++) {
2343                                                 if (parameter[i] > 0) {
2344                                                         parameter[i]++;
2345                                                         result -= (acc + parameter[i]-1) * H(parameter, arg).hold();
2346                                                         parameter[i]--;
2347                                                         acc = 0;
2348                                                 } else if (parameter[i] < 0) {
2349                                                         parameter[i]--;
2350                                                         result -= (acc + abs(parameter[i]+1)) * H(parameter, arg).hold();
2351                                                         parameter[i]++;
2352                                                         acc = 0;
2353                                                 } else {
2354                                                         acc++;
2355                                                 }
2356                                         }
2357                                         
2358                                         if (lastentry < parameter.nops()) {
2359                                                 result = result / (parameter.nops()-lastentry+1);
2360                                                 return result.map(*this);
2361                                         } else {
2362                                                 return result;
2363                                         }
2364                                 }
2365                         }
2366                 }
2367                 return e;
2368         }
2369 };
2370
2371
2372 // returns an expression with zeta functions corresponding to the parameter list for H
2373 ex convert_H_to_zeta(const lst& m)
2374 {
2375         symbol xtemp("xtemp");
2376         map_trafo_H_reduce_trailing_zeros filter;
2377         map_trafo_H_convert_to_zeta filter2;
2378         return filter2(filter(H(m, xtemp).hold())).subs(xtemp == 1);
2379 }
2380
2381
2382 // convert signs form Li to H representation
2383 lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf)
2384 {
2385         lst res;
2386         lst::const_iterator itm = m.begin();
2387         lst::const_iterator itx = ++x.begin();
2388         int signum = 1;
2389         pf = _ex1;
2390         res.append(*itm);
2391         itm++;
2392         while (itx != x.end()) {
2393                 signum *= (*itx > 0) ? 1 : -1;
2394                 pf *= signum;
2395                 res.append((*itm) * signum);
2396                 itm++;
2397                 itx++;
2398         }
2399         return res;
2400 }
2401
2402
2403 // multiplies an one-dimensional H with another H
2404 // [ReV] (18)
2405 ex trafo_H_mult(const ex& h1, const ex& h2)
2406 {
2407         ex res;
2408         ex hshort;
2409         lst hlong;
2410         ex h1nops = h1.op(0).nops();
2411         ex h2nops = h2.op(0).nops();
2412         if (h1nops > 1) {
2413                 hshort = h2.op(0).op(0);
2414                 hlong = ex_to<lst>(h1.op(0));
2415         } else {
2416                 hshort = h1.op(0).op(0);
2417                 if (h2nops > 1) {
2418                         hlong = ex_to<lst>(h2.op(0));
2419                 } else {
2420                         hlong = h2.op(0).op(0);
2421                 }
2422         }
2423         for (int i=0; i<=hlong.nops(); i++) {
2424                 lst newparameter;
2425                 int j=0;
2426                 for (; j<i; j++) {
2427                         newparameter.append(hlong[j]);
2428                 }
2429                 newparameter.append(hshort);
2430                 for (; j<hlong.nops(); j++) {
2431                         newparameter.append(hlong[j]);
2432                 }
2433                 res += H(newparameter, h1.op(1)).hold();
2434         }
2435         return res;
2436 }
2437
2438
2439 // applies trafo_H_mult recursively on expressions
2440 struct map_trafo_H_mult : public map_function
2441 {
2442         ex operator()(const ex& e)
2443         {
2444                 if (is_a<add>(e)) {
2445                         return e.map(*this);
2446                 }
2447
2448                 if (is_a<mul>(e)) {
2449
2450                         ex result = 1;
2451                         ex firstH;
2452                         lst Hlst;
2453                         for (int pos=0; pos<e.nops(); pos++) {
2454                                 if (is_a<power>(e.op(pos)) && is_a<function>(e.op(pos).op(0))) {
2455                                         std::string name = ex_to<function>(e.op(pos).op(0)).get_name();
2456                                         if (name == "H") {
2457                                                 for (ex i=0; i<e.op(pos).op(1); i++) {
2458                                                         Hlst.append(e.op(pos).op(0));
2459                                                 }
2460                                                 continue;
2461                                         }
2462                                 } else if (is_a<function>(e.op(pos))) {
2463                                         std::string name = ex_to<function>(e.op(pos)).get_name();
2464                                         if (name == "H") {
2465                                                 if (e.op(pos).op(0).nops() > 1) {
2466                                                         firstH = e.op(pos);
2467                                                 } else {
2468                                                         Hlst.append(e.op(pos));
2469                                                 }
2470                                                 continue;
2471                                         }
2472                                 }
2473                                 result *= e.op(pos);
2474                         }
2475                         if (firstH == 0) {
2476                                 if (Hlst.nops() > 0) {
2477                                         firstH = Hlst[Hlst.nops()-1];
2478                                         Hlst.remove_last();
2479                                 } else {
2480                                         return e;
2481                                 }
2482                         }
2483
2484                         if (Hlst.nops() > 0) {
2485                                 ex buffer = trafo_H_mult(firstH, Hlst.op(0));
2486                                 result *= buffer;
2487                                 for (int i=1; i<Hlst.nops(); i++) {
2488                                         result *= Hlst.op(i);
2489                                 }
2490                                 result = result.expand();
2491                                 map_trafo_H_mult recursion;
2492                                 return recursion(result);
2493                         } else {
2494                                 return e;
2495                         }
2496
2497                 }
2498                 return e;
2499         }
2500 };
2501
2502
2503 // do integration [ReV] (55)
2504 // put parameter 0 in front of existing parameters
2505 ex trafo_H_1tx_prepend_zero(const ex& e, const ex& arg)
2506 {
2507         ex h;
2508         std::string name;
2509         if (is_a<function>(e)) {
2510                 name = ex_to<function>(e).get_name();
2511         }
2512         if (name == "H") {
2513                 h = e;
2514         } else {
2515                 for (int i=0; i<e.nops(); i++) {
2516                         if (is_a<function>(e.op(i))) {
2517                                 std::string name = ex_to<function>(e.op(i)).get_name();
2518                                 if (name == "H") {
2519                                         h = e.op(i);
2520                                 }
2521                         }
2522                 }
2523         }
2524         if (h != 0) {
2525                 lst newparameter = ex_to<lst>(h.op(0));
2526                 newparameter.prepend(0);
2527                 ex addzeta = convert_H_to_zeta(newparameter);
2528                 return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
2529         } else {
2530                 return e * (-H(lst(0),1/arg).hold());
2531         }
2532 }
2533
2534
2535 // do integration [ReV] (49)
2536 // put parameter 1 in front of existing parameters
2537 ex trafo_H_prepend_one(const ex& e, const ex& arg)
2538 {
2539         ex h;
2540         std::string name;
2541         if (is_a<function>(e)) {
2542                 name = ex_to<function>(e).get_name();
2543         }
2544         if (name == "H") {
2545                 h = e;
2546         } else {
2547                 for (int i=0; i<e.nops(); i++) {
2548                         if (is_a<function>(e.op(i))) {
2549                                 std::string name = ex_to<function>(e.op(i)).get_name();
2550                                 if (name == "H") {
2551                                         h = e.op(i);
2552                                 }
2553                         }
2554                 }
2555         }
2556         if (h != 0) {
2557                 lst newparameter = ex_to<lst>(h.op(0));
2558                 newparameter.prepend(1);
2559                 return e.subs(h == H(newparameter, h.op(1)).hold());
2560         } else {
2561                 return e * H(lst(1),1-arg).hold();
2562         }
2563 }
2564
2565
2566 // do integration [ReV] (55)
2567 // put parameter -1 in front of existing parameters
2568 ex trafo_H_1tx_prepend_minusone(const ex& e, const ex& arg)
2569 {
2570         ex h;
2571         std::string name;
