Li_eval(): avoid the "numeric::operator>(): complex inequality" exception.
[ginac.git] / ginac / inifcns_nstdsums.cpp
1 /** @file inifcns_nstdsums.cpp
2  *
3  *  Implementation of some special functions that have a representation as nested sums.
4  *
5  *  The functions are:
6  *    classical polylogarithm              Li(n,x)
7  *    multiple polylogarithm               Li(lst(m_1,...,m_k),lst(x_1,...,x_k))
8  *                                         G(lst(a_1,...,a_k),y) or G(lst(a_1,...,a_k),lst(s_1,...,s_k),y)
9  *    Nielsen's generalized polylogarithm  S(n,p,x)
10  *    harmonic polylogarithm               H(m,x) or H(lst(m_1,...,m_k),x)
11  *    multiple zeta value                  zeta(m) or zeta(lst(m_1,...,m_k))
12  *    alternating Euler sum                zeta(m,s) or zeta(lst(m_1,...,m_k),lst(s_1,...,s_k))
13  *
14  *  Some remarks:
15  *
16  *    - All formulae used can be looked up in the following publications:
17  *      [Kol] Nielsen's Generalized Polylogarithms, K.S.Kolbig, SIAM J.Math.Anal. 17 (1986), pp. 1232-1258.
18  *      [Cra] Fast Evaluation of Multiple Zeta Sums, R.E.Crandall, Math.Comp. 67 (1998), pp. 1163-1172.
19  *      [ReV] Harmonic Polylogarithms, E.Remiddi, J.A.M.Vermaseren, Int.J.Mod.Phys. A15 (2000), pp. 725-754
20  *      [BBB] Special Values of Multiple Polylogarithms, J.Borwein, D.Bradley, D.Broadhurst, P.Lisonek, Trans.Amer.Math.Soc. 353/3 (2001), pp. 907-941
21  *      [VSW] Numerical evaluation of multiple polylogarithms, J.Vollinga, S.Weinzierl, hep-ph/0410259
22  *
23  *    - The order of parameters and arguments of Li and zeta is defined according to the nested sums
24  *      representation. The parameters for H are understood as in [ReV]. They can be in expanded --- only
25  *      0, 1 and -1 --- or in compactified --- a string with zeros in front of 1 or -1 is written as a single
26  *      number --- notation.
27  *
28  *    - All functions can be nummerically evaluated with arguments in the whole complex plane. The parameters
29  *      for Li, zeta and S must be positive integers. If you want to have an alternating Euler sum, you have
30  *      to give the signs of the parameters as a second argument s to zeta(m,s) containing 1 and -1.
31  *
32  *    - The calculation of classical polylogarithms is speeded up by using Bernoulli numbers and 
33  *      look-up tables. S uses look-up tables as well. The zeta function applies the algorithms in
34  *      [Cra] and [BBB] for speed up. Multiple polylogarithms use Hoelder convolution [BBB].
35  *
36  *    - The functions have no means to do a series expansion into nested sums. To do this, you have to convert
37  *      these functions into the appropriate objects from the nestedsums library, do the expansion and convert
38  *      the result back.
39  *
40  *    - Numerical testing of this implementation has been performed by doing a comparison of results
41  *      between this software and the commercial M.......... 4.1. Multiple zeta values have been checked
42  *      by means of evaluations into simple zeta values. Harmonic polylogarithms have been checked by
43  *      comparison to S(n,p,x) for corresponding parameter combinations and by continuity checks
44  *      around |x|=1 along with comparisons to corresponding zeta functions. Multiple polylogarithms were
45  *      checked against H and zeta and by means of shuffle and quasi-shuffle relations.
46  *
47  */
48
49 /*
50  *  GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany
51  *
52  *  This program is free software; you can redistribute it and/or modify
53  *  it under the terms of the GNU General Public License as published by
54  *  the Free Software Foundation; either version 2 of the License, or
55  *  (at your option) any later version.
56  *
57  *  This program is distributed in the hope that it will be useful,
58  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
59  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
60  *  GNU General Public License for more details.
61  *
62  *  You should have received a copy of the GNU General Public License
63  *  along with this program; if not, write to the Free Software
64  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
65  */
66
67 #include "inifcns.h"
68
69 #include "add.h"
70 #include "constant.h"
71 #include "lst.h"
72 #include "mul.h"
73 #include "numeric.h"
74 #include "operators.h"
75 #include "power.h"
76 #include "pseries.h"
77 #include "relational.h"
78 #include "symbol.h"
79 #include "utils.h"
80 #include "wildcard.h"
81
82 #include <cln/cln.h>
83 #include <sstream>
84 #include <stdexcept>
85 #include <vector>
86
87 namespace GiNaC {
88
89
90 //////////////////////////////////////////////////////////////////////
91 //
92 // Classical polylogarithm  Li(n,x)
93 //
94 // helper functions
95 //
96 //////////////////////////////////////////////////////////////////////
97
98
99 // anonymous namespace for helper functions
100 namespace {
101
102
103 // lookup table for factors built from Bernoulli numbers
104 // see fill_Xn()
105 std::vector<std::vector<cln::cl_N> > Xn;
106 // initial size of Xn that should suffice for 32bit machines (must be even)
107 const int xninitsizestep = 26;
108 int xninitsize = xninitsizestep;
109 int xnsize = 0;
110
111
112 // This function calculates the X_n. The X_n are needed for speed up of classical polylogarithms.
113 // With these numbers the polylogs can be calculated as follows:
114 //   Li_p (x)  =  \sum_{n=0}^\infty X_{p-2}(n) u^{n+1}/(n+1)! with  u = -log(1-x)
115 //   X_0(n) = B_n (Bernoulli numbers)
116 //   X_p(n) = \sum_{k=0}^n binomial(n,k) B_{n-k} / (k+1) * X_{p-1}(k)
117 // The calculation of Xn depends on X0 and X{n-1}.
118 // X_0 is special, it holds only the non-zero Bernoulli numbers with index 2 or greater.
119 // This results in a slightly more complicated algorithm for the X_n.
120 // The first index in Xn corresponds to the index of the polylog minus 2.
121 // The second index in Xn corresponds to the index from the actual sum.
122 void fill_Xn(int n)
123 {
124         if (n>1) {
125                 // calculate X_2 and higher (corresponding to Li_4 and higher)
126                 std::vector<cln::cl_N> buf(xninitsize);
127                 std::vector<cln::cl_N>::iterator it = buf.begin();
128                 cln::cl_N result;
129                 *it = -(cln::expt(cln::cl_I(2),n+1) - 1) / cln::expt(cln::cl_I(2),n+1); // i == 1
130                 it++;
131                 for (int i=2; i<=xninitsize; i++) {
132                         if (i&1) {
133                                 result = 0; // k == 0
134                         } else {
135                                 result = Xn[0][i/2-1]; // k == 0
136                         }
137                         for (int k=1; k<i-1; k++) {
138                                 if ( !(((i-k) & 1) && ((i-k) > 1)) ) {
139                                         result = result + cln::binomial(i,k) * Xn[0][(i-k)/2-1] * Xn[n-1][k-1] / (k+1);
140                                 }
141                         }
142                         result = result - cln::binomial(i,i-1) * Xn[n-1][i-2] / 2 / i; // k == i-1
143                         result = result + Xn[n-1][i-1] / (i+1); // k == i
144                         
145                         *it = result;
146                         it++;
147                 }
148                 Xn.push_back(buf);
149         } else if (n==1) {
150                 // special case to handle the X_0 correct
151                 std::vector<cln::cl_N> buf(xninitsize);
152                 std::vector<cln::cl_N>::iterator it = buf.begin();
153                 cln::cl_N result;
154                 *it = cln::cl_I(-3)/cln::cl_I(4); // i == 1
155                 it++;
156                 *it = cln::cl_I(17)/cln::cl_I(36); // i == 2
157                 it++;
158                 for (int i=3; i<=xninitsize; i++) {
159                         if (i & 1) {
160                                 result = -Xn[0][(i-3)/2]/2;
161                                 *it = (cln::binomial(i,1)/cln::cl_I(2) + cln::binomial(i,i-1)/cln::cl_I(i))*result;
162                                 it++;
163                         } else {
164                                 result = Xn[0][i/2-1] + Xn[0][i/2-1]/(i+1);
165                                 for (int k=1; k<i/2; k++) {
166                                         result = result + cln::binomial(i,k*2) * Xn[0][k-1] * Xn[0][i/2-k-1] / (k*2+1);
167                                 }
168                                 *it = result;
169                                 it++;
170                         }
171                 }
172                 Xn.push_back(buf);
173         } else {
174                 // calculate X_0
175                 std::vector<cln::cl_N> buf(xninitsize/2);
176                 std::vector<cln::cl_N>::iterator it = buf.begin();
177                 for (int i=1; i<=xninitsize/2; i++) {
178                         *it = bernoulli(i*2).to_cl_N();
179                         it++;
180                 }
181                 Xn.push_back(buf);
182         }
183
184         xnsize++;
185 }
186
187 // doubles the number of entries in each Xn[]
188 void double_Xn()
189 {
190         const int pos0 = xninitsize / 2;
191         // X_0
192         for (int i=1; i<=xninitsizestep/2; ++i) {
193                 Xn[0].push_back(bernoulli((i+pos0)*2).to_cl_N());
194         }
195         if (Xn.size() > 1) {
196                 int xend = xninitsize + xninitsizestep;
197                 cln::cl_N result;
198                 // X_1
199                 for (int i=xninitsize+1; i<=xend; ++i) {
200                         if (i & 1) {
201                                 result = -Xn[0][(i-3)/2]/2;
202                                 Xn[1].push_back((cln::binomial(i,1)/cln::cl_I(2) + cln::binomial(i,i-1)/cln::cl_I(i))*result);
203                         } else {
204                                 result = Xn[0][i/2-1] + Xn[0][i/2-1]/(i+1);
205                                 for (int k=1; k<i/2; k++) {
206                                         result = result + cln::binomial(i,k*2) * Xn[0][k-1] * Xn[0][i/2-k-1] / (k*2+1);
207                                 }
208                                 Xn[1].push_back(result);
209                         }
210                 }
211                 // X_n
212                 for (size_t n=2; n<Xn.size(); ++n) {
213                         for (int i=xninitsize+1; i<=xend; ++i) {
214                                 if (i & 1) {
215                                         result = 0; // k == 0
216                                 } else {
217                                         result = Xn[0][i/2-1]; // k == 0
218                                 }
219                                 for (int k=1; k<i-1; ++k) {
220                                         if ( !(((i-k) & 1) && ((i-k) > 1)) ) {
221                                                 result = result + cln::binomial(i,k) * Xn[0][(i-k)/2-1] * Xn[n-1][k-1] / (k+1);
222                                         }
223                                 }
224                                 result = result - cln::binomial(i,i-1) * Xn[n-1][i-2] / 2 / i; // k == i-1
225                                 result = result + Xn[n-1][i-1] / (i+1); // k == i
226                                 Xn[n].push_back(result);
227                         }
228                 }
229         }
230         xninitsize += xninitsizestep;
231 }
232
233
234 // calculates Li(2,x) without Xn
235 cln::cl_N Li2_do_sum(const cln::cl_N& x)
236 {
237         cln::cl_N res = x;
238         cln::cl_N resbuf;
239         cln::cl_N num = x * cln::cl_float(1, cln::float_format(Digits));
240         cln::cl_I den = 1; // n^2 = 1
241         unsigned i = 3;
242         do {
243                 resbuf = res;
244                 num = num * x;
245                 den = den + i;  // n^2 = 4, 9, 16, ...
246                 i += 2;
247                 res = res + num / den;
248         } while (res != resbuf);
249         return res;
250 }
251
252
253 // calculates Li(2,x) with Xn
254 cln::cl_N Li2_do_sum_Xn(const cln::cl_N& x)
255 {
256         std::vector<cln::cl_N>::const_iterator it = Xn[0].begin();
257         std::vector<cln::cl_N>::const_iterator xend = Xn[0].end();
258         cln::cl_N u = -cln::log(1-x);
259         cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
260         cln::cl_N uu = cln::square(u);
261         cln::cl_N res = u - uu/4;
262         cln::cl_N resbuf;
263         unsigned i = 1;
264         do {
265                 resbuf = res;
266                 factor = factor * uu / (2*i * (2*i+1));
267                 res = res + (*it) * factor;
268                 i++;
269                 if (++it == xend) {
270                         double_Xn();
271                         it = Xn[0].begin() + (i-1);
272                         xend = Xn[0].end();
273                 }
274         } while (res != resbuf);
275         return res;
276 }
277
278
279 // calculates Li(n,x), n>2 without Xn
280 cln::cl_N Lin_do_sum(int n, const cln::cl_N& x)
281 {
282         cln::cl_N factor = x * cln::cl_float(1, cln::float_format(Digits));
283         cln::cl_N res = x;
284         cln::cl_N resbuf;
285         int i=2;
286         do {
287                 resbuf = res;
288                 factor = factor * x;
289                 res = res + factor / cln::expt(cln::cl_I(i),n);
290                 i++;
291         } while (res != resbuf);
292         return res;
293 }
294
295
296 // calculates Li(n,x), n>2 with Xn
297 cln::cl_N Lin_do_sum_Xn(int n, const cln::cl_N& x)
298 {
299         std::vector<cln::cl_N>::const_iterator it = Xn[n-2].begin();
300         std::vector<cln::cl_N>::const_iterator xend = Xn[n-2].end();
301         cln::cl_N u = -cln::log(1-x);
302         cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
303         cln::cl_N res = u;
304         cln::cl_N resbuf;
305         unsigned i=2;
306         do {
307                 resbuf = res;
308                 factor = factor * u / i;
309                 res = res + (*it) * factor;
310                 i++;
311                 if (++it == xend) {
312                         double_Xn();
313                         it = Xn[n-2].begin() + (i-2);
314                         xend = Xn[n-2].end();
315                 }
316         } while (res != resbuf);
317         return res;
318 }
319
320
321 // forward declaration needed by function Li_projection and C below
322 const cln::cl_N S_num(int n, int p, const cln::cl_N& x);
323
324
325 // helper function for classical polylog Li
326 cln::cl_N Li_projection(int n, const cln::cl_N& x, const cln::float_format_t& prec)
327 {
328         // treat n=2 as special case
329         if (n == 2) {
330                 // check if precalculated X0 exists
331                 if (xnsize == 0) {
332                         fill_Xn(0);
333                 }
334
335                 if (cln::realpart(x) < 0.5) {
336                         // choose the faster algorithm
337                         // the switching point was empirically determined. the optimal point
338                         // depends on hardware, Digits, ... so an approx value is okay.
