1 /** @file inifcns_nstdsums.cpp
3 * Implementation of some special functions that have a representation as nested sums.
6 * classical polylogarithm Li(n,x)
7 * multiple polylogarithm Li(lst(m_1,...,m_k),lst(x_1,...,x_k))
8 * G(lst(a_1,...,a_k),y) or G(lst(a_1,...,a_k),lst(s_1,...,s_k),y)
9 * Nielsen's generalized polylogarithm S(n,p,x)
10 * harmonic polylogarithm H(m,x) or H(lst(m_1,...,m_k),x)
11 * multiple zeta value zeta(m) or zeta(lst(m_1,...,m_k))
12 * alternating Euler sum zeta(m,s) or zeta(lst(m_1,...,m_k),lst(s_1,...,s_k))
16 * - All formulae used can be looked up in the following publications:
17 * [Kol] Nielsen's Generalized Polylogarithms, K.S.Kolbig, SIAM J.Math.Anal. 17 (1986), pp. 1232-1258.
18 * [Cra] Fast Evaluation of Multiple Zeta Sums, R.E.Crandall, Math.Comp. 67 (1998), pp. 1163-1172.
19 * [ReV] Harmonic Polylogarithms, E.Remiddi, J.A.M.Vermaseren, Int.J.Mod.Phys. A15 (2000), pp. 725-754
20 * [BBB] Special Values of Multiple Polylogarithms, J.Borwein, D.Bradley, D.Broadhurst, P.Lisonek, Trans.Amer.Math.Soc. 353/3 (2001), pp. 907-941
21 * [VSW] Numerical evaluation of multiple polylogarithms, J.Vollinga, S.Weinzierl, hep-ph/0410259
23 * - The order of parameters and arguments of Li and zeta is defined according to the nested sums
24 * representation. The parameters for H are understood as in [ReV]. They can be in expanded --- only
25 * 0, 1 and -1 --- or in compactified --- a string with zeros in front of 1 or -1 is written as a single
26 * number --- notation.
28 * - All functions can be nummerically evaluated with arguments in the whole complex plane. The parameters
29 * for Li, zeta and S must be positive integers. If you want to have an alternating Euler sum, you have
30 * to give the signs of the parameters as a second argument s to zeta(m,s) containing 1 and -1.
32 * - The calculation of classical polylogarithms is speeded up by using Bernoulli numbers and
33 * look-up tables. S uses look-up tables as well. The zeta function applies the algorithms in
34 * [Cra] and [BBB] for speed up. Multiple polylogarithms use Hoelder convolution [BBB].
36 * - The functions have no means to do a series expansion into nested sums. To do this, you have to convert
37 * these functions into the appropriate objects from the nestedsums library, do the expansion and convert
40 * - Numerical testing of this implementation has been performed by doing a comparison of results
41 * between this software and the commercial M.......... 4.1. Multiple zeta values have been checked
42 * by means of evaluations into simple zeta values. Harmonic polylogarithms have been checked by
43 * comparison to S(n,p,x) for corresponding parameter combinations and by continuity checks
44 * around |x|=1 along with comparisons to corresponding zeta functions. Multiple polylogarithms were
45 * checked against H and zeta and by means of shuffle and quasi-shuffle relations.
50 * GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
52 * This program is free software; you can redistribute it and/or modify
53 * it under the terms of the GNU General Public License as published by
54 * the Free Software Foundation; either version 2 of the License, or
55 * (at your option) any later version.
57 * This program is distributed in the hope that it will be useful,
58 * but WITHOUT ANY WARRANTY; without even the implied warranty of
59 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
60 * GNU General Public License for more details.
62 * You should have received a copy of the GNU General Public License
63 * along with this program; if not, write to the Free Software
64 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
79 #include "operators.h"
82 #include "relational.h"
91 //////////////////////////////////////////////////////////////////////
93 // Classical polylogarithm Li(n,x)
97 //////////////////////////////////////////////////////////////////////
100 // anonymous namespace for helper functions
104 // lookup table for factors built from Bernoulli numbers
106 std::vector<std::vector<cln::cl_N> > Xn;
107 // initial size of Xn that should suffice for 32bit machines (must be even)
108 const int xninitsizestep = 26;
109 int xninitsize = xninitsizestep;
113 // This function calculates the X_n. The X_n are needed for speed up of classical polylogarithms.
114 // With these numbers the polylogs can be calculated as follows:
115 // Li_p (x) = \sum_{n=0}^\infty X_{p-2}(n) u^{n+1}/(n+1)! with u = -log(1-x)
116 // X_0(n) = B_n (Bernoulli numbers)
117 // X_p(n) = \sum_{k=0}^n binomial(n,k) B_{n-k} / (k+1) * X_{p-1}(k)
118 // The calculation of Xn depends on X0 and X{n-1}.
119 // X_0 is special, it holds only the non-zero Bernoulli numbers with index 2 or greater.
120 // This results in a slightly more complicated algorithm for the X_n.
121 // The first index in Xn corresponds to the index of the polylog minus 2.
122 // The second index in Xn corresponds to the index from the actual sum.
126 // calculate X_2 and higher (corresponding to Li_4 and higher)
127 std::vector<cln::cl_N> buf(xninitsize);
128 std::vector<cln::cl_N>::iterator it = buf.begin();
130 *it = -(cln::expt(cln::cl_I(2),n+1) - 1) / cln::expt(cln::cl_I(2),n+1); // i == 1
132 for (int i=2; i<=xninitsize; i++) {
134 result = 0; // k == 0
136 result = Xn[0][i/2-1]; // k == 0
138 for (int k=1; k<i-1; k++) {
139 if ( !(((i-k) & 1) && ((i-k) > 1)) ) {
140 result = result + cln::binomial(i,k) * Xn[0][(i-k)/2-1] * Xn[n-1][k-1] / (k+1);
143 result = result - cln::binomial(i,i-1) * Xn[n-1][i-2] / 2 / i; // k == i-1
144 result = result + Xn[n-1][i-1] / (i+1); // k == i
151 // special case to handle the X_0 correct
152 std::vector<cln::cl_N> buf(xninitsize);
153 std::vector<cln::cl_N>::iterator it = buf.begin();
155 *it = cln::cl_I(-3)/cln::cl_I(4); // i == 1
157 *it = cln::cl_I(17)/cln::cl_I(36); // i == 2
159 for (int i=3; i<=xninitsize; i++) {
161 result = -Xn[0][(i-3)/2]/2;
162 *it = (cln::binomial(i,1)/cln::cl_I(2) + cln::binomial(i,i-1)/cln::cl_I(i))*result;
165 result = Xn[0][i/2-1] + Xn[0][i/2-1]/(i+1);
166 for (int k=1; k<i/2; k++) {
167 result = result + cln::binomial(i,k*2) * Xn[0][k-1] * Xn[0][i/2-k-1] / (k*2+1);
176 std::vector<cln::cl_N> buf(xninitsize/2);
177 std::vector<cln::cl_N>::iterator it = buf.begin();
178 for (int i=1; i<=xninitsize/2; i++) {
179 *it = bernoulli(i*2).to_cl_N();
188 // doubles the number of entries in each Xn[]
191 const int pos0 = xninitsize / 2;
193 for (int i=1; i<=xninitsizestep/2; ++i) {
194 Xn[0].push_back(bernoulli((i+pos0)*2).to_cl_N());
197 int xend = xninitsize + xninitsizestep;
200 for (int i=xninitsize+1; i<=xend; ++i) {
202 result = -Xn[0][(i-3)/2]/2;
203 Xn[1].push_back((cln::binomial(i,1)/cln::cl_I(2) + cln::binomial(i,i-1)/cln::cl_I(i))*result);
205 result = Xn[0][i/2-1] + Xn[0][i/2-1]/(i+1);
206 for (int k=1; k<i/2; k++) {
207 result = result + cln::binomial(i,k*2) * Xn[0][k-1] * Xn[0][i/2-k-1] / (k*2+1);
209 Xn[1].push_back(result);
213 for (int n=2; n<Xn.size(); ++n) {
214 for (int i=xninitsize+1; i<=xend; ++i) {
216 result = 0; // k == 0
218 result = Xn[0][i/2-1]; // k == 0
220 for (int k=1; k<i-1; ++k) {
221 if ( !(((i-k) & 1) && ((i-k) > 1)) ) {
222 result = result + cln::binomial(i,k) * Xn[0][(i-k)/2-1] * Xn[n-1][k-1] / (k+1);
225 result = result - cln::binomial(i,i-1) * Xn[n-1][i-2] / 2 / i; // k == i-1
226 result = result + Xn[n-1][i-1] / (i+1); // k == i
227 Xn[n].push_back(result);
231 xninitsize += xninitsizestep;
235 // calculates Li(2,x) without Xn
236 cln::cl_N Li2_do_sum(const cln::cl_N& x)
240 cln::cl_N num = x * cln::cl_float(1, cln::float_format(Digits));
241 cln::cl_I den = 1; // n^2 = 1
246 den = den + i; // n^2 = 4, 9, 16, ...
