]> www.ginac.de Git - ginac.git/blob - ginac/inifcns_nstdsums.cpp
7487b31430de89c01871d8b8911192516e5ecf21
[ginac.git] / ginac / inifcns_nstdsums.cpp
1 /** @file inifcns_nstdsums.cpp
2  *
3  *  Implementation of some special functions that have a representation as nested sums.
4  *
5  *  The functions are:
6  *    classical polylogarithm              Li(n,x)
7  *    multiple polylogarithm               Li(lst(m_1,...,m_k),lst(x_1,...,x_k))
8  *                                         G(lst(a_1,...,a_k),y) or G(lst(a_1,...,a_k),lst(s_1,...,s_k),y)
9  *    Nielsen's generalized polylogarithm  S(n,p,x)
10  *    harmonic polylogarithm               H(m,x) or H(lst(m_1,...,m_k),x)
11  *    multiple zeta value                  zeta(m) or zeta(lst(m_1,...,m_k))
12  *    alternating Euler sum                zeta(m,s) or zeta(lst(m_1,...,m_k),lst(s_1,...,s_k))
13  *
14  *  Some remarks:
15  *
16  *    - All formulae used can be looked up in the following publications:
17  *      [Kol] Nielsen's Generalized Polylogarithms, K.S.Kolbig, SIAM J.Math.Anal. 17 (1986), pp. 1232-1258.
18  *      [Cra] Fast Evaluation of Multiple Zeta Sums, R.E.Crandall, Math.Comp. 67 (1998), pp. 1163-1172.
19  *      [ReV] Harmonic Polylogarithms, E.Remiddi, J.A.M.Vermaseren, Int.J.Mod.Phys. A15 (2000), pp. 725-754
20  *      [BBB] Special Values of Multiple Polylogarithms, J.Borwein, D.Bradley, D.Broadhurst, P.Lisonek, Trans.Amer.Math.Soc. 353/3 (2001), pp. 907-941
21  *      [VSW] Numerical evaluation of multiple polylogarithms, J.Vollinga, S.Weinzierl, hep-ph/0410259
22  *
23  *    - The order of parameters and arguments of Li and zeta is defined according to the nested sums
24  *      representation. The parameters for H are understood as in [ReV]. They can be in expanded --- only
25  *      0, 1 and -1 --- or in compactified --- a string with zeros in front of 1 or -1 is written as a single
26  *      number --- notation.
27  *
28  *    - All functions can be nummerically evaluated with arguments in the whole complex plane. The parameters
29  *      for Li, zeta and S must be positive integers. If you want to have an alternating Euler sum, you have
30  *      to give the signs of the parameters as a second argument s to zeta(m,s) containing 1 and -1.
31  *
32  *    - The calculation of classical polylogarithms is speeded up by using Bernoulli numbers and 
33  *      look-up tables. S uses look-up tables as well. The zeta function applies the algorithms in
34  *      [Cra] and [BBB] for speed up. Multiple polylogarithms use Hoelder convolution [BBB].
35  *
36  *    - The functions have no means to do a series expansion into nested sums. To do this, you have to convert
37  *      these functions into the appropriate objects from the nestedsums library, do the expansion and convert
38  *      the result back.
39  *
40  *    - Numerical testing of this implementation has been performed by doing a comparison of results
41  *      between this software and the commercial M.......... 4.1. Multiple zeta values have been checked
42  *      by means of evaluations into simple zeta values. Harmonic polylogarithms have been checked by
43  *      comparison to S(n,p,x) for corresponding parameter combinations and by continuity checks
44  *      around |x|=1 along with comparisons to corresponding zeta functions. Multiple polylogarithms were
45  *      checked against H and zeta and by means of shuffle and quasi-shuffle relations.
46  *
47  */
48
49 /*
50  *  GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany
51  *
52  *  This program is free software; you can redistribute it and/or modify
53  *  it under the terms of the GNU General Public License as published by
54  *  the Free Software Foundation; either version 2 of the License, or
55  *  (at your option) any later version.
56  *
57  *  This program is distributed in the hope that it will be useful,
58  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
59  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
60  *  GNU General Public License for more details.
61  *
62  *  You should have received a copy of the GNU General Public License
63  *  along with this program; if not, write to the Free Software
64  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
65  */
66
67 #include "inifcns.h"
68
69 #include "add.h"
70 #include "constant.h"
71 #include "lst.h"
72 #include "mul.h"
73 #include "numeric.h"
74 #include "operators.h"
75 #include "power.h"
76 #include "pseries.h"
77 #include "relational.h"
78 #include "symbol.h"
79 #include "utils.h"
80 #include "wildcard.h"
81
82 #include <cln/cln.h>
83 #include <sstream>
84 #include <stdexcept>
85 #include <vector>
86
87 namespace GiNaC {
88
89
90 //////////////////////////////////////////////////////////////////////
91 //
92 // Classical polylogarithm  Li(n,x)
93 //
94 // helper functions
95 //
96 //////////////////////////////////////////////////////////////////////
97
98
99 // anonymous namespace for helper functions
100 namespace {
101
102
103 // lookup table for factors built from Bernoulli numbers
104 // see fill_Xn()
105 std::vector<std::vector<cln::cl_N> > Xn;
106 // initial size of Xn that should suffice for 32bit machines (must be even)
107 const int xninitsizestep = 26;
108 int xninitsize = xninitsizestep;
109 int xnsize = 0;
110
111
112 // This function calculates the X_n. The X_n are needed for speed up of classical polylogarithms.
113 // With these numbers the polylogs can be calculated as follows:
114 //   Li_p (x)  =  \sum_{n=0}^\infty X_{p-2}(n) u^{n+1}/(n+1)! with  u = -log(1-x)
115 //   X_0(n) = B_n (Bernoulli numbers)
116 //   X_p(n) = \sum_{k=0}^n binomial(n,k) B_{n-k} / (k+1) * X_{p-1}(k)
117 // The calculation of Xn depends on X0 and X{n-1}.
118 // X_0 is special, it holds only the non-zero Bernoulli numbers with index 2 or greater.
119 // This results in a slightly more complicated algorithm for the X_n.
120 // The first index in Xn corresponds to the index of the polylog minus 2.
121 // The second index in Xn corresponds to the index from the actual sum.
122 void fill_Xn(int n)
123 {
124         if (n>1) {
125                 // calculate X_2 and higher (corresponding to Li_4 and higher)
126                 std::vector<cln::cl_N> buf(xninitsize);
127                 std::vector<cln::cl_N>::iterator it = buf.begin();
128                 cln::cl_N result;
129                 *it = -(cln::expt(cln::cl_I(2),n+1) - 1) / cln::expt(cln::cl_I(2),n+1); // i == 1
130                 it++;
131                 for (int i=2; i<=xninitsize; i++) {
132                         if (i&1) {
133                                 result = 0; // k == 0
134                         } else {
135                                 result = Xn[0][i/2-1]; // k == 0
136                         }
137                         for (int k=1; k<i-1; k++) {
138                                 if ( !(((i-k) & 1) && ((i-k) > 1)) ) {
139                                         result = result + cln::binomial(i,k) * Xn[0][(i-k)/2-1] * Xn[n-1][k-1] / (k+1);
140                                 }
141                         }
142                         result = result - cln::binomial(i,i-1) * Xn[n-1][i-2] / 2 / i; // k == i-1
143                         result = result + Xn[n-1][i-1] / (i+1); // k == i
144                         
145                         *it = result;
146                         it++;
147                 }
148                 Xn.push_back(buf);
149         } else if (n==1) {
150                 // special case to handle the X_0 correct
151                 std::vector<cln::cl_N> buf(xninitsize);
152                 std::vector<cln::cl_N>::iterator it = buf.begin();
153                 cln::cl_N result;
154                 *it = cln::cl_I(-3)/cln::cl_I(4); // i == 1
155                 it++;
156                 *it = cln::cl_I(17)/cln::cl_I(36); // i == 2
157                 it++;
158                 for (int i=3; i<=xninitsize; i++) {
159                         if (i & 1) {
160                                 result = -Xn[0][(i-3)/2]/2;
161                                 *it = (cln::binomial(i,1)/cln::cl_I(2) + cln::binomial(i,i-1)/cln::cl_I(i))*result;
162                                 it++;
163                         } else {
164                                 result = Xn[0][i/2-1] + Xn[0][i/2-1]/(i+1);
165                                 for (int k=1; k<i/2; k++) {
166                                         result = result + cln::binomial(i,k*2) * Xn[0][k-1] * Xn[0][i/2-k-1] / (k*2+1);
167                                 }
168                                 *it = result;
169                                 it++;
170                         }
171                 }
172                 Xn.push_back(buf);
173         } else {
174                 // calculate X_0
175                 std::vector<cln::cl_N> buf(xninitsize/2);
176                 std::vector<cln::cl_N>::iterator it = buf.begin();
177                 for (int i=1; i<=xninitsize/2; i++) {
178                         *it = bernoulli(i*2).to_cl_N();
179                         it++;
180                 }
181                 Xn.push_back(buf);
182         }
183
184         xnsize++;
185 }
186
187 // doubles the number of entries in each Xn[]
188 void double_Xn()
189 {
190         const int pos0 = xninitsize / 2;
191         // X_0
192         for (int i=1; i<=xninitsizestep/2; ++i) {
193                 Xn[0].push_back(bernoulli((i+pos0)*2).to_cl_N());
194         }
195         if (Xn.size() > 1) {
196                 int xend = xninitsize + xninitsizestep;
197                 cln::cl_N result;
198                 // X_1
199                 for (int i=xninitsize+1; i<=xend; ++i) {
200                         if (i & 1) {
201                                 result = -Xn[0][(i-3)/2]/2;
202                                 Xn[1].push_back((cln::binomial(i,1)/cln::cl_I(2) + cln::binomial(i,i-1)/cln::cl_I(i))*result);
203                         } else {
204                                 result = Xn[0][i/2-1] + Xn[0][i/2-1]/(i+1);
205                                 for (int k=1; k<i/2; k++) {
206                                         result = result + cln::binomial(i,k*2) * Xn[0][k-1] * Xn[0][i/2-k-1] / (k*2+1);
207                                 }
208                                 Xn[1].push_back(result);
209                         }
210                 }
211                 // X_n
212                 for (size_t n=2; n<Xn.size(); ++n) {
213                         for (int i=xninitsize+1; i<=xend; ++i) {
214                                 if (i & 1) {
215                                         result = 0; // k == 0
216                                 } else {
217                                         result = Xn[0][i/2-1]; // k == 0
218                                 }
219                                 for (int k=1; k<i-1; ++k) {
220                                         if ( !(((i-k) & 1) && ((i-k) > 1)) ) {
221                                                 result = result + cln::binomial(i,k) * Xn[0][(i-k)/2-1] * Xn[n-1][k-1] / (k+1);
222                                         }
223                                 }
224                                 result = result - cln::binomial(i,i-1) * Xn[n-1][i-2] / 2 / i; // k == i-1
225                                 result = result + Xn[n-1][i-1] / (i+1); // k == i
226                                 Xn[n].push_back(result);
227                         }
228                 }
229         }
230         xninitsize += xninitsizestep;
231 }
232
233
234 // calculates Li(2,x) without Xn
235 cln::cl_N Li2_do_sum(const cln::cl_N& x)
236 {
237         cln::cl_N res = x;
238         cln::cl_N resbuf;
239         cln::cl_N num = x * cln::cl_float(1, cln::float_format(Digits));
240         cln::cl_I den = 1; // n^2 = 1
241         unsigned i = 3;
242         do {
243                 resbuf = res;
244                 num = num * x;
245                 den = den + i;  // n^2 = 4, 9, 16, ...
246                 i += 2;
247                 res = res + num / den;
248         } while (res != resbuf);
249         return res;
250 }
251
252
253 // calculates Li(2,x) with Xn
254 cln::cl_N Li2_do_sum_Xn(const cln::cl_N& x)
255 {
256         std::vector<cln::cl_N>::const_iterator it = Xn[0].begin();
257         std::vector<cln::cl_N>::const_iterator xend = Xn[0].end();
258         cln::cl_N u = -cln::log(1-x);
259         cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
260         cln::cl_N uu = cln::square(u);
261         cln::cl_N res = u - uu/4;
262         cln::cl_N resbuf;
263         unsigned i = 1;
264         do {
265                 resbuf = res;
266                 factor = factor * uu / (2*i * (2*i+1));
267                 res = res + (*it) * factor;
268                 i++;
269                 if (++it == xend) {
270                         double_Xn();
271                         it = Xn[0].begin() + (i-1);
272                         xend = Xn[0].end();
273                 }
274         } while (res != resbuf);
275         return res;
276 }
277
278
279 // calculates Li(n,x), n>2 without Xn
280 cln::cl_N Lin_do_sum(int n, const cln::cl_N& x)
281 {
282         cln::cl_N factor = x * cln::cl_float(1, cln::float_format(Digits));
283         cln::cl_N res = x;
284         cln::cl_N resbuf;
285         int i=2;
286         do {
287                 resbuf = res;
288                 factor = factor * x;
289                 res = res + factor / cln::expt(cln::cl_I(i),n);
290                 i++;
291         } while (res != resbuf);
292         return res;
293 }
294
295
296 // calculates Li(n,x), n>2 with Xn
297 cln::cl_N Lin_do_sum_Xn(int n, const cln::cl_N& x)
298 {
299         std::vector<cln::cl_N>::const_iterator it = Xn[n-2].begin();
300         std::vector<cln::cl_N>::const_iterator xend = Xn[n-2].end();
301         cln::cl_N u = -cln::log(1-x);
302         cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
303         cln::cl_N res = u;
304         cln::cl_N resbuf;
305         unsigned i=2;
306         do {
307                 resbuf = res;
308                 factor = factor * u / i;
309                 res = res + (*it) * factor;
310                 i++;
311                 if (++it == xend) {
312                         double_Xn();
313                         it = Xn[n-2].begin() + (i-2);
314                         xend = Xn[n-2].end();
315                 }
316         } while (res != resbuf);
317         return res;
318 }
319
320
321 // forward declaration needed by function Li_projection and C below
322 const cln::cl_N S_num(int n, int p, const cln::cl_N& x);
323
324
325 // helper function for classical polylog Li
326 cln::cl_N Li_projection(int n, const cln::cl_N& x, const cln::float_format_t& prec)
327 {
328         // treat n=2 as special case
329         if (n == 2) {
330                 // check if precalculated X0 exists
331                 if (xnsize == 0) {
332                         fill_Xn(0);
333                 }
334
335                 if (cln::realpart(x) < 0.5) {
336                         // choose the faster algorithm
337                         // the switching point was empirically determined. the optimal point
338                         // depends on hardware, Digits, ... so an approx value is okay.