339                         // it solves also the problem with precision due to the u=-log(1-x) transformation
340                         if (cln::abs(cln::realpart(x)) < 0.25) {
341                                 
342                                 return Li2_do_sum(x);
343                         } else {
344                                 return Li2_do_sum_Xn(x);
345                         }
346                 } else {
347                         // choose the faster algorithm
348                         if (cln::abs(cln::realpart(x)) > 0.75) {
349                                 if ( x == 1 ) {
350                                         return cln::zeta(2);
351                                 } else {
352                                         return -Li2_do_sum(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
353                                 }
354                         } else {
355                                 return -Li2_do_sum_Xn(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
356                         }
357                 }
358         } else {
359                 // check if precalculated Xn exist
360                 if (n > xnsize+1) {
361                         for (int i=xnsize; i<n-1; i++) {
362                                 fill_Xn(i);
363                         }
364                 }
365
366                 if (cln::realpart(x) < 0.5) {
367                         // choose the faster algorithm
368                         // with n>=12 the "normal" summation always wins against the method with Xn
369                         if ((cln::abs(cln::realpart(x)) < 0.3) || (n >= 12)) {
370                                 return Lin_do_sum(n, x);
371                         } else {
372                                 return Lin_do_sum_Xn(n, x);
373                         }
374                 } else {
375                         cln::cl_N result = 0;
376                         if ( x != 1 ) result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
377                         for (int j=0; j<n-1; j++) {
378                                 result = result + (S_num(n-j-1, 1, 1) - S_num(1, n-j-1, 1-x))
379                                                   * cln::expt(cln::log(x), j) / cln::factorial(j);
380                         }
381                         return result;
382                 }
383         }
384 }
385
386 // helper function for classical polylog Li
387 const cln::cl_N Lin_numeric(const int n, const cln::cl_N& x)
388 {
389         if (n == 1) {
390                 // just a log
391                 return -cln::log(1-x);
392         }
393         if (zerop(x)) {
394                 return 0;
395         }
396         if (x == 1) {
397                 // [Kol] (2.22)
398                 return cln::zeta(n);
399         }
400         else if (x == -1) {
401                 // [Kol] (2.22)
402                 return -(1-cln::expt(cln::cl_I(2),1-n)) * cln::zeta(n);
403         }
404         if (cln::abs(realpart(x)) < 0.4 && cln::abs(cln::abs(x)-1) < 0.01) {
405                 cln::cl_N result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
406                 for (int j=0; j<n-1; j++) {
407                         result = result + (S_num(n-j-1, 1, 1) - S_num(1, n-j-1, 1-x))
408                                 * cln::expt(cln::log(x), j) / cln::factorial(j);
409                 }
410                 return result;
411         }
412
413         // what is the desired float format?
414         // first guess: default format
415         cln::float_format_t prec = cln::default_float_format;
416         const cln::cl_N value = x;
417         // second guess: the argument's format
418         if (!instanceof(realpart(x), cln::cl_RA_ring))
419                 prec = cln::float_format(cln::the<cln::cl_F>(cln::realpart(value)));
420         else if (!instanceof(imagpart(x), cln::cl_RA_ring))
421                 prec = cln::float_format(cln::the<cln::cl_F>(cln::imagpart(value)));
422         
423         // [Kol] (5.15)
424         if (cln::abs(value) > 1) {
425                 cln::cl_N result = -cln::expt(cln::log(-value),n) / cln::factorial(n);
426                 // check if argument is complex. if it is real, the new polylog has to be conjugated.
427                 if (cln::zerop(cln::imagpart(value))) {
428                         if (n & 1) {
429                                 result = result + conjugate(Li_projection(n, cln::recip(value), prec));
430                         }
431                         else {
432                                 result = result - conjugate(Li_projection(n, cln::recip(value), prec));
433                         }
434                 }
435                 else {
436                         if (n & 1) {
437                                 result = result + Li_projection(n, cln::recip(value), prec);
438                         }
439                         else {
440                                 result = result - Li_projection(n, cln::recip(value), prec);
441                         }
442                 }
443                 cln::cl_N add;
444                 for (int j=0; j<n-1; j++) {
445                         add = add + (1+cln::expt(cln::cl_I(-1),n-j)) * (1-cln::expt(cln::cl_I(2),1-n+j))
446                                     * Lin_numeric(n-j,1) * cln::expt(cln::log(-value),j) / cln::factorial(j);
447                 }
448                 result = result - add;
449                 return result;
450         }
451         else {
452                 return Li_projection(n, value, prec);
453         }
454 }
455
456
457 } // end of anonymous namespace
458
459
460 //////////////////////////////////////////////////////////////////////
461 //
462 // Multiple polylogarithm  Li(n,x)
463 //
464 // helper function
465 //
466 //////////////////////////////////////////////////////////////////////
467
468
469 // anonymous namespace for helper function
470 namespace {
471
472
473 // performs the actual series summation for multiple polylogarithms
474 cln::cl_N multipleLi_do_sum(const std::vector<int>& s, const std::vector<cln::cl_N>& x)
475 {
476         // ensure all x <> 0.
477         for (std::vector<cln::cl_N>::const_iterator it = x.begin(); it != x.end(); ++it) {
478                 if ( *it == 0 ) return cln::cl_float(0, cln::float_format(Digits));
479         }
480
481         const int j = s.size();
482         bool flag_accidental_zero = false;
483
484         std::vector<cln::cl_N> t(j);
485         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
486
487         cln::cl_N t0buf;
488         int q = 0;
489         do {
490                 t0buf = t[0];
491                 q++;
492                 t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
493                 for (int k=j-2; k>=0; k--) {
494                         t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
495                 }
496                 q++;
497                 t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
498                 for (int k=j-2; k>=0; k--) {
499                         flag_accidental_zero = cln::zerop(t[k+1]);
500                         t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
501                 }
502         } while ( (t[0] != t0buf) || cln::zerop(t[0]) || flag_accidental_zero );
503
504         return t[0];
505 }
506
507
508 // forward declaration for Li_eval()
509 lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf);
510
511
512 // type used by the transformation functions for G
513 typedef std::vector<int> Gparameter;
514
515
516 // G_eval1-function for G transformations
517 ex G_eval1(int a, int scale, const exvector& gsyms)
518 {
519         if (a != 0) {
520                 const ex& scs = gsyms[std::abs(scale)];
521                 const ex& as = gsyms[std::abs(a)];
522                 if (as != scs) {
523                         return -log(1 - scs/as);
524                 } else {
525                         return -zeta(1);
526                 }
527         } else {
528                 return log(gsyms[std::abs(scale)]);
529         }
530 }
531
532
533 // G_eval-function for G transformations
534 ex G_eval(const Gparameter& a, int scale, const exvector& gsyms)
535 {
536         // check for properties of G
537         ex sc = gsyms[std::abs(scale)];
538         lst newa;
539         bool all_zero = true;
540         bool all_ones = true;
541         int count_ones = 0;
542         for (Gparameter::const_iterator it = a.begin(); it != a.end(); ++it) {
543                 if (*it != 0) {
544                         const ex sym = gsyms[std::abs(*it)];
545                         newa.append(sym);
546                         all_zero = false;
547                         if (sym != sc) {
548                                 all_ones = false;
549                         }
550                         if (all_ones) {
551                                 ++count_ones;
552                         }
553                 } else {
554                         all_ones = false;
555                 }
556         }
557
558         // care about divergent G: shuffle to separate divergencies that will be canceled
559         // later on in the transformation
560         if (newa.nops() > 1 && newa.op(0) == sc && !all_ones && a.front()!=0) {
561                 // do shuffle
562                 Gparameter short_a;
563                 Gparameter::const_iterator it = a.begin();
564                 ++it;
565                 for (; it != a.end(); ++it) {
566                         short_a.push_back(*it);
567                 }
568                 ex result = G_eval1(a.front(), scale, gsyms) * G_eval(short_a, scale, gsyms);
569                 it = short_a.begin();
570                 for (int i=1; i<count_ones; ++i) {
571                         ++it;
572                 }
573                 for (; it != short_a.end(); ++it) {
574
575                         Gparameter newa;
576                         Gparameter::const_iterator it2 = short_a.begin();
577                         for (; it2 != it; ++it2) {
578                                 newa.push_back(*it2);
579                         }
580                         newa.push_back(*it);
581                         newa.push_back(a[0]);
582                         it2 = it;
583                         ++it2;
584                         for (; it2 != short_a.end(); ++it2) {
585                                 newa.push_back(*it2);   
586                         }
587                         result -= G_eval(newa, scale, gsyms);
588                 }
589                 return result / count_ones;
590         }
591
592         // G({1,...,1};y) -> G({1};y)^k / k!
593         if (all_ones && a.size() > 1) {
594                 return pow(G_eval1(a.front(),scale, gsyms), count_ones) / factorial(count_ones);
595         }
596
597         // G({0,...,0};y) -> log(y)^k / k!
598         if (all_zero) {
599                 return pow(log(gsyms[std::abs(scale)]), a.size()) / factorial(a.size());
600         }
601
602         // no special cases anymore -> convert it into Li
603         lst m;
604         lst x;
605         ex argbuf = gsyms[std::abs(scale)];
606         ex mval = _ex1;
607         for (Gparameter::const_iterator it=a.begin(); it!=a.end(); ++it) {
608                 if (*it != 0) {
609                         const ex& sym = gsyms[std::abs(*it)];
610                         x.append(argbuf / sym);
611                         m.append(mval);
612                         mval = _ex1;
613                         argbuf = sym;
614                 } else {
615                         ++mval;
616                 }
617         }
618         return pow(-1, x.nops()) * Li(m, x);
619 }
620
621
622 // converts data for G: pending_integrals -> a
623 Gparameter convert_pending_integrals_G(const Gparameter& pending_integrals)
624 {
625         GINAC_ASSERT(pending_integrals.size() != 1);
626
627         if (pending_integrals.size() > 0) {
628                 // get rid of the first element, which would stand for the new upper limit
629                 Gparameter new_a(pending_integrals.begin()+1, pending_integrals.end());
630                 return new_a;
631         } else {
632                 // just return empty parameter list
633                 Gparameter new_a;
634                 return new_a;
635         }
636 }
637
638
639 // check the parameters a and scale for G and return information about convergence, depth, etc.