2572         if (is_a<function>(e)) {
2573                 name = ex_to<function>(e).get_name();
2574         }
2575         if (name == "H") {
2576                 h = e;
2577         } else {
2578                 for (int i=0; i<e.nops(); i++) {
2579                         if (is_a<function>(e.op(i))) {
2580                                 std::string name = ex_to<function>(e.op(i)).get_name();
2581                                 if (name == "H") {
2582                                         h = e.op(i);
2583                                 }
2584                         }
2585                 }
2586         }
2587         if (h != 0) {
2588                 lst newparameter = ex_to<lst>(h.op(0));
2589                 newparameter.prepend(-1);
2590                 ex addzeta = convert_H_to_zeta(newparameter);
2591                 return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
2592         } else {
2593                 ex addzeta = convert_H_to_zeta(lst(-1));
2594                 return (e * (addzeta - H(lst(-1),1/arg).hold())).expand();
2595         }
2596 }
2597
2598
2599 // do integration [ReV] (55)
2600 // put parameter -1 in front of existing parameters
2601 ex trafo_H_1mxt1px_prepend_minusone(const ex& e, const ex& arg)
2602 {
2603         ex h;
2604         std::string name;
2605         if (is_a<function>(e)) {
2606                 name = ex_to<function>(e).get_name();
2607         }
2608         if (name == "H") {
2609                 h = e;
2610         } else {
2611                 for (int i=0; i<e.nops(); i++) {
2612                         if (is_a<function>(e.op(i))) {
2613                                 std::string name = ex_to<function>(e.op(i)).get_name();
2614                                 if (name == "H") {
2615                                         h = e.op(i);
2616                                 }
2617                         }
2618                 }
2619         }
2620         if (h != 0) {
2621                 lst newparameter = ex_to<lst>(h.op(0));
2622                 newparameter.prepend(-1);
2623                 return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
2624         } else {
2625                 return (e * H(lst(-1),(1-arg)/(1+arg)).hold()).expand();
2626         }
2627 }
2628
2629
2630 // do integration [ReV] (55)
2631 // put parameter 1 in front of existing parameters
2632 ex trafo_H_1mxt1px_prepend_one(const ex& e, const ex& arg)
2633 {
2634         ex h;
2635         std::string name;
2636         if (is_a<function>(e)) {
2637                 name = ex_to<function>(e).get_name();
2638         }
2639         if (name == "H") {
2640                 h = e;
2641         } else {
2642                 for (int i=0; i<e.nops(); i++) {
2643                         if (is_a<function>(e.op(i))) {
2644                                 std::string name = ex_to<function>(e.op(i)).get_name();
2645                                 if (name == "H") {
2646                                         h = e.op(i);
2647                                 }
2648                         }
2649                 }
2650         }
2651         if (h != 0) {
2652                 lst newparameter = ex_to<lst>(h.op(0));
2653                 newparameter.prepend(1);
2654                 return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
2655         } else {
2656                 return (e * H(lst(1),(1-arg)/(1+arg)).hold()).expand();
2657         }
2658 }
2659
2660
2661 // do x -> 1-x transformation
2662 struct map_trafo_H_1mx : public map_function
2663 {
2664         ex operator()(const ex& e)
2665         {
2666                 if (is_a<add>(e) || is_a<mul>(e)) {
2667                         return e.map(*this);
2668                 }
2669                 
2670                 if (is_a<function>(e)) {
2671                         std::string name = ex_to<function>(e).get_name();
2672                         if (name == "H") {
2673
2674                                 lst parameter = ex_to<lst>(e.op(0));
2675                                 ex arg = e.op(1);
2676
2677                                 // special cases if all parameters are either 0, 1 or -1
2678                                 bool allthesame = true;
2679                                 if (parameter.op(0) == 0) {
2680                                         for (int i=1; i<parameter.nops(); i++) {
2681                                                 if (parameter.op(i) != 0) {
2682                                                         allthesame = false;
2683                                                         break;
2684                                                 }
2685                                         }
2686                                         if (allthesame) {
2687                                                 lst newparameter;
2688                                                 for (int i=parameter.nops(); i>0; i--) {
2689                                                         newparameter.append(1);
2690                                                 }
2691                                                 return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
2692                                         }
2693                                 } else if (parameter.op(0) == -1) {
2694                                         throw std::runtime_error("map_trafo_H_1mx: cannot handle weights equal -1!");
2695                                 } else {
2696                                         for (int i=1; i<parameter.nops(); i++) {
2697                                                 if (parameter.op(i) != 1) {
2698                                                         allthesame = false;
2699                                                         break;
2700                                                 }
2701                                         }
2702                                         if (allthesame) {
2703                                                 lst newparameter;
2704                                                 for (int i=parameter.nops(); i>0; i--) {
2705                                                         newparameter.append(0);
2706                                                 }
2707                                                 return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
2708                                         }
2709                                 }
2710
2711                                 lst newparameter = parameter;
2712                                 newparameter.remove_first();
2713
2714                                 if (parameter.op(0) == 0) {
2715
2716                                         // leading zero
2717                                         ex res = convert_H_to_zeta(parameter);
2718                                         //ex res = convert_from_RV(parameter, 1).subs(H(wild(1),wild(2))==zeta(wild(1)));
2719                                         map_trafo_H_1mx recursion;
2720                                         ex buffer = recursion(H(newparameter, arg).hold());
2721                                         if (is_a<add>(buffer)) {
2722                                                 for (int i=0; i<buffer.nops(); i++) {
2723                                                         res -= trafo_H_prepend_one(buffer.op(i), arg);
2724                                                 }
2725                                         } else {
2726                                                 res -= trafo_H_prepend_one(buffer, arg);
2727                                         }
2728                                         return res;
2729
2730                                 } else {
2731
2732                                         // leading one
2733                                         map_trafo_H_1mx recursion;
2734                                         map_trafo_H_mult unify;
2735                                         ex res = H(lst(1), arg).hold() * H(newparameter, arg).hold();
2736                                         int firstzero = 0;
2737                                         while (parameter.op(firstzero) == 1) {
2738                                                 firstzero++;
2739                                         }
2740                                         for (int i=firstzero-1; i<parameter.nops()-1; i++) {
2741                                                 lst newparameter;
2742                                                 int j=0;
2743                                                 for (; j<=i; j++) {
2744                                                         newparameter.append(parameter[j+1]);
2745                                                 }
2746                                                 newparameter.append(1);
2747                                                 for (; j<parameter.nops()-1; j++) {
2748                                                         newparameter.append(parameter[j+1]);
2749                                                 }
2750                                                 res -= H(newparameter, arg).hold();
2751                                         }
2752                                         res = recursion(res).expand() / firstzero;
2753                                         return unify(res);
2754                                 }
2755                         }
2756                 }
2757                 return e;
2758         }
2759 };
2760
2761
2762 // do x -> 1/x transformation
2763 struct map_trafo_H_1overx : public map_function
2764 {
2765         ex operator()(const ex& e)
2766         {
2767                 if (is_a<add>(e) || is_a<mul>(e)) {