248 res = res + num / den;
249 } while (res != resbuf);
254 // calculates Li(2,x) with Xn
255 cln::cl_N Li2_do_sum_Xn(const cln::cl_N& x)
257 std::vector<cln::cl_N>::const_iterator it = Xn[0].begin();
258 std::vector<cln::cl_N>::const_iterator xend = Xn[0].end();
259 cln::cl_N u = -cln::log(1-x);
260 cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
261 cln::cl_N uu = cln::square(u);
262 cln::cl_N res = u - uu/4;
267 factor = factor * uu / (2*i * (2*i+1));
268 res = res + (*it) * factor;
272 it = Xn[0].begin() + (i-1);
275 } while (res != resbuf);
280 // calculates Li(n,x), n>2 without Xn
281 cln::cl_N Lin_do_sum(int n, const cln::cl_N& x)
283 cln::cl_N factor = x * cln::cl_float(1, cln::float_format(Digits));
290 res = res + factor / cln::expt(cln::cl_I(i),n);
292 } while (res != resbuf);
297 // calculates Li(n,x), n>2 with Xn
298 cln::cl_N Lin_do_sum_Xn(int n, const cln::cl_N& x)
300 std::vector<cln::cl_N>::const_iterator it = Xn[n-2].begin();
301 std::vector<cln::cl_N>::const_iterator xend = Xn[n-2].end();
302 cln::cl_N u = -cln::log(1-x);
303 cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
309 factor = factor * u / i;
310 res = res + (*it) * factor;
314 it = Xn[n-2].begin() + (i-2);
315 xend = Xn[n-2].end();
317 } while (res != resbuf);
322 // forward declaration needed by function Li_projection and C below
323 const cln::cl_N S_num(int n, int p, const cln::cl_N& x);
326 // helper function for classical polylog Li
327 cln::cl_N Li_projection(int n, const cln::cl_N& x, const cln::float_format_t& prec)
329 // treat n=2 as special case
331 // check if precalculated X0 exists
336 if (cln::realpart(x) < 0.5) {
337 // choose the faster algorithm
338 // the switching point was empirically determined. the optimal point
339 // depends on hardware, Digits, ... so an approx value is okay.
340 // it solves also the problem with precision due to the u=-log(1-x) transformation
341 if (cln::abs(cln::realpart(x)) < 0.25) {
343 return Li2_do_sum(x);
345 return Li2_do_sum_Xn(x);
348 // choose the faster algorithm
349 if (cln::abs(cln::realpart(x)) > 0.75) {
350 return -Li2_do_sum(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
352 return -Li2_do_sum_Xn(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
356 // check if precalculated Xn exist
358 for (int i=xnsize; i<n-1; i++) {
363 if (cln::realpart(x) < 0.5) {
364 // choose the faster algorithm
365 // with n>=12 the "normal" summation always wins against the method with Xn
366 if ((cln::abs(cln::realpart(x)) < 0.3) || (n >= 12)) {
367 return Lin_do_sum(n, x);
369 return Lin_do_sum_Xn(n, x);
372 cln::cl_N result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
373 for (int j=0; j<n-1; j++) {
374 result = result + (S_num(n-j-1, 1, 1) - S_num(1, n-j-1, 1-x))
375 * cln::expt(cln::log(x), j) / cln::factorial(j);
382 // helper function for classical polylog Li
383 const cln::cl_N Lin_numeric(const int n, const cln::cl_N& x)
387 return -cln::log(1-x);
398 return -(1-cln::expt(cln::cl_I(2),1-n)) * cln::zeta(n);
400 if (cln::abs(realpart(x)) < 0.4 && cln::abs(cln::abs(x)-1) < 0.01) {
401 cln::cl_N result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
402 for (int j=0; j<n-1; j++) {
403 result = result + (S_num(n-j-1, 1, 1) - S_num(1, n-j-1, 1-x))
404 * cln::expt(cln::log(x), j) / cln::factorial(j);
409 // what is the desired float format?
410 // first guess: default format
411 cln::float_format_t prec = cln::default_float_format;
412 const cln::cl_N value = x;
413 // second guess: the argument's format
414 if (!instanceof(realpart(x), cln::cl_RA_ring))
415 prec = cln::float_format(cln::the<cln::cl_F>(cln::realpart(value)));
416 else if (!instanceof(imagpart(x), cln::cl_RA_ring))
417 prec = cln::float_format(cln::the<cln::cl_F>(cln::imagpart(value)));
420 if (cln::abs(value) > 1) {
421 cln::cl_N result = -cln::expt(cln::log(-value),n) / cln::factorial(n);
422 // check if argument is complex. if it is real, the new polylog has to be conjugated.
423 if (cln::zerop(cln::imagpart(value))) {
425 result = result + conjugate(Li_projection(n, cln::recip(value), prec));
428 result = result - conjugate(Li_projection(n, cln::recip(value), prec));
433 result = result + Li_projection(n, cln::recip(value), prec);
436 result = result - Li_projection(n, cln::recip(value), prec);
440 for (int j=0; j<n-1; j++) {
441 add = add + (1+cln::expt(cln::cl_I(-1),n-j)) * (1-cln::expt(cln::cl_I(2),1-n+j))
442 * Lin_numeric(n-j,1) * cln::expt(cln::log(-value),j) / cln::factorial(j);
444 result = result - add;
448 return Li_projection(n, value, prec);
453 } // end of anonymous namespace
456 //////////////////////////////////////////////////////////////////////
458 // Multiple polylogarithm Li(n,x)
462 //////////////////////////////////////////////////////////////////////
465 // anonymous namespace for helper function
469 // performs the actual series summation for multiple polylogarithms
470 cln::cl_N multipleLi_do_sum(const std::vector<int>& s, const std::vector<cln::cl_N>& x)
472 // ensure all x <> 0.
473 for (std::vector<cln::cl_N>::const_iterator it = x.begin(); it != x.end(); ++it) {
474 if ( *it == 0 ) return cln::cl_float(0, cln::float_format(Digits));
477 const int j = s.size();
478 bool flag_accidental_zero = false;
480 std::vector<cln::cl_N> t(j);
481 cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
488 t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
489 for (int k=j-2; k>=0; k--) {
490 t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
493 t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
494 for (int k=j-2; k>=0; k--) {
495 flag_accidental_zero = cln::zerop(t[k+1]);
496 t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
498 } while ( (t[0] != t0buf) || cln::zerop(t[0]) || flag_accidental_zero );
504 // converts parameter types and calls multipleLi_do_sum (convenience function for G_numeric)
505 cln::cl_N mLi_do_summation(const lst& m, const lst& x)
507 std::vector<int> m_int;
508 std::vector<cln::cl_N> x_cln;
509 for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
510 m_int.push_back(ex_to<numeric>(*itm).to_int());
511 x_cln.push_back(ex_to<numeric>(*itx).to_cl_N());
513 return multipleLi_do_sum(m_int, x_cln);
517 // forward declaration for Li_eval()
518 lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf);
521 // type used by the transformation functions for G
522 typedef std::vector<int> Gparameter;
525 // G_eval1-function for G transformations
526 ex G_eval1(int a, int scale, const exvector& gsyms)
529 const ex& scs = gsyms[std::abs(scale)];
530 const ex& as = gsyms[std::abs(a)];
532 return -log(1 - scs/as);
537 return log(gsyms[std::abs(scale)]);
542 // G_eval-function for G transformations
543 ex G_eval(const Gparameter& a, int scale, const exvector& gsyms)
545 // check for properties of G
546 ex sc = gsyms[std::abs(scale)];
548 bool all_zero = true;
549 bool all_ones = true;
551 for (Gparameter::const_iterator it = a.begin(); it != a.end(); ++it) {
553 const ex sym = gsyms[std::abs(*it)];
567 // care about divergent G: shuffle to separate divergencies that will be canceled
568 // later on in the transformation
569 if (newa.nops() > 1 && newa.op(0) == sc && !all_ones && a.front()!=0) {
572 Gparameter::const_iterator it = a.begin();
574 for (; it != a.end(); ++it) {
575 short_a.push_back(*it);
577 ex result = G_eval1(a.front(), scale, gsyms) * G_eval(short_a, scale, gsyms);
578 it = short_a.begin();
579 for (int i=1; i<count_ones; ++i) {
582 for (; it != short_a.end(); ++it) {
585 Gparameter::const_iterator it2 = short_a.begin();
586 for (--it2; it2 != it;) {
588 newa.push_back(*it2);
590 newa.push_back(a[0]);
592 for (; it2 != short_a.end(); ++it2) {
593 newa.push_back(*it2);
595 result -= G_eval(newa, scale, gsyms);
597 return result / count_ones;
600 // G({1,...,1};y) -> G({1};y)^k / k!
601 if (all_ones && a.size() > 1) {
602 return pow(G_eval1(a.front(),scale, gsyms), count_ones) / factorial(count_ones);
605 // G({0,...,0};y) -> log(y)^k / k!
607 return pow(log(gsyms[std::abs(scale)]), a.size()) / factorial(a.size());
610 // no special cases anymore -> convert it into Li
613 ex argbuf = gsyms[std::abs(scale)];
615 for (Gparameter::const_iterator it=a.begin(); it!=a.end(); ++it) {
617 const ex& sym = gsyms[std::abs(*it)];
618 x.append(argbuf / sym);
626 return pow(-1, x.nops()) * Li(m, x);
630 // converts data for G: pending_integrals -> a
631 Gparameter convert_pending_integrals_G(const Gparameter& pending_integrals)
633 GINAC_ASSERT(pending_integrals.size() != 1);
635 if (pending_integrals.size() > 0) {
636 // get rid of the first element, which would stand for the new upper limit
637 Gparameter new_a(pending_integrals.begin()+1, pending_integrals.end());
640 // just return empty parameter list
647 // check the parameters a and scale for G and return information about convergence, depth, etc.