640 // convergent     : true if G(a,scale) is convergent
641 // depth          : depth of G(a,scale)
642 // trailing_zeros : number of trailing zeros of a
643 // min_it         : iterator of a pointing on the smallest element in a
644 Gparameter::const_iterator check_parameter_G(const Gparameter& a, int scale,
645                 bool& convergent, int& depth, int& trailing_zeros, Gparameter::const_iterator& min_it)
646 {
647         convergent = true;
648         depth = 0;
649         trailing_zeros = 0;
650         min_it = a.end();
651         Gparameter::const_iterator lastnonzero = a.end();
652         for (Gparameter::const_iterator it = a.begin(); it != a.end(); ++it) {
653                 if (std::abs(*it) > 0) {
654                         ++depth;
655                         trailing_zeros = 0;
656                         lastnonzero = it;
657                         if (std::abs(*it) < scale) {
658                                 convergent = false;
659                                 if ((min_it == a.end()) || (std::abs(*it) < std::abs(*min_it))) {
660                                         min_it = it;
661                                 }
662                         }
663                 } else {
664                         ++trailing_zeros;
665                 }
666         }
667         if (lastnonzero == a.end())
668                 return a.end();
669         return ++lastnonzero;
670 }
671
672
673 // add scale to pending_integrals if pending_integrals is empty
674 Gparameter prepare_pending_integrals(const Gparameter& pending_integrals, int scale)
675 {
676         GINAC_ASSERT(pending_integrals.size() != 1);
677
678         if (pending_integrals.size() > 0) {
679                 return pending_integrals;
680         } else {
681                 Gparameter new_pending_integrals;
682                 new_pending_integrals.push_back(scale);
683                 return new_pending_integrals;
684         }
685 }
686
687
688 // handles trailing zeroes for an otherwise convergent integral
689 ex trailing_zeros_G(const Gparameter& a, int scale, const exvector& gsyms)
690 {
691         bool convergent;
692         int depth, trailing_zeros;
693         Gparameter::const_iterator last, dummyit;
694         last = check_parameter_G(a, scale, convergent, depth, trailing_zeros, dummyit);
695
696         GINAC_ASSERT(convergent);
697
698         if ((trailing_zeros > 0) && (depth > 0)) {
699                 ex result;
700                 Gparameter new_a(a.begin(), a.end()-1);
701                 result += G_eval1(0, scale, gsyms) * trailing_zeros_G(new_a, scale, gsyms);
702                 for (Gparameter::const_iterator it = a.begin(); it != last; ++it) {
703                         Gparameter new_a(a.begin(), it);
704                         new_a.push_back(0);
705                         new_a.insert(new_a.end(), it, a.end()-1);
706                         result -= trailing_zeros_G(new_a, scale, gsyms);
707                 }
708
709                 return result / trailing_zeros;
710         } else {
711                 return G_eval(a, scale, gsyms);
712         }
713 }
714
715
716 // G transformation [VSW] (57),(58)
717 ex depth_one_trafo_G(const Gparameter& pending_integrals, const Gparameter& a, int scale, const exvector& gsyms)
718 {
719         // pendint = ( y1, b1, ..., br )
720         //       a = ( 0, ..., 0, amin )
721         //   scale = y2
722         //
723         // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(0, ..., 0, sr; y2)
724         // where sr replaces amin
725
726         GINAC_ASSERT(a.back() != 0);
727         GINAC_ASSERT(a.size() > 0);
728
729         ex result;
730         Gparameter new_pending_integrals = prepare_pending_integrals(pending_integrals, std::abs(a.back()));
731         const int psize = pending_integrals.size();
732
733         // length == 1
734         // G(sr_{+-}; y2 ) = G(y2_{-+}; sr) - G(0; sr) + ln(-y2_{-+})
735
736         if (a.size() == 1) {
737
738           // ln(-y2_{-+})
739           result += log(gsyms[ex_to<numeric>(scale).to_int()]);
740                 if (a.back() > 0) {
741                         new_pending_integrals.push_back(-scale);
742                         result += I*Pi;
743                 } else {
744                         new_pending_integrals.push_back(scale);
745                         result -= I*Pi;
746                 }
747                 if (psize) {
748                         result *= trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
749                                                    pending_integrals.front(),
750                                                    gsyms);
751                 }
752                 
753                 // G(y2_{-+}; sr)
754                 result += trailing_zeros_G(convert_pending_integrals_G(new_pending_integrals),
755                                            new_pending_integrals.front(),
756                                            gsyms);
757                 
758                 // G(0; sr)
759                 new_pending_integrals.back() = 0;
760                 result -= trailing_zeros_G(convert_pending_integrals_G(new_pending_integrals),
761                                            new_pending_integrals.front(),
762                                            gsyms);
763
764                 return result;
765         }
766
767         // length > 1
768         // G_m(sr_{+-}; y2) = -zeta_m + int_0^y2 dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
769         //                            - int_0^sr dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
770
771         //term zeta_m
772         result -= zeta(a.size());
773         if (psize) {
774                 result *= trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
775                                            pending_integrals.front(),
776                                            gsyms);
777         }
778         
779         // term int_0^sr dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
780         //    = int_0^sr dt/t G_{m-1}( t_{+-}; y2 )
781         Gparameter new_a(a.begin()+1, a.end());
782         new_pending_integrals.push_back(0);
783         result -= depth_one_trafo_G(new_pending_integrals, new_a, scale, gsyms);
784         
785         // term int_0^y2 dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
786         //    = int_0^y2 dt/t G_{m-1}( t_{+-}; y2 )
787         Gparameter new_pending_integrals_2;
788         new_pending_integrals_2.push_back(scale);
789         new_pending_integrals_2.push_back(0);
790         if (psize) {
791                 result += trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
792                                            pending_integrals.front(),
793                                            gsyms)
794                           * depth_one_trafo_G(new_pending_integrals_2, new_a, scale, gsyms);
795         } else {
796                 result += depth_one_trafo_G(new_pending_integrals_2, new_a, scale, gsyms);
797         }
798
799         return result;
800 }
801
802
803 // forward declaration
804 ex shuffle_G(const Gparameter & a0, const Gparameter & a1, const Gparameter & a2,
805              const Gparameter& pendint, const Gparameter& a_old, int scale,
806              const exvector& gsyms);
807
808
809 // G transformation [VSW]
810 ex G_transform(const Gparameter& pendint, const Gparameter& a, int scale,
811                const exvector& gsyms)
812 {
813         // main recursion routine
814         //
815         // pendint = ( y1, b1, ..., br )
816         //       a = ( a1, ..., amin, ..., aw )
817         //   scale = y2
818         //
819         // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,sr,...,aw,y2)
820         // where sr replaces amin
821
822         // find smallest alpha, determine depth and trailing zeros, and check for convergence
823         bool convergent;
824         int depth, trailing_zeros;
825         Gparameter::const_iterator min_it;
826         Gparameter::const_iterator firstzero = 
827                 check_parameter_G(a, scale, convergent, depth, trailing_zeros, min_it);
828         int min_it_pos = min_it - a.begin();
829
830         // special case: all a's are zero
831         if (depth == 0) {
832                 ex result;
833
834                 if (a.size() == 0) {
835                   result = 1;
836                 } else {
837                   result = G_eval(a, scale, gsyms);
838                 }
839                 if (pendint.size() > 0) {
840                   result *= trailing_zeros_G(convert_pending_integrals_G(pendint),
841                                              pendint.front(),
842                                              gsyms);
843                 } 
844                 return result;
845         }
846
847         // handle trailing zeros
848         if (trailing_zeros > 0) {
849                 ex result;
850                 Gparameter new_a(a.begin(), a.end()-1);
851                 result += G_eval1(0, scale, gsyms) * G_transform(pendint, new_a, scale, gsyms);
852                 for (Gparameter::const_iterator it = a.begin(); it != firstzero; ++it) {
853                         Gparameter new_a(a.begin(), it);
854                         new_a.push_back(0);
855                         new_a.insert(new_a.end(), it, a.end()-1);
856                         result -= G_transform(pendint, new_a, scale, gsyms);
857                 }
858                 return result / trailing_zeros;
859         }
860
861         // convergence case
862         if (convergent) {
863                 if (pendint.size() > 0) {
864                         return G_eval(convert_pending_integrals_G(pendint),
865                                       pendint.front(), gsyms)*
866                                 G_eval(a, scale, gsyms);
867                 } else {
868                         return G_eval(a, scale, gsyms);
869                 }
870         }
871
872         // call basic transformation for depth equal one
873         if (depth == 1) {
874                 return depth_one_trafo_G(pendint, a, scale, gsyms);
875         }
876
877         // do recursion
878         // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,sr,...,aw,y2)
879         //  =  int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,0,...,aw,y2)
880         //   + int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) int_0^{sr} ds_{r+1} d/ds_{r+1} G(a1,...,s_{r+1},...,aw,y2)
881
882         // smallest element in last place
883         if (min_it + 1 == a.end()) {
884                 do { --min_it; } while (*min_it == 0);
885                 Gparameter empty;
886                 Gparameter a1(a.begin(),min_it+1);
887                 Gparameter a2(min_it+1,a.end());
888
889                 ex result = G_transform(pendint, a2, scale, gsyms)*
890                         G_transform(empty, a1, scale, gsyms);
891
892                 result -= shuffle_G(empty, a1, a2, pendint, a, scale, gsyms);
893                 return result;
894         }
895
896         Gparameter empty;
897         Gparameter::iterator changeit;
898
899         // first term G(a_1,..,0,...,a_w;a_0)
900         Gparameter new_pendint = prepare_pending_integrals(pendint, a[min_it_pos]);
901         Gparameter new_a = a;
902         new_a[min_it_pos] = 0;
903         ex result = G_transform(empty, new_a, scale, gsyms);
904         if (pendint.size() > 0) {
905                 result *= trailing_zeros_G(convert_pending_integrals_G(pendint),
906                                            pendint.front(), gsyms);
907         }
908
909         // other terms
910         changeit = new_a.begin() + min_it_pos;
911         changeit = new_a.erase(changeit);
912         if (changeit != new_a.begin()) {
913                 // smallest in the middle
914                 new_pendint.push_back(*changeit);
915                 result -= trailing_zeros_G(convert_pending_integrals_G(new_pendint),
916                                            new_pendint.front(), gsyms)*
917                         G_transform(empty, new_a, scale, gsyms);
918                 int buffer = *changeit;
919                 *changeit = *min_it;
920                 result += G_transform(new_pendint, new_a, scale, gsyms);
921                 *changeit = buffer;
922                 new_pendint.pop_back();
923                 --changeit;
924                 new_pendint.push_back(*changeit);
925                 result += trailing_zeros_G(convert_pending_integrals_G(new_pendint),
926                                            new_pendint.front(), gsyms)*
927                         G_transform(empty, new_a, scale, gsyms);
928                 *changeit = *min_it;
929                 result -= G_transform(new_pendint, new_a, scale, gsyms);
930         } else {
931                 // smallest at the front
932                 new_pendint.push_back(scale);
933                 result += trailing_zeros_G(convert_pending_integrals_G(new_pendint),
934                                            new_pendint.front(), gsyms)*
935                         G_transform(empty, new_a, scale, gsyms);
936                 new_pendint.back() =  *changeit;
937                 result -= trailing_zeros_G(convert_pending_integrals_G(new_pendint),
938                                            new_pendint.front(), gsyms)*
939                         G_transform(empty, new_a, scale, gsyms);
940                 *changeit = *min_it;
941                 result += G_transform(new_pendint, new_a, scale, gsyms);
942         }
943         return result;
944 }
945
946
947 // shuffles the two parameter list a1 and a2 and calls G_transform for every term except
948 // for the one that is equal to a_old
949 ex shuffle_G(const Gparameter & a0, const Gparameter & a1, const Gparameter & a2,
950              const Gparameter& pendint, const Gparameter& a_old, int scale,
951              const exvector& gsyms) 
952 {
953         if (a1.size()==0 && a2.size()==0) {
954                 // veto the one configuration we don't want
955                 if ( a0 == a_old ) return 0;
956
957                 return G_transform(pendint, a0, scale, gsyms);
958         }
959
960         if (a2.size()==0) {
961                 Gparameter empty;
962                 Gparameter aa0 = a0;
963                 aa0.insert(aa0.end(),a1.begin(),a1.end());
964                 return shuffle_G(aa0, empty, empty, pendint, a_old, scale, gsyms);
965         }
966
967         if (a1.size()==0) {
968                 Gparameter empty;
969                 Gparameter aa0 = a0;
970                 aa0.insert(aa0.end(),a2.begin(),a2.end());
971                 return shuffle_G(aa0, empty, empty, pendint, a_old, scale, gsyms);
972         }
973
974         Gparameter a1_removed(a1.begin()+1,a1.end());
975         Gparameter a2_removed(a2.begin()+1,a2.end());
976
977         Gparameter a01 = a0;
978         Gparameter a02 = a0;
979
980         a01.push_back( a1[0] );
981         a02.push_back( a2[0] );
982
983         return shuffle_G(a01, a1_removed, a2, pendint, a_old, scale, gsyms)
984              + shuffle_G(a02, a1, a2_removed, pendint, a_old, scale, gsyms);
985 }
986
987 // handles the transformations and the numerical evaluation of G
988 // the parameter x, s and y must only contain numerics
989 static cln::cl_N
990 G_numeric(const std::vector<cln::cl_N>& x, const std::vector<int>& s,
991           const cln::cl_N& y);
992
993 // do acceleration transformation (hoelder convolution [BBB])
994 // the parameter x, s and y must only contain numerics
995 static cln::cl_N
996 G_do_hoelder(std::vector<cln::cl_N> x, /* yes, it's passed by value */
997              const std::vector<int>& s, const cln::cl_N& y)
998 {
999         cln::cl_N result;
1000         const std::size_t size = x.size();
1001         for (std::size_t i = 0; i < size; ++i)
1002                 x[i] = x[i]/y;
1003
1004         for (std::size_t r = 0; r <= size; ++r) {
1005                 cln::cl_N buffer(1 & r ? -1 : 1);
1006                 cln::cl_RA p(2);
1007                 bool adjustp;
1008                 do {
1009                         adjustp = false;
1010                         for (std::size_t i = 0; i < size; ++i) {
1011                                 if (x[i] == cln::cl_RA(1)/p) {
1012                                         p = p/2 + cln::cl_RA(3)/2;
1013                                         adjustp = true;
1014                                         continue;
1015                                 }
1016                         }
1017                 } while (adjustp);
1018                 cln::cl_RA q = p/(p-1);
1019                 std::vector<cln::cl_N> qlstx;
1020                 std::vector<int> qlsts;
1021                 for (std::size_t j = r; j >= 1; --j) {
1022                         qlstx.push_back(cln::cl_N(1) - x[j-1]);
1023                         if (instanceof(x[j-1], cln::cl_R_ring) &&
1024                             realpart(x[j-1]) > 1 && realpart(x[j-1]) <= 2) {
1025                                 qlsts.push_back(s[j-1]);
1026                         } else {
1027                                 qlsts.push_back(-s[j-1]);
1028                         }
1029                 }
1030                 if (qlstx.size() > 0) {
1031                         buffer = buffer*G_numeric(qlstx, qlsts, 1/q);
1032                 }
1033                 std::vector<cln::cl_N> plstx;
1034                 std::vector<int> plsts;
1035                 for (std::size_t j = r+1; j <= size; ++j) {
1036                         plstx.push_back(x[j-1]);
1037                         plsts.push_back(s[j-1]);
1038                 }
1039                 if (plstx.size() > 0) {
1040                         buffer = buffer*G_numeric(plstx, plsts, 1/p);
1041                 }
1042                 result = result + buffer;
1043         }
1044         return result;
1045 }
1046
1047 // convergence transformation, used for numerical evaluation of G function.