339                         // it solves also the problem with precision due to the u=-log(1-x) transformation
340                         if (cln::abs(cln::realpart(x)) < 0.25) {
341                                 
342                                 return Li2_do_sum(x);
343                         } else {
344                                 return Li2_do_sum_Xn(x);
345                         }
346                 } else {
347                         // choose the faster algorithm
348                         if (cln::abs(cln::realpart(x)) > 0.75) {
349                                 if ( x == 1 ) {
350                                         return cln::zeta(2);
351                                 } else {
352                                         return -Li2_do_sum(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
353                                 }
354                         } else {
355                                 return -Li2_do_sum_Xn(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
356                         }
357                 }
358         } else {
359                 // check if precalculated Xn exist
360                 if (n > xnsize+1) {
361                         for (int i=xnsize; i<n-1; i++) {
362                                 fill_Xn(i);
363                         }
364                 }
365
366                 if (cln::realpart(x) < 0.5) {
367                         // choose the faster algorithm
368                         // with n>=12 the "normal" summation always wins against the method with Xn
369                         if ((cln::abs(cln::realpart(x)) < 0.3) || (n >= 12)) {
370                                 return Lin_do_sum(n, x);
371                         } else {
372                                 return Lin_do_sum_Xn(n, x);
373                         }
374                 } else {
375                         cln::cl_N result = 0;
376                         if ( x != 1 ) result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
377                         for (int j=0; j<n-1; j++) {
378                                 result = result + (S_num(n-j-1, 1, 1) - S_num(1, n-j-1, 1-x))
379                                                   * cln::expt(cln::log(x), j) / cln::factorial(j);
380                         }
381                         return result;
382                 }
383         }
384 }
385
386 // helper function for classical polylog Li
387 const cln::cl_N Lin_numeric(const int n, const cln::cl_N& x)
388 {
389         if (n == 1) {
390                 // just a log
391                 return -cln::log(1-x);
392         }
393         if (zerop(x)) {
394                 return 0;
395         }
396         if (x == 1) {
397                 // [Kol] (2.22)
398                 return cln::zeta(n);
399         }
400         else if (x == -1) {
401                 // [Kol] (2.22)
402                 return -(1-cln::expt(cln::cl_I(2),1-n)) * cln::zeta(n);
403         }
404         if (cln::abs(realpart(x)) < 0.4 && cln::abs(cln::abs(x)-1) < 0.01) {
405                 cln::cl_N result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
406                 for (int j=0; j<n-1; j++) {
407                         result = result + (S_num(n-j-1, 1, 1) - S_num(1, n-j-1, 1-x))
408                                 * cln::expt(cln::log(x), j) / cln::factorial(j);
409                 }
410                 return result;
411         }
412
413         // what is the desired float format?
414         // first guess: default format
415         cln::float_format_t prec = cln::default_float_format;
416         const cln::cl_N value = x;
417         // second guess: the argument's format
418         if (!instanceof(realpart(x), cln::cl_RA_ring))
419                 prec = cln::float_format(cln::the<cln::cl_F>(cln::realpart(value)));
420         else if (!instanceof(imagpart(x), cln::cl_RA_ring))
421                 prec = cln::float_format(cln::the<cln::cl_F>(cln::imagpart(value)));
422         
423         // [Kol] (5.15)
424         if (cln::abs(value) > 1) {
425                 cln::cl_N result = -cln::expt(cln::log(-value),n) / cln::factorial(n);
426                 // check if argument is complex. if it is real, the new polylog has to be conjugated.
427                 if (cln::zerop(cln::imagpart(value))) {
428                         if (n & 1) {
429                                 result = result + conjugate(Li_projection(n, cln::recip(value), prec));
430                         }
431                         else {
432                                 result = result - conjugate(Li_projection(n, cln::recip(value), prec));
433                         }
434                 }
435                 else {
436                         if (n & 1) {
437                                 result = result + Li_projection(n, cln::recip(value), prec);
438                         }
439                         else {
440                                 result = result - Li_projection(n, cln::recip(value), prec);
441                         }
442                 }
443                 cln::cl_N add;
444                 for (int j=0; j<n-1; j++) {
445                         add = add + (1+cln::expt(cln::cl_I(-1),n-j)) * (1-cln::expt(cln::cl_I(2),1-n+j))
446                                     * Lin_numeric(n-j,1) * cln::expt(cln::log(-value),j) / cln::factorial(j);
447                 }
448                 result = result - add;
449                 return result;
450         }
451         else {
452                 return Li_projection(n, value, prec);
453         }
454 }
455
456
457 } // end of anonymous namespace
458
459
460 //////////////////////////////////////////////////////////////////////
461 //
462 // Multiple polylogarithm  Li(n,x)
463 //
464 // helper function
465 //
466 //////////////////////////////////////////////////////////////////////
467
468
469 // anonymous namespace for helper function
470 namespace {
471
472
473 // performs the actual series summation for multiple polylogarithms
474 cln::cl_N multipleLi_do_sum(const std::vector<int>& s, const std::vector<cln::cl_N>& x)
475 {
476         // ensure all x <> 0.
477         for (std::vector<cln::cl_N>::const_iterator it = x.begin(); it != x.end(); ++it) {
478                 if ( *it == 0 ) return cln::cl_float(0, cln::float_format(Digits));
479         }
480
481         const int j = s.size();
482         bool flag_accidental_zero = false;
483
484         std::vector<cln::cl_N> t(j);
485         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
486
487         cln::cl_N t0buf;
488         int q = 0;
489         do {
490                 t0buf = t[0];
491                 q++;
492                 t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
493                 for (int k=j-2; k>=0; k--) {
494                         t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
495                 }
496                 q++;
497                 t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
498                 for (int k=j-2; k>=0; k--) {
499                         flag_accidental_zero = cln::zerop(t[k+1]);
500                         t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
501                 }
502         } while ( (t[0] != t0buf) || cln::zerop(t[0]) || flag_accidental_zero );
503
504         return t[0];
505 }
506
507
508 // forward declaration for Li_eval()
509 lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf);
510
511
512 // type used by the transformation functions for G
513 typedef std::vector<int> Gparameter;
514
515
516 // G_eval1-function for G transformations
517 ex G_eval1(int a, int scale, const exvector& gsyms)
518 {
519         if (a != 0) {
520                 const ex& scs = gsyms[std::abs(scale)];
521                 const ex& as = gsyms[std::abs(a)];
522                 if (as != scs) {
523                         return -log(1 - scs/as);
524                 } else {
525                         return -zeta(1);
526                 }
527         } else {
528                 return log(gsyms[std::abs(scale)]);
529         }
530 }
531
532
533 // G_eval-function for G transformations
534 ex G_eval(const Gparameter& a, int scale, const exvector& gsyms)
535 {
536         // check for properties of G
537         ex sc = gsyms[std::abs(scale)];
538         lst newa;
539         bool all_zero = true;
540         bool all_ones = true;
541         int count_ones = 0;
542         for (Gparameter::const_iterator it = a.begin(); it != a.end(); ++it) {
543                 if (*it != 0) {
544                         const ex sym = gsyms[std::abs(*it)];
545                         newa.append(sym);
546                         all_zero = false;
547                         if (sym != sc) {
548                                 all_ones = false;
549                         }
550                         if (all_ones) {
551                                 ++count_ones;
552                         }
553                 } else {
554                         all_ones = false;
555                 }
556         }
557
558         // care about divergent G: shuffle to separate divergencies that will be canceled
559         // later on in the transformation
560         if (newa.nops() > 1 && newa.op(0) == sc && !all_ones && a.front()!=0) {
561                 // do shuffle
562                 Gparameter short_a;
563                 Gparameter::const_iterator it = a.begin();
564                 ++it;
565                 for (; it != a.end(); ++it) {
566                         short_a.push_back(*it);
567                 }
568                 ex result = G_eval1(a.front(), scale, gsyms) * G_eval(short_a, scale, gsyms);
569                 it = short_a.begin();
570                 for (int i=1; i<count_ones; ++i) {
571                         ++it;
572                 }
573                 for (; it != short_a.end(); ++it) {
574
575                         Gparameter newa;
576                         Gparameter::const_iterator it2 = short_a.begin();
577                         for (; it2 != it; ++it2) {
578                                 newa.push_back(*it2);
579                         }
580                         newa.push_back(*it);
581                         newa.push_back(a[0]);
582                         it2 = it;
583                         ++it2;
584                         for (; it2 != short_a.end(); ++it2) {
585                                 newa.push_back(*it2);   
586                         }
587                         result -= G_eval(newa, scale, gsyms);
588                 }
589                 return result / count_ones;
590         }
591
592         // G({1,...,1};y) -> G({1};y)^k / k!
593         if (all_ones && a.size() > 1) {
594                 return pow(G_eval1(a.front(),scale, gsyms), count_ones) / factorial(count_ones);
595         }
596
597         // G({0,...,0};y) -> log(y)^k / k!
598         if (all_zero) {
599                 return pow(log(gsyms[std::abs(scale)]), a.size()) / factorial(a.size());
600         }
601
602         // no special cases anymore -> convert it into Li
603         lst m;
604         lst x;
605         ex argbuf = gsyms[std::abs(scale)];
606         ex mval = _ex1;
607         for (Gparameter::const_iterator it=a.begin(); it!=a.end(); ++it) {
608                 if (*it != 0) {
609                         const ex& sym = gsyms[std::abs(*it)];
610                         x.append(argbuf / sym);
611                         m.append(mval);
612                         mval = _ex1;
613                         argbuf = sym;
614                 } else {
615                         ++mval;
616                 }
617         }
618         return pow(-1, x.nops()) * Li(m, x);
619 }
620
621
622 // converts data for G: pending_integrals -> a
623 Gparameter convert_pending_integrals_G(const Gparameter& pending_integrals)
624 {
625         GINAC_ASSERT(pending_integrals.size() != 1);
626
627         if (pending_integrals.size() > 0) {
628                 // get rid of the first element, which would stand for the new upper limit
629                 Gparameter new_a(pending_integrals.begin()+1, pending_integrals.end());
630                 return new_a;
631         } else {
632                 // just return empty parameter list
633                 Gparameter new_a;
634                 return new_a;
635         }
636 }
637
638
639 // check the parameters a and scale for G and return information about convergence, depth, etc.