648 // convergent : true if G(a,scale) is convergent
649 // depth : depth of G(a,scale)
650 // trailing_zeros : number of trailing zeros of a
651 // min_it : iterator of a pointing on the smallest element in a
652 Gparameter::const_iterator check_parameter_G(const Gparameter& a, int scale,
653 bool& convergent, int& depth, int& trailing_zeros, Gparameter::const_iterator& min_it)
659 Gparameter::const_iterator lastnonzero = a.end();
660 for (Gparameter::const_iterator it = a.begin(); it != a.end(); ++it) {
661 if (std::abs(*it) > 0) {
665 if (std::abs(*it) < scale) {
667 if ((min_it == a.end()) || (std::abs(*it) < std::abs(*min_it))) {
675 return ++lastnonzero;
679 // add scale to pending_integrals if pending_integrals is empty
680 Gparameter prepare_pending_integrals(const Gparameter& pending_integrals, int scale)
682 GINAC_ASSERT(pending_integrals.size() != 1);
684 if (pending_integrals.size() > 0) {
685 return pending_integrals;
687 Gparameter new_pending_integrals;
688 new_pending_integrals.push_back(scale);
689 return new_pending_integrals;
694 // handles trailing zeroes for an otherwise convergent integral
695 ex trailing_zeros_G(const Gparameter& a, int scale, const exvector& gsyms)
698 int depth, trailing_zeros;
699 Gparameter::const_iterator last, dummyit;
700 last = check_parameter_G(a, scale, convergent, depth, trailing_zeros, dummyit);
702 GINAC_ASSERT(convergent);
704 if ((trailing_zeros > 0) && (depth > 0)) {
706 Gparameter new_a(a.begin(), a.end()-1);
707 result += G_eval1(0, scale, gsyms) * trailing_zeros_G(new_a, scale, gsyms);
708 for (Gparameter::const_iterator it = a.begin(); it != last; ++it) {
709 Gparameter new_a(a.begin(), it);
711 new_a.insert(new_a.end(), it, a.end()-1);
712 result -= trailing_zeros_G(new_a, scale, gsyms);
715 return result / trailing_zeros;
717 return G_eval(a, scale, gsyms);
722 // G transformation [VSW] (57),(58)
723 ex depth_one_trafo_G(const Gparameter& pending_integrals, const Gparameter& a, int scale, const exvector& gsyms)
725 // pendint = ( y1, b1, ..., br )
726 // a = ( 0, ..., 0, amin )
729 // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(0, ..., 0, sr; y2)
730 // where sr replaces amin
732 GINAC_ASSERT(a.back() != 0);
733 GINAC_ASSERT(a.size() > 0);
736 Gparameter new_pending_integrals = prepare_pending_integrals(pending_integrals, std::abs(a.back()));
737 const int psize = pending_integrals.size();
740 // G(sr_{+-}; y2 ) = G(y2_{-+}; sr) - G(0; sr) + ln(-y2_{-+})
745 result += log(gsyms[ex_to<numeric>(scale).to_int()]);
747 new_pending_integrals.push_back(-scale);
750 new_pending_integrals.push_back(scale);
754 result *= trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
755 pending_integrals.front(),
760 result += trailing_zeros_G(convert_pending_integrals_G(new_pending_integrals),
761 new_pending_integrals.front(),
765 new_pending_integrals.back() = 0;
766 result -= trailing_zeros_G(convert_pending_integrals_G(new_pending_integrals),
767 new_pending_integrals.front(),
774 // G_m(sr_{+-}; y2) = -zeta_m + int_0^y2 dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
775 // - int_0^sr dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
778 result -= zeta(a.size());
780 result *= trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
781 pending_integrals.front(),
785 // term int_0^sr dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
786 // = int_0^sr dt/t G_{m-1}( t_{+-}; y2 )
787 Gparameter new_a(a.begin()+1, a.end());
788 new_pending_integrals.push_back(0);
789 result -= depth_one_trafo_G(new_pending_integrals, new_a, scale, gsyms);
791 // term int_0^y2 dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
792 // = int_0^y2 dt/t G_{m-1}( t_{+-}; y2 )
793 Gparameter new_pending_integrals_2;
794 new_pending_integrals_2.push_back(scale);
795 new_pending_integrals_2.push_back(0);
797 result += trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
798 pending_integrals.front(),
800 * depth_one_trafo_G(new_pending_integrals_2, new_a, scale, gsyms);
802 result += depth_one_trafo_G(new_pending_integrals_2, new_a, scale, gsyms);
809 // forward declaration
810 ex shuffle_G(const Gparameter & a0, const Gparameter & a1, const Gparameter & a2,
811 const Gparameter& pendint, const Gparameter& a_old, int scale,
812 const exvector& gsyms);
815 // G transformation [VSW]
816 ex G_transform(const Gparameter& pendint, const Gparameter& a, int scale,
817 const exvector& gsyms)
819 // main recursion routine
821 // pendint = ( y1, b1, ..., br )
822 // a = ( a1, ..., amin, ..., aw )
825 // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,sr,...,aw,y2)
826 // where sr replaces amin
828 // find smallest alpha, determine depth and trailing zeros, and check for convergence
830 int depth, trailing_zeros;
831 Gparameter::const_iterator min_it;
832 Gparameter::const_iterator firstzero =
833 check_parameter_G(a, scale, convergent, depth, trailing_zeros, min_it);
834 int min_it_pos = min_it - a.begin();
836 // special case: all a's are zero
843 result = G_eval(a, scale, gsyms);
845 if (pendint.size() > 0) {
846 result *= trailing_zeros_G(convert_pending_integrals_G(pendint),
853 // handle trailing zeros
854 if (trailing_zeros > 0) {
856 Gparameter new_a(a.begin(), a.end()-1);
857 result += G_eval1(0, scale, gsyms) * G_transform(pendint, new_a, scale, gsyms);
858 for (Gparameter::const_iterator it = a.begin(); it != firstzero; ++it) {
859 Gparameter new_a(a.begin(), it);
861 new_a.insert(new_a.end(), it, a.end()-1);
862 result -= G_transform(pendint, new_a, scale, gsyms);
864 return result / trailing_zeros;
869 if (pendint.size() > 0) {
870 return G_eval(convert_pending_integrals_G(pendint),
871 pendint.front(), gsyms)*
872 G_eval(a, scale, gsyms);
874 return G_eval(a, scale, gsyms);
878 // call basic transformation for depth equal one
880 return depth_one_trafo_G(pendint, a, scale, gsyms);
884 // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,sr,...,aw,y2)
885 // = int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,0,...,aw,y2)
886 // + int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) int_0^{sr} ds_{r+1} d/ds_{r+1} G(a1,...,s_{r+1},...,aw,y2)
888 // smallest element in last place
889 if (min_it + 1 == a.end()) {
890 do { --min_it; } while (*min_it == 0);
892 Gparameter a1(a.begin(),min_it+1);
893 Gparameter a2(min_it+1,a.end());
895 ex result = G_transform(pendint, a2, scale, gsyms)*
896 G_transform(empty, a1, scale, gsyms);
898 result -= shuffle_G(empty, a1, a2, pendint, a, scale, gsyms);
903 Gparameter::iterator changeit;
905 // first term G(a_1,..,0,...,a_w;a_0)
906 Gparameter new_pendint = prepare_pending_integrals(pendint, a[min_it_pos]);
907 Gparameter new_a = a;
908 new_a[min_it_pos] = 0;
909 ex result = G_transform(empty, new_a, scale, gsyms);
910 if (pendint.size() > 0) {
911 result *= trailing_zeros_G(convert_pending_integrals_G(pendint),
912 pendint.front(), gsyms);
916 changeit = new_a.begin() + min_it_pos;
917 changeit = new_a.erase(changeit);
918 if (changeit != new_a.begin()) {
919 // smallest in the middle
920 new_pendint.push_back(*changeit);
921 result -= trailing_zeros_G(convert_pending_integrals_G(new_pendint),
922 new_pendint.front(), gsyms)*
923 G_transform(empty, new_a, scale, gsyms);
924 int buffer = *changeit;
926 result += G_transform(new_pendint, new_a, scale, gsyms);
928 new_pendint.pop_back();
930 new_pendint.push_back(*changeit);
931 result += trailing_zeros_G(convert_pending_integrals_G(new_pendint),
932 new_pendint.front(), gsyms)*
933 G_transform(empty, new_a, scale, gsyms);
935 result -= G_transform(new_pendint, new_a, scale, gsyms);
937 // smallest at the front
938 new_pendint.push_back(scale);
939 result += trailing_zeros_G(convert_pending_integrals_G(new_pendint),
940 new_pendint.front(), gsyms)*
941 G_transform(empty, new_a, scale, gsyms);
942 new_pendint.back() = *changeit;
943 result -= trailing_zeros_G(convert_pending_integrals_G(new_pendint),
944 new_pendint.front(), gsyms)*
945 G_transform(empty, new_a, scale, gsyms);
947 result += G_transform(new_pendint, new_a, scale, gsyms);
953 // shuffles the two parameter list a1 and a2 and calls G_transform for every term except