2768                         return e.map(*this);
2769                 }
2770
2771                 if (is_a<function>(e)) {
2772                         std::string name = ex_to<function>(e).get_name();
2773                         if (name == "H") {
2774
2775                                 lst parameter = ex_to<lst>(e.op(0));
2776                                 ex arg = e.op(1);
2777
2778                                 // special cases if all parameters are either 0, 1 or -1
2779                                 bool allthesame = true;
2780                                 if (parameter.op(0) == 0) {
2781                                         for (int i=1; i<parameter.nops(); i++) {
2782                                                 if (parameter.op(i) != 0) {
2783                                                         allthesame = false;
2784                                                         break;
2785                                                 }
2786                                         }
2787                                         if (allthesame) {
2788                                                 return pow(-1, parameter.nops()) * H(parameter, 1/arg).hold();
2789                                         }
2790                                 } else if (parameter.op(0) == -1) {
2791                                         for (int i=1; i<parameter.nops(); i++) {
2792                                                 if (parameter.op(i) != -1) {
2793                                                         allthesame = false;
2794                                                         break;
2795                                                 }
2796                                         }
2797                                         if (allthesame) {
2798                                                 map_trafo_H_mult unify;
2799                                                 return unify((pow(H(lst(-1),1/arg).hold() - H(lst(0),1/arg).hold(), parameter.nops())
2800                                                        / factorial(parameter.nops())).expand());
2801                                         }
2802                                 } else {
2803                                         for (int i=1; i<parameter.nops(); i++) {
2804                                                 if (parameter.op(i) != 1) {
2805                                                         allthesame = false;
2806                                                         break;
2807                                                 }
2808                                         }
2809                                         if (allthesame) {
2810                                                 map_trafo_H_mult unify;
2811                                                 return unify((pow(H(lst(1),1/arg).hold() + H(lst(0),1/arg).hold() + H_polesign, parameter.nops())
2812                                                        / factorial(parameter.nops())).expand());
2813                                         }
2814                                 }
2815
2816                                 lst newparameter = parameter;
2817                                 newparameter.remove_first();
2818
2819                                 if (parameter.op(0) == 0) {
2820                                         
2821                                         // leading zero
2822                                         ex res = convert_H_to_zeta(parameter);
2823                                         map_trafo_H_1overx recursion;
2824                                         ex buffer = recursion(H(newparameter, arg).hold());
2825                                         if (is_a<add>(buffer)) {
2826                                                 for (int i=0; i<buffer.nops(); i++) {
2827                                                         res += trafo_H_1tx_prepend_zero(buffer.op(i), arg);
2828                                                 }
2829                                         } else {
2830                                                 res += trafo_H_1tx_prepend_zero(buffer, arg);
2831                                         }
2832                                         return res;
2833
2834                                 } else if (parameter.op(0) == -1) {
2835
2836                                         // leading negative one
2837                                         ex res = convert_H_to_zeta(parameter);
2838                                         map_trafo_H_1overx recursion;
2839                                         ex buffer = recursion(H(newparameter, arg).hold());
2840                                         if (is_a<add>(buffer)) {
2841                                                 for (int i=0; i<buffer.nops(); i++) {
2842                                                         res += trafo_H_1tx_prepend_zero(buffer.op(i), arg) - trafo_H_1tx_prepend_minusone(buffer.op(i), arg);
2843                                                 }
2844                                         } else {
2845                                                 res += trafo_H_1tx_prepend_zero(buffer, arg) - trafo_H_1tx_prepend_minusone(buffer, arg);
2846                                         }
2847                                         return res;
2848
2849                                 } else {
2850
2851                                         // leading one
2852                                         map_trafo_H_1overx recursion;
2853                                         map_trafo_H_mult unify;
2854                                         ex res = H(lst(1), arg).hold() * H(newparameter, arg).hold();
2855                                         int firstzero = 0;
2856                                         while (parameter.op(firstzero) == 1) {
2857                                                 firstzero++;
2858                                         }
2859                                         for (int i=firstzero-1; i<parameter.nops()-1; i++) {
2860                                                 lst newparameter;
2861                                                 int j=0;
2862                                                 for (; j<=i; j++) {
2863                                                         newparameter.append(parameter[j+1]);
2864                                                 }
2865                                                 newparameter.append(1);
2866                                                 for (; j<parameter.nops()-1; j++) {
2867                                                         newparameter.append(parameter[j+1]);
2868                                                 }
2869                                                 res -= H(newparameter, arg).hold();
2870                                         }
2871                                         res = recursion(res).expand() / firstzero;
2872                                         return unify(res);
2873
2874                                 }
2875
2876                         }
2877                 }
2878                 return e;
2879         }
2880 };
2881
2882
2883 // do x -> (1-x)/(1+x) transformation
2884 struct map_trafo_H_1mxt1px : public map_function
2885 {
2886         ex operator()(const ex& e)
2887         {
2888                 if (is_a<add>(e) || is_a<mul>(e)) {
2889                         return e.map(*this);
2890                 }
2891
2892                 if (is_a<function>(e)) {
2893                         std::string name = ex_to<function>(e).get_name();
2894                         if (name == "H") {
2895
2896                                 lst parameter = ex_to<lst>(e.op(0));
2897                                 ex arg = e.op(1);
2898
2899                                 // special cases if all parameters are either 0, 1 or -1
2900                                 bool allthesame = true;
2901                                 if (parameter.op(0) == 0) {
2902                                         for (int i=1; i<parameter.nops(); i++) {
2903                                                 if (parameter.op(i) != 0) {
2904                                                         allthesame = false;
2905                                                         break;
2906                                                 }
2907                                         }
2908                                         if (allthesame) {
2909                                                 map_trafo_H_mult unify;
2910                                                 return unify((pow(-H(lst(1),(1-arg)/(1+arg)).hold() - H(lst(-1),(1-arg)/(1+arg)).hold(), parameter.nops())
2911                                                        / factorial(parameter.nops())).expand());
2912                                         }
2913                                 } else if (parameter.op(0) == -1) {
2914                                         for (int i=1; i<parameter.nops(); i++) {
2915                                                 if (parameter.op(i) != -1) {
2916                                                         allthesame = false;
2917                                                         break;
2918                                                 }
2919                                         }
2920                                         if (allthesame) {
2921                                                 map_trafo_H_mult unify;
2922                                                 return unify((pow(log(2) - H(lst(-1),(1-arg)/(1+arg)).hold(), parameter.nops())