640 // convergent     : true if G(a,scale) is convergent
641 // depth          : depth of G(a,scale)
642 // trailing_zeros : number of trailing zeros of a
643 // min_it         : iterator of a pointing on the smallest element in a
644 Gparameter::const_iterator check_parameter_G(const Gparameter& a, int scale,
645                 bool& convergent, int& depth, int& trailing_zeros, Gparameter::const_iterator& min_it)
646 {
647         convergent = true;
648         depth = 0;
649         trailing_zeros = 0;
650         min_it = a.end();
651         Gparameter::const_iterator lastnonzero = a.end();
652         for (Gparameter::const_iterator it = a.begin(); it != a.end(); ++it) {
653                 if (std::abs(*it) > 0) {
654                         ++depth;
655                         trailing_zeros = 0;
656                         lastnonzero = it;
657                         if (std::abs(*it) < scale) {
658                                 convergent = false;
659                                 if ((min_it == a.end()) || (std::abs(*it) < std::abs(*min_it))) {
660                                         min_it = it;
661                                 }
662                         }
663                 } else {
664                         ++trailing_zeros;
665                 }
666         }
667         if (lastnonzero == a.end())
668                 return a.end();
669         return ++lastnonzero;
670 }
671
672
673 // add scale to pending_integrals if pending_integrals is empty
674 Gparameter prepare_pending_integrals(const Gparameter& pending_integrals, int scale)
675 {
676         GINAC_ASSERT(pending_integrals.size() != 1);
677
678         if (pending_integrals.size() > 0) {
679                 return pending_integrals;
680         } else {
681                 Gparameter new_pending_integrals;
682                 new_pending_integrals.push_back(scale);
683                 return new_pending_integrals;
684         }
685 }
686
687
688 // handles trailing zeroes for an otherwise convergent integral
689 ex trailing_zeros_G(const Gparameter& a, int scale, const exvector& gsyms)
690 {
691         bool convergent;
692         int depth, trailing_zeros;
693         Gparameter::const_iterator last, dummyit;
694         last = check_parameter_G(a, scale, convergent, depth, trailing_zeros, dummyit);
695
696         GINAC_ASSERT(convergent);
697
698         if ((trailing_zeros > 0) && (depth > 0)) {
699                 ex result;
700                 Gparameter new_a(a.begin(), a.end()-1);
701                 result += G_eval1(0, scale, gsyms) * trailing_zeros_G(new_a, scale, gsyms);
702                 for (Gparameter::const_iterator it = a.begin(); it != last; ++it) {
703                         Gparameter new_a(a.begin(), it);
704                         new_a.push_back(0);
705                         new_a.insert(new_a.end(), it, a.end()-1);
706                         result -= trailing_zeros_G(new_a, scale, gsyms);
707                 }
708
709                 return result / trailing_zeros;
710         } else {
711                 return G_eval(a, scale, gsyms);
712         }
713 }
714
715
716 // G transformation [VSW] (57),(58)
717 ex depth_one_trafo_G(const Gparameter& pending_integrals, const Gparameter& a, int scale, const exvector& gsyms)
718 {
719         // pendint = ( y1, b1, ..., br )
720         //       a = ( 0, ..., 0, amin )
721         //   scale = y2
722         //
723         // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(0, ..., 0, sr; y2)
724         // where sr replaces amin
725
726         GINAC_ASSERT(a.back() != 0);
727         GINAC_ASSERT(a.size() > 0);
728
729         ex result;
730         Gparameter new_pending_integrals = prepare_pending_integrals(pending_integrals, std::abs(a.back()));
731         const int psize = pending_integrals.size();
732
733         // length == 1
734         // G(sr_{+-}; y2 ) = G(y2_{-+}; sr) - G(0; sr) + ln(-y2_{-+})
735
736         if (a.size() == 1) {
737
738           // ln(-y2_{-+})
739           result += log(gsyms[ex_to<numeric>(scale).to_int()]);
740                 if (a.back() > 0) {
741                         new_pending_integrals.push_back(-scale);
742                         result += I*Pi;
743                 } else {
744                         new_pending_integrals.push_back(scale);
745                         result -= I*Pi;
746                 }
747                 if (psize) {
748                         result *= trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
749                                                    pending_integrals.front(),
750                                                    gsyms);
751                 }
752                 
753                 // G(y2_{-+}; sr)
754                 result += trailing_zeros_G(convert_pending_integrals_G(new_pending_integrals),
755                                            new_pending_integrals.front(),
756                                            gsyms);
757                 
758                 // G(0; sr)
759                 new_pending_integrals.back() = 0;
760                 result -= trailing_zeros_G(convert_pending_integrals_G(new_pending_integrals),
761                                            new_pending_integrals.front(),
762                                            gsyms);
763
764                 return result;
765         }
766
767         // length > 1
768         // G_m(sr_{+-}; y2) = -zeta_m + int_0^y2 dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
769         //                            - int_0^sr dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
770
771         //term zeta_m
772         result -= zeta(a.size());
773         if (psize) {
774                 result *= trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
775                                            pending_integrals.front(),
776                                            gsyms);
777         }
778         
779         // term int_0^sr dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
780         //    = int_0^sr dt/t G_{m-1}( t_{+-}; y2 )
781         Gparameter new_a(a.begin()+1, a.end());
782         new_pending_integrals.push_back(0);
783         result -= depth_one_trafo_G(new_pending_integrals, new_a, scale, gsyms);
784         
785         // term int_0^y2 dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
786         //    = int_0^y2 dt/t G_{m-1}( t_{+-}; y2 )
787         Gparameter new_pending_integrals_2;
788         new_pending_integrals_2.push_back(scale);
789         new_pending_integrals_2.push_back(0);
790         if (psize) {
791                 result += trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
792                                            pending_integrals.front(),
793                                            gsyms)
794                           * depth_one_trafo_G(new_pending_integrals_2, new_a, scale, gsyms);
795         } else {
796                 result += depth_one_trafo_G(new_pending_integrals_2, new_a, scale, gsyms);
797         }
798
799         return result;
800 }
801
802
803 // forward declaration
804 ex shuffle_G(const Gparameter & a0, const Gparameter & a1, const Gparameter & a2,
805              const Gparameter& pendint, const Gparameter& a_old, int scale,
806              const exvector& gsyms);
807
808
809 // G transformation [VSW]
810 ex G_transform(const Gparameter& pendint, const Gparameter& a, int scale,
811                const exvector& gsyms)
812 {
813         // main recursion routine
814         //
815         // pendint = ( y1, b1, ..., br )
816         //       a = ( a1, ..., amin, ..., aw )
817         //   scale = y2
818         //
819         // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,sr,...,aw,y2)
820         // where sr replaces amin
821
822         // find smallest alpha, determine depth and trailing zeros, and check for convergence
823         bool convergent;
824         int depth, trailing_zeros;
825         Gparameter::const_iterator min_it;
826         Gparameter::const_iterator firstzero = 
827                 check_parameter_G(a, scale, convergent, depth, trailing_zeros, min_it);
828         int min_it_pos = min_it - a.begin();
829
830         // special case: all a's are zero
831         if (depth == 0) {
832                 ex result;
833
834                 if (a.size() == 0) {
835                   result = 1;
836                 } else {
837                   result = G_eval(a, scale, gsyms);
838                 }
839                 if (pendint.size() > 0) {
840                   result *= trailing_zeros_G(convert_pending_integrals_G(pendint),
841                                              pendint.front(),
842                                              gsyms);
843                 } 
844                 return result;
845         }
846
847         // handle trailing zeros
848         if (trailing_zeros > 0) {
849                 ex result;
850                 Gparameter new_a(a.begin(), a.end()-1);
851                 result += G_eval1(0, scale, gsyms) * G_transform(pendint, new_a, scale, gsyms);
852                 for (Gparameter::const_iterator it = a.begin(); it != firstzero; ++it) {
853                         Gparameter new_a(a.begin(), it);
854                         new_a.push_back(0);
855                         new_a.insert(new_a.end(), it, a.end()-1);
856                         result -= G_transform(pendint, new_a, scale, gsyms);
857                 }
858                 return result / trailing_zeros;
859         }
860
861         // convergence case
862         if (convergent) {
863                 if (pendint.size() > 0) {
864                         return G_eval(convert_pending_integrals_G(pendint),
865                                       pendint.front(), gsyms)*
866                                 G_eval(a, scale, gsyms);
867                 } else {
868                         return G_eval(a, scale, gsyms);
869                 }
870         }
871
872         // call basic transformation for depth equal one
873         if (depth == 1) {
874                 return depth_one_trafo_G(pendint, a, scale, gsyms);
875         }
876
877         // do recursion
878         // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,sr,...,aw,y2)
879         //  =  int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,0,...,aw,y2)
880         //   + int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) int_0^{sr} ds_{r+1} d/ds_{r+1} G(a1,...,s_{r+1},...,aw,y2)
881
882         // smallest element in last place
883         if (min_it + 1 == a.end()) {
884                 do { --min_it; } while (*min_it == 0);
885                 Gparameter empty;
886                 Gparameter a1(a.begin(),min_it+1);
887                 Gparameter a2(min_it+1,a.end());
888
889                 ex result = G_transform(pendint, a2, scale, gsyms)*
890                         G_transform(empty, a1, scale, gsyms);
891
892                 result -= shuffle_G(empty, a1, a2, pendint, a, scale, gsyms);
893                 return result;
894         }
895
896         Gparameter empty;
897         Gparameter::iterator changeit;
898
899         // first term G(a_1,..,0,...,a_w;a_0)
900         Gparameter new_pendint = prepare_pending_integrals(pendint, a[min_it_pos]);
901         Gparameter new_a = a;
902         new_a[min_it_pos] = 0;
903         ex result = G_transform(empty, new_a, scale, gsyms);
904         if (pendint.size() > 0) {
905                 result *= trailing_zeros_G(convert_pending_integrals_G(pendint),
906                                            pendint.front(), gsyms);
907         }
908
909         // other terms
910         changeit = new_a.begin() + min_it_pos;
911         changeit = new_a.erase(changeit);
912         if (changeit != new_a.begin()) {
913                 // smallest in the middle
914                 new_pendint.push_back(*changeit);
915                 result -= trailing_zeros_G(convert_pending_integrals_G(new_pendint),
916                                            new_pendint.front(), gsyms)*
917                         G_transform(empty, new_a, scale, gsyms);
918                 int buffer = *changeit;
919                 *changeit = *min_it;
920                 result += G_transform(new_pendint, new_a, scale, gsyms);
921                 *changeit = buffer;
922                 new_pendint.pop_back();
923                 --changeit;
924                 new_pendint.push_back(*changeit);
925                 result += trailing_zeros_G(convert_pending_integrals_G(new_pendint),
926                                            new_pendint.front(), gsyms)*
927                         G_transform(empty, new_a, scale, gsyms);
928                 *changeit = *min_it;
929                 result -= G_transform(new_pendint, new_a, scale, gsyms);
930         } else {
931                 // smallest at the front
932                 new_pendint.push_back(scale);
933                 result += trailing_zeros_G(convert_pending_integrals_G(new_pendint),
934                                            new_pendint.front(), gsyms)*
935                         G_transform(empty, new_a, scale, gsyms);
936                 new_pendint.back() =  *changeit;
937                 result -= trailing_zeros_G(convert_pending_integrals_G(new_pendint),
938                                            new_pendint.front(), gsyms)*
939                         G_transform(empty, new_a, scale, gsyms);
940                 *changeit = *min_it;
941                 result += G_transform(new_pendint, new_a, scale, gsyms);
942         }
943         return result;
944 }
945
946
947 // shuffles the two parameter list a1 and a2 and calls G_transform for every term except
948 // for the one that is equal to a_old
949 ex shuffle_G(const Gparameter & a0, const Gparameter & a1, const Gparameter & a2,
950              const Gparameter& pendint, const Gparameter& a_old, int scale,
951              const exvector& gsyms) 
952 {
953         if (a1.size()==0 && a2.size()==0) {
954                 // veto the one configuration we don't want
955                 if ( a0 == a_old ) return 0;
956
957                 return G_transform(pendint, a0, scale, gsyms);
958         }
959
960         if (a2.size()==0) {
961                 Gparameter empty;
962                 Gparameter aa0 = a0;
963                 aa0.insert(aa0.end(),a1.begin(),a1.end());
964                 return shuffle_G(aa0, empty, empty, pendint, a_old, scale, gsyms);
965         }
966
967         if (a1.size()==0) {
968                 Gparameter empty;
969                 Gparameter aa0 = a0;
970                 aa0.insert(aa0.end(),a2.begin(),a2.end());
971                 return shuffle_G(aa0, empty, empty, pendint, a_old, scale, gsyms);
972         }
973
974         Gparameter a1_removed(a1.begin()+1,a1.end());
975         Gparameter a2_removed(a2.begin()+1,a2.end());
976
977         Gparameter a01 = a0;
978         Gparameter a02 = a0;
979
980         a01.push_back( a1[0] );
981         a02.push_back( a2[0] );
982
983         return shuffle_G(a01, a1_removed, a2, pendint, a_old, scale, gsyms)
984              + shuffle_G(a02, a1, a2_removed, pendint, a_old, scale, gsyms);
985 }
986
987 // handles the transformations and the numerical evaluation of G
988 // the parameter x, s and y must only contain numerics
989 static cln::cl_N
990 G_numeric(const std::vector<cln::cl_N>& x, const std::vector<int>& s,
991           const cln::cl_N& y);
992
993 // do acceleration transformation (hoelder convolution [BBB])
994 // the parameter x, s and y must only contain numerics
995 static cln::cl_N
996 G_do_hoelder(std::vector<cln::cl_N> x, /* yes, it's passed by value */
997              const std::vector<int>& s, const cln::cl_N& y)
998 {
999         cln::cl_N result;
1000         const std::size_t size = x.size();
1001         for (std::size_t i = 0; i < size; ++i)
1002                 x[i] = x[i]/y;
1003
1004         for (std::size_t r = 0; r <= size; ++r) {
1005                 cln::cl_N buffer(1 & r ? -1 : 1);
1006                 cln::cl_RA p(2);
1007                 bool adjustp;
1008                 do {
1009                         adjustp = false;
1010                         for (std::size_t i = 0; i < size; ++i) {
1011                                 if (x[i] == cln::cl_RA(1)/p) {
1012                                         p = p/2 + cln::cl_RA(3)/2;
1013                                         adjustp = true;
1014                                         continue;
1015                                 }
1016                         }
1017                 } while (adjustp);
1018                 cln::cl_RA q = p/(p-1);
1019                 std::vector<cln::cl_N> qlstx;
1020                 std::vector<int> qlsts;
1021                 for (std::size_t j = r; j >= 1; --j) {
1022                         qlstx.push_back(cln::cl_N(1) - x[j-1]);
1023                         if (instanceof(x[j-1], cln::cl_R_ring) &&
1024                             realpart(x[j-1]) > 1 && realpart(x[j-1]) <= 2) {
1025                                 qlsts.push_back(s[j-1]);
1026                         } else {
1027                                 qlsts.push_back(-s[j-1]);
1028                         }
1029                 }
1030                 if (qlstx.size() > 0) {
1031                         buffer = buffer*G_numeric(qlstx, qlsts, 1/q);
1032                 }
1033                 std::vector<cln::cl_N> plstx;
1034                 std::vector<int> plsts;
1035                 for (std::size_t j = r+1; j <= size; ++j) {
1036                         plstx.push_back(x[j-1]);
1037                         plsts.push_back(s[j-1]);
1038                 }
1039                 if (plstx.size() > 0) {
1040                         buffer = buffer*G_numeric(plstx, plsts, 1/p);
1041                 }
1042                 result = result + buffer;
1043         }
1044         return result;
1045 }
1046
1047 // convergence transformation, used for numerical evaluation of G function.