1048 // the parameter x, s and y must only contain numerics
1049 static cln::cl_N
1050 G_do_trafo(const std::vector<cln::cl_N>& x, const std::vector<int>& s,
1051            const cln::cl_N& y)
1052 {
1053         // sort (|x|<->position) to determine indices
1054         typedef std::multimap<cln::cl_R, std::size_t> sortmap_t;
1055         sortmap_t sortmap;
1056         std::size_t size = 0;
1057         for (std::size_t i = 0; i < x.size(); ++i) {
1058                 if (!zerop(x[i])) {
1059                         sortmap.insert(std::make_pair(abs(x[i]), i));
1060                         ++size;
1061                 }
1062         }
1063         // include upper limit (scale)
1064         sortmap.insert(std::make_pair(abs(y), x.size()));
1065
1066         // generate missing dummy-symbols
1067         int i = 1;
1068         // holding dummy-symbols for the G/Li transformations
1069         exvector gsyms;
1070         gsyms.push_back(symbol("GSYMS_ERROR"));
1071         cln::cl_N lastentry(0);
1072         for (sortmap_t::const_iterator it = sortmap.begin(); it != sortmap.end(); ++it) {
1073                 if (it != sortmap.begin()) {
1074                         if (it->second < x.size()) {
1075                                 if (x[it->second] == lastentry) {
1076                                         gsyms.push_back(gsyms.back());
1077                                         continue;
1078                                 }
1079                         } else {
1080                                 if (y == lastentry) {
1081                                         gsyms.push_back(gsyms.back());
1082                                         continue;
1083                                 }
1084                         }
1085                 }
1086                 std::ostringstream os;
1087                 os << "a" << i;
1088                 gsyms.push_back(symbol(os.str()));
1089                 ++i;
1090                 if (it->second < x.size()) {
1091                         lastentry = x[it->second];
1092                 } else {
1093                         lastentry = y;
1094                 }
1095         }
1096
1097         // fill position data according to sorted indices and prepare substitution list
1098         Gparameter a(x.size());
1099         exmap subslst;
1100         std::size_t pos = 1;
1101         int scale = pos;
1102         for (sortmap_t::const_iterator it = sortmap.begin(); it != sortmap.end(); ++it) {
1103                 if (it->second < x.size()) {
1104                         if (s[it->second] > 0) {
1105                                 a[it->second] = pos;
1106                         } else {
1107                                 a[it->second] = -int(pos);
1108                         }
1109                         subslst[gsyms[pos]] = numeric(x[it->second]);
1110                 } else {
1111                         scale = pos;
1112                         subslst[gsyms[pos]] = numeric(y);
1113                 }
1114                 ++pos;
1115         }
1116
1117         // do transformation
1118         Gparameter pendint;
1119         ex result = G_transform(pendint, a, scale, gsyms);
1120         // replace dummy symbols with their values
1121         result = result.eval().expand();
1122         result = result.subs(subslst).evalf();
1123         if (!is_a<numeric>(result))
1124                 throw std::logic_error("G_do_trafo: G_transform returned non-numeric result");
1125         
1126         cln::cl_N ret = ex_to<numeric>(result).to_cl_N();
1127         return ret;
1128 }
1129
1130 // handles the transformations and the numerical evaluation of G
1131 // the parameter x, s and y must only contain numerics
1132 static cln::cl_N
1133 G_numeric(const std::vector<cln::cl_N>& x, const std::vector<int>& s,
1134           const cln::cl_N& y)
1135 {
1136         // check for convergence and necessary accelerations
1137         bool need_trafo = false;
1138         bool need_hoelder = false;
1139         std::size_t depth = 0;
1140         for (std::size_t i = 0; i < x.size(); ++i) {
1141                 if (!zerop(x[i])) {
1142                         ++depth;
1143                         const cln::cl_N x_y = abs(x[i]) - y;
1144                         if (instanceof(x_y, cln::cl_R_ring) &&
1145                             realpart(x_y) < cln::least_negative_float(cln::float_format(Digits - 2)))
1146                                 need_trafo = true;
1147
1148                         if (abs(abs(x[i]/y) - 1) < 0.01)
1149                                 need_hoelder = true;
1150                 }
1151         }
1152         if (zerop(x[x.size() - 1]))
1153                 need_trafo = true;
1154
1155         if (depth == 1 && x.size() == 2 && !need_trafo)
1156                 return - Li_projection(2, y/x[1], cln::float_format(Digits));
1157         
1158         // do acceleration transformation (hoelder convolution [BBB])
1159         if (need_hoelder)
1160                 return G_do_hoelder(x, s, y);
1161         
1162         // convergence transformation
1163         if (need_trafo)
1164                 return G_do_trafo(x, s, y);
1165
1166         // do summation
1167         std::vector<cln::cl_N> newx;
1168         newx.reserve(x.size());
1169         std::vector<int> m;
1170         m.reserve(x.size());
1171         int mcount = 1;
1172         int sign = 1;
1173         cln::cl_N factor = y;
1174         for (std::size_t i = 0; i < x.size(); ++i) {
1175                 if (zerop(x[i])) {
1176                         ++mcount;
1177                 } else {
1178                         newx.push_back(factor/x[i]);
1179                         factor = x[i];
1180                         m.push_back(mcount);
1181                         mcount = 1;
1182                         sign = -sign;
1183                 }
1184         }
1185
1186         return sign*multipleLi_do_sum(m, newx);
1187 }
1188
1189
1190 ex mLi_numeric(const lst& m, const lst& x)
1191 {
1192         // let G_numeric do the transformation
1193         std::vector<cln::cl_N> newx;
1194         newx.reserve(x.nops());
1195         std::vector<int> s;
1196         s.reserve(x.nops());
1197         cln::cl_N factor(1);
1198         for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1199                 for (int i = 1; i < *itm; ++i) {
1200                         newx.push_back(cln::cl_N(0));
1201                         s.push_back(1);
1202                 }
1203                 const cln::cl_N xi = ex_to<numeric>(*itx).to_cl_N();
1204                 factor = factor/xi;
1205                 newx.push_back(factor);
1206                 if ( !instanceof(factor, cln::cl_R_ring) && imagpart(factor) < 0 ) {
1207                         s.push_back(-1);
1208                 }
1209                 else {
1210                         s.push_back(1);
1211                 }
1212         }
1213         return numeric(cln::cl_N(1 & m.nops() ? - 1 : 1)*G_numeric(newx, s, cln::cl_N(1)));
1214 }
1215
1216
1217 } // end of anonymous namespace
1218
1219
1220 //////////////////////////////////////////////////////////////////////
1221 //
1222 // Generalized multiple polylogarithm  G(x, y) and G(x, s, y)
1223 //
1224 // GiNaC function
1225 //
1226 //////////////////////////////////////////////////////////////////////
1227
1228
1229 static ex G2_evalf(const ex& x_, const ex& y)
1230 {
1231         if (!y.info(info_flags::positive)) {
1232                 return G(x_, y).hold();
1233         }
1234         lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1235         if (x.nops() == 0) {
1236                 return _ex1;
1237         }
1238         if (x.op(0) == y) {
1239                 return G(x_, y).hold();
1240         }
1241         std::vector<int> s;
1242         s.reserve(x.nops());
1243         bool all_zero = true;
1244         for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1245                 if (!(*it).info(info_flags::numeric)) {
1246                         return G(x_, y).hold();
1247                 }
1248                 if (*it != _ex0) {
1249                         all_zero = false;
1250                 }
1251                 if ( !ex_to<numeric>(*it).is_real() && ex_to<numeric>(*it).imag() < 0 ) {
1252                         s.push_back(-1);
1253                 }
1254                 else {
1255                         s.push_back(1);
1256                 }
1257         }
1258         if (all_zero) {
1259                 return pow(log(y), x.nops()) / factorial(x.nops());
1260         }
1261         std::vector<cln::cl_N> xv;
1262         xv.reserve(x.nops());
1263         for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
1264                 xv.push_back(ex_to<numeric>(*it).to_cl_N());
1265         cln::cl_N result = G_numeric(xv, s, ex_to<numeric>(y).to_cl_N());
1266         return numeric(result);
1267 }
1268
1269
1270 static ex G2_eval(const ex& x_, const ex& y)
1271 {
1272         //TODO eval to MZV or H or S or Lin
1273
1274         if (!y.info(info_flags::positive)) {
1275                 return G(x_, y).hold();
1276         }
1277         lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1278         if (x.nops() == 0) {
1279                 return _ex1;
1280         }
1281         if (x.op(0) == y) {
1282                 return G(x_, y).hold();
1283         }
1284         std::vector<int> s;
1285         s.reserve(x.nops());
1286         bool all_zero = true;
1287         bool crational = true;
1288         for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1289                 if (!(*it).info(info_flags::numeric)) {
1290                         return G(x_, y).hold();
1291                 }
1292                 if (!(*it).info(info_flags::crational)) {
1293                         crational = false;
1294                 }
1295                 if (*it != _ex0) {
1296                         all_zero = false;
1297                 }
1298                 if ( !ex_to<numeric>(*it).is_real() && ex_to<numeric>(*it).imag() < 0 ) {
1299                         s.push_back(-1);
1300                 }
1301                 else {
1302                         s.push_back(+1);
1303                 }
1304         }
1305         if (all_zero) {
1306                 return pow(log(y), x.nops()) / factorial(x.nops());
1307         }
1308         if (!y.info(info_flags::crational)) {
1309                 crational = false;
1310         }
1311         if (crational) {
1312                 return G(x_, y).hold();
1313         }
1314         std::vector<cln::cl_N> xv;
1315         xv.reserve(x.nops());
1316         for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
1317                 xv.push_back(ex_to<numeric>(*it).to_cl_N());
1318         cln::cl_N result = G_numeric(xv, s, ex_to<numeric>(y).to_cl_N());
1319         return numeric(result);
1320 }
1321
1322
1323 unsigned G2_SERIAL::serial = function::register_new(function_options("G", 2).
1324                                 evalf_func(G2_evalf).
1325                                 eval_func(G2_eval).
1326                                 do_not_evalf_params().
1327                                 overloaded(2));
1328 //TODO
1329 //                                derivative_func(G2_deriv).
1330 //                                print_func<print_latex>(G2_print_latex).
1331
1332
1333 static ex G3_evalf(const ex& x_, const ex& s_, const ex& y)
1334 {
1335         if (!y.info(info_flags::positive)) {
1336                 return G(x_, s_, y).hold();
1337         }
1338         lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1339         lst s = is_a<lst>(s_) ? ex_to<lst>(s_) : lst(s_);
1340         if (x.nops() != s.nops()) {
1341                 return G(x_, s_, y).hold();
1342         }
1343         if (x.nops() == 0) {
1344                 return _ex1;
1345         }
1346         if (x.op(0) == y) {
1347                 return G(x_, s_, y).hold();
1348         }
1349         std::vector<int> sn;
1350         sn.reserve(s.nops());
1351         bool all_zero = true;
1352         for (lst::const_iterator itx = x.begin(), its = s.begin(); itx != x.end(); ++itx, ++its) {
1353                 if (!(*itx).info(info_flags::numeric)) {
1354                         return G(x_, y).hold();
1355                 }
1356                 if (!(*its).info(info_flags::real)) {
1357                         return G(x_, y).hold();
1358                 }
1359                 if (*itx != _ex0) {
1360                         all_zero = false;
1361                 }
1362                 if ( ex_to<numeric>(*itx).is_real() ) {
1363                         if ( ex_to<numeric>(*itx).is_positive() ) {
1364                                 if ( *its >= 0 ) {
1365                                         sn.push_back(1);
1366                                 }
1367                                 else {
1368                                         sn.push_back(-1);
1369                                 }
1370                         } else {
1371                                 sn.push_back(1);
1372                         }
1373                 }
1374                 else {
1375                         if ( ex_to<numeric>(*itx).imag() > 0 ) {
1376                                 sn.push_back(1);
1377                         }
1378                         else {
1379                                 sn.push_back(-1);
1380                         }
1381                 }
1382         }
1383         if (all_zero) {
1384                 return pow(log(y), x.nops()) / factorial(x.nops());
1385         }
1386         std::vector<cln::cl_N> xn;
1387         xn.reserve(x.nops());
1388         for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
1389                 xn.push_back(ex_to<numeric>(*it).to_cl_N());
1390         cln::cl_N result = G_numeric(xn, sn, ex_to<numeric>(y).to_cl_N());
1391         return numeric(result);
1392 }
1393
1394
1395 static ex G3_eval(const ex& x_, const ex& s_, const ex& y)
1396 {
1397         //TODO eval to MZV or H or S or Lin
1398
1399         if (!y.info(info_flags::positive)) {
1400                 return G(x_, s_, y).hold();
1401         }
1402         lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1403         lst s = is_a<lst>(s_) ? ex_to<lst>(s_) : lst(s_);
1404         if (x.nops() != s.nops()) {
1405                 return G(x_, s_, y).hold();
1406         }
1407         if (x.nops() == 0) {
1408                 return _ex1;
1409         }
1410         if (x.op(0) == y) {
1411                 return G(x_, s_, y).hold();
1412         }
1413         std::vector<int> sn;
1414         sn.reserve(s.nops());
1415         bool all_zero = true;
1416         bool crational = true;
1417         for (lst::const_iterator itx = x.begin(), its = s.begin(); itx != x.end(); ++itx, ++its) {
1418                 if (!(*itx).info(info_flags::numeric)) {
1419                         return G(x_, s_, y).hold();
1420                 }
1421                 if (!(*its).info(info_flags::real)) {
1422                         return G(x_, s_, y).hold();
1423                 }
1424                 if (!(*itx).info(info_flags::crational)) {
1425                         crational = false;
1426                 }
1427                 if (*itx != _ex0) {
1428                         all_zero = false;
1429                 }
1430                 if ( ex_to<numeric>(*itx).is_real() ) {
1431                         if ( ex_to<numeric>(*itx).is_positive() ) {
1432                                 if ( *its >= 0 ) {
1433                                         sn.push_back(1);
1434                                 }
1435                                 else {
1436                                         sn.push_back(-1);
1437                                 }
1438                         } else {
1439                                 sn.push_back(1);
1440                         }
1441                 }
1442                 else {
1443                         if ( ex_to<numeric>(*itx).imag() > 0 ) {
1444                                 sn.push_back(1);
1445                         }
1446                         else {
1447                                 sn.push_back(-1);
1448                         }
1449                 }
1450         }
1451         if (all_zero) {
1452                 return pow(log(y), x.nops()) / factorial(x.nops());
1453         }
1454         if (!y.info(info_flags::crational)) {
1455                 crational = false;
1456         }
1457         if (crational) {
1458                 return G(x_, s_, y).hold();
1459         }
1460         std::vector<cln::cl_N> xn;
1461         xn.reserve(x.nops());
1462         for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
1463                 xn.push_back(ex_to<numeric>(*it).to_cl_N());
1464         cln::cl_N result = G_numeric(xn, sn, ex_to<numeric>(y).to_cl_N());
1465         return numeric(result);
1466 }
1467
1468
1469 unsigned G3_SERIAL::serial = function::register_new(function_options("G", 3).