954 // for the one that is equal to a_old
955 ex shuffle_G(const Gparameter & a0, const Gparameter & a1, const Gparameter & a2,
956 const Gparameter& pendint, const Gparameter& a_old, int scale,
957 const exvector& gsyms)
959 if (a1.size()==0 && a2.size()==0) {
960 // veto the one configuration we don't want
961 if ( a0 == a_old ) return 0;
963 return G_transform(pendint, a0, scale, gsyms);
969 aa0.insert(aa0.end(),a1.begin(),a1.end());
970 return shuffle_G(aa0, empty, empty, pendint, a_old, scale, gsyms);
976 aa0.insert(aa0.end(),a2.begin(),a2.end());
977 return shuffle_G(aa0, empty, empty, pendint, a_old, scale, gsyms);
980 Gparameter a1_removed(a1.begin()+1,a1.end());
981 Gparameter a2_removed(a2.begin()+1,a2.end());
986 a01.push_back( a1[0] );
987 a02.push_back( a2[0] );
989 return shuffle_G(a01, a1_removed, a2, pendint, a_old, scale, gsyms)
990 + shuffle_G(a02, a1, a2_removed, pendint, a_old, scale, gsyms);
994 // handles the transformations and the numerical evaluation of G
995 // the parameter x, s and y must only contain numerics
996 ex G_numeric(const lst& x, const lst& s, const ex& y)
998 // check for convergence and necessary accelerations
999 bool need_trafo = false;
1000 bool need_hoelder = false;
1002 for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1003 if (!(*it).is_zero()) {
1005 if (abs(*it) - y < -pow(10,-Digits+1)) {
1008 if (abs((abs(*it) - y)/y) < 0.01) {
1009 need_hoelder = true;
1013 if (x.op(x.nops()-1).is_zero()) {
1016 if (depth == 1 && x.nops() == 2 && !need_trafo) {
1017 return -Li(x.nops(), y / x.op(x.nops()-1)).evalf();
1020 // do acceleration transformation (hoelder convolution [BBB])
1024 const int size = x.nops();
1026 for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1027 newx.append(*it / y);
1030 for (int r=0; r<=size; ++r) {
1031 ex buffer = pow(-1, r);
1036 for (lst::const_iterator it = newx.begin(); it != newx.end(); ++it) {
1047 for (int j=r; j>=1; --j) {
1048 qlstx.append(1-newx.op(j-1));
1049 if (newx.op(j-1).info(info_flags::real) && newx.op(j-1) > 1 && newx.op(j-1) <= 2) {
1050 qlsts.append( s.op(j-1));
1052 qlsts.append( -s.op(j-1));
1055 if (qlstx.nops() > 0) {
1056 buffer *= G_numeric(qlstx, qlsts, 1/q);
1060 for (int j=r+1; j<=size; ++j) {
1061 plstx.append(newx.op(j-1));
1062 plsts.append(s.op(j-1));
1064 if (plstx.nops() > 0) {
1065 buffer *= G_numeric(plstx, plsts, 1/p);
1072 // convergence transformation
1075 // sort (|x|<->position) to determine indices
1076 std::multimap<ex,int> sortmap;
1078 for (int i=0; i<x.nops(); ++i) {
1079 if (!x[i].is_zero()) {
1080 sortmap.insert(std::pair<ex,int>(abs(x[i]), i));
1084 // include upper limit (scale)
1085 sortmap.insert(std::pair<ex,int>(abs(y), x.nops()));
1087 // generate missing dummy-symbols
1089 // holding dummy-symbols for the G/Li transformations
1091 gsyms.push_back(symbol("GSYMS_ERROR"));
1093 for (std::multimap<ex,int>::const_iterator it = sortmap.begin(); it != sortmap.end(); ++it) {
1094 if (it != sortmap.begin()) {
1095 if (it->second < x.nops()) {
1096 if (x[it->second] == lastentry) {
1097 gsyms.push_back(gsyms.back());
1101 if (y == lastentry) {
1102 gsyms.push_back(gsyms.back());
1107 std::ostringstream os;
1109 gsyms.push_back(symbol(os.str()));
1111 if (it->second < x.nops()) {
1112 lastentry = x[it->second];
1118 // fill position data according to sorted indices and prepare substitution list
1119 Gparameter a(x.nops());
1123 for (std::multimap<ex,int>::const_iterator it = sortmap.begin(); it != sortmap.end(); ++it) {
1124 if (it->second < x.nops()) {
1125 if (s[it->second] > 0) {
1126 a[it->second] = pos;
1128 a[it->second] = -pos;
1130 subslst.append(gsyms[pos] == x[it->second]);
1133 subslst.append(gsyms[pos] == y);
1138 // do transformation
1140 ex result = G_transform(pendint, a, scale, gsyms);
1141 // replace dummy symbols with their values
1142 result = result.eval().expand();
1143 result = result.subs(subslst).evalf();
1154 for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1155 if ((*it).is_zero()) {
1158 newx.append(factor / (*it));
1166 return sign * numeric(mLi_do_summation(m, newx));
1170 ex mLi_numeric(const lst& m, const lst& x)
1172 // let G_numeric do the transformation
1176 for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1177 for (int i = 1; i < *itm; ++i) {
1181 newx.append(factor / *itx);
1185 return pow(-1, m.nops()) * G_numeric(newx, s, _ex1);
1189 } // end of anonymous namespace
1192 //////////////////////////////////////////////////////////////////////
1194 // Generalized multiple polylogarithm G(x, y) and G(x, s, y)
1198 //////////////////////////////////////////////////////////////////////
1201 static ex G2_evalf(const ex& x_, const ex& y)
1203 if (!y.info(info_flags::positive)) {
1204 return G(x_, y).hold();
1206 lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1207 if (x.nops() == 0) {
1211 return G(x_, y).hold();
1214 bool all_zero = true;
1215 for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1216 if (!(*it).info(info_flags::numeric)) {
1217 return G(x_, y).hold();
1222 if ( !ex_to<numeric>(*it).is_real() && ex_to<numeric>(*it).imag() < 0 ) {
1230 return pow(log(y), x.nops()) / factorial(x.nops());
1232 return G_numeric(x, s, y);
1236 static ex G2_eval(const ex& x_, const ex& y)
1238 //TODO eval to MZV or H or S or Lin
1240 if (!y.info(info_flags::positive)) {
1241 return G(x_, y).hold();
1243 lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1244 if (x.nops() == 0) {
1248 return G(x_, y).hold();
1251 bool all_zero = true;
1252 bool crational = true;
1253 for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1254 if (!(*it).info(info_flags::numeric)) {
1255 return G(x_, y).hold();
1257 if (!(*it).info(info_flags::crational)) {
1263 if ( !ex_to<numeric>(*it).is_real() && ex_to<numeric>(*it).imag() < 0 ) {
1271 return pow(log(y), x.nops()) / factorial(x.nops());
1273 if (!y.info(info_flags::crational)) {
1277 return G(x_, y).hold();
1279 return G_numeric(x, s, y);
1283 unsigned G2_SERIAL::serial = function::register_new(function_options("G", 2).
1284 evalf_func(G2_evalf).
1286 do_not_evalf_params().
1289 // derivative_func(G2_deriv).
1290 // print_func<print_latex>(G2_print_latex).
1293 static ex G3_evalf(const ex& x_, const ex& s_, const ex& y)
1295 if (!y.info(info_flags::positive)) {
1296 return G(x_, s_, y).hold();
1298 lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1299 lst s = is_a<lst>(s_) ? ex_to<lst>(s_) : lst(s_);
1300 if (x.nops() != s.nops()) {
1301 return G(x_, s_, y).hold();
1303 if (x.nops() == 0) {
1307 return G(x_, s_, y).hold();
1310 bool all_zero = true;
1311 for (lst::const_iterator itx = x.begin(), its = s.begin(); itx != x.end(); ++itx, ++its) {
1312 if (!(*itx).info(info_flags::numeric)) {
1313 return G(x_, y).hold();
1315 if (!(*its).info(info_flags::real)) {
1316 return G(x_, y).hold();
1321 if ( ex_to<numeric>(*itx).is_real() ) {
1330 if ( ex_to<numeric>(*itx).imag() > 0 ) {
1339 return pow(log(y), x.nops()) / factorial(x.nops());
1341 return G_numeric(x, sn, y);
1345 static ex G3_eval(const ex& x_, const ex& s_, const ex& y)
1347 //TODO eval to MZV or H or S or Lin
1349 if (!y.info(info_flags::positive)) {
1350 return G(x_, s_, y).hold();
1352 lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1353 lst s = is_a<lst>(s_) ? ex_to<lst>(s_) : lst(s_);
1354 if (x.nops() != s.nops()) {
1355 return G(x_, s_, y).hold();
1357 if (x.nops() == 0) {
1361 return G(x_, s_, y).hold();
1364 bool all_zero = true;
1365 bool crational = true;
1366 for (lst::const_iterator itx = x.begin(), its = s.begin(); itx != x.end(); ++itx, ++its) {
1367 if (!(*itx).info(info_flags::numeric)) {
1368 return G(x_, s_, y).hold();
1370 if (!(*its).info(info_flags::real)) {
1371 return G(x_, s_, y).hold();
1373 if (!(*itx).info(info_flags::crational)) {
1379 if ( ex_to<numeric>(*itx).is_real() ) {
1388 if ( ex_to<numeric>(*itx).imag() > 0 ) {
1397 return pow(log(y), x.nops()) / factorial(x.nops());
1399 if (!y.info(info_flags::crational)) {
1403 return G(x_, s_, y).hold();
1405 return G_numeric(x, sn, y);
1409 unsigned G3_SERIAL::serial = function::register_new(function_options("G", 3).