1048 // the parameter x, s and y must only contain numerics
1049 static cln::cl_N
1050 G_do_trafo(const std::vector<cln::cl_N>& x, const std::vector<int>& s,
1051            const cln::cl_N& y)
1052 {
1053         // sort (|x|<->position) to determine indices
1054         typedef std::multimap<cln::cl_R, std::size_t> sortmap_t;
1055         sortmap_t sortmap;
1056         std::size_t size = 0;
1057         for (std::size_t i = 0; i < x.size(); ++i) {
1058                 if (!zerop(x[i])) {
1059                         sortmap.insert(std::make_pair(abs(x[i]), i));
1060                         ++size;
1061                 }
1062         }
1063         // include upper limit (scale)
1064         sortmap.insert(std::make_pair(abs(y), x.size()));
1065
1066         // generate missing dummy-symbols
1067         int i = 1;
1068         // holding dummy-symbols for the G/Li transformations
1069         exvector gsyms;
1070         gsyms.push_back(symbol("GSYMS_ERROR"));
1071         cln::cl_N lastentry(0);
1072         for (sortmap_t::const_iterator it = sortmap.begin(); it != sortmap.end(); ++it) {
1073                 if (it != sortmap.begin()) {
1074                         if (it->second < x.size()) {
1075                                 if (x[it->second] == lastentry) {
1076                                         gsyms.push_back(gsyms.back());
1077                                         continue;
1078                                 }
1079                         } else {
1080                                 if (y == lastentry) {
1081                                         gsyms.push_back(gsyms.back());
1082                                         continue;
1083                                 }
1084                         }
1085                 }
1086                 std::ostringstream os;
1087                 os << "a" << i;
1088                 gsyms.push_back(symbol(os.str()));
1089                 ++i;
1090                 if (it->second < x.size()) {
1091                         lastentry = x[it->second];
1092                 } else {
1093                         lastentry = y;
1094                 }
1095         }
1096
1097         // fill position data according to sorted indices and prepare substitution list
1098         Gparameter a(x.size());
1099         exmap subslst;
1100         std::size_t pos = 1;
1101         int scale = pos;
1102         for (sortmap_t::const_iterator it = sortmap.begin(); it != sortmap.end(); ++it) {
1103                 if (it->second < x.size()) {
1104                         if (s[it->second] > 0) {
1105                                 a[it->second] = pos;
1106                         } else {
1107                                 a[it->second] = -int(pos);
1108                         }
1109                         subslst[gsyms[pos]] = numeric(x[it->second]);
1110                 } else {
1111                         scale = pos;
1112                         subslst[gsyms[pos]] = numeric(y);
1113                 }
1114                 ++pos;
1115         }
1116
1117         // do transformation
1118         Gparameter pendint;
1119         ex result = G_transform(pendint, a, scale, gsyms);
1120         // replace dummy symbols with their values
1121         result = result.eval().expand();
1122         result = result.subs(subslst).evalf();
1123         if (!is_a<numeric>(result))
1124                 throw std::logic_error("G_do_trafo: G_transform returned non-numeric result");
1125         
1126         cln::cl_N ret = ex_to<numeric>(result).to_cl_N();
1127         return ret;
1128 }
1129
1130 // handles the transformations and the numerical evaluation of G
1131 // the parameter x, s and y must only contain numerics
1132 static cln::cl_N
1133 G_numeric(const std::vector<cln::cl_N>& x, const std::vector<int>& s,
1134           const cln::cl_N& y)
1135 {
1136         // check for convergence and necessary accelerations
1137         bool need_trafo = false;
1138         bool need_hoelder = false;
1139         std::size_t depth = 0;
1140         for (std::size_t i = 0; i < x.size(); ++i) {
1141                 if (!zerop(x[i])) {
1142                         ++depth;
1143                         const cln::cl_N x_y = abs(x[i]) - y;
1144                         if (instanceof(x_y, cln::cl_R_ring) &&
1145                             realpart(x_y) < cln::least_negative_float(cln::float_format(Digits - 2)))
1146                                 need_trafo = true;
1147
1148                         if (abs(abs(x[i]/y) - 1) < 0.01)
1149                                 need_hoelder = true;
1150                 }
1151         }
1152         if (zerop(x[x.size() - 1]))
1153                 need_trafo = true;
1154
1155         if (depth == 1 && x.size() == 2 && !need_trafo)
1156                 return - Li_projection(2, y/x[1], cln::float_format(Digits));
1157         
1158         // do acceleration transformation (hoelder convolution [BBB])
1159         if (need_hoelder)
1160                 return G_do_hoelder(x, s, y);
1161         
1162         // convergence transformation
1163         if (need_trafo)
1164                 return G_do_trafo(x, s, y);
1165
1166         // do summation
1167         std::vector<cln::cl_N> newx;
1168         newx.reserve(x.size());
1169         std::vector<int> m;
1170         m.reserve(x.size());
1171         int mcount = 1;
1172         int sign = 1;
1173         cln::cl_N factor = y;
1174         for (std::size_t i = 0; i < x.size(); ++i) {
1175                 if (zerop(x[i])) {
1176                         ++mcount;
1177                 } else {
1178                         newx.push_back(factor/x[i]);
1179                         factor = x[i];
1180                         m.push_back(mcount);
1181                         mcount = 1;
1182                         sign = -sign;
1183                 }
1184         }
1185
1186         return sign*multipleLi_do_sum(m, newx);
1187 }
1188
1189
1190 ex mLi_numeric(const lst& m, const lst& x)
1191 {
1192         // let G_numeric do the transformation
1193         std::vector<cln::cl_N> newx;
1194         newx.reserve(x.nops());
1195         std::vector<int> s;
1196         s.reserve(x.nops());
1197         cln::cl_N factor(1);
1198         for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1199                 for (int i = 1; i < *itm; ++i) {
1200                         newx.push_back(cln::cl_N(0));
1201                         s.push_back(1);
1202                 }
1203                 const cln::cl_N xi = ex_to<numeric>(*itx).to_cl_N();
1204                 newx.push_back(factor/xi);
1205                 factor = factor/xi;
1206                 s.push_back(1);
1207         }
1208         return numeric(cln::cl_N(1 & m.nops() ? - 1 : 1)*G_numeric(newx, s, cln::cl_N(1)));
1209 }
1210
1211
1212 } // end of anonymous namespace
1213
1214
1215 //////////////////////////////////////////////////////////////////////
1216 //
1217 // Generalized multiple polylogarithm  G(x, y) and G(x, s, y)
1218 //
1219 // GiNaC function
1220 //
1221 //////////////////////////////////////////////////////////////////////
1222
1223
1224 static ex G2_evalf(const ex& x_, const ex& y)
1225 {
1226         if (!y.info(info_flags::positive)) {
1227                 return G(x_, y).hold();
1228         }
1229         lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1230         if (x.nops() == 0) {
1231                 return _ex1;
1232         }
1233         if (x.op(0) == y) {
1234                 return G(x_, y).hold();
1235         }
1236         std::vector<int> s;
1237         s.reserve(x.nops());
1238         bool all_zero = true;
1239         for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1240                 if (!(*it).info(info_flags::numeric)) {
1241                         return G(x_, y).hold();
1242                 }
1243                 if (*it != _ex0) {
1244                         all_zero = false;
1245                 }
1246                 if ( !ex_to<numeric>(*it).is_real() && ex_to<numeric>(*it).imag() < 0 ) {
1247                         s.push_back(-1);
1248                 }
1249                 else {
1250                         s.push_back(1);
1251                 }
1252         }
1253         if (all_zero) {
1254                 return pow(log(y), x.nops()) / factorial(x.nops());
1255         }
1256         std::vector<cln::cl_N> xv;
1257         xv.reserve(x.nops());
1258         for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
1259                 xv.push_back(ex_to<numeric>(*it).to_cl_N());
1260         cln::cl_N result = G_numeric(xv, s, ex_to<numeric>(y).to_cl_N());
1261         return numeric(result);
1262 }
1263
1264
1265 static ex G2_eval(const ex& x_, const ex& y)
1266 {
1267         //TODO eval to MZV or H or S or Lin
1268
1269         if (!y.info(info_flags::positive)) {
1270                 return G(x_, y).hold();
1271         }
1272         lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1273         if (x.nops() == 0) {
1274                 return _ex1;
1275         }
1276         if (x.op(0) == y) {
1277                 return G(x_, y).hold();
1278         }
1279         std::vector<int> s;
1280         s.reserve(x.nops());
1281         bool all_zero = true;
1282         bool crational = true;
1283         for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1284                 if (!(*it).info(info_flags::numeric)) {
1285                         return G(x_, y).hold();
1286                 }
1287                 if (!(*it).info(info_flags::crational)) {
1288                         crational = false;
1289                 }
1290                 if (*it != _ex0) {
1291                         all_zero = false;
1292                 }
1293                 if ( !ex_to<numeric>(*it).is_real() && ex_to<numeric>(*it).imag() < 0 ) {
1294                         s.push_back(-1);
1295                 }
1296                 else {
1297                         s.push_back(+1);
1298                 }
1299         }
1300         if (all_zero) {
1301                 return pow(log(y), x.nops()) / factorial(x.nops());
1302         }
1303         if (!y.info(info_flags::crational)) {
1304                 crational = false;
1305         }
1306         if (crational) {
1307                 return G(x_, y).hold();
1308         }
1309         std::vector<cln::cl_N> xv;
1310         xv.reserve(x.nops());
1311         for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
1312                 xv.push_back(ex_to<numeric>(*it).to_cl_N());
1313         cln::cl_N result = G_numeric(xv, s, ex_to<numeric>(y).to_cl_N());
1314         return numeric(result);
1315 }
1316
1317
1318 unsigned G2_SERIAL::serial = function::register_new(function_options("G", 2).
1319                                 evalf_func(G2_evalf).
1320                                 eval_func(G2_eval).
1321                                 do_not_evalf_params().
1322                                 overloaded(2));
1323 //TODO
1324 //                                derivative_func(G2_deriv).
1325 //                                print_func<print_latex>(G2_print_latex).
1326
1327
1328 static ex G3_evalf(const ex& x_, const ex& s_, const ex& y)
1329 {
1330         if (!y.info(info_flags::positive)) {
1331                 return G(x_, s_, y).hold();
1332         }
1333         lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1334         lst s = is_a<lst>(s_) ? ex_to<lst>(s_) : lst(s_);
1335         if (x.nops() != s.nops()) {
1336                 return G(x_, s_, y).hold();
1337         }
1338         if (x.nops() == 0) {
1339                 return _ex1;
1340         }
1341         if (x.op(0) == y) {
1342                 return G(x_, s_, y).hold();
1343         }
1344         std::vector<int> sn;
1345         sn.reserve(s.nops());
1346         bool all_zero = true;
1347         for (lst::const_iterator itx = x.begin(), its = s.begin(); itx != x.end(); ++itx, ++its) {
1348                 if (!(*itx).info(info_flags::numeric)) {
1349                         return G(x_, y).hold();
1350                 }
1351                 if (!(*its).info(info_flags::real)) {
1352                         return G(x_, y).hold();
1353                 }
1354                 if (*itx != _ex0) {
1355                         all_zero = false;
1356                 }
1357                 if ( ex_to<numeric>(*itx).is_real() ) {
1358                         if ( *its >= 0 ) {
1359                                 sn.push_back(1);
1360                         }
1361                         else {
1362                                 sn.push_back(-1);
1363                         }
1364                 }
1365                 else {
1366                         if ( ex_to<numeric>(*itx).imag() > 0 ) {
1367                                 sn.push_back(1);
1368                         }
1369                         else {
1370                                 sn.push_back(-1);
1371                         }
1372                 }
1373         }
1374         if (all_zero) {
1375                 return pow(log(y), x.nops()) / factorial(x.nops());
1376         }
1377         std::vector<cln::cl_N> xn;
1378         xn.reserve(x.nops());
1379         for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
1380                 xn.push_back(ex_to<numeric>(*it).to_cl_N());
1381         cln::cl_N result = G_numeric(xn, sn, ex_to<numeric>(y).to_cl_N());
1382         return numeric(result);
1383 }
1384
1385
1386 static ex G3_eval(const ex& x_, const ex& s_, const ex& y)
1387 {
1388         //TODO eval to MZV or H or S or Lin
1389
1390         if (!y.info(info_flags::positive)) {
1391                 return G(x_, s_, y).hold();
1392         }
1393         lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1394         lst s = is_a<lst>(s_) ? ex_to<lst>(s_) : lst(s_);
1395         if (x.nops() != s.nops()) {
1396                 return G(x_, s_, y).hold();
1397         }
1398         if (x.nops() == 0) {
1399                 return _ex1;
1400         }
1401         if (x.op(0) == y) {
1402                 return G(x_, s_, y).hold();
1403         }
1404         std::vector<int> sn;
1405         sn.reserve(s.nops());
1406         bool all_zero = true;
1407         bool crational = true;
1408         for (lst::const_iterator itx = x.begin(), its = s.begin(); itx != x.end(); ++itx, ++its) {
1409                 if (!(*itx).info(info_flags::numeric)) {
1410                         return G(x_, s_, y).hold();
1411                 }
1412                 if (!(*its).info(info_flags::real)) {
1413                         return G(x_, s_, y).hold();
1414                 }
1415                 if (!(*itx).info(info_flags::crational)) {
1416                         crational = false;
1417                 }
1418                 if (*itx != _ex0) {
1419                         all_zero = false;
1420                 }
1421                 if ( ex_to<numeric>(*itx).is_real() ) {
1422                         if ( *its >= 0 ) {
1423                                 sn.push_back(1);
1424                         }
1425                         else {
1426                                 sn.push_back(-1);
1427                         }
1428                 }
1429                 else {
1430                         if ( ex_to<numeric>(*itx).imag() > 0 ) {
1431                                 sn.push_back(1);
1432                         }
1433                         else {
1434                                 sn.push_back(-1);
1435                         }
1436                 }
1437         }
1438         if (all_zero) {
1439                 return pow(log(y), x.nops()) / factorial(x.nops());
1440         }
1441         if (!y.info(info_flags::crational)) {
1442                 crational = false;
1443         }
1444         if (crational) {
1445                 return G(x_, s_, y).hold();
1446         }
1447         std::vector<cln::cl_N> xn;
1448         xn.reserve(x.nops());
1449         for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
1450                 xn.push_back(ex_to<numeric>(*it).to_cl_N());
1451         cln::cl_N result = G_numeric(xn, sn, ex_to<numeric>(y).to_cl_N());
1452         return numeric(result);
1453 }
1454
1455
1456 unsigned G3_SERIAL::serial = function::register_new(function_options("G", 3).