2923                                                        / factorial(parameter.nops())).expand());
2924                                         }
2925                                 } else {
2926                                         for (int i=1; i<parameter.nops(); i++) {
2927                                                 if (parameter.op(i) != 1) {
2928                                                         allthesame = false;
2929                                                         break;
2930                                                 }
2931                                         }
2932                                         if (allthesame) {
2933                                                 map_trafo_H_mult unify;
2934                                                 return unify((pow(-log(2) - H(lst(0),(1-arg)/(1+arg)).hold() + H(lst(-1),(1-arg)/(1+arg)).hold(), parameter.nops())
2935                                                        / factorial(parameter.nops())).expand());
2936                                         }
2937                                 }
2938
2939                                 lst newparameter = parameter;
2940                                 newparameter.remove_first();
2941
2942                                 if (parameter.op(0) == 0) {
2943
2944                                         // leading zero
2945                                         ex res = convert_H_to_zeta(parameter);
2946                                         map_trafo_H_1mxt1px recursion;
2947                                         ex buffer = recursion(H(newparameter, arg).hold());
2948                                         if (is_a<add>(buffer)) {
2949                                                 for (int i=0; i<buffer.nops(); i++) {
2950                                                         res -= trafo_H_1mxt1px_prepend_one(buffer.op(i), arg) + trafo_H_1mxt1px_prepend_minusone(buffer.op(i), arg);
2951                                                 }
2952                                         } else {
2953                                                 res -= trafo_H_1mxt1px_prepend_one(buffer, arg) + trafo_H_1mxt1px_prepend_minusone(buffer, arg);
2954                                         }
2955                                         return res;
2956
2957                                 } else if (parameter.op(0) == -1) {
2958
2959                                         // leading negative one
2960                                         ex res = convert_H_to_zeta(parameter);
2961                                         map_trafo_H_1mxt1px recursion;
2962                                         ex buffer = recursion(H(newparameter, arg).hold());
2963                                         if (is_a<add>(buffer)) {
2964                                                 for (int i=0; i<buffer.nops(); i++) {
2965                                                         res -= trafo_H_1mxt1px_prepend_minusone(buffer.op(i), arg);
2966                                                 }
2967                                         } else {
2968                                                 res -= trafo_H_1mxt1px_prepend_minusone(buffer, arg);
2969                                         }
2970                                         return res;
2971
2972                                 } else {
2973
2974                                         // leading one
2975                                         map_trafo_H_1mxt1px recursion;
2976                                         map_trafo_H_mult unify;
2977                                         ex res = H(lst(1), arg).hold() * H(newparameter, arg).hold();
2978                                         int firstzero = 0;
2979                                         while (parameter.op(firstzero) == 1) {
2980                                                 firstzero++;
2981                                         }
2982                                         for (int i=firstzero-1; i<parameter.nops()-1; i++) {
2983                                                 lst newparameter;
2984                                                 int j=0;
2985                                                 for (; j<=i; j++) {
2986                                                         newparameter.append(parameter[j+1]);
2987                                                 }
2988                                                 newparameter.append(1);
2989                                                 for (; j<parameter.nops()-1; j++) {
2990                                                         newparameter.append(parameter[j+1]);
2991                                                 }
2992                                                 res -= H(newparameter, arg).hold();
2993                                         }
2994                                         res = recursion(res).expand() / firstzero;
2995                                         return unify(res);
2996
2997                                 }
2998
2999                         }
3000                 }
3001                 return e;
3002         }
3003 };
3004
3005
3006 // do the actual summation.
3007 cln::cl_N H_do_sum(const std::vector<int>& m, const cln::cl_N& x)
3008 {
3009         const int j = m.size();
3010
3011         std::vector<cln::cl_N> t(j);
3012
3013         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
3014         cln::cl_N factor = cln::expt(x, j) * one;
3015         cln::cl_N t0buf;
3016         int q = 0;
3017         do {
3018                 t0buf = t[0];
3019                 q++;
3020                 t[j-1] = t[j-1] + 1 / cln::expt(cln::cl_I(q),m[j-1]);
3021                 for (int k=j-2; k>=1; k--) {
3022                         t[k] = t[k] + t[k+1] / cln::expt(cln::cl_I(q+j-1-k), m[k]);
3023                 }
3024                 t[0] = t[0] + t[1] * factor / cln::expt(cln::cl_I(q+j-1), m[0]);
3025                 factor = factor * x;
3026         } while (t[0] != t0buf);
3027
3028         return t[0];
3029 }
3030
3031
3032 } // end of anonymous namespace
3033
3034
3035 //////////////////////////////////////////////////////////////////////
3036 //
3037 // Harmonic polylogarithm  H(m,x)
3038 //
3039 // GiNaC function
3040 //
3041 //////////////////////////////////////////////////////////////////////
3042
3043
3044 static ex H_evalf(const ex& x1, const ex& x2)
3045 {
3046         if (is_a<lst>(x1)) {
3047                 
3048                 cln::cl_N x;
3049                 if (is_a<numeric>(x2)) {
3050                         x = ex_to<numeric>(x2).to_cl_N();
3051                 } else {
3052                         ex x2_val = x2.evalf();
3053                         if (is_a<numeric>(x2_val)) {
3054                                 x = ex_to<numeric>(x2_val).to_cl_N();
3055                         }
3056                 }
3057
3058                 for (int i=0; i<x1.nops(); i++) {
3059                         if (!x1.op(i).info(info_flags::integer)) {
3060                                 return H(x1, x2).hold();
3061                         }
3062                 }
3063                 if (x1.nops() < 1) {
3064                         return H(x1, x2).hold();
3065                 }
3066
3067                 const lst& morg = ex_to<lst>(x1);
3068                 // remove trailing zeros ...
3069                 if (*(--morg.end()) == 0) {
3070                         symbol xtemp("xtemp");
3071                         map_trafo_H_reduce_trailing_zeros filter;
3072                         return filter(H(x1, xtemp).hold()).subs(xtemp==x2).evalf();
3073                 }
3074                 // ... and expand parameter notation
3075                 bool has_minus_one = false;
3076                 lst m;
3077                 for (lst::const_iterator it = morg.begin(); it != morg.end(); it++) {
3078                         if (*it > 1) {
3079                                 for (ex count=*it-1; count > 0; count--) {
3080                                         m.append(0);
3081                                 }
3082                                 m.append(1);
3083                         } else if (*it <= -1) {
3084                                 for (ex count=*it+1; count < 0; count++) {
3085                                         m.append(0);
3086                                 }
3087                                 m.append(-1);
3088                                 has_minus_one = true;
3089                         } else {
3090                                 m.append(*it);
3091                         }
3092                 }
3093
3094                 // do summation
3095                 if (cln::abs(x) < 0.95) {
3096                         lst m_lst;
3097                         lst s_lst;
3098                         ex pf;
3099                         if (convert_parameter_H_to_Li(m, m_lst, s_lst, pf)) {
3100                                 // negative parameters -> s_lst is filled
3101                                 std::vector<int> m_int;
3102                                 std::vector<cln::cl_N> x_cln;
3103                                 for (lst::const_iterator it_int = m_lst.begin(), it_cln = s_lst.begin(); 
3104                                      it_int != m_lst.end(); it_int++, it_cln++) {
3105                                         m_int.push_back(ex_to<numeric>(*it_int).to_int());
3106                                         x_cln.push_back(ex_to<numeric>(*it_cln).to_cl_N());
3107                                 }
3108                                 x_cln.front() = x_cln.front() * x;
3109                                 return pf * numeric(multipleLi_do_sum(m_int, x_cln));