1410 evalf_func(G3_evalf).
1412 do_not_evalf_params().
1415 // derivative_func(G3_deriv).
1416 // print_func<print_latex>(G3_print_latex).
1419 //////////////////////////////////////////////////////////////////////
1421 // Classical polylogarithm and multiple polylogarithm Li(m,x)
1425 //////////////////////////////////////////////////////////////////////
1428 static ex Li_evalf(const ex& m_, const ex& x_)
1430 // classical polylogs
1431 if (m_.info(info_flags::posint)) {
1432 if (x_.info(info_flags::numeric)) {
1433 int m__ = ex_to<numeric>(m_).to_int();
1434 const cln::cl_N x__ = ex_to<numeric>(x_).to_cl_N();
1435 const cln::cl_N result = Lin_numeric(m__, x__);
1436 return numeric(result);
1438 // try to numerically evaluate second argument
1439 ex x_val = x_.evalf();
1440 if (x_val.info(info_flags::numeric)) {
1441 int m__ = ex_to<numeric>(m_).to_int();
1442 const cln::cl_N x__ = ex_to<numeric>(x_val).to_cl_N();
1443 const cln::cl_N result = Lin_numeric(m__, x__);
1444 return numeric(result);
1448 // multiple polylogs
1449 if (is_a<lst>(m_) && is_a<lst>(x_)) {
1451 const lst& m = ex_to<lst>(m_);
1452 const lst& x = ex_to<lst>(x_);
1453 if (m.nops() != x.nops()) {
1454 return Li(m_,x_).hold();
1456 if (x.nops() == 0) {
1459 if ((m.op(0) == _ex1) && (x.op(0) == _ex1)) {
1460 return Li(m_,x_).hold();
1463 for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1464 if (!(*itm).info(info_flags::posint)) {
1465 return Li(m_, x_).hold();
1467 if (!(*itx).info(info_flags::numeric)) {
1468 return Li(m_, x_).hold();
1475 return mLi_numeric(m, x);
1478 return Li(m_,x_).hold();
1482 static ex Li_eval(const ex& m_, const ex& x_)
1484 if (is_a<lst>(m_)) {
1485 if (is_a<lst>(x_)) {
1486 // multiple polylogs
1487 const lst& m = ex_to<lst>(m_);
1488 const lst& x = ex_to<lst>(x_);
1489 if (m.nops() != x.nops()) {
1490 return Li(m_,x_).hold();
1492 if (x.nops() == 0) {
1496 bool is_zeta = true;
1497 bool do_evalf = true;
1498 bool crational = true;
1499 for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1500 if (!(*itm).info(info_flags::posint)) {
1501 return Li(m_,x_).hold();
1503 if ((*itx != _ex1) && (*itx != _ex_1)) {
1504 if (itx != x.begin()) {
1512 if (!(*itx).info(info_flags::numeric)) {
1515 if (!(*itx).info(info_flags::crational)) {
1524 lst newm = convert_parameter_Li_to_H(m, x, prefactor);
1525 return prefactor * H(newm, x[0]);
1527 if (do_evalf && !crational) {
1528 return mLi_numeric(m,x);
1531 return Li(m_, x_).hold();
1532 } else if (is_a<lst>(x_)) {
1533 return Li(m_, x_).hold();
1536 // classical polylogs
1544 return (pow(2,1-m_)-1) * zeta(m_);
1550 if (x_.is_equal(I)) {
1551 return power(Pi,_ex2)/_ex_48 + Catalan*I;
1553 if (x_.is_equal(-I)) {
1554 return power(Pi,_ex2)/_ex_48 - Catalan*I;
1557 if (m_.info(info_flags::posint) && x_.info(info_flags::numeric) && !x_.info(info_flags::crational)) {
1558 int m__ = ex_to<numeric>(m_).to_int();
1559 const cln::cl_N x__ = ex_to<numeric>(x_).to_cl_N();
1560 const cln::cl_N result = Lin_numeric(m__, x__);
1561 return numeric(result);
1564 return Li(m_, x_).hold();
1568 static ex Li_series(const ex& m, const ex& x, const relational& rel, int order, unsigned options)
1570 if (is_a<lst>(m) || is_a<lst>(x)) {
1573 seq.push_back(expair(Li(m, x), 0));
1574 return pseries(rel, seq);
1577 // classical polylog
1578 const ex x_pt = x.subs(rel, subs_options::no_pattern);
1579 if (m.info(info_flags::numeric) && x_pt.info(info_flags::numeric)) {
1580 // First special case: x==0 (derivatives have poles)
1581 if (x_pt.is_zero()) {
1584 // manually construct the primitive expansion
1585 for (int i=1; i<order; ++i)
1586 ser += pow(s,i) / pow(numeric(i), m);
1587 // substitute the argument's series expansion
1588 ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
1589 // maybe that was terminating, so add a proper order term
1591 nseq.push_back(expair(Order(_ex1), order));
1592 ser += pseries(rel, nseq);
1593 // reexpanding it will collapse the series again
1594 return ser.series(rel, order);
1596 // TODO special cases: x==1 (branch point) and x real, >=1 (branch cut)
1597 throw std::runtime_error("Li_series: don't know how to do the series expansion at this point!");
1599 // all other cases should be safe, by now:
1600 throw do_taylor(); // caught by function::series()
1604 static ex Li_deriv(const ex& m_, const ex& x_, unsigned deriv_param)
1606 GINAC_ASSERT(deriv_param < 2);
1607 if (deriv_param == 0) {
1610 if (m_.nops() > 1) {
1611 throw std::runtime_error("don't know how to derivate multiple polylogarithm!");
1614 if (is_a<lst>(m_)) {
1620 if (is_a<lst>(x_)) {
1626 return Li(m-1, x) / x;
1633 static void Li_print_latex(const ex& m_, const ex& x_, const print_context& c)
1636 if (is_a<lst>(m_)) {
1642 if (is_a<lst>(x_)) {
1647 c.s << "\\mbox{Li}_{";
1648 lst::const_iterator itm = m.begin();
1651 for (; itm != m.end(); itm++) {
1656 lst::const_iterator itx = x.begin();
1659 for (; itx != x.end(); itx++) {
1667 REGISTER_FUNCTION(Li,
1668 evalf_func(Li_evalf).
1670 series_func(Li_series).
1671 derivative_func(Li_deriv).
1672 print_func<print_latex>(Li_print_latex).
1673 do_not_evalf_params());
1676 //////////////////////////////////////////////////////////////////////
1678 // Nielsen's generalized polylogarithm S(n,p,x)
1682 //////////////////////////////////////////////////////////////////////
1685 // anonymous namespace for helper functions
1689 // lookup table for special Euler-Zagier-Sums (used for S_n,p(x))
1691 std::vector<std::vector<cln::cl_N> > Yn;
1692 int ynsize = 0; // number of Yn[]
1693 int ynlength = 100; // initial length of all Yn[i]
1696 // This function calculates the Y_n. The Y_n are needed for the evaluation of S_{n,p}(x).
1697 // The Y_n are basically Euler-Zagier sums with all m_i=1. They are subsums in the Z-sum
1698 // representing S_{n,p}(x).
1699 // The first index in Y_n corresponds to the parameter p minus one, i.e. the depth of the
1700 // equivalent Z-sum.
1701 // The second index in Y_n corresponds to the running index of the outermost sum in the full Z-sum
1702 // representing S_{n,p}(x).
1703 // The calculation of Y_n uses the values from Y_{n-1}.
1704 void fill_Yn(int n, const cln::float_format_t& prec)
1706 const int initsize = ynlength;
1707 //const int initsize = initsize_Yn;
1708 cln::cl_N one = cln::cl_float(1, prec);
1711 std::vector<cln::cl_N> buf(initsize);
1712 std::vector<cln::cl_N>::iterator it = buf.begin();
1713 std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
1714 *it = (*itprev) / cln::cl_N(n+1) * one;
1717 // sums with an index smaller than the depth are zero and need not to be calculated.
1718 // calculation starts with depth, which is n+2)
1719 for (int i=n+2; i<=initsize+n; i++) {
1720 *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
1726 std::vector<cln::cl_N> buf(initsize);
1727 std::vector<cln::cl_N>::iterator it = buf.begin();
1730 for (int i=2; i<=initsize; i++) {
1731 *it = *(it-1) + 1 / cln::cl_N(i) * one;
1740 // make Yn longer ...