1457                                 evalf_func(G3_evalf).
1458                                 eval_func(G3_eval).
1459                                 do_not_evalf_params().
1460                                 overloaded(2));
1461 //TODO
1462 //                                derivative_func(G3_deriv).
1463 //                                print_func<print_latex>(G3_print_latex).
1464
1465
1466 //////////////////////////////////////////////////////////////////////
1467 //
1468 // Classical polylogarithm and multiple polylogarithm  Li(m,x)
1469 //
1470 // GiNaC function
1471 //
1472 //////////////////////////////////////////////////////////////////////
1473
1474
1475 static ex Li_evalf(const ex& m_, const ex& x_)
1476 {
1477         // classical polylogs
1478         if (m_.info(info_flags::posint)) {
1479                 if (x_.info(info_flags::numeric)) {
1480                         int m__ = ex_to<numeric>(m_).to_int();
1481                         const cln::cl_N x__ = ex_to<numeric>(x_).to_cl_N();
1482                         const cln::cl_N result = Lin_numeric(m__, x__);
1483                         return numeric(result);
1484                 } else {
1485                         // try to numerically evaluate second argument
1486                         ex x_val = x_.evalf();
1487                         if (x_val.info(info_flags::numeric)) {
1488                                 int m__ = ex_to<numeric>(m_).to_int();
1489                                 const cln::cl_N x__ = ex_to<numeric>(x_val).to_cl_N();
1490                                 const cln::cl_N result = Lin_numeric(m__, x__);
1491                                 return numeric(result);
1492                         }
1493                 }
1494         }
1495         // multiple polylogs
1496         if (is_a<lst>(m_) && is_a<lst>(x_)) {
1497
1498                 const lst& m = ex_to<lst>(m_);
1499                 const lst& x = ex_to<lst>(x_);
1500                 if (m.nops() != x.nops()) {
1501                         return Li(m_,x_).hold();
1502                 }
1503                 if (x.nops() == 0) {
1504                         return _ex1;
1505                 }
1506                 if ((m.op(0) == _ex1) && (x.op(0) == _ex1)) {
1507                         return Li(m_,x_).hold();
1508                 }
1509
1510                 for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1511                         if (!(*itm).info(info_flags::posint)) {
1512                                 return Li(m_, x_).hold();
1513                         }
1514                         if (!(*itx).info(info_flags::numeric)) {
1515                                 return Li(m_, x_).hold();
1516                         }
1517                         if (*itx == _ex0) {
1518                                 return _ex0;
1519                         }
1520                 }
1521
1522                 return mLi_numeric(m, x);
1523         }
1524
1525         return Li(m_,x_).hold();
1526 }
1527
1528
1529 static ex Li_eval(const ex& m_, const ex& x_)
1530 {
1531         if (is_a<lst>(m_)) {
1532                 if (is_a<lst>(x_)) {
1533                         // multiple polylogs
1534                         const lst& m = ex_to<lst>(m_);
1535                         const lst& x = ex_to<lst>(x_);
1536                         if (m.nops() != x.nops()) {
1537                                 return Li(m_,x_).hold();
1538                         }
1539                         if (x.nops() == 0) {
1540                                 return _ex1;
1541                         }
1542                         bool is_H = true;
1543                         bool is_zeta = true;
1544                         bool do_evalf = true;
1545                         bool crational = true;
1546                         for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1547                                 if (!(*itm).info(info_flags::posint)) {
1548                                         return Li(m_,x_).hold();
1549                                 }
1550                                 if ((*itx != _ex1) && (*itx != _ex_1)) {
1551                                         if (itx != x.begin()) {
1552                                                 is_H = false;
1553                                         }
1554                                         is_zeta = false;
1555                                 }
1556                                 if (*itx == _ex0) {
1557                                         return _ex0;
1558                                 }
1559                                 if (!(*itx).info(info_flags::numeric)) {
1560                                         do_evalf = false;
1561                                 }
1562                                 if (!(*itx).info(info_flags::crational)) {
1563                                         crational = false;
1564                                 }
1565                         }
1566                         if (is_zeta) {
1567                                 return zeta(m_,x_);
1568                         }
1569                         if (is_H) {
1570                                 ex prefactor;
1571                                 lst newm = convert_parameter_Li_to_H(m, x, prefactor);
1572                                 return prefactor * H(newm, x[0]);
1573                         }
1574                         if (do_evalf && !crational) {
1575                                 return mLi_numeric(m,x);
1576                         }
1577                 }
1578                 return Li(m_, x_).hold();
1579         } else if (is_a<lst>(x_)) {
1580                 return Li(m_, x_).hold();
1581         }
1582
1583         // classical polylogs
1584         if (x_ == _ex0) {
1585                 return _ex0;
1586         }
1587         if (x_ == _ex1) {
1588                 return zeta(m_);
1589         }
1590         if (x_ == _ex_1) {
1591                 return (pow(2,1-m_)-1) * zeta(m_);
1592         }
1593         if (m_ == _ex1) {
1594                 return -log(1-x_);
1595         }
1596         if (m_ == _ex2) {
1597                 if (x_.is_equal(I)) {
1598                         return power(Pi,_ex2)/_ex_48 + Catalan*I;
1599                 }
1600                 if (x_.is_equal(-I)) {
1601                         return power(Pi,_ex2)/_ex_48 - Catalan*I;
1602                 }
1603         }
1604         if (m_.info(info_flags::posint) && x_.info(info_flags::numeric) && !x_.info(info_flags::crational)) {
1605                 int m__ = ex_to<numeric>(m_).to_int();
1606                 const cln::cl_N x__ = ex_to<numeric>(x_).to_cl_N();
1607                 const cln::cl_N result = Lin_numeric(m__, x__);
1608                 return numeric(result);
1609         }
1610
1611         return Li(m_, x_).hold();
1612 }
1613
1614
1615 static ex Li_series(const ex& m, const ex& x, const relational& rel, int order, unsigned options)
1616 {
1617         if (is_a<lst>(m) || is_a<lst>(x)) {
1618                 // multiple polylog
1619                 epvector seq;
1620                 seq.push_back(expair(Li(m, x), 0));
1621                 return pseries(rel, seq);
1622         }
1623         
1624         // classical polylog
1625         const ex x_pt = x.subs(rel, subs_options::no_pattern);
1626         if (m.info(info_flags::numeric) && x_pt.info(info_flags::numeric)) {
1627                 // First special case: x==0 (derivatives have poles)
1628                 if (x_pt.is_zero()) {
1629                         const symbol s;
1630                         ex ser;
1631                         // manually construct the primitive expansion
1632                         for (int i=1; i<order; ++i)
1633                                 ser += pow(s,i) / pow(numeric(i), m);
1634                         // substitute the argument's series expansion
1635                         ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
1636                         // maybe that was terminating, so add a proper order term
1637                         epvector nseq;
1638                         nseq.push_back(expair(Order(_ex1), order));
1639                         ser += pseries(rel, nseq);
1640                         // reexpanding it will collapse the series again
1641                         return ser.series(rel, order);
1642                 }
1643                 // TODO special cases: x==1 (branch point) and x real, >=1 (branch cut)
1644                 throw std::runtime_error("Li_series: don't know how to do the series expansion at this point!");
1645         }
1646         // all other cases should be safe, by now:
1647         throw do_taylor();  // caught by function::series()
1648 }
1649
1650
1651 static ex Li_deriv(const ex& m_, const ex& x_, unsigned deriv_param)
1652 {
1653         GINAC_ASSERT(deriv_param < 2);
1654         if (deriv_param == 0) {
1655                 return _ex0;
1656         }
1657         if (m_.nops() > 1) {
1658                 throw std::runtime_error("don't know how to derivate multiple polylogarithm!");
1659         }
1660         ex m;
1661         if (is_a<lst>(m_)) {
1662                 m = m_.op(0);
1663         } else {
1664                 m = m_;
1665         }
1666         ex x;
1667         if (is_a<lst>(x_)) {
1668                 x = x_.op(0);
1669         } else {
1670                 x = x_;
1671         }
1672         if (m > 0) {
1673                 return Li(m-1, x) / x;
1674         } else {
1675                 return 1/(1-x);
1676         }
1677 }
1678
1679
1680 static void Li_print_latex(const ex& m_, const ex& x_, const print_context& c)
1681 {
1682         lst m;
1683         if (is_a<lst>(m_)) {
1684                 m = ex_to<lst>(m_);
1685         } else {
1686                 m = lst(m_);
1687         }
1688         lst x;
1689         if (is_a<lst>(x_)) {
1690                 x = ex_to<lst>(x_);
1691         } else {
1692                 x = lst(x_);
1693         }
1694         c.s << "\\mathrm{Li}_{";
1695         lst::const_iterator itm = m.begin();
1696         (*itm).print(c);
1697         itm++;
1698         for (; itm != m.end(); itm++) {
1699                 c.s << ",";
1700                 (*itm).print(c);
1701         }
1702         c.s << "}(";
1703         lst::const_iterator itx = x.begin();
1704         (*itx).print(c);
1705         itx++;
1706         for (; itx != x.end(); itx++) {
1707                 c.s << ",";
1708                 (*itx).print(c);
1709         }
1710         c.s << ")";
1711 }
1712
1713
1714 REGISTER_FUNCTION(Li,
1715                   evalf_func(Li_evalf).
1716                   eval_func(Li_eval).
1717                   series_func(Li_series).
1718                   derivative_func(Li_deriv).
1719                   print_func<print_latex>(Li_print_latex).
1720                   do_not_evalf_params());
1721
1722
1723 //////////////////////////////////////////////////////////////////////
1724 //
1725 // Nielsen's generalized polylogarithm  S(n,p,x)
1726 //
1727 // helper functions
1728 //
1729 //////////////////////////////////////////////////////////////////////
1730
1731
1732 // anonymous namespace for helper functions
1733 namespace {
1734
1735
1736 // lookup table for special Euler-Zagier-Sums (used for S_n,p(x))
1737 // see fill_Yn()
1738 std::vector<std::vector<cln::cl_N> > Yn;
1739 int ynsize = 0; // number of Yn[]
1740 int ynlength = 100; // initial length of all Yn[i]
1741
1742
1743 // This function calculates the Y_n. The Y_n are needed for the evaluation of S_{n,p}(x).
1744 // The Y_n are basically Euler-Zagier sums with all m_i=1. They are subsums in the Z-sum
1745 // representing S_{n,p}(x).
1746 // The first index in Y_n corresponds to the parameter p minus one, i.e. the depth of the
1747 // equivalent Z-sum.
1748 // The second index in Y_n corresponds to the running index of the outermost sum in the full Z-sum
1749 // representing S_{n,p}(x).
1750 // The calculation of Y_n uses the values from Y_{n-1}.
1751 void fill_Yn(int n, const cln::float_format_t& prec)
1752 {
1753         const int initsize = ynlength;
1754         //const int initsize = initsize_Yn;
1755         cln::cl_N one = cln::cl_float(1, prec);
1756
1757         if (n) {
1758                 std::vector<cln::cl_N> buf(initsize);
1759                 std::vector<cln::cl_N>::iterator it = buf.begin();
1760                 std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
1761                 *it = (*itprev) / cln::cl_N(n+1) * one;
1762                 it++;
1763                 itprev++;
1764                 // sums with an index smaller than the depth are zero and need not to be calculated.
1765                 // calculation starts with depth, which is n+2)
1766                 for (int i=n+2; i<=initsize+n; i++) {
1767                         *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
1768                         it++;
1769                         itprev++;
1770                 }
1771                 Yn.push_back(buf);
1772         } else {
1773                 std::vector<cln::cl_N> buf(initsize);
1774                 std::vector<cln::cl_N>::iterator it = buf.begin();
1775                 *it = 1 * one;
1776                 it++;
1777                 for (int i=2; i<=initsize; i++) {
1778                         *it = *(it-1) + 1 / cln::cl_N(i) * one;
1779                         it++;
1780                 }
1781                 Yn.push_back(buf);
1782         }
1783         ynsize++;
1784 }
1785
1786
1787 // make Yn longer ... 