1470                                 evalf_func(G3_evalf).
1471                                 eval_func(G3_eval).
1472                                 do_not_evalf_params().
1473                                 overloaded(2));
1474 //TODO
1475 //                                derivative_func(G3_deriv).
1476 //                                print_func<print_latex>(G3_print_latex).
1477
1478
1479 //////////////////////////////////////////////////////////////////////
1480 //
1481 // Classical polylogarithm and multiple polylogarithm  Li(m,x)
1482 //
1483 // GiNaC function
1484 //
1485 //////////////////////////////////////////////////////////////////////
1486
1487
1488 static ex Li_evalf(const ex& m_, const ex& x_)
1489 {
1490         // classical polylogs
1491         if (m_.info(info_flags::posint)) {
1492                 if (x_.info(info_flags::numeric)) {
1493                         int m__ = ex_to<numeric>(m_).to_int();
1494                         const cln::cl_N x__ = ex_to<numeric>(x_).to_cl_N();
1495                         const cln::cl_N result = Lin_numeric(m__, x__);
1496                         return numeric(result);
1497                 } else {
1498                         // try to numerically evaluate second argument
1499                         ex x_val = x_.evalf();
1500                         if (x_val.info(info_flags::numeric)) {
1501                                 int m__ = ex_to<numeric>(m_).to_int();
1502                                 const cln::cl_N x__ = ex_to<numeric>(x_val).to_cl_N();
1503                                 const cln::cl_N result = Lin_numeric(m__, x__);
1504                                 return numeric(result);
1505                         }
1506                 }
1507         }
1508         // multiple polylogs
1509         if (is_a<lst>(m_) && is_a<lst>(x_)) {
1510
1511                 const lst& m = ex_to<lst>(m_);
1512                 const lst& x = ex_to<lst>(x_);
1513                 if (m.nops() != x.nops()) {
1514                         return Li(m_,x_).hold();
1515                 }
1516                 if (x.nops() == 0) {
1517                         return _ex1;
1518                 }
1519                 if ((m.op(0) == _ex1) && (x.op(0) == _ex1)) {
1520                         return Li(m_,x_).hold();
1521                 }
1522
1523                 for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1524                         if (!(*itm).info(info_flags::posint)) {
1525                                 return Li(m_, x_).hold();
1526                         }
1527                         if (!(*itx).info(info_flags::numeric)) {
1528                                 return Li(m_, x_).hold();
1529                         }
1530                         if (*itx == _ex0) {
1531                                 return _ex0;
1532                         }
1533                 }
1534
1535                 return mLi_numeric(m, x);
1536         }
1537
1538         return Li(m_,x_).hold();
1539 }
1540
1541
1542 static ex Li_eval(const ex& m_, const ex& x_)
1543 {
1544         if (is_a<lst>(m_)) {
1545                 if (is_a<lst>(x_)) {
1546                         // multiple polylogs
1547                         const lst& m = ex_to<lst>(m_);
1548                         const lst& x = ex_to<lst>(x_);
1549                         if (m.nops() != x.nops()) {
1550                                 return Li(m_,x_).hold();
1551                         }
1552                         if (x.nops() == 0) {
1553                                 return _ex1;
1554                         }
1555                         bool is_H = true;
1556                         bool is_zeta = true;
1557                         bool do_evalf = true;
1558                         bool crational = true;
1559                         for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1560                                 if (!(*itm).info(info_flags::posint)) {
1561                                         return Li(m_,x_).hold();
1562                                 }
1563                                 if ((*itx != _ex1) && (*itx != _ex_1)) {
1564                                         if (itx != x.begin()) {
1565                                                 is_H = false;
1566                                         }
1567                                         is_zeta = false;
1568                                 }
1569                                 if (*itx == _ex0) {
1570                                         return _ex0;
1571                                 }
1572                                 if (!(*itx).info(info_flags::numeric)) {
1573                                         do_evalf = false;
1574                                 }
1575                                 if (!(*itx).info(info_flags::crational)) {
1576                                         crational = false;
1577                                 }
1578                         }
1579                         if (is_zeta) {
1580                                 lst newx;
1581                                 for (lst::const_iterator itx = x.begin(); itx != x.end(); ++itx) {
1582                                         GINAC_ASSERT((*itx == _ex1) || (*itx == _ex_1));
1583                                         // XXX: 1 + 0.0*I is considered equal to 1. However
1584                                         // the former is a not automatically converted
1585                                         // to a real number. Do the conversion explicitly
1586                                         // to avoid the "numeric::operator>(): complex inequality"
1587                                         // exception (and similar problems).
1588                                         newx.append(*itx != _ex_1 ? _ex1 : _ex_1);
1589                                 }
1590                                 return zeta(m_, newx);
1591                         }
1592                         if (is_H) {
1593                                 ex prefactor;
1594                                 lst newm = convert_parameter_Li_to_H(m, x, prefactor);
1595                                 return prefactor * H(newm, x[0]);
1596                         }
1597                         if (do_evalf && !crational) {
1598                                 return mLi_numeric(m,x);
1599                         }
1600                 }
1601                 return Li(m_, x_).hold();
1602         } else if (is_a<lst>(x_)) {
1603                 return Li(m_, x_).hold();
1604         }
1605
1606         // classical polylogs
1607         if (x_ == _ex0) {
1608                 return _ex0;
1609         }
1610         if (x_ == _ex1) {
1611                 return zeta(m_);
1612         }
1613         if (x_ == _ex_1) {
1614                 return (pow(2,1-m_)-1) * zeta(m_);
1615         }
1616         if (m_ == _ex1) {
1617                 return -log(1-x_);
1618         }
1619         if (m_ == _ex2) {
1620                 if (x_.is_equal(I)) {
1621                         return power(Pi,_ex2)/_ex_48 + Catalan*I;
1622                 }
1623                 if (x_.is_equal(-I)) {
1624                         return power(Pi,_ex2)/_ex_48 - Catalan*I;
1625                 }
1626         }
1627         if (m_.info(info_flags::posint) && x_.info(info_flags::numeric) && !x_.info(info_flags::crational)) {
1628                 int m__ = ex_to<numeric>(m_).to_int();
1629                 const cln::cl_N x__ = ex_to<numeric>(x_).to_cl_N();
1630                 const cln::cl_N result = Lin_numeric(m__, x__);
1631                 return numeric(result);
1632         }
1633
1634         return Li(m_, x_).hold();
1635 }
1636
1637
1638 static ex Li_series(const ex& m, const ex& x, const relational& rel, int order, unsigned options)
1639 {
1640         if (is_a<lst>(m) || is_a<lst>(x)) {
1641                 // multiple polylog
1642                 epvector seq;
1643                 seq.push_back(expair(Li(m, x), 0));
1644                 return pseries(rel, seq);
1645         }
1646         
1647         // classical polylog
1648         const ex x_pt = x.subs(rel, subs_options::no_pattern);
1649         if (m.info(info_flags::numeric) && x_pt.info(info_flags::numeric)) {
1650                 // First special case: x==0 (derivatives have poles)
1651                 if (x_pt.is_zero()) {
1652                         const symbol s;
1653                         ex ser;
1654                         // manually construct the primitive expansion
1655                         for (int i=1; i<order; ++i)
1656                                 ser += pow(s,i) / pow(numeric(i), m);
1657                         // substitute the argument's series expansion
1658                         ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
1659                         // maybe that was terminating, so add a proper order term
1660                         epvector nseq;
1661                         nseq.push_back(expair(Order(_ex1), order));
1662                         ser += pseries(rel, nseq);
1663                         // reexpanding it will collapse the series again
1664                         return ser.series(rel, order);
1665                 }
1666                 // TODO special cases: x==1 (branch point) and x real, >=1 (branch cut)
1667                 throw std::runtime_error("Li_series: don't know how to do the series expansion at this point!");
1668         }
1669         // all other cases should be safe, by now:
1670         throw do_taylor();  // caught by function::series()
1671 }
1672
1673
1674 static ex Li_deriv(const ex& m_, const ex& x_, unsigned deriv_param)
1675 {
1676         GINAC_ASSERT(deriv_param < 2);
1677         if (deriv_param == 0) {
1678                 return _ex0;
1679         }
1680         if (m_.nops() > 1) {
1681                 throw std::runtime_error("don't know how to derivate multiple polylogarithm!");
1682         }
1683         ex m;
1684         if (is_a<lst>(m_)) {
1685                 m = m_.op(0);
1686         } else {
1687                 m = m_;
1688         }
1689         ex x;
1690         if (is_a<lst>(x_)) {
1691                 x = x_.op(0);
1692         } else {
1693                 x = x_;
1694         }
1695         if (m > 0) {
1696                 return Li(m-1, x) / x;
1697         } else {
1698                 return 1/(1-x);
1699         }
1700 }
1701
1702
1703 static void Li_print_latex(const ex& m_, const ex& x_, const print_context& c)
1704 {
1705         lst m;
1706         if (is_a<lst>(m_)) {
1707                 m = ex_to<lst>(m_);
1708         } else {
1709                 m = lst(m_);
1710         }
1711         lst x;
1712         if (is_a<lst>(x_)) {
1713                 x = ex_to<lst>(x_);
1714         } else {
1715                 x = lst(x_);
1716         }
1717         c.s << "\\mathrm{Li}_{";
1718         lst::const_iterator itm = m.begin();
1719         (*itm).print(c);
1720         itm++;
1721         for (; itm != m.end(); itm++) {
1722                 c.s << ",";
1723                 (*itm).print(c);
1724         }
1725         c.s << "}(";
1726         lst::const_iterator itx = x.begin();
1727         (*itx).print(c);
1728         itx++;
1729         for (; itx != x.end(); itx++) {
1730                 c.s << ",";
1731                 (*itx).print(c);
1732         }
1733         c.s << ")";
1734 }
1735
1736
1737 REGISTER_FUNCTION(Li,
1738                   evalf_func(Li_evalf).
1739                   eval_func(Li_eval).
1740                   series_func(Li_series).
1741                   derivative_func(Li_deriv).
1742                   print_func<print_latex>(Li_print_latex).
1743                   do_not_evalf_params());
1744
1745
1746 //////////////////////////////////////////////////////////////////////
1747 //
1748 // Nielsen's generalized polylogarithm  S(n,p,x)
1749 //
1750 // helper functions
1751 //
1752 //////////////////////////////////////////////////////////////////////
1753
1754
1755 // anonymous namespace for helper functions
1756 namespace {
1757
1758
1759 // lookup table for special Euler-Zagier-Sums (used for S_n,p(x))
1760 // see fill_Yn()
1761 std::vector<std::vector<cln::cl_N> > Yn;
1762 int ynsize = 0; // number of Yn[]
1763 int ynlength = 100; // initial length of all Yn[i]
1764
1765
1766 // This function calculates the Y_n. The Y_n are needed for the evaluation of S_{n,p}(x).
1767 // The Y_n are basically Euler-Zagier sums with all m_i=1. They are subsums in the Z-sum
1768 // representing S_{n,p}(x).
1769 // The first index in Y_n corresponds to the parameter p minus one, i.e. the depth of the
1770 // equivalent Z-sum.
1771 // The second index in Y_n corresponds to the running index of the outermost sum in the full Z-sum
1772 // representing S_{n,p}(x).
1773 // The calculation of Y_n uses the values from Y_{n-1}.
1774 void fill_Yn(int n, const cln::float_format_t& prec)
1775 {
1776         const int initsize = ynlength;
1777         //const int initsize = initsize_Yn;
1778         cln::cl_N one = cln::cl_float(1, prec);
1779
1780         if (n) {
1781                 std::vector<cln::cl_N> buf(initsize);
1782                 std::vector<cln::cl_N>::iterator it = buf.begin();
1783                 std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
1784                 *it = (*itprev) / cln::cl_N(n+1) * one;
1785                 it++;
1786                 itprev++;
1787                 // sums with an index smaller than the depth are zero and need not to be calculated.
1788                 // calculation starts with depth, which is n+2)
1789                 for (int i=n+2; i<=initsize+n; i++) {
1790                         *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
1791                         it++;
1792                         itprev++;
1793                 }
1794                 Yn.push_back(buf);
1795         } else {
1796                 std::vector<cln::cl_N> buf(initsize);
1797                 std::vector<cln::cl_N>::iterator it = buf.begin();
1798                 *it = 1 * one;
1799                 it++;
1800                 for (int i=2; i<=initsize; i++) {
1801                         *it = *(it-1) + 1 / cln::cl_N(i) * one;
1802                         it++;
1803                 }
1804                 Yn.push_back(buf);
1805         }
1806         ynsize++;
1807 }
1808
1809
1810 // make Yn longer ... 