3110                         } else {
3111                                 // only positive parameters
3112                                 //TODO
3113                                 if (m_lst.nops() == 1) {
3114                                         return Li(m_lst.op(0), x2).evalf();
3115                                 }
3116                                 std::vector<int> m_int;
3117                                 for (lst::const_iterator it = m_lst.begin(); it != m_lst.end(); it++) {
3118                                         m_int.push_back(ex_to<numeric>(*it).to_int());
3119                                 }
3120                                 return numeric(H_do_sum(m_int, x));
3121                         }
3122                 }
3123
3124                 symbol xtemp("xtemp");
3125                 ex res = 1;     
3126                 
3127                 // ensure that the realpart of the argument is positive
3128                 if (cln::realpart(x) < 0) {
3129                         x = -x;
3130                         for (int i=0; i<m.nops(); i++) {
3131                                 if (m.op(i) != 0) {
3132                                         m.let_op(i) = -m.op(i);
3133                                         res *= -1;
3134                                 }
3135                         }
3136                 }
3137
3138                 // x -> 1/x
3139                 if (cln::abs(x) >= 2.0) {
3140                         map_trafo_H_1overx trafo;
3141                         res *= trafo(H(m, xtemp));
3142                         if (cln::imagpart(x) <= 0) {
3143                                 res = res.subs(H_polesign == -I*Pi);
3144                         } else {
3145                                 res = res.subs(H_polesign == I*Pi);
3146                         }
3147                         return res.subs(xtemp == numeric(x)).evalf();
3148                 }
3149                 
3150                 // check transformations for 0.95 <= |x| < 2.0
3151                 
3152                 // |(1-x)/(1+x)| < 0.9 -> circular area with center=9.53+0i and radius=9.47
3153                 if (cln::abs(x-9.53) <= 9.47) {
3154                         // x -> (1-x)/(1+x)
3155                         map_trafo_H_1mxt1px trafo;
3156                         res *= trafo(H(m, xtemp));
3157                 } else {
3158                         // x -> 1-x
3159                         if (has_minus_one) {
3160                                 map_trafo_H_convert_to_Li filter;
3161                                 return filter(H(m, numeric(x)).hold()).evalf();
3162                         }
3163                         map_trafo_H_1mx trafo;
3164                         res *= trafo(H(m, xtemp));
3165                 }
3166
3167                 return res.subs(xtemp == numeric(x)).evalf();
3168         }
3169
3170         return H(x1,x2).hold();
3171 }
3172
3173
3174 static ex H_eval(const ex& m_, const ex& x)
3175 {
3176         lst m;
3177         if (is_a<lst>(m_)) {
3178                 m = ex_to<lst>(m_);
3179         } else {
3180                 m = lst(m_);
3181         }
3182         if (m.nops() == 0) {
3183                 return _ex1;
3184         }
3185         ex pos1;
3186         ex pos2;
3187         ex n;
3188         ex p;
3189         int step = 0;
3190         if (*m.begin() > _ex1) {
3191                 step++;
3192                 pos1 = _ex0;
3193                 pos2 = _ex1;
3194                 n = *m.begin()-1;
3195                 p = _ex1;
3196         } else if (*m.begin() < _ex_1) {
3197                 step++;
3198                 pos1 = _ex0;
3199                 pos2 = _ex_1;
3200                 n = -*m.begin()-1;
3201                 p = _ex1;
3202         } else if (*m.begin() == _ex0) {
3203                 pos1 = _ex0;
3204                 n = _ex1;
3205         } else {
3206                 pos1 = *m.begin();
3207                 p = _ex1;
3208         }
3209         for (lst::const_iterator it = ++m.begin(); it != m.end(); it++) {
3210                 if ((*it).info(info_flags::integer)) {
3211                         if (step == 0) {
3212                                 if (*it > _ex1) {
3213                                         if (pos1 == _ex0) {
3214                                                 step = 1;
3215                                                 pos2 = _ex1;
3216                                                 n += *it-1;
3217                                                 p = _ex1;
3218                                         } else {
3219                                                 step = 2;
3220                                         }
3221                                 } else if (*it < _ex_1) {
3222                                         if (pos1 == _ex0) {
3223                                                 step = 1;
3224                                                 pos2 = _ex_1;
3225                                                 n += -*it-1;
3226                                                 p = _ex1;
3227                                         } else {
3228                                                 step = 2;
3229                                         }
3230                                 } else {
3231                                         if (*it != pos1) {
3232                                                 step = 1;
3233                                                 pos2 = *it;
3234                                         }
3235                                         if (*it == _ex0) {
3236                                                 n++;
3237                                         } else {
3238                                                 p++;
3239                                         }
3240                                 }
3241                         } else if (step == 1) {
3242                                 if (*it != pos2) {
3243                                         step = 2;
3244                                 } else {
3245                                         if (*it == _ex0) {
3246                                                 n++;
3247                                         } else {
3248                                                 p++;
3249                                         }
3250                                 }
3251                         }
3252                 } else {
3253                         // if some m_i is not an integer
3254                         return H(m_, x).hold();
3255                 }
3256         }
3257         if ((x == _ex1) && (*(--m.end()) != _ex0)) {
3258                 return convert_H_to_zeta(m);
3259         }
3260         if (step == 0) {
3261                 if (pos1 == _ex0) {
3262                         // all zero
3263                         if (x == _ex0) {
3264                                 return H(m_, x).hold();
3265                         }
3266                         return pow(log(x), m.nops()) / factorial(m.nops());
3267                 } else {
3268                         // all (minus) one
3269                         return pow(-pos1*log(1-pos1*x), m.nops()) / factorial(m.nops());
3270                 }
3271         } else if ((step == 1) && (pos1 == _ex0)){
3272                 // convertible to S
3273                 if (pos2 == _ex1) {
3274                         return S(n, p, x);
3275                 } else {
3276                         return pow(-1, p) * S(n, p, -x);
3277                 }
3278         }
3279         if (x == _ex0) {
3280                 return _ex0;
3281         }
3282         if (x.info(info_flags::numeric) && (!x.info(info_flags::crational))) {
3283                 return H(m_, x).evalf();
3284         }
3285         return H(m_, x).hold();
3286 }
3287
3288
3289 static ex H_series(const ex& m, const ex& x, const relational& rel, int order, unsigned options)
3290 {
3291         epvector seq;
3292         seq.push_back(expair(H(m, x), 0));
3293         return pseries(rel, seq);
3294 }
3295
3296
3297 static ex H_deriv(const ex& m_, const ex& x, unsigned deriv_param)
3298 {
3299         GINAC_ASSERT(deriv_param < 2);
3300         if (deriv_param == 0) {
3301                 return _ex0;
3302         }
3303         lst m;
3304         if (is_a<lst>(m_)) {
3305                 m = ex_to<lst>(m_);
3306         } else {
3307                 m = lst(m_);
3308         }
3309         ex mb = *m.begin();
3310         if (mb > _ex1) {
3311                 m[0]--;
3312                 return H(m, x) / x;
3313         }
3314         if (mb < _ex_1) {
3315                 m[0]++;
3316                 return H(m, x) / x;
3317         }
3318         m.remove_first();
3319         if (mb == _ex1) {
3320                 return 1/(1-x) * H(m, x);
3321         } else if (mb == _ex_1) {
3322                 return 1/(1+x) * H(m, x);
3323         } else {
3324                 return H(m, x) / x;
3325         }
3326 }
3327
3328
3329 static void H_print_latex(const ex& m_, const ex& x, const print_context& c)
3330 {
3331         lst m;
3332         if (is_a<lst>(m_)) {
3333                 m = ex_to<lst>(m_);
3334         } else {
3335                 m = lst(m_);
3336         }
3337         c.s << "\\mbox{H}_{";
3338         lst::const_iterator itm = m.begin();
3339         (*itm).print(c);
3340         itm++;
3341         for (; itm != m.end(); itm++) {
3342                 c.s << ",";
3343                 (*itm).print(c);
3344         }
3345         c.s << "}(";
3346         x.print(c);
3347         c.s << ")";
3348 }
3349
3350
3351 REGISTER_FUNCTION(H,
3352                   evalf_func(H_evalf).
3353                   eval_func(H_eval).