1788 void make_Yn_longer(int newsize, const cln::float_format_t& prec)
1789 {
1790
1791         cln::cl_N one = cln::cl_float(1, prec);
1792
1793         Yn[0].resize(newsize);
1794         std::vector<cln::cl_N>::iterator it = Yn[0].begin();
1795         it += ynlength;
1796         for (int i=ynlength+1; i<=newsize; i++) {
1797                 *it = *(it-1) + 1 / cln::cl_N(i) * one;
1798                 it++;
1799         }
1800
1801         for (int n=1; n<ynsize; n++) {
1802                 Yn[n].resize(newsize);
1803                 std::vector<cln::cl_N>::iterator it = Yn[n].begin();
1804                 std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
1805                 it += ynlength;
1806                 itprev += ynlength;
1807                 for (int i=ynlength+n+1; i<=newsize+n; i++) {
1808                         *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
1809                         it++;
1810                         itprev++;
1811                 }
1812         }
1813         
1814         ynlength = newsize;
1815 }
1816
1817
1818 // helper function for S(n,p,x)
1819 // [Kol] (7.2)
1820 cln::cl_N C(int n, int p)
1821 {
1822         cln::cl_N result;
1823
1824         for (int k=0; k<p; k++) {
1825                 for (int j=0; j<=(n+k-1)/2; j++) {
1826                         if (k == 0) {
1827                                 if (n & 1) {
1828                                         if (j & 1) {
1829                                                 result = result - 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1) / cln::factorial(2*j);
1830                                         }
1831                                         else {
1832                                                 result = result + 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1) / cln::factorial(2*j);
1833                                         }
1834                                 }
1835                         }
1836                         else {
1837                                 if (k & 1) {
1838                                         if (j & 1) {
1839                                                 result = result + cln::factorial(n+k-1)
1840                                                                   * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1841                                                                   / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1842                                         }
1843                                         else {
1844                                                 result = result - cln::factorial(n+k-1)
1845                                                                   * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1846                                                                   / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1847                                         }
1848                                 }
1849                                 else {
1850                                         if (j & 1) {
1851                                                 result = result - cln::factorial(n+k-1) * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1852                                                                   / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1853                                         }
1854                                         else {
1855                                                 result = result + cln::factorial(n+k-1)
1856                                                                   * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1857                                                                   / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1858                                         }
1859                                 }
1860                         }
1861                 }
1862         }
1863         int np = n+p;
1864         if ((np-1) & 1) {
1865                 if (((np)/2+n) & 1) {
1866                         result = -result - cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
1867                 }
1868                 else {
1869                         result = -result + cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
1870                 }
1871         }
1872
1873         return result;
1874 }
1875
1876
1877 // helper function for S(n,p,x)
1878 // [Kol] remark to (9.1)
1879 cln::cl_N a_k(int k)
1880 {
1881         cln::cl_N result;
1882
1883         if (k == 0) {
1884                 return 1;
1885         }
1886
1887         result = result;
1888         for (int m=2; m<=k; m++) {
1889                 result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * a_k(k-m);
1890         }
1891
1892         return -result / k;
1893 }
1894
1895
1896 // helper function for S(n,p,x)
1897 // [Kol] remark to (9.1)
1898 cln::cl_N b_k(int k)
1899 {
1900         cln::cl_N result;
1901
1902         if (k == 0) {
1903                 return 1;
1904         }
1905
1906         result = result;
1907         for (int m=2; m<=k; m++) {
1908                 result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * b_k(k-m);
1909         }
1910
1911         return result / k;
1912 }
1913
1914
1915 // helper function for S(n,p,x)
1916 cln::cl_N S_do_sum(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
1917 {
1918         static cln::float_format_t oldprec = cln::default_float_format;
1919
1920         if (p==1) {
1921                 return Li_projection(n+1, x, prec);
1922         }
1923
1924         // precision has changed, we need to clear lookup table Yn
1925         if ( oldprec != prec ) {
1926                 Yn.clear();
1927                 ynsize = 0;
1928                 ynlength = 100;
1929                 oldprec = prec;
1930         }
1931                 
1932         // check if precalculated values are sufficient
1933         if (p > ynsize+1) {
1934                 for (int i=ynsize; i<p-1; i++) {
1935                         fill_Yn(i, prec);
1936                 }
1937         }
1938
1939         // should be done otherwise
1940         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
1941         cln::cl_N xf = x * one;
1942         //cln::cl_N xf = x * cln::cl_float(1, prec);
1943
1944         cln::cl_N res;
1945         cln::cl_N resbuf;
1946         cln::cl_N factor = cln::expt(xf, p);
1947         int i = p;
1948         do {
1949                 resbuf = res;
1950                 if (i-p >= ynlength) {
1951                         // make Yn longer
1952                         make_Yn_longer(ynlength*2, prec);
1953                 }
1954                 res = res + factor / cln::expt(cln::cl_I(i),n+1) * Yn[p-2][i-p]; // should we check it? or rely on magic number? ...
1955                 //res = res + factor / cln::expt(cln::cl_I(i),n+1) * (*it); // should we check it? or rely on magic number? ...
1956                 factor = factor * xf;
1957                 i++;
1958         } while (res != resbuf);
1959         
1960         return res;
1961 }
1962
1963
1964 // helper function for S(n,p,x)
1965 cln::cl_N S_projection(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
1966 {
1967         // [Kol] (5.3)
1968         if (cln::abs(cln::realpart(x)) > cln::cl_F("0.5")) {
1969
1970                 cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(x),n)
1971                                    * cln::expt(cln::log(1-x),p) / cln::factorial(n) / cln::factorial(p);
1972
1973                 for (int s=0; s<n; s++) {
1974                         cln::cl_N res2;
1975                         for (int r=0; r<p; r++) {
1976                                 res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-x),r)
1977                                               * S_do_sum(p-r,n-s,1-x,prec) / cln::factorial(r);
1978                         }
1979                         result = result + cln::expt(cln::log(x),s) * (S_num(n-s,p,1) - res2) / cln::factorial(s);
1980                 }
1981
1982                 return result;
1983         }
1984         
1985         return S_do_sum(n, p, x, prec);
1986 }
1987
1988
1989 // helper function for S(n,p,x)
1990 const cln::cl_N S_num(int n, int p, const cln::cl_N& x)
1991 {
1992         if (x == 1) {
1993                 if (n == 1) {
1994                     // [Kol] (2.22) with (2.21)
1995                         return cln::zeta(p+1);
1996                 }
1997
1998                 if (p == 1) {
1999                     // [Kol] (2.22)
2000                         return cln::zeta(n+1);
2001                 }
2002
2003                 // [Kol] (9.1)
2004                 cln::cl_N result;
2005                 for (int nu=0; nu<n; nu++) {
2006                         for (int rho=0; rho<=p; rho++) {
2007                                 result = result + b_k(n-nu-1) * b_k(p-rho) * a_k(nu+rho+1)
2008                                                   * cln::factorial(nu+rho+1) / cln::factorial(rho) / cln::factorial(nu+1);
2009                         }
2010                 }
2011                 result = result * cln::expt(cln::cl_I(-1),n+p-1);
2012
2013                 return result;
2014         }
2015         else if (x == -1) {
2016                 // [Kol] (2.22)
2017                 if (p == 1) {
2018                         return -(1-cln::expt(cln::cl_I(2),-n)) * cln::zeta(n+1);
2019                 }
2020 //              throw std::runtime_error("don't know how to evaluate this function!");
2021         }
2022
2023         // what is the desired float format?
2024         // first guess: default format
2025         cln::float_format_t prec = cln::default_float_format;
2026         const cln::cl_N value = x;
2027         // second guess: the argument's format
2028         if (!instanceof(realpart(value), cln::cl_RA_ring))
2029                 prec = cln::float_format(cln::the<cln::cl_F>(cln::realpart(value)));
2030         else if (!instanceof(imagpart(value), cln::cl_RA_ring))
2031                 prec = cln::float_format(cln::the<cln::cl_F>(cln::imagpart(value)));
2032
2033         // [Kol] (5.3)
2034         if ((cln::realpart(value) < -0.5) || (n == 0) || ((cln::abs(value) <= 1) && (cln::abs(value) > 0.95))) {
2035
2036                 cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(value),n)
2037                                    * cln::expt(cln::log(1-value),p) / cln::factorial(n) / cln::factorial(p);
2038
2039                 for (int s=0; s<n; s++) {
2040                         cln::cl_N res2;
2041                         for (int r=0; r<p; r++) {
2042                                 res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-value),r)
2043                                               * S_num(p-r,n-s,1-value) / cln::factorial(r);
2044                         }
2045                         result = result + cln::expt(cln::log(value),s) * (S_num(n-s,p,1) - res2) / cln::factorial(s);
2046                 }
2047
2048                 return result;
2049                 
2050         }
2051         // [Kol] (5.12)
2052         if (cln::abs(value) > 1) {
2053                 
2054                 cln::cl_N result;
2055
2056                 for (int s=0; s<p; s++) {
2057                         for (int r=0; r<=s; r++) {
2058                                 result = result + cln::expt(cln::cl_I(-1),s) * cln::expt(cln::log(-value),r) * cln::factorial(n+s-r-1)
2059                                                   / cln::factorial(r) / cln::factorial(s-r) / cln::factorial(n-1)
2060                                                   * S_num(n+s-r,p-s,cln::recip(value));
2061                         }
2062                 }
2063                 result = result * cln::expt(cln::cl_I(-1),n);
2064
2065                 cln::cl_N res2;
2066                 for (int r=0; r<n; r++) {
2067                         res2 = res2 + cln::expt(cln::log(-value),r) * C(n-r,p) / cln::factorial(r);
2068                 }
2069                 res2 = res2 + cln::expt(cln::log(-value),n+p) / cln::factorial(n+p);
2070
2071                 result = result + cln::expt(cln::cl_I(-1),p) * res2;
2072
2073                 return result;
2074         }
2075         else {
2076                 return S_projection(n, p, value, prec);
2077         }
2078 }
2079
2080
2081 } // end of anonymous namespace
2082
2083
2084 //////////////////////////////////////////////////////////////////////
2085 //
2086 // Nielsen's generalized polylogarithm  S(n,p,x)
2087 //
2088 // GiNaC function
2089 //
2090 //////////////////////////////////////////////////////////////////////
2091
2092
2093 static ex S_evalf(const ex& n, const ex& p, const ex& x)
2094 {
2095         if (n.info(info_flags::posint) && p.info(info_flags::posint)) {
2096                 const int n_ = ex_to<numeric>(n).to_int();
2097                 const int p_ = ex_to<numeric>(p).to_int();
2098                 if (is_a<numeric>(x)) {
2099                         const cln::cl_N x_ = ex_to<numeric>(x).to_cl_N();
2100                         const cln::cl_N result = S_num(n_, p_, x_);
2101                         return numeric(result);
2102                 } else {
2103                         ex x_val = x.evalf();
2104                         if (is_a<numeric>(x_val)) {
2105                                 const cln::cl_N x_val_ = ex_to<numeric>(x_val).to_cl_N();
2106                                 const cln::cl_N result = S_num(n_, p_, x_val_);
2107                                 return numeric(result);
2108                         }
2109                 }
2110         }
2111         return S(n, p, x).hold();
2112 }
2113
2114
2115 static ex S_eval(const ex& n, const ex& p, const ex& x)
2116 {
2117         if (n.info(info_flags::posint) && p.info(info_flags::posint)) {
2118                 if (x == 0) {
2119                         return _ex0;
2120                 }
2121                 if (x == 1) {
2122                         lst m(n+1);
2123                         for (int i=ex_to<numeric>(p).to_int()-1; i>0; i--) {
2124                                 m.append(1);
2125                         }
2126                         return zeta(m);
2127                 }
2128                 if (p == 1) {
2129                         return Li(n+1, x);
2130                 }
2131                 if (x.info(info_flags::numeric) && (!x.info(info_flags::crational))) {
2132                         int n_ = ex_to<numeric>(n).to_int();
2133                         int p_ = ex_to<numeric>(p).to_int();
2134                         const cln::cl_N x_ = ex_to<numeric>(x).to_cl_N();
2135                         const cln::cl_N result = S_num(n_, p_, x_);
2136                         return numeric(result);
2137                 }
2138         }
2139         if (n.is_zero()) {
2140                 // [Kol] (5.3)
2141                 return pow(-log(1-x), p) / factorial(p);
2142         }
2143         return S(n, p, x).hold();
2144 }
2145
2146
2147 static ex S_series(const ex& n, const ex& p, const ex& x, const relational& rel, int order, unsigned options)
2148 {
2149         if (p == _ex1) {
2150                 return Li(n+1, x).series(rel, order, options);
2151         }
2152
2153         const ex x_pt = x.subs(rel, subs_options::no_pattern);
2154         if (n.info(info_flags::posint) && p.info(info_flags::posint) && x_pt.info(info_flags::numeric)) {
2155                 // First special case: x==0 (derivatives have poles)
2156                 if (x_pt.is_zero()) {
2157                         const symbol s;
2158                         ex ser;
2159                         // manually construct the primitive expansion
2160                         // subsum = Euler-Zagier-Sum is needed
2161                         // dirty hack (slow ...) calculation of subsum:
2162                         std::vector<ex> presubsum, subsum;
2163                         subsum.push_back(0);
2164                         for (int i=1; i<order-1; ++i) {
2165                                 subsum.push_back(subsum[i-1] + numeric(1, i));
2166                         }
2167                         for (int depth=2; depth<p; ++depth) {
2168                                 presubsum = subsum;
2169                                 for (int i=1; i<order-1; ++i) {
2170                                         subsum[i] = subsum[i-1] + numeric(1, i) * presubsum[i-1];
2171                                 }
2172                         }
2173                                 
2174                         for (int i=1; i<order; ++i) {
2175                                 ser += pow(s,i) / pow(numeric(i), n+1) * subsum[i-1];
2176                         }
2177                         // substitute the argument's series expansion
2178                         ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
2179                         // maybe that was terminating, so add a proper order term
2180                         epvector nseq;
2181                         nseq.push_back(expair(Order(_ex1), order));
2182                         ser += pseries(rel, nseq);
2183                         // reexpanding it will collapse the series again
2184                         return ser.series(rel, order);
2185                 }
2186                 // TODO special cases: x==1 (branch point) and x real, >=1 (branch cut)
2187                 throw std::runtime_error("S_series: don't know how to do the series expansion at this point!");
2188         }
2189         // all other cases should be safe, by now:
2190         throw do_taylor();  // caught by function::series()
2191 }
2192
2193
2194 static ex S_deriv(const ex& n, const ex& p, const ex& x, unsigned deriv_param)
2195 {
2196         GINAC_ASSERT(deriv_param < 3);
2197         if (deriv_param < 2) {
2198                 return _ex0;
2199         }
2200         if (n > 0) {
2201                 return S(n-1, p, x) / x;
2202         } else {
2203                 return S(n, p-1, x) / (1-x);
2204         }
2205 }
2206
2207
2208 static void S_print_latex(const ex& n, const ex& p, const ex& x, const print_context& c)
2209 {
2210         c.s << "\\mathrm{S}_{";
2211         n.print(c);
2212         c.s << ",";
2213         p.print(c);
2214         c.s << "}(";
2215         x.print(c);
2216         c.s << ")";
2217 }
2218
2219
2220 REGISTER_FUNCTION(S,
2221                   evalf_func(S_evalf).