1811 void make_Yn_longer(int newsize, const cln::float_format_t& prec)
1812 {
1813
1814         cln::cl_N one = cln::cl_float(1, prec);
1815
1816         Yn[0].resize(newsize);
1817         std::vector<cln::cl_N>::iterator it = Yn[0].begin();
1818         it += ynlength;
1819         for (int i=ynlength+1; i<=newsize; i++) {
1820                 *it = *(it-1) + 1 / cln::cl_N(i) * one;
1821                 it++;
1822         }
1823
1824         for (int n=1; n<ynsize; n++) {
1825                 Yn[n].resize(newsize);
1826                 std::vector<cln::cl_N>::iterator it = Yn[n].begin();
1827                 std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
1828                 it += ynlength;
1829                 itprev += ynlength;
1830                 for (int i=ynlength+n+1; i<=newsize+n; i++) {
1831                         *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
1832                         it++;
1833                         itprev++;
1834                 }
1835         }
1836         
1837         ynlength = newsize;
1838 }
1839
1840
1841 // helper function for S(n,p,x)
1842 // [Kol] (7.2)
1843 cln::cl_N C(int n, int p)
1844 {
1845         cln::cl_N result;
1846
1847         for (int k=0; k<p; k++) {
1848                 for (int j=0; j<=(n+k-1)/2; j++) {
1849                         if (k == 0) {
1850                                 if (n & 1) {
1851                                         if (j & 1) {
1852                                                 result = result - 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1) / cln::factorial(2*j);
1853                                         }
1854                                         else {
1855                                                 result = result + 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1) / cln::factorial(2*j);
1856                                         }
1857                                 }
1858                         }
1859                         else {
1860                                 if (k & 1) {
1861                                         if (j & 1) {
1862                                                 result = result + cln::factorial(n+k-1)
1863                                                                   * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1864                                                                   / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1865                                         }
1866                                         else {
1867                                                 result = result - cln::factorial(n+k-1)
1868                                                                   * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1869                                                                   / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1870                                         }
1871                                 }
1872                                 else {
1873                                         if (j & 1) {
1874                                                 result = result - cln::factorial(n+k-1) * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1875                                                                   / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1876                                         }
1877                                         else {
1878                                                 result = result + cln::factorial(n+k-1)
1879                                                                   * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1880                                                                   / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1881                                         }
1882                                 }
1883                         }
1884                 }
1885         }
1886         int np = n+p;
1887         if ((np-1) & 1) {
1888                 if (((np)/2+n) & 1) {
1889                         result = -result - cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
1890                 }
1891                 else {
1892                         result = -result + cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
1893                 }
1894         }
1895
1896         return result;
1897 }
1898
1899
1900 // helper function for S(n,p,x)
1901 // [Kol] remark to (9.1)
1902 cln::cl_N a_k(int k)
1903 {
1904         cln::cl_N result;
1905
1906         if (k == 0) {
1907                 return 1;
1908         }
1909
1910         result = result;
1911         for (int m=2; m<=k; m++) {
1912                 result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * a_k(k-m);
1913         }
1914
1915         return -result / k;
1916 }
1917
1918
1919 // helper function for S(n,p,x)
1920 // [Kol] remark to (9.1)
1921 cln::cl_N b_k(int k)
1922 {
1923         cln::cl_N result;
1924
1925         if (k == 0) {
1926                 return 1;
1927         }
1928
1929         result = result;
1930         for (int m=2; m<=k; m++) {
1931                 result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * b_k(k-m);
1932         }
1933
1934         return result / k;
1935 }
1936
1937
1938 // helper function for S(n,p,x)
1939 cln::cl_N S_do_sum(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
1940 {
1941         static cln::float_format_t oldprec = cln::default_float_format;
1942
1943         if (p==1) {
1944                 return Li_projection(n+1, x, prec);
1945         }
1946
1947         // precision has changed, we need to clear lookup table Yn
1948         if ( oldprec != prec ) {
1949                 Yn.clear();
1950                 ynsize = 0;
1951                 ynlength = 100;
1952                 oldprec = prec;
1953         }
1954                 
1955         // check if precalculated values are sufficient
1956         if (p > ynsize+1) {
1957                 for (int i=ynsize; i<p-1; i++) {
1958                         fill_Yn(i, prec);
1959                 }
1960         }
1961
1962         // should be done otherwise
1963         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
1964         cln::cl_N xf = x * one;
1965         //cln::cl_N xf = x * cln::cl_float(1, prec);
1966
1967         cln::cl_N res;
1968         cln::cl_N resbuf;
1969         cln::cl_N factor = cln::expt(xf, p);
1970         int i = p;
1971         do {
1972                 resbuf = res;
1973                 if (i-p >= ynlength) {
1974                         // make Yn longer
1975                         make_Yn_longer(ynlength*2, prec);
1976                 }
1977                 res = res + factor / cln::expt(cln::cl_I(i),n+1) * Yn[p-2][i-p]; // should we check it? or rely on magic number? ...
1978                 //res = res + factor / cln::expt(cln::cl_I(i),n+1) * (*it); // should we check it? or rely on magic number? ...
1979                 factor = factor * xf;
1980                 i++;
1981         } while (res != resbuf);
1982         
1983         return res;
1984 }
1985
1986
1987 // helper function for S(n,p,x)
1988 cln::cl_N S_projection(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
1989 {
1990         // [Kol] (5.3)
1991         if (cln::abs(cln::realpart(x)) > cln::cl_F("0.5")) {
1992
1993                 cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(x),n)
1994                                    * cln::expt(cln::log(1-x),p) / cln::factorial(n) / cln::factorial(p);
1995
1996                 for (int s=0; s<n; s++) {
1997                         cln::cl_N res2;
1998                         for (int r=0; r<p; r++) {
1999                                 res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-x),r)
2000                                               * S_do_sum(p-r,n-s,1-x,prec) / cln::factorial(r);
2001                         }
2002                         result = result + cln::expt(cln::log(x),s) * (S_num(n-s,p,1) - res2) / cln::factorial(s);
2003                 }
2004
2005                 return result;
2006         }
2007         
2008         return S_do_sum(n, p, x, prec);
2009 }
2010
2011
2012 // helper function for S(n,p,x)
2013 const cln::cl_N S_num(int n, int p, const cln::cl_N& x)
2014 {
2015         if (x == 1) {
2016                 if (n == 1) {
2017                     // [Kol] (2.22) with (2.21)
2018                         return cln::zeta(p+1);
2019                 }
2020
2021                 if (p == 1) {
2022                     // [Kol] (2.22)
2023                         return cln::zeta(n+1);
2024                 }
2025
2026                 // [Kol] (9.1)
2027                 cln::cl_N result;
2028                 for (int nu=0; nu<n; nu++) {
2029                         for (int rho=0; rho<=p; rho++) {
2030                                 result = result + b_k(n-nu-1) * b_k(p-rho) * a_k(nu+rho+1)
2031                                                   * cln::factorial(nu+rho+1) / cln::factorial(rho) / cln::factorial(nu+1);
2032                         }
2033                 }
2034                 result = result * cln::expt(cln::cl_I(-1),n+p-1);
2035
2036                 return result;
2037         }
2038         else if (x == -1) {
2039                 // [Kol] (2.22)
2040                 if (p == 1) {
2041                         return -(1-cln::expt(cln::cl_I(2),-n)) * cln::zeta(n+1);
2042                 }
2043 //              throw std::runtime_error("don't know how to evaluate this function!");
2044         }
2045
2046         // what is the desired float format?
2047         // first guess: default format
2048         cln::float_format_t prec = cln::default_float_format;
2049         const cln::cl_N value = x;
2050         // second guess: the argument's format
2051         if (!instanceof(realpart(value), cln::cl_RA_ring))
2052                 prec = cln::float_format(cln::the<cln::cl_F>(cln::realpart(value)));
2053         else if (!instanceof(imagpart(value), cln::cl_RA_ring))
2054                 prec = cln::float_format(cln::the<cln::cl_F>(cln::imagpart(value)));
2055
2056         // [Kol] (5.3)
2057         // the condition abs(1-value)>1 avoids an infinite recursion in the region abs(value)<=1 && abs(value)>0.95 && abs(1-value)<=1 && abs(1-value)>0.95
2058         // we don't care here about abs(value)<1 && real(value)>0.5, this will be taken care of in S_projection
2059         if ((cln::realpart(value) < -0.5) || (n == 0) || ((cln::abs(value) <= 1) && (cln::abs(value) > 0.95) && (cln::abs(1-value) > 1) )) {
2060
2061                 cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(value),n)
2062                                    * cln::expt(cln::log(1-value),p) / cln::factorial(n) / cln::factorial(p);
2063
2064                 for (int s=0; s<n; s++) {
2065                         cln::cl_N res2;
2066                         for (int r=0; r<p; r++) {
2067                                 res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-value),r)
2068                                               * S_num(p-r,n-s,1-value) / cln::factorial(r);
2069                         }
2070                         result = result + cln::expt(cln::log(value),s) * (S_num(n-s,p,1) - res2) / cln::factorial(s);
2071                 }
2072
2073                 return result;
2074                 
2075         }
2076         // [Kol] (5.12)
2077         if (cln::abs(value) > 1) {
2078                 
2079                 cln::cl_N result;
2080
2081                 for (int s=0; s<p; s++) {
2082                         for (int r=0; r<=s; r++) {
2083                                 result = result + cln::expt(cln::cl_I(-1),s) * cln::expt(cln::log(-value),r) * cln::factorial(n+s-r-1)
2084                                                   / cln::factorial(r) / cln::factorial(s-r) / cln::factorial(n-1)
2085                                                   * S_num(n+s-r,p-s,cln::recip(value));
2086                         }
2087                 }
2088                 result = result * cln::expt(cln::cl_I(-1),n);
2089
2090                 cln::cl_N res2;
2091                 for (int r=0; r<n; r++) {
2092                         res2 = res2 + cln::expt(cln::log(-value),r) * C(n-r,p) / cln::factorial(r);
2093                 }
2094                 res2 = res2 + cln::expt(cln::log(-value),n+p) / cln::factorial(n+p);
2095
2096                 result = result + cln::expt(cln::cl_I(-1),p) * res2;
2097
2098                 return result;
2099         }
2100
2101         if ((cln::abs(value) > 0.95) && (cln::abs(value-9.53) < 9.47)) {
2102                 lst m;
2103                 m.append(n+1);
2104                 for (int s=0; s<p-1; s++)
2105                         m.append(1);
2106
2107                 ex res = H(m,numeric(value)).evalf();
2108                 return ex_to<numeric>(res).to_cl_N();
2109         }
2110         else {
2111                 return S_projection(n, p, value, prec);
2112         }
2113 }
2114
2115
2116 } // end of anonymous namespace
2117
2118
2119 //////////////////////////////////////////////////////////////////////
2120 //
2121 // Nielsen's generalized polylogarithm  S(n,p,x)
2122 //
2123 // GiNaC function
2124 //
2125 //////////////////////////////////////////////////////////////////////
2126
2127
2128 static ex S_evalf(const ex& n, const ex& p, const ex& x)
2129 {
2130         if (n.info(info_flags::posint) && p.info(info_flags::posint)) {
2131                 const int n_ = ex_to<numeric>(n).to_int();
2132                 const int p_ = ex_to<numeric>(p).to_int();
2133                 if (is_a<numeric>(x)) {
2134                         const cln::cl_N x_ = ex_to<numeric>(x).to_cl_N();
2135                         const cln::cl_N result = S_num(n_, p_, x_);
2136                         return numeric(result);
2137                 } else {
2138                         ex x_val = x.evalf();
2139                         if (is_a<numeric>(x_val)) {
2140                                 const cln::cl_N x_val_ = ex_to<numeric>(x_val).to_cl_N();
2141                                 const cln::cl_N result = S_num(n_, p_, x_val_);
2142                                 return numeric(result);
2143                         }
2144                 }
2145         }
2146         return S(n, p, x).hold();
2147 }
2148
2149
2150 static ex S_eval(const ex& n, const ex& p, const ex& x)
2151 {
2152         if (n.info(info_flags::posint) && p.info(info_flags::posint)) {
2153                 if (x == 0) {
2154                         return _ex0;
2155                 }
2156                 if (x == 1) {
2157                         lst m(n+1);
2158                         for (int i=ex_to<numeric>(p).to_int()-1; i>0; i--) {
2159                                 m.append(1);
2160                         }
2161                         return zeta(m);
2162                 }
2163                 if (p == 1) {
2164                         return Li(n+1, x);
2165                 }
2166                 if (x.info(info_flags::numeric) && (!x.info(info_flags::crational))) {
2167                         int n_ = ex_to<numeric>(n).to_int();
2168                         int p_ = ex_to<numeric>(p).to_int();
2169                         const cln::cl_N x_ = ex_to<numeric>(x).to_cl_N();
2170                         const cln::cl_N result = S_num(n_, p_, x_);
2171                         return numeric(result);
2172                 }
2173         }
2174         if (n.is_zero()) {
2175                 // [Kol] (5.3)
2176                 return pow(-log(1-x), p) / factorial(p);
2177         }
2178         return S(n, p, x).hold();
2179 }
2180
2181
2182 static ex S_series(const ex& n, const ex& p, const ex& x, const relational& rel, int order, unsigned options)
2183 {
2184         if (p == _ex1) {
2185                 return Li(n+1, x).series(rel, order, options);
2186         }
2187
2188         const ex x_pt = x.subs(rel, subs_options::no_pattern);
2189         if (n.info(info_flags::posint) && p.info(info_flags::posint) && x_pt.info(info_flags::numeric)) {
2190                 // First special case: x==0 (derivatives have poles)
2191                 if (x_pt.is_zero()) {
2192                         const symbol s;
2193                         ex ser;
2194                         // manually construct the primitive expansion
2195                         // subsum = Euler-Zagier-Sum is needed
2196                         // dirty hack (slow ...) calculation of subsum:
2197                         std::vector<ex> presubsum, subsum;
2198                         subsum.push_back(0);
2199                         for (int i=1; i<order-1; ++i) {
2200                                 subsum.push_back(subsum[i-1] + numeric(1, i));
2201                         }
2202                         for (int depth=2; depth<p; ++depth) {
2203                                 presubsum = subsum;
2204                                 for (int i=1; i<order-1; ++i) {
2205                                         subsum[i] = subsum[i-1] + numeric(1, i) * presubsum[i-1];
2206                                 }
2207                         }
2208                                 
2209                         for (int i=1; i<order; ++i) {
2210                                 ser += pow(s,i) / pow(numeric(i), n+1) * subsum[i-1];
2211                         }
2212                         // substitute the argument's series expansion
2213                         ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
2214                         // maybe that was terminating, so add a proper order term
2215                         epvector nseq;
2216                         nseq.push_back(expair(Order(_ex1), order));
2217                         ser += pseries(rel, nseq);
2218                         // reexpanding it will collapse the series again
2219                         return ser.series(rel, order);
2220                 }
2221                 // TODO special cases: x==1 (branch point) and x real, >=1 (branch cut)
2222                 throw std::runtime_error("S_series: don't know how to do the series expansion at this point!");
2223         }
2224         // all other cases should be safe, by now:
2225         throw do_taylor();  // caught by function::series()
2226 }
2227
2228
2229 static ex S_deriv(const ex& n, const ex& p, const ex& x, unsigned deriv_param)
2230 {
2231         GINAC_ASSERT(deriv_param < 3);
2232         if (deriv_param < 2) {
2233                 return _ex0;
2234         }
2235         if (n > 0) {
2236                 return S(n-1, p, x) / x;
2237         } else {
2238                 return S(n, p-1, x) / (1-x);
2239         }
2240 }
2241
2242
2243 static void S_print_latex(const ex& n, const ex& p, const ex& x, const print_context& c)
2244 {
2245         c.s << "\\mathrm{S}_{";
2246         n.print(c);
2247         c.s << ",";
2248         p.print(c);
2249         c.s << "}(";
2250         x.print(c);
2251         c.s << ")";
2252 }
2253
2254
2255 REGISTER_FUNCTION(S,
2256                   evalf_func(S_evalf).