3354                   series_func(H_series).
3355                   derivative_func(H_deriv).
3356                   print_func<print_latex>(H_print_latex).
3357                   do_not_evalf_params());
3358
3359
3360 // takes a parameter list for H and returns an expression with corresponding multiple polylogarithms
3361 ex convert_H_to_Li(const ex& m, const ex& x)
3362 {
3363         map_trafo_H_reduce_trailing_zeros filter;
3364         map_trafo_H_convert_to_Li filter2;
3365         if (is_a<lst>(m)) {
3366                 return filter2(filter(H(m, x).hold()));
3367         } else {
3368                 return filter2(filter(H(lst(m), x).hold()));
3369         }
3370 }
3371
3372
3373 //////////////////////////////////////////////////////////////////////
3374 //
3375 // Multiple zeta values  zeta(x) and zeta(x,s)
3376 //
3377 // helper functions
3378 //
3379 //////////////////////////////////////////////////////////////////////
3380
3381
3382 // anonymous namespace for helper functions
3383 namespace {
3384
3385
3386 // parameters and data for [Cra] algorithm
3387 const cln::cl_N lambda = cln::cl_N("319/320");
3388 int L1;
3389 int L2;
3390 std::vector<std::vector<cln::cl_N> > f_kj;
3391 std::vector<cln::cl_N> crB;
3392 std::vector<std::vector<cln::cl_N> > crG;
3393 std::vector<cln::cl_N> crX;
3394
3395
3396 void halfcyclic_convolute(const std::vector<cln::cl_N>& a, const std::vector<cln::cl_N>& b, std::vector<cln::cl_N>& c)
3397 {
3398         const int size = a.size();
3399         for (int n=0; n<size; n++) {
3400                 c[n] = 0;
3401                 for (int m=0; m<=n; m++) {
3402                         c[n] = c[n] + a[m]*b[n-m];
3403                 }
3404         }
3405 }
3406
3407
3408 // [Cra] section 4
3409 void initcX(const std::vector<int>& s)
3410 {
3411         const int k = s.size();
3412
3413         crX.clear();
3414         crG.clear();
3415         crB.clear();
3416
3417         for (int i=0; i<=L2; i++) {
3418                 crB.push_back(bernoulli(i).to_cl_N() / cln::factorial(i));
3419         }
3420
3421         int Sm = 0;
3422         int Smp1 = 0;
3423         for (int m=0; m<k-1; m++) {
3424                 std::vector<cln::cl_N> crGbuf;
3425                 Sm = Sm + s[m];
3426                 Smp1 = Sm + s[m+1];
3427                 for (int i=0; i<=L2; i++) {
3428                         crGbuf.push_back(cln::factorial(i + Sm - m - 2) / cln::factorial(i + Smp1 - m - 2));
3429                 }
3430                 crG.push_back(crGbuf);
3431         }
3432
3433         crX = crB;
3434
3435         for (int m=0; m<k-1; m++) {
3436                 std::vector<cln::cl_N> Xbuf;
3437                 for (int i=0; i<=L2; i++) {
3438                         Xbuf.push_back(crX[i] * crG[m][i]);
3439                 }
3440                 halfcyclic_convolute(Xbuf, crB, crX);
3441         }
3442 }
3443
3444
3445 // [Cra] section 4
3446 cln::cl_N crandall_Y_loop(const cln::cl_N& Sqk)
3447 {
3448         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
3449         cln::cl_N factor = cln::expt(lambda, Sqk);
3450         cln::cl_N res = factor / Sqk * crX[0] * one;
3451         cln::cl_N resbuf;
3452         int N = 0;
3453         do {
3454                 resbuf = res;
3455                 factor = factor * lambda;
3456                 N++;
3457                 res = res + crX[N] * factor / (N+Sqk);
3458         } while ((res != resbuf) || cln::zerop(crX[N]));
3459         return res;
3460 }
3461
3462
3463 // [Cra] section 4
3464 void calc_f(int maxr)
3465 {
3466         f_kj.clear();
3467         f_kj.resize(L1);
3468         
3469         cln::cl_N t0, t1, t2, t3, t4;
3470         int i, j, k;
3471         std::vector<std::vector<cln::cl_N> >::iterator it = f_kj.begin();
3472         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
3473         
3474         t0 = cln::exp(-lambda);
3475         t2 = 1;
3476         for (k=1; k<=L1; k++) {
3477                 t1 = k * lambda;
3478                 t2 = t0 * t2;
3479                 for (j=1; j<=maxr; j++) {
3480                         t3 = 1;
3481                         t4 = 1;
3482                         for (i=2; i<=j; i++) {
3483                                 t4 = t4 * (j-i+1);
3484                                 t3 = t1 * t3 + t4;
3485                         }
3486                         (*it).push_back(t2 * t3 * cln::expt(cln::cl_I(k),-j) * one);
3487                 }
3488                 it++;
3489         }
3490 }
3491
3492
3493 // [Cra] (3.1)
3494 cln::cl_N crandall_Z(const std::vector<int>& s)
3495 {
3496         const int j = s.size();
3497
3498         if (j == 1) {   
3499                 cln::cl_N t0;
3500                 cln::cl_N t0buf;
3501                 int q = 0;
3502                 do {
3503                         t0buf = t0;
3504                         q++;
3505                         t0 = t0 + f_kj[q+j-2][s[0]-1];
3506                 } while (t0 != t0buf);
3507                 
3508                 return t0 / cln::factorial(s[0]-1);
3509         }
3510
3511         std::vector<cln::cl_N> t(j);
3512
3513         cln::cl_N t0buf;
3514         int q = 0;
3515         do {
3516                 t0buf = t[0];
3517                 q++;
3518                 t[j-1] = t[j-1] + 1 / cln::expt(cln::cl_I(q),s[j-1]);
3519                 for (int k=j-2; k>=1; k--) {
3520                         t[k] = t[k] + t[k+1] / cln::expt(cln::cl_I(q+j-1-k), s[k]);
3521                 }
3522                 t[0] = t[0] + t[1] * f_kj[q+j-2][s[0]-1];
3523         } while (t[0] != t0buf);
3524         
3525         return t[0] / cln::factorial(s[0]-1);
3526 }
3527
3528
3529 // [Cra] (2.4)
3530 cln::cl_N zeta_do_sum_Crandall(const std::vector<int>& s)
3531 {
3532         std::vector<int> r = s;
3533         const int j = r.size();
3534
3535         // decide on maximal size of f_kj for crandall_Z
3536         if (Digits < 50) {
3537                 L1 = 150;
3538         } else {
3539                 L1 = Digits * 3 + j*2;
3540         }
3541
3542         // decide on maximal size of crX for crandall_Y
3543         if (Digits < 38) {
3544                 L2 = 63;
3545         } else if (Digits < 86) {
3546                 L2 = 127;
3547         } else if (Digits < 192) {
3548                 L2 = 255;
3549         } else if (Digits < 394) {
3550                 L2 = 511;
3551         } else if (Digits < 808) {
3552                 L2 = 1023;
3553         } else {
3554                 L2 = 2047;
3555         }
3556
3557         cln::cl_N res;
3558
3559         int maxr = 0;
3560         int S = 0;
3561         for (int i=0; i<j; i++) {
3562                 S += r[i];
3563                 if (r[i] > maxr) {
3564                         maxr = r[i];
3565                 }
3566         }
3567
3568         calc_f(maxr);
3569
3570         const cln::cl_N r0factorial = cln::factorial(r[0]-1);
3571
3572         std::vector<int> rz;
3573         int skp1buf;
3574         int Srun = S;
3575         for (int k=r.size()-1; k>0; k--) {
3576
3577                 rz.insert(rz.begin(), r.back());
3578                 skp1buf = rz.front();
3579                 Srun -= skp1buf;
3580                 r.pop_back();
3581
3582                 initcX(r);
3583                 
3584                 for (int q=0; q<skp1buf; q++) {
3585                         
3586                         cln::cl_N pp1 = crandall_Y_loop(Srun+q-k);
3587                         cln::cl_N pp2 = crandall_Z(rz);
3588
3589                         rz.front()--;
3590                         
3591                         if (q & 1) {