1741 void make_Yn_longer(int newsize, const cln::float_format_t& prec)
1744 cln::cl_N one = cln::cl_float(1, prec);
1746 Yn[0].resize(newsize);
1747 std::vector<cln::cl_N>::iterator it = Yn[0].begin();
1749 for (int i=ynlength+1; i<=newsize; i++) {
1750 *it = *(it-1) + 1 / cln::cl_N(i) * one;
1754 for (int n=1; n<ynsize; n++) {
1755 Yn[n].resize(newsize);
1756 std::vector<cln::cl_N>::iterator it = Yn[n].begin();
1757 std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
1760 for (int i=ynlength+n+1; i<=newsize+n; i++) {
1761 *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
1771 // helper function for S(n,p,x)
1773 cln::cl_N C(int n, int p)
1777 for (int k=0; k<p; k++) {
1778 for (int j=0; j<=(n+k-1)/2; j++) {
1782 result = result - 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1) / cln::factorial(2*j);
1785 result = result + 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1) / cln::factorial(2*j);
1792 result = result + cln::factorial(n+k-1)
1793 * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1794 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1797 result = result - cln::factorial(n+k-1)
1798 * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1799 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1804 result = result - cln::factorial(n+k-1) * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1805 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1808 result = result + cln::factorial(n+k-1)
1809 * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1810 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1818 if (((np)/2+n) & 1) {
1819 result = -result - cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
1822 result = -result + cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
1830 // helper function for S(n,p,x)
1831 // [Kol] remark to (9.1)
1832 cln::cl_N a_k(int k)
1841 for (int m=2; m<=k; m++) {
1842 result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * a_k(k-m);
1849 // helper function for S(n,p,x)
1850 // [Kol] remark to (9.1)
1851 cln::cl_N b_k(int k)
1860 for (int m=2; m<=k; m++) {
1861 result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * b_k(k-m);
1868 // helper function for S(n,p,x)
1869 cln::cl_N S_do_sum(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
1871 static cln::float_format_t oldprec = cln::default_float_format;
1874 return Li_projection(n+1, x, prec);
1877 // precision has changed, we need to clear lookup table Yn
1878 if ( oldprec != prec ) {
1885 // check if precalculated values are sufficient
1887 for (int i=ynsize; i<p-1; i++) {
1892 // should be done otherwise
1893 cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
1894 cln::cl_N xf = x * one;
1895 //cln::cl_N xf = x * cln::cl_float(1, prec);
1899 cln::cl_N factor = cln::expt(xf, p);
1903 if (i-p >= ynlength) {
1905 make_Yn_longer(ynlength*2, prec);
1907 res = res + factor / cln::expt(cln::cl_I(i),n+1) * Yn[p-2][i-p]; // should we check it? or rely on magic number? ...
1908 //res = res + factor / cln::expt(cln::cl_I(i),n+1) * (*it); // should we check it? or rely on magic number? ...
1909 factor = factor * xf;
1911 } while (res != resbuf);
1917 // helper function for S(n,p,x)
1918 cln::cl_N S_projection(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
1921 if (cln::abs(cln::realpart(x)) > cln::cl_F("0.5")) {
1923 cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(x),n)
1924 * cln::expt(cln::log(1-x),p) / cln::factorial(n) / cln::factorial(p);
1926 for (int s=0; s<n; s++) {
1928 for (int r=0; r<p; r++) {
1929 res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-x),r)
1930 * S_do_sum(p-r,n-s,1-x,prec) / cln::factorial(r);
1932 result = result + cln::expt(cln::log(x),s) * (S_num(n-s,p,1) - res2) / cln::factorial(s);
1938 return S_do_sum(n, p, x, prec);
1942 // helper function for S(n,p,x)
1943 const cln::cl_N S_num(int n, int p, const cln::cl_N& x)
1947 // [Kol] (2.22) with (2.21)
1948 return cln::zeta(p+1);
1953 return cln::zeta(n+1);
1958 for (int nu=0; nu<n; nu++) {
1959 for (int rho=0; rho<=p; rho++) {
1960 result = result + b_k(n-nu-1) * b_k(p-rho) * a_k(nu+rho+1)
1961 * cln::factorial(nu+rho+1) / cln::factorial(rho) / cln::factorial(nu+1);
1964 result = result * cln::expt(cln::cl_I(-1),n+p-1);
1971 return -(1-cln::expt(cln::cl_I(2),-n)) * cln::zeta(n+1);
1973 // throw std::runtime_error("don't know how to evaluate this function!");
1976 // what is the desired float format?
1977 // first guess: default format
1978 cln::float_format_t prec = cln::default_float_format;
1979 const cln::cl_N value = x;
1980 // second guess: the argument's format
1981 if (!instanceof(realpart(value), cln::cl_RA_ring))
1982 prec = cln::float_format(cln::the<cln::cl_F>(cln::realpart(value)));
1983 else if (!instanceof(imagpart(value), cln::cl_RA_ring))
1984 prec = cln::float_format(cln::the<cln::cl_F>(cln::imagpart(value)));
1987 if ((cln::realpart(value) < -0.5) || (n == 0) || ((cln::abs(value) <= 1) && (cln::abs(value) > 0.95))) {
1989 cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(value),n)
1990 * cln::expt(cln::log(1-value),p) / cln::factorial(n) / cln::factorial(p);
1992 for (int s=0; s<n; s++) {
1994 for (int r=0; r<p; r++) {
1995 res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-value),r)
1996 * S_num(p-r,n-s,1-value) / cln::factorial(r);
1998 result = result + cln::expt(cln::log(value),s) * (S_num(n-s,p,1) - res2) / cln::factorial(s);
2005 if (cln::abs(value) > 1) {
2009 for (int s=0; s<p; s++) {
2010 for (int r=0; r<=s; r++) {
2011 result = result + cln::expt(cln::cl_I(-1),s) * cln::expt(cln::log(-value),r) * cln::factorial(n+s-r-1)
2012 / cln::factorial(r) / cln::factorial(s-r) / cln::factorial(n-1)
2013 * S_num(n+s-r,p-s,cln::recip(value));
2016 result = result * cln::expt(cln::cl_I(-1),n);
2019 for (int r=0; r<n; r++) {
2020 res2 = res2 + cln::expt(cln::log(-value),r) * C(n-r,p) / cln::factorial(r);
2022 res2 = res2 + cln::expt(cln::log(-value),n+p) / cln::factorial(n+p);
2024 result = result + cln::expt(cln::cl_I(-1),p) * res2;
2029 return S_projection(n, p, value, prec);
2034 } // end of anonymous namespace
2037 //////////////////////////////////////////////////////////////////////
2039 // Nielsen's generalized polylogarithm S(n,p,x)
2043 //////////////////////////////////////////////////////////////////////
2046 static ex S_evalf(const ex& n, const ex& p, const ex& x)
2048 if (n.info(info_flags::posint) && p.info(info_flags::posint)) {
2049 const int n_ = ex_to<numeric>(n).to_int();
2050 const int p_ = ex_to<numeric>(p).to_int();
2051 if (is_a<numeric>(x)) {
2052 const cln::cl_N x_ = ex_to<numeric>(x).to_cl_N();
2053 const cln::cl_N result = S_num(n_, p_, x_);
2054 return numeric(result);
2056 ex x_val = x.evalf();
2057 if (is_a<numeric>(x_val)) {
2058 const cln::cl_N x_val_ = ex_to<numeric>(x_val).to_cl_N();
2059 const cln::cl_N result = S_num(n_, p_, x_val_);
2060 return numeric(result);
2064 return S(n, p, x).hold();
2068 static ex S_eval(const ex& n, const ex& p, const ex& x)
2070 if (n.info(info_flags::posint) && p.info(info_flags::posint)) {
2076 for (int i=ex_to<numeric>(p).to_int()-1; i>0; i--) {
2084 if (x.info(info_flags::numeric) && (!x.info(info_flags::crational))) {
2085 int n_ = ex_to<numeric>(n).to_int();
2086 int p_ = ex_to<numeric>(p).to_int();
2087 const cln::cl_N x_ = ex_to<numeric>(x).to_cl_N();
2088 const cln::cl_N result = S_num(n_, p_, x_);
2089 return numeric(result);
2094 return pow(-log(1-x), p) / factorial(p);
2096 return S(n, p, x).hold();
2100 static ex S_series(const ex& n, const ex& p, const ex& x, const relational& rel, int order, unsigned options)
2103 return Li(n+1, x).series(rel, order, options);
2106 const ex x_pt = x.subs(rel, subs_options::no_pattern);
2107 if (n.info(info_flags::posint) && p.info(info_flags::posint) && x_pt.info(info_flags::numeric)) {
2108 // First special case: x==0 (derivatives have poles)
2109 if (x_pt.is_zero()) {
2112 // manually construct the primitive expansion
2113 // subsum = Euler-Zagier-Sum is needed
2114 // dirty hack (slow ...) calculation of subsum:
2115 std::vector<ex> presubsum, subsum;
2116 subsum.push_back(0);
2117 for (int i=1; i<order-1; ++i) {
2118 subsum.push_back(subsum[i-1] + numeric(1, i));
2120 for (int depth=2; depth<p; ++depth) {
2122 for (int i=1; i<order-1; ++i) {
2123 subsum[i] = subsum[i-1] + numeric(1, i) * presubsum[i-1];
2127 for (int i=1; i<order; ++i) {
2128 ser += pow(s,i) / pow(numeric(i), n+1) * subsum[i-1];
2130 // substitute the argument's series expansion
2131 ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
2132 // maybe that was terminating, so add a proper order term
2134 nseq.push_back(expair(Order(_ex1), order));
2135 ser += pseries(rel, nseq);
2136 // reexpanding it will collapse the series again
2137 return ser.series(rel, order);
2139 // TODO special cases: x==1 (branch point) and x real, >=1 (branch cut)
2140 throw std::runtime_error("S_series: don't know how to do the series expansion at this point!");
2142 // all other cases should be safe, by now:
2143 throw do_taylor(); // caught by function::series()
2147 static ex S_deriv(const ex& n, const ex& p, const ex& x, unsigned deriv_param)
2149 GINAC_ASSERT(deriv_param < 3);
2150 if (deriv_param < 2) {
2154 return S(n-1, p, x) / x;
2156 return S(n, p-1, x) / (1-x);
2161 static void S_print_latex(const ex& n, const ex& p, const ex& x, const print_context& c)
2163 c.s << "\\mbox{S}_{";
2173 REGISTER_FUNCTION(S,
2174 evalf_func(S_evalf).