2222                   eval_func(S_eval).
2223                   series_func(S_series).
2224                   derivative_func(S_deriv).
2225                   print_func<print_latex>(S_print_latex).
2226                   do_not_evalf_params());
2227
2228
2229 //////////////////////////////////////////////////////////////////////
2230 //
2231 // Harmonic polylogarithm  H(m,x)
2232 //
2233 // helper functions
2234 //
2235 //////////////////////////////////////////////////////////////////////
2236
2237
2238 // anonymous namespace for helper functions
2239 namespace {
2240
2241         
2242 // regulates the pole (used by 1/x-transformation)
2243 symbol H_polesign("IMSIGN");
2244
2245
2246 // convert parameters from H to Li representation
2247 // parameters are expected to be in expanded form, i.e. only 0, 1 and -1
2248 // returns true if some parameters are negative
2249 bool convert_parameter_H_to_Li(const lst& l, lst& m, lst& s, ex& pf)
2250 {
2251         // expand parameter list
2252         lst mexp;
2253         for (lst::const_iterator it = l.begin(); it != l.end(); it++) {
2254                 if (*it > 1) {
2255                         for (ex count=*it-1; count > 0; count--) {
2256                                 mexp.append(0);
2257                         }
2258                         mexp.append(1);
2259                 } else if (*it < -1) {
2260                         for (ex count=*it+1; count < 0; count++) {
2261                                 mexp.append(0);
2262                         }
2263                         mexp.append(-1);
2264                 } else {
2265                         mexp.append(*it);
2266                 }
2267         }
2268         
2269         ex signum = 1;
2270         pf = 1;
2271         bool has_negative_parameters = false;
2272         ex acc = 1;
2273         for (lst::const_iterator it = mexp.begin(); it != mexp.end(); it++) {
2274                 if (*it == 0) {
2275                         acc++;
2276                         continue;
2277                 }
2278                 if (*it > 0) {
2279                         m.append((*it+acc-1) * signum);
2280                 } else {
2281                         m.append((*it-acc+1) * signum);
2282                 }
2283                 acc = 1;
2284                 signum = *it;
2285                 pf *= *it;
2286                 if (pf < 0) {
2287                         has_negative_parameters = true;
2288                 }
2289         }
2290         if (has_negative_parameters) {
2291                 for (std::size_t i=0; i<m.nops(); i++) {
2292                         if (m.op(i) < 0) {
2293                                 m.let_op(i) = -m.op(i);
2294                                 s.append(-1);
2295                         } else {
2296                                 s.append(1);
2297                         }
2298                 }
2299         }
2300         
2301         return has_negative_parameters;
2302 }
2303
2304
2305 // recursivly transforms H to corresponding multiple polylogarithms
2306 struct map_trafo_H_convert_to_Li : public map_function
2307 {
2308         ex operator()(const ex& e)
2309         {
2310                 if (is_a<add>(e) || is_a<mul>(e)) {
2311                         return e.map(*this);
2312                 }
2313                 if (is_a<function>(e)) {
2314                         std::string name = ex_to<function>(e).get_name();
2315                         if (name == "H") {
2316                                 lst parameter;
2317                                 if (is_a<lst>(e.op(0))) {
2318                                                 parameter = ex_to<lst>(e.op(0));
2319                                 } else {
2320                                         parameter = lst(e.op(0));
2321                                 }
2322                                 ex arg = e.op(1);
2323
2324                                 lst m;
2325                                 lst s;
2326                                 ex pf;
2327                                 if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
2328                                         s.let_op(0) = s.op(0) * arg;
2329                                         return pf * Li(m, s).hold();
2330                                 } else {
2331                                         for (std::size_t i=0; i<m.nops(); i++) {
2332                                                 s.append(1);
2333                                         }
2334                                         s.let_op(0) = s.op(0) * arg;
2335                                         return Li(m, s).hold();
2336                                 }
2337                         }
2338                 }
2339                 return e;
2340         }
2341 };
2342
2343
2344 // recursivly transforms H to corresponding zetas
2345 struct map_trafo_H_convert_to_zeta : public map_function
2346 {
2347         ex operator()(const ex& e)
2348         {
2349                 if (is_a<add>(e) || is_a<mul>(e)) {
2350                         return e.map(*this);
2351                 }
2352                 if (is_a<function>(e)) {
2353                         std::string name = ex_to<function>(e).get_name();
2354                         if (name == "H") {
2355                                 lst parameter;
2356                                 if (is_a<lst>(e.op(0))) {
2357                                                 parameter = ex_to<lst>(e.op(0));
2358                                 } else {
2359                                         parameter = lst(e.op(0));
2360                                 }
2361
2362                                 lst m;
2363                                 lst s;
2364                                 ex pf;
2365                                 if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
2366                                         return pf * zeta(m, s);
2367                                 } else {
2368                                         return zeta(m);
2369                                 }
2370                         }
2371                 }
2372                 return e;
2373         }
2374 };
2375
2376
2377 // remove trailing zeros from H-parameters
2378 struct map_trafo_H_reduce_trailing_zeros : public map_function
2379 {
2380         ex operator()(const ex& e)
2381         {
2382                 if (is_a<add>(e) || is_a<mul>(e)) {
2383                         return e.map(*this);
2384                 }
2385                 if (is_a<function>(e)) {
2386                         std::string name = ex_to<function>(e).get_name();
2387                         if (name == "H") {
2388                                 lst parameter;
2389                                 if (is_a<lst>(e.op(0))) {
2390                                         parameter = ex_to<lst>(e.op(0));
2391                                 } else {
2392                                         parameter = lst(e.op(0));
2393                                 }
2394                                 ex arg = e.op(1);
2395                                 if (parameter.op(parameter.nops()-1) == 0) {
2396                                         
2397                                         //
2398                                         if (parameter.nops() == 1) {
2399                                                 return log(arg);
2400                                         }
2401                                         
2402                                         //
2403                                         lst::const_iterator it = parameter.begin();
2404                                         while ((it != parameter.end()) && (*it == 0)) {
2405                                                 it++;
2406                                         }
2407                                         if (it == parameter.end()) {
2408                                                 return pow(log(arg),parameter.nops()) / factorial(parameter.nops());
2409                                         }
2410                                         
2411                                         //
2412                                         parameter.remove_last();
2413                                         std::size_t lastentry = parameter.nops();
2414                                         while ((lastentry > 0) && (parameter[lastentry-1] == 0)) {
2415                                                 lastentry--;
2416                                         }
2417                                         
2418                                         //
2419                                         ex result = log(arg) * H(parameter,arg).hold();
2420                                         ex acc = 0;
2421                                         for (ex i=0; i<lastentry; i++) {
2422                                                 if (parameter[i] > 0) {
2423                                                         parameter[i]++;
2424                                                         result -= (acc + parameter[i]-1) * H(parameter, arg).hold();
2425                                                         parameter[i]--;
2426                                                         acc = 0;
2427                                                 } else if (parameter[i] < 0) {
2428                                                         parameter[i]--;
2429                                                         result -= (acc + abs(parameter[i]+1)) * H(parameter, arg).hold();
2430                                                         parameter[i]++;
2431                                                         acc = 0;
2432                                                 } else {
2433                                                         acc++;
2434                                                 }
2435                                         }
2436                                         
2437                                         if (lastentry < parameter.nops()) {
2438                                                 result = result / (parameter.nops()-lastentry+1);
2439                                                 return result.map(*this);
2440                                         } else {
2441                                                 return result;
2442                                         }
2443                                 }
2444                         }
2445                 }
2446                 return e;
2447         }
2448 };
2449
2450
2451 // returns an expression with zeta functions corresponding to the parameter list for H
2452 ex convert_H_to_zeta(const lst& m)
2453 {
2454         symbol xtemp("xtemp");
2455         map_trafo_H_reduce_trailing_zeros filter;
2456         map_trafo_H_convert_to_zeta filter2;
2457         return filter2(filter(H(m, xtemp).hold())).subs(xtemp == 1);
2458 }
2459
2460
2461 // convert signs form Li to H representation
2462 lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf)
2463 {
2464         lst res;
2465         lst::const_iterator itm = m.begin();
2466         lst::const_iterator itx = ++x.begin();
2467         int signum = 1;
2468         pf = _ex1;
2469         res.append(*itm);
2470         itm++;
2471         while (itx != x.end()) {
2472                 signum *= (*itx > 0) ? 1 : -1;
2473                 pf *= signum;
2474                 res.append((*itm) * signum);
2475                 itm++;
2476                 itx++;
2477         }
2478         return res;
2479 }
2480
2481
2482 // multiplies an one-dimensional H with another H
2483 // [ReV] (18)
2484 ex trafo_H_mult(const ex& h1, const ex& h2)
2485 {
2486         ex res;
2487         ex hshort;
2488         lst hlong;
2489         ex h1nops = h1.op(0).nops();
2490         ex h2nops = h2.op(0).nops();
2491         if (h1nops > 1) {
2492                 hshort = h2.op(0).op(0);
2493                 hlong = ex_to<lst>(h1.op(0));
2494         } else {
2495                 hshort = h1.op(0).op(0);
2496                 if (h2nops > 1) {
2497                         hlong = ex_to<lst>(h2.op(0));
2498                 } else {
2499                         hlong = h2.op(0).op(0);
2500                 }
2501         }
2502         for (std::size_t i=0; i<=hlong.nops(); i++) {
2503                 lst newparameter;
2504                 std::size_t j=0;
2505                 for (; j<i; j++) {
2506                         newparameter.append(hlong[j]);
2507                 }
2508                 newparameter.append(hshort);
2509                 for (; j<hlong.nops(); j++) {
2510                         newparameter.append(hlong[j]);
2511                 }
2512                 res += H(newparameter, h1.op(1)).hold();
2513         }
2514         return res;
2515 }
2516
2517
2518 // applies trafo_H_mult recursively on expressions
2519 struct map_trafo_H_mult : public map_function
2520 {
2521         ex operator()(const ex& e)
2522         {
2523                 if (is_a<add>(e)) {
2524                         return e.map(*this);
2525                 }
2526
2527                 if (is_a<mul>(e)) {
2528
2529                         ex result = 1;
2530                         ex firstH;
2531                         lst Hlst;
2532                         for (std::size_t pos=0; pos<e.nops(); pos++) {
2533                                 if (is_a<power>(e.op(pos)) && is_a<function>(e.op(pos).op(0))) {
2534                                         std::string name = ex_to<function>(e.op(pos).op(0)).get_name();
2535                                         if (name == "H") {
2536                                                 for (ex i=0; i<e.op(pos).op(1); i++) {
2537                                                         Hlst.append(e.op(pos).op(0));
2538                                                 }
2539                                                 continue;
2540                                         }
2541                                 } else if (is_a<function>(e.op(pos))) {
2542                                         std::string name = ex_to<function>(e.op(pos)).get_name();
2543                                         if (name == "H") {
2544                                                 if (e.op(pos).op(0).nops() > 1) {
2545                                                         firstH = e.op(pos);
2546                                                 } else {
2547                                                         Hlst.append(e.op(pos));
2548                                                 }
2549                                                 continue;
2550                                         }
2551                                 }
2552                                 result *= e.op(pos);
2553                         }
2554                         if (firstH == 0) {
2555                                 if (Hlst.nops() > 0) {
2556                                         firstH = Hlst[Hlst.nops()-1];
2557                                         Hlst.remove_last();
2558                                 } else {
2559                                         return e;
2560                                 }
2561                         }
2562
2563                         if (Hlst.nops() > 0) {
2564                                 ex buffer = trafo_H_mult(firstH, Hlst.op(0));
2565                                 result *= buffer;
2566                                 for (std::size_t i=1; i<Hlst.nops(); i++) {
2567                                         result *= Hlst.op(i);
2568                                 }
2569                                 result = result.expand();
2570                                 map_trafo_H_mult recursion;
2571                                 return recursion(result);
2572                         } else {
2573                                 return e;
2574                         }
2575
2576                 }
2577                 return e;
2578         }
2579 };
2580
2581
2582 // do integration [ReV] (55)
2583 // put parameter 0 in front of existing parameters
2584 ex trafo_H_1tx_prepend_zero(const ex& e, const ex& arg)
2585 {
2586         ex h;
2587         std::string name;
2588         if (is_a<function>(e)) {
2589                 name = ex_to<function>(e).get_name();
2590         }
2591         if (name == "H") {
2592                 h = e;
2593         } else {
2594                 for (std::size_t i=0; i<e.nops(); i++) {
2595                         if (is_a<function>(e.op(i))) {
2596                                 std::string name = ex_to<function>(e.op(i)).get_name();
2597                                 if (name == "H") {
2598                                         h = e.op(i);
2599                                 }
2600                         }
2601                 }
2602         }
2603         if (h != 0) {
2604                 lst newparameter = ex_to<lst>(h.op(0));
2605                 newparameter.prepend(0);
2606                 ex addzeta = convert_H_to_zeta(newparameter);
2607                 return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
2608         } else {
2609                 return e * (-H(lst(ex(0)),1/arg).hold());
2610         }
2611 }
2612
2613
2614 // do integration [ReV] (49)