3592                                 res = res - pp1 * pp2 / cln::factorial(q);
3593                         } else {
3594                                 res = res + pp1 * pp2 / cln::factorial(q);
3595                         }
3596                 }
3597                 rz.front() = skp1buf;
3598         }
3599         rz.insert(rz.begin(), r.back());
3600
3601         initcX(rz);
3602
3603         res = (res + crandall_Y_loop(S-j)) / r0factorial + crandall_Z(rz);
3604
3605         return res;
3606 }
3607
3608
3609 cln::cl_N zeta_do_sum_simple(const std::vector<int>& r)
3610 {
3611         const int j = r.size();
3612
3613         // buffer for subsums
3614         std::vector<cln::cl_N> t(j);
3615         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
3616
3617         cln::cl_N t0buf;
3618         int q = 0;
3619         do {
3620                 t0buf = t[0];
3621                 q++;
3622                 t[j-1] = t[j-1] + one / cln::expt(cln::cl_I(q),r[j-1]);
3623                 for (int k=j-2; k>=0; k--) {
3624                         t[k] = t[k] + one * t[k+1] / cln::expt(cln::cl_I(q+j-1-k), r[k]);
3625                 }
3626         } while (t[0] != t0buf);
3627
3628         return t[0];
3629 }
3630
3631
3632 // does Hoelder convolution. see [BBB] (7.0)
3633 cln::cl_N zeta_do_Hoelder_convolution(const std::vector<int>& m_, const std::vector<int>& s_)
3634 {
3635         // prepare parameters
3636         // holds Li arguments in [BBB] notation
3637         std::vector<int> s = s_;
3638         std::vector<int> m_p = m_;
3639         std::vector<int> m_q;
3640         // holds Li arguments in nested sums notation
3641         std::vector<cln::cl_N> s_p(s.size(), cln::cl_N(1));
3642         s_p[0] = s_p[0] * cln::cl_N("1/2");
3643         // convert notations
3644         int sig = 1;
3645         for (int i=0; i<s_.size(); i++) {
3646                 if (s_[i] < 0) {
3647                         sig = -sig;
3648                         s_p[i] = -s_p[i];
3649                 }
3650                 s[i] = sig * std::abs(s[i]);
3651         }
3652         std::vector<cln::cl_N> s_q;
3653         cln::cl_N signum = 1;
3654
3655         // first term
3656         cln::cl_N res = multipleLi_do_sum(m_p, s_p);
3657
3658         // middle terms
3659         do {
3660
3661                 // change parameters
3662                 if (s.front() > 0) {
3663                         if (m_p.front() == 1) {
3664                                 m_p.erase(m_p.begin());
3665                                 s_p.erase(s_p.begin());
3666                                 if (s_p.size() > 0) {
3667                                         s_p.front() = s_p.front() * cln::cl_N("1/2");
3668                                 }
3669                                 s.erase(s.begin());
3670                                 m_q.front()++;
3671                         } else {
3672                                 m_p.front()--;
3673                                 m_q.insert(m_q.begin(), 1);
3674                                 if (s_q.size() > 0) {
3675                                         s_q.front() = s_q.front() * 2;
3676                                 }
3677                                 s_q.insert(s_q.begin(), cln::cl_N("1/2"));
3678                         }
3679                 } else {
3680                         if (m_p.front() == 1) {
3681                                 m_p.erase(m_p.begin());
3682                                 cln::cl_N spbuf = s_p.front();
3683                                 s_p.erase(s_p.begin());
3684                                 if (s_p.size() > 0) {
3685                                         s_p.front() = s_p.front() * spbuf;
3686                                 }
3687                                 s.erase(s.begin());
3688                                 m_q.insert(m_q.begin(), 1);
3689                                 if (s_q.size() > 0) {
3690                                         s_q.front() = s_q.front() * 4;
3691                                 }
3692                                 s_q.insert(s_q.begin(), cln::cl_N("1/4"));
3693                                 signum = -signum;
3694                         } else {
3695                                 m_p.front()--;
3696                                 m_q.insert(m_q.begin(), 1);
3697                                 if (s_q.size() > 0) {
3698                                         s_q.front() = s_q.front() * 2;
3699                                 }
3700                                 s_q.insert(s_q.begin(), cln::cl_N("1/2"));
3701                         }
3702                 }
3703
3704                 // exiting the loop
3705                 if (m_p.size() == 0) break;
3706
3707                 res = res + signum * multipleLi_do_sum(m_p, s_p) * multipleLi_do_sum(m_q, s_q);
3708
3709         } while (true);
3710
3711         // last term
3712         res = res + signum * multipleLi_do_sum(m_q, s_q);
3713
3714         return res;
3715 }
3716
3717
3718 } // end of anonymous namespace
3719
3720
3721 //////////////////////////////////////////////////////////////////////
3722 //
3723 // Multiple zeta values  zeta(x)
3724 //
3725 // GiNaC function
3726 //
3727 //////////////////////////////////////////////////////////////////////
3728
3729
3730 static ex zeta1_evalf(const ex& x)
3731 {
3732         if (is_exactly_a<lst>(x) && (x.nops()>1)) {
3733
3734                 // multiple zeta value
3735                 const int count = x.nops();
3736                 const lst& xlst = ex_to<lst>(x);
3737                 std::vector<int> r(count);
3738
3739                 // check parameters and convert them
3740                 lst::const_iterator it1 = xlst.begin();
3741                 std::vector<int>::iterator it2 = r.begin();
3742                 do {
3743                         if (!(*it1).info(info_flags::posint)) {
3744                                 return zeta(x).hold();
3745                         }
3746                         *it2 = ex_to<numeric>(*it1).to_int();
3747                         it1++;
3748                         it2++;
3749                 } while (it2 != r.end());
3750
3751                 // check for divergence
3752                 if (r[0] == 1) {
3753                         return zeta(x).hold();
3754                 }
3755
3756                 // decide on summation algorithm
3757                 // this is still a bit clumsy
3758                 int limit = (Digits>17) ? 10 : 6;
3759                 if ((r[0] < limit) || ((count > 3) && (r[1] < limit/2))) {
3760                         return numeric(zeta_do_sum_Crandall(r));
3761                 } else {
3762                         return numeric(zeta_do_sum_simple(r));
3763                 }
3764         }
3765
3766         // single zeta value
3767         if (is_exactly_a<numeric>(x) && (x != 1)) {
3768                 try {
3769                         return zeta(ex_to<numeric>(x));
3770                 } catch (const dunno &e) { }
3771         }
3772
3773         return zeta(x).hold();
3774 }
3775
3776
3777 static ex zeta1_eval(const ex& m)
3778 {
3779         if (is_exactly_a<lst>(m)) {
3780                 if (m.nops() == 1) {
3781                         return zeta(m.op(0));
3782                 }
3783                 return zeta(m).hold();
3784         }
3785
3786         if (m.info(info_flags::numeric)) {
3787                 const numeric& y = ex_to<numeric>(m);
3788                 // trap integer arguments:
3789                 if (y.is_integer()) {
3790                         if (y.is_zero()) {
3791                                 return _ex_1_2;