2176 series_func(S_series).
2177 derivative_func(S_deriv).
2178 print_func<print_latex>(S_print_latex).
2179 do_not_evalf_params());
2182 //////////////////////////////////////////////////////////////////////
2184 // Harmonic polylogarithm H(m,x)
2188 //////////////////////////////////////////////////////////////////////
2191 // anonymous namespace for helper functions
2195 // regulates the pole (used by 1/x-transformation)
2196 symbol H_polesign("IMSIGN");
2199 // convert parameters from H to Li representation
2200 // parameters are expected to be in expanded form, i.e. only 0, 1 and -1
2201 // returns true if some parameters are negative
2202 bool convert_parameter_H_to_Li(const lst& l, lst& m, lst& s, ex& pf)
2204 // expand parameter list
2206 for (lst::const_iterator it = l.begin(); it != l.end(); it++) {
2208 for (ex count=*it-1; count > 0; count--) {
2212 } else if (*it < -1) {
2213 for (ex count=*it+1; count < 0; count++) {
2224 bool has_negative_parameters = false;
2226 for (lst::const_iterator it = mexp.begin(); it != mexp.end(); it++) {
2232 m.append((*it+acc-1) * signum);
2234 m.append((*it-acc+1) * signum);
2240 has_negative_parameters = true;
2243 if (has_negative_parameters) {
2244 for (int i=0; i<m.nops(); i++) {
2246 m.let_op(i) = -m.op(i);
2254 return has_negative_parameters;
2258 // recursivly transforms H to corresponding multiple polylogarithms
2259 struct map_trafo_H_convert_to_Li : public map_function
2261 ex operator()(const ex& e)
2263 if (is_a<add>(e) || is_a<mul>(e)) {
2264 return e.map(*this);
2266 if (is_a<function>(e)) {
2267 std::string name = ex_to<function>(e).get_name();
2270 if (is_a<lst>(e.op(0))) {
2271 parameter = ex_to<lst>(e.op(0));
2273 parameter = lst(e.op(0));
2280 if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
2281 s.let_op(0) = s.op(0) * arg;
2282 return pf * Li(m, s).hold();
2284 for (int i=0; i<m.nops(); i++) {
2287 s.let_op(0) = s.op(0) * arg;
2288 return Li(m, s).hold();
2297 // recursivly transforms H to corresponding zetas
2298 struct map_trafo_H_convert_to_zeta : public map_function
2300 ex operator()(const ex& e)
2302 if (is_a<add>(e) || is_a<mul>(e)) {
2303 return e.map(*this);
2305 if (is_a<function>(e)) {
2306 std::string name = ex_to<function>(e).get_name();
2309 if (is_a<lst>(e.op(0))) {
2310 parameter = ex_to<lst>(e.op(0));
2312 parameter = lst(e.op(0));
2318 if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
2319 return pf * zeta(m, s);
2330 // remove trailing zeros from H-parameters
2331 struct map_trafo_H_reduce_trailing_zeros : public map_function
2333 ex operator()(const ex& e)
2335 if (is_a<add>(e) || is_a<mul>(e)) {
2336 return e.map(*this);
2338 if (is_a<function>(e)) {
2339 std::string name = ex_to<function>(e).get_name();
2342 if (is_a<lst>(e.op(0))) {
2343 parameter = ex_to<lst>(e.op(0));
2345 parameter = lst(e.op(0));
2348 if (parameter.op(parameter.nops()-1) == 0) {
2351 if (parameter.nops() == 1) {
2356 lst::const_iterator it = parameter.begin();
2357 while ((it != parameter.end()) && (*it == 0)) {
2360 if (it == parameter.end()) {
2361 return pow(log(arg),parameter.nops()) / factorial(parameter.nops());
2365 parameter.remove_last();
2366 int lastentry = parameter.nops();
2367 while ((lastentry > 0) && (parameter[lastentry-1] == 0)) {
2372 ex result = log(arg) * H(parameter,arg).hold();
2374 for (ex i=0; i<lastentry; i++) {
2375 if (parameter[i] > 0) {
2377 result -= (acc + parameter[i]-1) * H(parameter, arg).hold();
2380 } else if (parameter[i] < 0) {
2382 result -= (acc + abs(parameter[i]+1)) * H(parameter, arg).hold();
2390 if (lastentry < parameter.nops()) {
2391 result = result / (parameter.nops()-lastentry+1);
2392 return result.map(*this);
2404 // returns an expression with zeta functions corresponding to the parameter list for H
2405 ex convert_H_to_zeta(const lst& m)
2407 symbol xtemp("xtemp");
2408 map_trafo_H_reduce_trailing_zeros filter;
2409 map_trafo_H_convert_to_zeta filter2;
2410 return filter2(filter(H(m, xtemp).hold())).subs(xtemp == 1);
2414 // convert signs form Li to H representation
2415 lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf)
2418 lst::const_iterator itm = m.begin();
2419 lst::const_iterator itx = ++x.begin();
2424 while (itx != x.end()) {
2425 signum *= (*itx > 0) ? 1 : -1;
2427 res.append((*itm) * signum);
2435 // multiplies an one-dimensional H with another H
2437 ex trafo_H_mult(const ex& h1, const ex& h2)
2442 ex h1nops = h1.op(0).nops();
2443 ex h2nops = h2.op(0).nops();
2445 hshort = h2.op(0).op(0);
2446 hlong = ex_to<lst>(h1.op(0));
2448 hshort = h1.op(0).op(0);
2450 hlong = ex_to<lst>(h2.op(0));
2452 hlong = h2.op(0).op(0);
2455 for (int i=0; i<=hlong.nops(); i++) {
2459 newparameter.append(hlong[j]);
2461 newparameter.append(hshort);
2462 for (; j<hlong.nops(); j++) {
2463 newparameter.append(hlong[j]);
2465 res += H(newparameter, h1.op(1)).hold();
2471 // applies trafo_H_mult recursively on expressions
2472 struct map_trafo_H_mult : public map_function
2474 ex operator()(const ex& e)
2477 return e.map(*this);
2485 for (int pos=0; pos<e.nops(); pos++) {
2486 if (is_a<power>(e.op(pos)) && is_a<function>(e.op(pos).op(0))) {
2487 std::string name = ex_to<function>(e.op(pos).op(0)).get_name();
2489 for (ex i=0; i<e.op(pos).op(1); i++) {
2490 Hlst.append(e.op(pos).op(0));
2494 } else if (is_a<function>(e.op(pos))) {
2495 std::string name = ex_to<function>(e.op(pos)).get_name();
2497 if (e.op(pos).op(0).nops() > 1) {
2500 Hlst.append(e.op(pos));
2505 result *= e.op(pos);
2508 if (Hlst.nops() > 0) {
2509 firstH = Hlst[Hlst.nops()-1];
2516 if (Hlst.nops() > 0) {
2517 ex buffer = trafo_H_mult(firstH, Hlst.op(0));
2519 for (int i=1; i<Hlst.nops(); i++) {
2520 result *= Hlst.op(i);
2522 result = result.expand();
2523 map_trafo_H_mult recursion;
2524 return recursion(result);
2535 // do integration [ReV] (55)
2536 // put parameter 0 in front of existing parameters
2537 ex trafo_H_1tx_prepend_zero(const ex& e, const ex& arg)
2541 if (is_a<function>(e)) {
2542 name = ex_to<function>(e).get_name();
2547 for (int i=0; i<e.nops(); i++) {
2548 if (is_a<function>(e.op(i))) {
2549 std::string name = ex_to<function>(e.op(i)).get_name();
2557 lst newparameter = ex_to<lst>(h.op(0));
2558 newparameter.prepend(0);
2559 ex addzeta = convert_H_to_zeta(newparameter);
2560 return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
2562 return e * (-H(lst(0),1/arg).hold());
2567 // do integration [ReV] (49)
2568 // put parameter 1 in front of existing parameters
2569 ex trafo_H_prepend_one(const ex& e, const ex& arg)
2573 if (is_a<function>(e)) {
2574 name = ex_to<function>(e).get_name();
2579 for (int i=0; i<e.nops(); i++) {
2580 if (is_a<function>(e.op(i))) {
2581 std::string name = ex_to<function>(e.op(i)).get_name();
2589 lst newparameter = ex_to<lst>(h.op(0));
2590 newparameter.prepend(1);
2591 return e.subs(h == H(newparameter, h.op(1)).hold());
2593 return e * H(lst(1),1-arg).hold();
2598 // do integration [ReV] (55)
2599 // put parameter -1 in front of existing parameters