2257                   eval_func(S_eval).
2258                   series_func(S_series).
2259                   derivative_func(S_deriv).
2260                   print_func<print_latex>(S_print_latex).
2261                   do_not_evalf_params());
2262
2263
2264 //////////////////////////////////////////////////////////////////////
2265 //
2266 // Harmonic polylogarithm  H(m,x)
2267 //
2268 // helper functions
2269 //
2270 //////////////////////////////////////////////////////////////////////
2271
2272
2273 // anonymous namespace for helper functions
2274 namespace {
2275
2276         
2277 // regulates the pole (used by 1/x-transformation)
2278 symbol H_polesign("IMSIGN");
2279
2280
2281 // convert parameters from H to Li representation
2282 // parameters are expected to be in expanded form, i.e. only 0, 1 and -1
2283 // returns true if some parameters are negative
2284 bool convert_parameter_H_to_Li(const lst& l, lst& m, lst& s, ex& pf)
2285 {
2286         // expand parameter list
2287         lst mexp;
2288         for (lst::const_iterator it = l.begin(); it != l.end(); it++) {
2289                 if (*it > 1) {
2290                         for (ex count=*it-1; count > 0; count--) {
2291                                 mexp.append(0);
2292                         }
2293                         mexp.append(1);
2294                 } else if (*it < -1) {
2295                         for (ex count=*it+1; count < 0; count++) {
2296                                 mexp.append(0);
2297                         }
2298                         mexp.append(-1);
2299                 } else {
2300                         mexp.append(*it);
2301                 }
2302         }
2303         
2304         ex signum = 1;
2305         pf = 1;
2306         bool has_negative_parameters = false;
2307         ex acc = 1;
2308         for (lst::const_iterator it = mexp.begin(); it != mexp.end(); it++) {
2309                 if (*it == 0) {
2310                         acc++;
2311                         continue;
2312                 }
2313                 if (*it > 0) {
2314                         m.append((*it+acc-1) * signum);
2315                 } else {
2316                         m.append((*it-acc+1) * signum);
2317                 }
2318                 acc = 1;
2319                 signum = *it;
2320                 pf *= *it;
2321                 if (pf < 0) {
2322                         has_negative_parameters = true;
2323                 }
2324         }
2325         if (has_negative_parameters) {
2326                 for (std::size_t i=0; i<m.nops(); i++) {
2327                         if (m.op(i) < 0) {
2328                                 m.let_op(i) = -m.op(i);
2329                                 s.append(-1);
2330                         } else {
2331                                 s.append(1);
2332                         }
2333                 }
2334         }
2335         
2336         return has_negative_parameters;
2337 }
2338
2339
2340 // recursivly transforms H to corresponding multiple polylogarithms
2341 struct map_trafo_H_convert_to_Li : public map_function
2342 {
2343         ex operator()(const ex& e)
2344         {
2345                 if (is_a<add>(e) || is_a<mul>(e)) {
2346                         return e.map(*this);
2347                 }
2348                 if (is_a<function>(e)) {
2349                         std::string name = ex_to<function>(e).get_name();
2350                         if (name == "H") {
2351                                 lst parameter;
2352                                 if (is_a<lst>(e.op(0))) {
2353                                                 parameter = ex_to<lst>(e.op(0));
2354                                 } else {
2355                                         parameter = lst(e.op(0));
2356                                 }
2357                                 ex arg = e.op(1);
2358
2359                                 lst m;
2360                                 lst s;
2361                                 ex pf;
2362                                 if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
2363                                         s.let_op(0) = s.op(0) * arg;
2364                                         return pf * Li(m, s).hold();
2365                                 } else {
2366                                         for (std::size_t i=0; i<m.nops(); i++) {
2367                                                 s.append(1);
2368                                         }
2369                                         s.let_op(0) = s.op(0) * arg;
2370                                         return Li(m, s).hold();
2371                                 }
2372                         }
2373                 }
2374                 return e;
2375         }
2376 };
2377
2378
2379 // recursivly transforms H to corresponding zetas
2380 struct map_trafo_H_convert_to_zeta : public map_function
2381 {
2382         ex operator()(const ex& e)
2383         {
2384                 if (is_a<add>(e) || is_a<mul>(e)) {
2385                         return e.map(*this);
2386                 }
2387                 if (is_a<function>(e)) {
2388                         std::string name = ex_to<function>(e).get_name();
2389                         if (name == "H") {
2390                                 lst parameter;
2391                                 if (is_a<lst>(e.op(0))) {
2392                                                 parameter = ex_to<lst>(e.op(0));
2393                                 } else {
2394                                         parameter = lst(e.op(0));
2395                                 }
2396
2397                                 lst m;
2398                                 lst s;
2399                                 ex pf;
2400                                 if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
2401                                         return pf * zeta(m, s);
2402                                 } else {
2403                                         return zeta(m);
2404                                 }
2405                         }
2406                 }
2407                 return e;
2408         }
2409 };
2410
2411
2412 // remove trailing zeros from H-parameters
2413 struct map_trafo_H_reduce_trailing_zeros : public map_function
2414 {
2415         ex operator()(const ex& e)
2416         {
2417                 if (is_a<add>(e) || is_a<mul>(e)) {
2418                         return e.map(*this);
2419                 }
2420                 if (is_a<function>(e)) {
2421                         std::string name = ex_to<function>(e).get_name();
2422                         if (name == "H") {
2423                                 lst parameter;
2424                                 if (is_a<lst>(e.op(0))) {
2425                                         parameter = ex_to<lst>(e.op(0));
2426                                 } else {
2427                                         parameter = lst(e.op(0));
2428                                 }
2429                                 ex arg = e.op(1);
2430                                 if (parameter.op(parameter.nops()-1) == 0) {
2431                                         
2432                                         //
2433                                         if (parameter.nops() == 1) {
2434                                                 return log(arg);
2435                                         }
2436                                         
2437                                         //
2438                                         lst::const_iterator it = parameter.begin();
2439                                         while ((it != parameter.end()) && (*it == 0)) {
2440                                                 it++;
2441                                         }
2442                                         if (it == parameter.end()) {
2443                                                 return pow(log(arg),parameter.nops()) / factorial(parameter.nops());
2444                                         }
2445                                         
2446                                         //
2447                                         parameter.remove_last();
2448                                         std::size_t lastentry = parameter.nops();
2449                                         while ((lastentry > 0) && (parameter[lastentry-1] == 0)) {
2450                                                 lastentry--;
2451                                         }
2452                                         
2453                                         //
2454                                         ex result = log(arg) * H(parameter,arg).hold();
2455                                         ex acc = 0;
2456                                         for (ex i=0; i<lastentry; i++) {
2457                                                 if (parameter[i] > 0) {
2458                                                         parameter[i]++;
2459                                                         result -= (acc + parameter[i]-1) * H(parameter, arg).hold();
2460                                                         parameter[i]--;
2461                                                         acc = 0;
2462                                                 } else if (parameter[i] < 0) {
2463                                                         parameter[i]--;
2464                                                         result -= (acc + abs(parameter[i]+1)) * H(parameter, arg).hold();
2465                                                         parameter[i]++;
2466                                                         acc = 0;
2467                                                 } else {
2468                                                         acc++;
2469                                                 }
2470                                         }
2471                                         
2472                                         if (lastentry < parameter.nops()) {
2473                                                 result = result / (parameter.nops()-lastentry+1);
2474                                                 return result.map(*this);
2475                                         } else {
2476                                                 return result;
2477                                         }
2478                                 }
2479                         }
2480                 }
2481                 return e;
2482         }
2483 };
2484
2485
2486 // returns an expression with zeta functions corresponding to the parameter list for H
2487 ex convert_H_to_zeta(const lst& m)
2488 {
2489         symbol xtemp("xtemp");
2490         map_trafo_H_reduce_trailing_zeros filter;
2491         map_trafo_H_convert_to_zeta filter2;
2492         return filter2(filter(H(m, xtemp).hold())).subs(xtemp == 1);
2493 }
2494
2495
2496 // convert signs form Li to H representation
2497 lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf)
2498 {
2499         lst res;
2500         lst::const_iterator itm = m.begin();
2501         lst::const_iterator itx = ++x.begin();
2502         int signum = 1;
2503         pf = _ex1;
2504         res.append(*itm);
2505         itm++;
2506         while (itx != x.end()) {
2507                 GINAC_ASSERT((*itx == _ex1) || (*itx == _ex_1));
2508                 // XXX: 1 + 0.0*I is considered equal to 1. However the former
2509                 // is not automatically converted to a real number.
2510                 // Do the conversion explicitly to avoid the
2511                 // "numeric::operator>(): complex inequality" exception.