3792                         }
3793                         if (y.is_equal(*_num1_p)) {
3794                                 return zeta(m).hold();
3795                         }
3796                         if (y.info(info_flags::posint)) {
3797                                 if (y.info(info_flags::odd)) {
3798                                         return zeta(m).hold();
3799                                 } else {
3800                                         return abs(bernoulli(y)) * pow(Pi, y) * pow(*_num2_p, y-(*_num1_p)) / factorial(y);
3801                                 }
3802                         } else {
3803                                 if (y.info(info_flags::odd)) {
3804                                         return -bernoulli((*_num1_p)-y) / ((*_num1_p)-y);
3805                                 } else {
3806                                         return _ex0;
3807                                 }
3808                         }
3809                 }
3810                 // zeta(float)
3811                 if (y.info(info_flags::numeric) && !y.info(info_flags::crational)) {
3812                         return zeta1_evalf(m);
3813                 }
3814         }
3815         return zeta(m).hold();
3816 }
3817
3818
3819 static ex zeta1_deriv(const ex& m, unsigned deriv_param)
3820 {
3821         GINAC_ASSERT(deriv_param==0);
3822
3823         if (is_exactly_a<lst>(m)) {
3824                 return _ex0;
3825         } else {
3826                 return zetaderiv(_ex1, m);
3827         }
3828 }
3829
3830
3831 static void zeta1_print_latex(const ex& m_, const print_context& c)
3832 {
3833         c.s << "\\zeta(";
3834         if (is_a<lst>(m_)) {
3835                 const lst& m = ex_to<lst>(m_);
3836                 lst::const_iterator it = m.begin();
3837                 (*it).print(c);
3838                 it++;
3839                 for (; it != m.end(); it++) {
3840                         c.s << ",";
3841                         (*it).print(c);
3842                 }
3843         } else {
3844                 m_.print(c);
3845         }
3846         c.s << ")";
3847 }
3848
3849
3850 unsigned zeta1_SERIAL::serial = function::register_new(function_options("zeta", 1).
3851                                 evalf_func(zeta1_evalf).
3852                                 eval_func(zeta1_eval).
3853                                 derivative_func(zeta1_deriv).
3854                                 print_func<print_latex>(zeta1_print_latex).
3855                                 do_not_evalf_params().
3856                                 overloaded(2));
3857
3858
3859 //////////////////////////////////////////////////////////////////////
3860 //
3861 // Alternating Euler sum  zeta(x,s)
3862 //
3863 // GiNaC function
3864 //
3865 //////////////////////////////////////////////////////////////////////
3866
3867
3868 static ex zeta2_evalf(const ex& x, const ex& s)
3869 {
3870         if (is_exactly_a<lst>(x)) {
3871
3872                 // alternating Euler sum
3873                 const int count = x.nops();
3874                 const lst& xlst = ex_to<lst>(x);
3875                 const lst& slst = ex_to<lst>(s);
3876                 std::vector<int> xi(count);
3877                 std::vector<int> si(count);
3878
3879                 // check parameters and convert them
3880                 lst::const_iterator it_xread = xlst.begin();
3881                 lst::const_iterator it_sread = slst.begin();
3882                 std::vector<int>::iterator it_xwrite = xi.begin();
3883                 std::vector<int>::iterator it_swrite = si.begin();
3884                 do {
3885                         if (!(*it_xread).info(info_flags::posint)) {
3886                                 return zeta(x, s).hold();
3887                         }
3888                         *it_xwrite = ex_to<numeric>(*it_xread).to_int();
3889                         if (*it_sread > 0) {
3890                                 *it_swrite = 1;
3891                         } else {
3892                                 *it_swrite = -1;
3893                         }
3894                         it_xread++;
3895                         it_sread++;
3896                         it_xwrite++;
3897                         it_swrite++;
3898                 } while (it_xwrite != xi.end());
3899
3900                 // check for divergence
3901                 if ((xi[0] == 1) && (si[0] == 1)) {
3902                         return zeta(x, s).hold();
3903                 }
3904
3905                 // use Hoelder convolution
3906                 return numeric(zeta_do_Hoelder_convolution(xi, si));
3907         }
3908
3909         return zeta(x, s).hold();
3910 }
3911
3912
3913 static ex zeta2_eval(const ex& m, const ex& s_)
3914 {
3915         if (is_exactly_a<lst>(s_)) {
3916                 const lst& s = ex_to<lst>(s_);
3917                 for (lst::const_iterator it = s.begin(); it != s.end(); it++) {
3918                         if ((*it).info(info_flags::positive)) {
3919                                 continue;
3920                         }
3921                         return zeta(m, s_).hold();
3922                 }
3923                 return zeta(m);
3924         } else if (s_.info(info_flags::positive)) {
3925                 return zeta(m);
3926         }
3927
3928         return zeta(m, s_).hold();
3929 }
3930
3931
3932 static ex zeta2_deriv(const ex& m, const ex& s, unsigned deriv_param)
3933 {
3934         GINAC_ASSERT(deriv_param==0);
3935
3936         if (is_exactly_a<lst>(m)) {
3937                 return _ex0;
3938         } else {
3939                 if ((is_exactly_a<lst>(s) && s.op(0).info(info_flags::positive)) || s.info(info_flags::positive)) {
3940                         return zetaderiv(_ex1, m);
3941                 }
3942                 return _ex0;
3943         }
3944 }
3945
3946
3947 static void zeta2_print_latex(const ex& m_, const ex& s_, const print_context& c)
3948 {
3949         lst m;
3950         if (is_a<lst>(m_)) {
3951                 m = ex_to<lst>(m_);
3952         } else {
3953                 m = lst(m_);
3954         }
3955         lst s;
3956         if (is_a<lst>(s_)) {
3957                 s = ex_to<lst>(s_);
3958         } else {
3959                 s = lst(s_);
3960         }
3961         c.s << "\\zeta(";
3962         lst::const_iterator itm = m.begin();
3963         lst::const_iterator its = s.begin();
3964         if (*its < 0) {
3965                 c.s << "\\overline{";
3966                 (*itm).print(c);
3967                 c.s << "}";
3968         } else {
3969                 (*itm).print(c);
3970         }
3971         its++;
3972         itm++;
3973         for (; itm != m.end(); itm++, its++) {
3974                 c.s << ",";
3975                 if (*its < 0) {
3976                         c.s << "\\overline{";
3977                         (*itm).print(c);
3978                         c.s << "}";
3979                 } else {
3980                         (*itm).print(c);
3981                 }
3982         }
3983         c.s << ")";
3984 }
3985
3986
3987 unsigned zeta2_SERIAL::serial = function::register_new(function_options("zeta", 2).
3988                                 evalf_func(zeta2_evalf).
3989                                 eval_func(zeta2_eval).
3990                                 derivative_func(zeta2_deriv).
3991                                 print_func<print_latex>(zeta2_print_latex).
3992                                 do_not_evalf_params().
3993                                 overloaded(2));
3994
3995
3996 } // namespace GiNaC
3997