2600 ex trafo_H_1tx_prepend_minusone(const ex& e, const ex& arg)
2604 if (is_a<function>(e)) {
2605 name = ex_to<function>(e).get_name();
2610 for (int i=0; i<e.nops(); i++) {
2611 if (is_a<function>(e.op(i))) {
2612 std::string name = ex_to<function>(e.op(i)).get_name();
2620 lst newparameter = ex_to<lst>(h.op(0));
2621 newparameter.prepend(-1);
2622 ex addzeta = convert_H_to_zeta(newparameter);
2623 return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
2625 ex addzeta = convert_H_to_zeta(lst(-1));
2626 return (e * (addzeta - H(lst(-1),1/arg).hold())).expand();
2631 // do integration [ReV] (55)
2632 // put parameter -1 in front of existing parameters
2633 ex trafo_H_1mxt1px_prepend_minusone(const ex& e, const ex& arg)
2637 if (is_a<function>(e)) {
2638 name = ex_to<function>(e).get_name();
2643 for (int i=0; i<e.nops(); i++) {
2644 if (is_a<function>(e.op(i))) {
2645 std::string name = ex_to<function>(e.op(i)).get_name();
2653 lst newparameter = ex_to<lst>(h.op(0));
2654 newparameter.prepend(-1);
2655 return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
2657 return (e * H(lst(-1),(1-arg)/(1+arg)).hold()).expand();
2662 // do integration [ReV] (55)
2663 // put parameter 1 in front of existing parameters
2664 ex trafo_H_1mxt1px_prepend_one(const ex& e, const ex& arg)
2668 if (is_a<function>(e)) {
2669 name = ex_to<function>(e).get_name();
2674 for (int i=0; i<e.nops(); i++) {
2675 if (is_a<function>(e.op(i))) {
2676 std::string name = ex_to<function>(e.op(i)).get_name();
2684 lst newparameter = ex_to<lst>(h.op(0));
2685 newparameter.prepend(1);
2686 return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
2688 return (e * H(lst(1),(1-arg)/(1+arg)).hold()).expand();
2693 // do x -> 1-x transformation
2694 struct map_trafo_H_1mx : public map_function
2696 ex operator()(const ex& e)
2698 if (is_a<add>(e) || is_a<mul>(e)) {
2699 return e.map(*this);
2702 if (is_a<function>(e)) {
2703 std::string name = ex_to<function>(e).get_name();
2706 lst parameter = ex_to<lst>(e.op(0));
2709 // special cases if all parameters are either 0, 1 or -1
2710 bool allthesame = true;
2711 if (parameter.op(0) == 0) {
2712 for (int i=1; i<parameter.nops(); i++) {
2713 if (parameter.op(i) != 0) {
2720 for (int i=parameter.nops(); i>0; i--) {
2721 newparameter.append(1);
2723 return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
2725 } else if (parameter.op(0) == -1) {
2726 throw std::runtime_error("map_trafo_H_1mx: cannot handle weights equal -1!");
2728 for (int i=1; i<parameter.nops(); i++) {
2729 if (parameter.op(i) != 1) {
2736 for (int i=parameter.nops(); i>0; i--) {
2737 newparameter.append(0);
2739 return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
2743 lst newparameter = parameter;
2744 newparameter.remove_first();
2746 if (parameter.op(0) == 0) {
2749 ex res = convert_H_to_zeta(parameter);
2750 //ex res = convert_from_RV(parameter, 1).subs(H(wild(1),wild(2))==zeta(wild(1)));
2751 map_trafo_H_1mx recursion;
2752 ex buffer = recursion(H(newparameter, arg).hold());
2753 if (is_a<add>(buffer)) {
2754 for (int i=0; i<buffer.nops(); i++) {
2755 res -= trafo_H_prepend_one(buffer.op(i), arg);
2758 res -= trafo_H_prepend_one(buffer, arg);
2765 map_trafo_H_1mx recursion;
2766 map_trafo_H_mult unify;
2767 ex res = H(lst(1), arg).hold() * H(newparameter, arg).hold();
2769 while (parameter.op(firstzero) == 1) {
2772 for (int i=firstzero-1; i<parameter.nops()-1; i++) {
2776 newparameter.append(parameter[j+1]);
2778 newparameter.append(1);
2779 for (; j<parameter.nops()-1; j++) {
2780 newparameter.append(parameter[j+1]);
2782 res -= H(newparameter, arg).hold();
2784 res = recursion(res).expand() / firstzero;
2794 // do x -> 1/x transformation
2795 struct map_trafo_H_1overx : public map_function
2797 ex operator()(const ex& e)
2799 if (is_a<add>(e) || is_a<mul>(e)) {
2800 return e.map(*this);
2803 if (is_a<function>(e)) {
2804 std::string name = ex_to<function>(e).get_name();
2807 lst parameter = ex_to<lst>(e.op(0));
2810 // special cases if all parameters are either 0, 1 or -1
2811 bool allthesame = true;
2812 if (parameter.op(0) == 0) {
2813 for (int i=1; i<parameter.nops(); i++) {
2814 if (parameter.op(i) != 0) {
2820 return pow(-1, parameter.nops()) * H(parameter, 1/arg).hold();
2822 } else if (parameter.op(0) == -1) {
2823 for (int i=1; i<parameter.nops(); i++) {
2824 if (parameter.op(i) != -1) {
2830 map_trafo_H_mult unify;
2831 return unify((pow(H(lst(-1),1/arg).hold() - H(lst(0),1/arg).hold(), parameter.nops())
2832 / factorial(parameter.nops())).expand());
2835 for (int i=1; i<parameter.nops(); i++) {
2836 if (parameter.op(i) != 1) {
2842 map_trafo_H_mult unify;
2843 return unify((pow(H(lst(1),1/arg).hold() + H(lst(0),1/arg).hold() + H_polesign, parameter.nops())
2844 / factorial(parameter.nops())).expand());
2848 lst newparameter = parameter;
2849 newparameter.remove_first();
2851 if (parameter.op(0) == 0) {
2854 ex res = convert_H_to_zeta(parameter);
2855 map_trafo_H_1overx recursion;
2856 ex buffer = recursion(H(newparameter, arg).hold());
2857 if (is_a<add>(buffer)) {
2858 for (int i=0; i<buffer.nops(); i++) {
2859 res += trafo_H_1tx_prepend_zero(buffer.op(i), arg);
2862 res += trafo_H_1tx_prepend_zero(buffer, arg);
2866 } else if (parameter.op(0) == -1) {
2868 // leading negative one
2869 ex res = convert_H_to_zeta(parameter);
2870 map_trafo_H_1overx recursion;
2871 ex buffer = recursion(H(newparameter, arg).hold());
2872 if (is_a<add>(buffer)) {
2873 for (int i=0; i<buffer.nops(); i++) {
2874 res += trafo_H_1tx_prepend_zero(buffer.op(i), arg) - trafo_H_1tx_prepend_minusone(buffer.op(i), arg);
2877 res += trafo_H_1tx_prepend_zero(buffer, arg) - trafo_H_1tx_prepend_minusone(buffer, arg);
2884 map_trafo_H_1overx recursion;
2885 map_trafo_H_mult unify;
2886 ex res = H(lst(1), arg).hold() * H(newparameter, arg).hold();
2888 while (parameter.op(firstzero) == 1) {
2891 for (int i=firstzero-1; i<parameter.nops()-1; i++) {
2895 newparameter.append(parameter[j+1]);
2897 newparameter.append(1);
2898 for (; j<parameter.nops()-1; j++) {
2899 newparameter.append(parameter[j+1]);
2901 res -= H(newparameter, arg).hold();
2903 res = recursion(res).expand() / firstzero;
2915 // do x -> (1-x)/(1+x) transformation
2916 struct map_trafo_H_1mxt1px : public map_function
2918 ex operator()(const ex& e)
2920 if (is_a<add>(e) || is_a<mul>(e)) {
2921 return e.map(*this);
2924 if (is_a<function>(e)) {
2925 std::string name = ex_to<function>(e).get_name();
2928 lst parameter = ex_to<lst>(e.op(0));
2931 // special cases if all parameters are either 0, 1 or -1
2932 bool allthesame = true;
2933 if (parameter.op(0) == 0) {
2934 for (int i=1; i<parameter.nops(); i++) {
2935 if (parameter.op(i) != 0) {
2941 map_trafo_H_mult unify;
2942 return unify((pow(-H(lst(1),(1-arg)/(1+arg)).hold() - H(lst(-1),(1-arg)/(1+arg)).hold(), parameter.nops())
2943 / factorial(parameter.nops())).expand());
2945 } else if (parameter.op(0) == -1) {
2946 for (int i=1; i<parameter.nops(); i++) {
2947 if (parameter.op(i) != -1) {