2512                 signum *= (*itx != _ex_1) ? 1 : -1;
2513                 pf *= signum;
2514                 res.append((*itm) * signum);
2515                 itm++;
2516                 itx++;
2517         }
2518         return res;
2519 }
2520
2521
2522 // multiplies an one-dimensional H with another H
2523 // [ReV] (18)
2524 ex trafo_H_mult(const ex& h1, const ex& h2)
2525 {
2526         ex res;
2527         ex hshort;
2528         lst hlong;
2529         ex h1nops = h1.op(0).nops();
2530         ex h2nops = h2.op(0).nops();
2531         if (h1nops > 1) {
2532                 hshort = h2.op(0).op(0);
2533                 hlong = ex_to<lst>(h1.op(0));
2534         } else {
2535                 hshort = h1.op(0).op(0);
2536                 if (h2nops > 1) {
2537                         hlong = ex_to<lst>(h2.op(0));
2538                 } else {
2539                         hlong = h2.op(0).op(0);
2540                 }
2541         }
2542         for (std::size_t i=0; i<=hlong.nops(); i++) {
2543                 lst newparameter;
2544                 std::size_t j=0;
2545                 for (; j<i; j++) {
2546                         newparameter.append(hlong[j]);
2547                 }
2548                 newparameter.append(hshort);
2549                 for (; j<hlong.nops(); j++) {
2550                         newparameter.append(hlong[j]);
2551                 }
2552                 res += H(newparameter, h1.op(1)).hold();
2553         }
2554         return res;
2555 }
2556
2557
2558 // applies trafo_H_mult recursively on expressions
2559 struct map_trafo_H_mult : public map_function
2560 {
2561         ex operator()(const ex& e)
2562         {
2563                 if (is_a<add>(e)) {
2564                         return e.map(*this);
2565                 }
2566
2567                 if (is_a<mul>(e)) {
2568
2569                         ex result = 1;
2570                         ex firstH;
2571                         lst Hlst;
2572                         for (std::size_t pos=0; pos<e.nops(); pos++) {
2573                                 if (is_a<power>(e.op(pos)) && is_a<function>(e.op(pos).op(0))) {
2574                                         std::string name = ex_to<function>(e.op(pos).op(0)).get_name();
2575                                         if (name == "H") {
2576                                                 for (ex i=0; i<e.op(pos).op(1); i++) {
2577                                                         Hlst.append(e.op(pos).op(0));
2578                                                 }
2579                                                 continue;
2580                                         }
2581                                 } else if (is_a<function>(e.op(pos))) {
2582                                         std::string name = ex_to<function>(e.op(pos)).get_name();
2583                                         if (name == "H") {
2584                                                 if (e.op(pos).op(0).nops() > 1) {
2585                                                         firstH = e.op(pos);
2586                                                 } else {
2587                                                         Hlst.append(e.op(pos));
2588                                                 }
2589                                                 continue;
2590                                         }
2591                                 }
2592                                 result *= e.op(pos);
2593                         }
2594                         if (firstH == 0) {
2595                                 if (Hlst.nops() > 0) {
2596                                         firstH = Hlst[Hlst.nops()-1];
2597                                         Hlst.remove_last();
2598                                 } else {
2599                                         return e;
2600                                 }
2601                         }
2602
2603                         if (Hlst.nops() > 0) {
2604                                 ex buffer = trafo_H_mult(firstH, Hlst.op(0));
2605                                 result *= buffer;
2606                                 for (std::size_t i=1; i<Hlst.nops(); i++) {
2607                                         result *= Hlst.op(i);
2608                                 }
2609                                 result = result.expand();
2610                                 map_trafo_H_mult recursion;
2611                                 return recursion(result);
2612                         } else {
2613                                 return e;
2614                         }
2615
2616                 }
2617                 return e;
2618         }
2619 };
2620
2621
2622 // do integration [ReV] (55)
2623 // put parameter 0 in front of existing parameters
2624 ex trafo_H_1tx_prepend_zero(const ex& e, const ex& arg)
2625 {
2626         ex h;
2627         std::string name;
2628         if (is_a<function>(e)) {
2629                 name = ex_to<function>(e).get_name();
2630         }
2631         if (name == "H") {
2632                 h = e;
2633         } else {
2634                 for (std::size_t i=0; i<e.nops(); i++) {
2635                         if (is_a<function>(e.op(i))) {
2636                                 std::string name = ex_to<function>(e.op(i)).get_name();
2637                                 if (name == "H") {
2638                                         h = e.op(i);
2639                                 }
2640                         }
2641                 }
2642         }
2643         if (h != 0) {
2644                 lst newparameter = ex_to<lst>(h.op(0));
2645                 newparameter.prepend(0);
2646                 ex addzeta = convert_H_to_zeta(newparameter);
2647                 return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
2648         } else {
2649                 return e * (-H(lst(ex(0)),1/arg).hold());
2650         }
2651 }
2652
2653
2654 // do integration [ReV] (49)
2655 // put parameter 1 in front of existing parameters
2656 ex trafo_H_prepend_one(const ex& e, const ex& arg)
2657 {
2658         ex h;
2659         std::string name;
2660         if (is_a<function>(e)) {
2661                 name = ex_to<function>(e).get_name();
2662         }
2663         if (name == "H") {
2664                 h = e;
2665         } else {
2666                 for (std::size_t i=0; i<e.nops(); i++) {
2667                         if (is_a<function>(e.op(i))) {
2668                                 std::string name = ex_to<function>(e.op(i)).get_name();
2669                                 if (name == "H") {
2670                                         h = e.op(i);
2671                                 }
2672                         }
2673                 }
2674         }
2675         if (h != 0) {
2676                 lst newparameter = ex_to<lst>(h.op(0));
2677                 newparameter.prepend(1);
2678                 return e.subs(h == H(newparameter, h.op(1)).hold());
2679         } else {
2680                 return e * H(lst(ex(1)),1-arg).hold();
2681         }
2682 }
2683
2684
2685 // do integration [ReV] (55)
2686 // put parameter -1 in front of existing parameters
2687 ex trafo_H_1tx_prepend_minusone(const ex& e, const ex& arg)
2688 {
2689         ex h;
2690         std::string name;
2691         if (is_a<function>(e)) {
2692                 name = ex_to<function>(e).get_name();
2693         }
2694         if (name == "H") {
2695                 h = e;
2696         } else {
2697                 for (std::size_t i=0; i<e.nops(); i++) {
2698                         if (is_a<function>(e.op(i))) {
2699                                 std::string name = ex_to<function>(e.op(i)).get_name();
2700                                 if (name == "H") {
2701                                         h = e.op(i);
2702                                 }
2703                         }
2704                 }
2705         }
2706         if (h != 0) {
2707                 lst newparameter = ex_to<lst>(h.op(0));
2708                 newparameter.prepend(-1);
2709                 ex addzeta = convert_H_to_zeta(newparameter);
2710                 return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
2711         } else {
2712                 ex addzeta = convert_H_to_zeta(lst(ex(-1)));
2713                 return (e * (addzeta - H(lst(ex(-1)),1/arg).hold())).expand();
2714         }
2715 }
2716
2717
2718 // do integration [ReV] (55)
2719 // put parameter -1 in front of existing parameters
2720 ex trafo_H_1mxt1px_prepend_minusone(const ex& e, const ex& arg)
2721 {
2722         ex h;
2723         std::string name;
2724         if (is_a<function>(e)) {
2725                 name = ex_to<function>(e).get_name();
2726         }
2727         if (name == "H") {
2728                 h = e;
2729         } else {
2730                 for (std::size_t i = 0; i < e.nops(); i++) {
2731                         if (is_a<function>(e.op(i))) {
2732                                 std::string name = ex_to<function>(e.op(i)).get_name();
2733                                 if (name == "H") {
2734                                         h = e.op(i);
2735                                 }
2736                         }
2737                 }
2738         }
2739         if (h != 0) {
2740                 lst newparameter = ex_to<lst>(h.op(0));
2741                 newparameter.prepend(-1);
2742                 return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
2743         } else {
2744                 return (e * H(lst(ex(-1)),(1-arg)/(1+arg)).hold()).expand();
2745         }
2746 }
2747
2748
2749 // do integration [ReV] (55)
2750 // put parameter 1 in front of existing parameters
2751 ex trafo_H_1mxt1px_prepend_one(const ex& e, const ex& arg)
2752 {
2753         ex h;
2754         std::string name;
2755         if (is_a<function>(e)) {
2756                 name = ex_to<function>(e).get_name();
2757         }
2758         if (name == "H") {
2759                 h = e;
2760         } else {
2761                 for (std::size_t i = 0; i < e.nops(); i++) {
2762                         if (is_a<function>(e.op(i))) {
2763                                 std::string name = ex_to<function>(e.op(i)).get_name();
2764                                 if (name == "H") {
2765                                         h = e.op(i);
2766                                 }
2767                         }
2768                 }
2769         }
2770         if (h != 0) {
2771                 lst newparameter = ex_to<lst>(h.op(0));
2772                 newparameter.prepend(1);
2773                 return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
2774         } else {
2775                 return (e * H(lst(ex(1)),(1-arg)/(1+arg)).hold()).expand();
2776         }
2777 }
2778
2779
2780 // do x -> 1-x transformation
2781 struct map_trafo_H_1mx : public map_function
2782 {
2783         ex operator()(const ex& e)
2784         {
2785                 if (is_a<add>(e) || is_a<mul>(e)) {
2786                         return e.map(*this);
2787                 }
2788                 
2789                 if (is_a<function>(e)) {
2790                         std::string name = ex_to<function>(e).get_name();
2791                         if (name == "H") {
2792
2793                                 lst parameter = ex_to<lst>(e.op(0));
2794                                 ex arg = e.op(1);
2795
2796                                 // special cases if all parameters are either 0, 1 or -1
2797                                 bool allthesame = true;
2798                                 if (parameter.op(0) == 0) {
2799                                         for (std::size_t i = 1; i < parameter.nops(); i++) {
2800                                                 if (parameter.op(i) != 0) {
2801                                                         allthesame = false;
2802                                                         break;
2803                                                 }
2804                                         }
2805                                         if (allthesame) {
2806                                                 lst newparameter;
2807                                                 for (int i=parameter.nops(); i>0; i--) {
2808                                                         newparameter.append(1);
2809                                                 }
2810                                                 return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
2811                                         }
2812                                 } else if (parameter.op(0) == -1) {
2813                                         throw std::runtime_error("map_trafo_H_1mx: cannot handle weights equal -1!");
2814                                 } else {
2815                                         for (std::size_t i = 1; i < parameter.nops(); i++) {
2816                                                 if (parameter.op(i) != 1) {
2817                                                         allthesame = false;
2818                                                         break;
2819                                                 }
2820                                         }
2821                                         if (allthesame) {
2822                                                 lst newparameter;
2823                                                 for (int i=parameter.nops(); i>0; i--) {
2824                                                         newparameter.append(0);
2825                                                 }
2826                                                 return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
2827                                         }
2828                                 }
2829
2830                                 lst newparameter = parameter;
2831                                 newparameter.remove_first();
2832
2833                                 if (parameter.op(0) == 0) {
2834
2835                                         // leading zero
2836                                         ex res = convert_H_to_zeta(parameter);
2837                                         //ex res = convert_from_RV(parameter, 1).subs(H(wild(1),wild(2))==zeta(wild(1)));
2838                                         map_trafo_H_1mx recursion;
2839                                         ex buffer = recursion(H(newparameter, arg).hold());
2840                                         if (is_a<add>(buffer)) {
2841                                                 for (std::size_t i = 0; i < buffer.nops(); i++) {
2842                                                         res -= trafo_H_prepend_one(buffer.op(i), arg);
2843                                                 }
2844                                         } else {
2845                                                 res -= trafo_H_prepend_one(buffer, arg);
2846                                         }
2847                                         return res;
2848
2849                                 } else {
2850
2851                                         // leading one
2852                                         map_trafo_H_1mx recursion;
2853                                         map_trafo_H_mult unify;
2854                                         ex res = H(lst(ex(1)), arg).hold() * H(newparameter, arg).hold();
2855                                         std::size_t firstzero = 0;
2856                                         while (parameter.op(firstzero) == 1) {
2857                                                 firstzero++;
2858                                         }
2859                                         for (std::size_t i = firstzero-1; i < parameter.nops()-1; i++) {
2860                                                 lst newparameter;
2861                                                 std::size_t j=0;
2862                                                 for (; j<=i; j++) {
2863                                                         newparameter.append(parameter[j+1]);
2864                                                 }
2865                                                 newparameter.append(1);
2866                                                 for (; j<parameter.nops()-1; j++) {
2867                                                         newparameter.append(parameter[j+1]);
2868                                                 }
2869                                                 res -= H(newparameter, arg).hold();
2870                                         }
2871                                         res = recursion(res).expand() / firstzero;
2872                                         return unify(res);
2873                                 }
2874                         }
2875                 }
2876                 return e;
2877         }
2878 };
2879
2880
2881 // do x -> 1/x transformation
2882 struct map_trafo_H_1overx : public map_function
2883 {
2884         ex operator()(const ex& e)
2885         {
2886                 if (is_a<add>(e) || is_a<mul>(e)) {
2887                         return e.map(*this);
2888                 }
2889
2890                 if (is_a<function>(e)) {
2891                         std::string name = ex_to<function>(e).get_name();
2892                         if (name == "H") {
2893
2894                                 lst parameter = ex_to<lst>(e.op(0));
2895                                 ex arg = e.op(1);
2896
2897                                 // special cases if all parameters are either 0, 1 or -1
2898                                 bool allthesame = true;
2899                                 if (parameter.op(0) == 0) {
2900                                         for (std::size_t i = 1; i < parameter.nops(); i++) {
2901                                                 if (parameter.op(i) != 0) {
2902                                                         allthesame = false;
2903                                                         break;
2904                                                 }
2905                                         }
2906                                         if (allthesame) {
2907                                                 return pow(-1, parameter.nops()) * H(parameter, 1/arg).hold();
2908                                         }
2909                                 } else if (parameter.op(0) == -1) {
2910                                         for (std::size_t i = 1; i < parameter.nops(); i++) {
2911                                                 if (parameter.op(i) != -1) {
2912                                                         allthesame = false;
2913                                                         break;
2914                                                 }
2915                                         }
2916                                         if (allthesame) {
2917                                                 map_trafo_H_mult unify;
2918                                                 return unify((pow(H(lst(ex(-1)),1/arg).hold() - H(lst(ex(0)),1/arg).hold(), parameter.nops())
2919                                                        / factorial(parameter.nops())).expand());
2920                                         }
2921                                 } else {
2922                                         for (std::size_t i = 1; i < parameter.nops(); i++) {
2923                                                 if (parameter.op(i) != 1) {
2924                                                         allthesame = false;
2925                                                         break;
2926                                                 }
2927                                         }
2928                                         if (allthesame) {
2929                                                 map_trafo_H_mult unify;
2930                                                 return unify((pow(H(lst(ex(1)),1/arg).hold() + H(lst(ex(0)),1/arg).hold() + H_polesign, parameter.nops())
2931                                                        / factorial(parameter.nops())).expand());
2932                                         }
2933                                 }
2934
2935                                 lst newparameter = parameter;
2936                                 newparameter.remove_first();
2937
2938                                 if (parameter.op(0) == 0) {
2939                                         
2940                                         // leading zero
2941                                         ex res = convert_H_to_zeta(parameter);
2942                                         map_trafo_H_1overx recursion;
2943                                         ex buffer = recursion(H(newparameter, arg).hold());
2944                                         if (is_a<add>(buffer)) {
2945                                                 for (std::size_t i = 0; i < buffer.nops(); i++) {
2946                                                         res += trafo_H_1tx_prepend_zero(buffer.op(i), arg);
2947                                                 }
2948                                         } else {
2949                                                 res += trafo_H_1tx_prepend_zero(buffer, arg);
2950                                         }
2951                                         return res;
2952
2953                                 } else if (parameter.op(0) == -1) {
2954
2955                                         // leading negative one
2956                                         ex res = convert_H_to_zeta(parameter);
2957                                         map_trafo_H_1overx recursion;
2958                                         ex buffer = recursion(H(newparameter, arg).hold());
2959                                         if (is_a<add>(buffer)) {
2960                                                 for (std::size_t i = 0; i < buffer.nops(); i++) {
2961                                                         res += trafo_H_1tx_prepend_zero(buffer.op(i), arg) - trafo_H_1tx_prepend_minusone(buffer.op(i), arg);
2962                                                 }
2963                                         } else {
2964                                                 res += trafo_H_1tx_prepend_zero(buffer, arg) - trafo_H_1tx_prepend_minusone(buffer, arg);
2965                                         }
2966                                         return res;
2967
2968                                 } else {
2969
2970                                         // leading one
2971                                         map_trafo_H_1overx recursion;
2972                                         map_trafo_H_mult unify;
2973                                         ex res = H(lst(ex(1)), arg).hold() * H(newparameter, arg).hold();
2974                                         std::size_t firstzero = 0;