2615 // put parameter 1 in front of existing parameters
2616 ex trafo_H_prepend_one(const ex& e, const ex& arg)
2617 {
2618         ex h;
2619         std::string name;
2620         if (is_a<function>(e)) {
2621                 name = ex_to<function>(e).get_name();
2622         }
2623         if (name == "H") {
2624                 h = e;
2625         } else {
2626                 for (std::size_t i=0; i<e.nops(); i++) {
2627                         if (is_a<function>(e.op(i))) {
2628                                 std::string name = ex_to<function>(e.op(i)).get_name();
2629                                 if (name == "H") {
2630                                         h = e.op(i);
2631                                 }
2632                         }
2633                 }
2634         }
2635         if (h != 0) {
2636                 lst newparameter = ex_to<lst>(h.op(0));
2637                 newparameter.prepend(1);
2638                 return e.subs(h == H(newparameter, h.op(1)).hold());
2639         } else {
2640                 return e * H(lst(ex(1)),1-arg).hold();
2641         }
2642 }
2643
2644
2645 // do integration [ReV] (55)
2646 // put parameter -1 in front of existing parameters
2647 ex trafo_H_1tx_prepend_minusone(const ex& e, const ex& arg)
2648 {
2649         ex h;
2650         std::string name;
2651         if (is_a<function>(e)) {
2652                 name = ex_to<function>(e).get_name();
2653         }
2654         if (name == "H") {
2655                 h = e;
2656         } else {
2657                 for (std::size_t i=0; i<e.nops(); i++) {
2658                         if (is_a<function>(e.op(i))) {
2659                                 std::string name = ex_to<function>(e.op(i)).get_name();
2660                                 if (name == "H") {
2661                                         h = e.op(i);
2662                                 }
2663                         }
2664                 }
2665         }
2666         if (h != 0) {
2667                 lst newparameter = ex_to<lst>(h.op(0));
2668                 newparameter.prepend(-1);
2669                 ex addzeta = convert_H_to_zeta(newparameter);
2670                 return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
2671         } else {
2672                 ex addzeta = convert_H_to_zeta(lst(ex(-1)));
2673                 return (e * (addzeta - H(lst(ex(-1)),1/arg).hold())).expand();
2674         }
2675 }
2676
2677
2678 // do integration [ReV] (55)
2679 // put parameter -1 in front of existing parameters
2680 ex trafo_H_1mxt1px_prepend_minusone(const ex& e, const ex& arg)
2681 {
2682         ex h;
2683         std::string name;
2684         if (is_a<function>(e)) {
2685                 name = ex_to<function>(e).get_name();
2686         }
2687         if (name == "H") {
2688                 h = e;
2689         } else {
2690                 for (std::size_t i = 0; i < e.nops(); i++) {
2691                         if (is_a<function>(e.op(i))) {
2692                                 std::string name = ex_to<function>(e.op(i)).get_name();
2693                                 if (name == "H") {
2694                                         h = e.op(i);
2695                                 }
2696                         }
2697                 }
2698         }
2699         if (h != 0) {
2700                 lst newparameter = ex_to<lst>(h.op(0));
2701                 newparameter.prepend(-1);
2702                 return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
2703         } else {
2704                 return (e * H(lst(ex(-1)),(1-arg)/(1+arg)).hold()).expand();
2705         }
2706 }
2707
2708
2709 // do integration [ReV] (55)
2710 // put parameter 1 in front of existing parameters
2711 ex trafo_H_1mxt1px_prepend_one(const ex& e, const ex& arg)
2712 {
2713         ex h;
2714         std::string name;
2715         if (is_a<function>(e)) {
2716                 name = ex_to<function>(e).get_name();
2717         }
2718         if (name == "H") {
2719                 h = e;
2720         } else {
2721                 for (std::size_t i = 0; i < e.nops(); i++) {
2722                         if (is_a<function>(e.op(i))) {
2723                                 std::string name = ex_to<function>(e.op(i)).get_name();
2724                                 if (name == "H") {
2725                                         h = e.op(i);
2726                                 }
2727                         }
2728                 }
2729         }
2730         if (h != 0) {
2731                 lst newparameter = ex_to<lst>(h.op(0));
2732                 newparameter.prepend(1);
2733                 return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
2734         } else {
2735                 return (e * H(lst(ex(1)),(1-arg)/(1+arg)).hold()).expand();
2736         }
2737 }
2738
2739
2740 // do x -> 1-x transformation
2741 struct map_trafo_H_1mx : public map_function
2742 {
2743         ex operator()(const ex& e)
2744         {
2745                 if (is_a<add>(e) || is_a<mul>(e)) {
2746                         return e.map(*this);
2747                 }
2748                 
2749                 if (is_a<function>(e)) {
2750                         std::string name = ex_to<function>(e).get_name();
2751                         if (name == "H") {
2752
2753                                 lst parameter = ex_to<lst>(e.op(0));
2754                                 ex arg = e.op(1);
2755
2756                                 // special cases if all parameters are either 0, 1 or -1
2757                                 bool allthesame = true;
2758                                 if (parameter.op(0) == 0) {
2759                                         for (std::size_t i = 1; i < parameter.nops(); i++) {
2760                                                 if (parameter.op(i) != 0) {
2761                                                         allthesame = false;
2762                                                         break;
2763                                                 }
2764                                         }
2765                                         if (allthesame) {
2766                                                 lst newparameter;
2767                                                 for (int i=parameter.nops(); i>0; i--) {
2768                                                         newparameter.append(1);
2769                                                 }
2770                                                 return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
2771                                         }
2772                                 } else if (parameter.op(0) == -1) {
2773                                         throw std::runtime_error("map_trafo_H_1mx: cannot handle weights equal -1!");
2774                                 } else {
2775                                         for (std::size_t i = 1; i < parameter.nops(); i++) {
2776                                                 if (parameter.op(i) != 1) {
2777                                                         allthesame = false;
2778                                                         break;
2779                                                 }
2780                                         }
2781                                         if (allthesame) {
2782                                                 lst newparameter;
2783                                                 for (int i=parameter.nops(); i>0; i--) {
2784                                                         newparameter.append(0);
2785                                                 }
2786                                                 return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
2787                                         }
2788                                 }
2789
2790                                 lst newparameter = parameter;
2791                                 newparameter.remove_first();
2792
2793                                 if (parameter.op(0) == 0) {
2794
2795                                         // leading zero
2796                                         ex res = convert_H_to_zeta(parameter);
2797                                         //ex res = convert_from_RV(parameter, 1).subs(H(wild(1),wild(2))==zeta(wild(1)));
2798                                         map_trafo_H_1mx recursion;
2799                                         ex buffer = recursion(H(newparameter, arg).hold());
2800                                         if (is_a<add>(buffer)) {
2801                                                 for (std::size_t i = 0; i < buffer.nops(); i++) {
2802                                                         res -= trafo_H_prepend_one(buffer.op(i), arg);
2803                                                 }
2804                                         } else {
2805                                                 res -= trafo_H_prepend_one(buffer, arg);
2806                                         }
2807                                         return res;
2808
2809                                 } else {
2810
2811                                         // leading one
2812                                         map_trafo_H_1mx recursion;
2813                                         map_trafo_H_mult unify;
2814                                         ex res = H(lst(ex(1)), arg).hold() * H(newparameter, arg).hold();
2815                                         std::size_t firstzero = 0;
2816                                         while (parameter.op(firstzero) == 1) {
2817                                                 firstzero++;
2818                                         }
2819                                         for (std::size_t i = firstzero-1; i < parameter.nops()-1; i++) {
2820                                                 lst newparameter;
2821                                                 std::size_t j=0;
2822                                                 for (; j<=i; j++) {
2823                                                         newparameter.append(parameter[j+1]);
2824                                                 }
2825                                                 newparameter.append(1);
2826                                                 for (; j<parameter.nops()-1; j++) {
2827                                                         newparameter.append(parameter[j+1]);
2828                                                 }
2829                                                 res -= H(newparameter, arg).hold();
2830                                         }
2831                                         res = recursion(res).expand() / firstzero;
2832                                         return unify(res);
2833                                 }
2834                         }
2835                 }
2836                 return e;
2837         }
2838 };
2839
2840
2841 // do x -> 1/x transformation
2842 struct map_trafo_H_1overx : public map_function
2843 {
2844         ex operator()(const ex& e)
2845         {
2846                 if (is_a<add>(e) || is_a<mul>(e)) {
2847                         return e.map(*this);
2848                 }
2849
2850                 if (is_a<function>(e)) {
2851                         std::string name = ex_to<function>(e).get_name();
2852                         if (name == "H") {
2853
2854                                 lst parameter = ex_to<lst>(e.op(0));
2855                                 ex arg = e.op(1);
2856
2857                                 // special cases if all parameters are either 0, 1 or -1
2858                                 bool allthesame = true;
2859                                 if (parameter.op(0) == 0) {
2860                                         for (std::size_t i = 1; i < parameter.nops(); i++) {
2861                                                 if (parameter.op(i) != 0) {
2862                                                         allthesame = false;
2863                                                         break;
2864                                                 }
2865                                         }
2866                                         if (allthesame) {
2867                                                 return pow(-1, parameter.nops()) * H(parameter, 1/arg).hold();
2868                                         }
2869                                 } else if (parameter.op(0) == -1) {
2870                                         for (std::size_t i = 1; i < parameter.nops(); i++) {
2871                                                 if (parameter.op(i) != -1) {
2872                                                         allthesame = false;
2873                                                         break;
2874                                                 }
2875                                         }
2876                                         if (allthesame) {
2877                                                 map_trafo_H_mult unify;
2878                                                 return unify((pow(H(lst(ex(-1)),1/arg).hold() - H(lst(ex(0)),1/arg).hold(), parameter.nops())
2879                                                        / factorial(parameter.nops())).expand());
2880                                         }
2881                                 } else {
2882                                         for (std::size_t i = 1; i < parameter.nops(); i++) {
2883                                                 if (parameter.op(i) != 1) {
2884                                                         allthesame = false;
2885                                                         break;
2886                                                 }
2887                                         }
2888                                         if (allthesame) {
2889                                                 map_trafo_H_mult unify;
2890                                                 return unify((pow(H(lst(ex(1)),1/arg).hold() + H(lst(ex(0)),1/arg).hold() + H_polesign, parameter.nops())
2891                                                        / factorial(parameter.nops())).expand());
2892                                         }
2893                                 }
2894
2895                                 lst newparameter = parameter;
2896                                 newparameter.remove_first();
2897
2898                                 if (parameter.op(0) == 0) {
2899                                         
2900                                         // leading zero
2901                                         ex res = convert_H_to_zeta(parameter);
2902                                         map_trafo_H_1overx recursion;
2903                                         ex buffer = recursion(H(newparameter, arg).hold());
2904                                         if (is_a<add>(buffer)) {
2905                                                 for (std::size_t i = 0; i < buffer.nops(); i++) {
2906                                                         res += trafo_H_1tx_prepend_zero(buffer.op(i), arg);
2907                                                 }
2908                                         } else {
2909                                                 res += trafo_H_1tx_prepend_zero(buffer, arg);
2910                                         }
2911                                         return res;
2912
2913                                 } else if (parameter.op(0) == -1) {
2914
2915                                         // leading negative one
2916                                         ex res = convert_H_to_zeta(parameter);
2917                                         map_trafo_H_1overx recursion;
2918                                         ex buffer = recursion(H(newparameter, arg).hold());
2919                                         if (is_a<add>(buffer)) {
2920                                                 for (std::size_t i = 0; i < buffer.nops(); i++) {
2921                                                         res += trafo_H_1tx_prepend_zero(buffer.op(i), arg) - trafo_H_1tx_prepend_minusone(buffer.op(i), arg);
2922                                                 }
2923                                         } else {
2924                                                 res += trafo_H_1tx_prepend_zero(buffer, arg) - trafo_H_1tx_prepend_minusone(buffer, arg);
2925                                         }
2926                                         return res;
2927
2928                                 } else {
2929
2930                                         // leading one
2931                                         map_trafo_H_1overx recursion;
2932                                         map_trafo_H_mult unify;
2933                                         ex res = H(lst(ex(1)), arg).hold() * H(newparameter, arg).hold();
2934                                         std::size_t firstzero = 0;
2935                                         while (parameter.op(firstzero) == 1) {
2936                                                 firstzero++;
2937                                         }
2938                                         for (std::size_t i = firstzero-1; i < parameter.nops() - 1; i++) {
2939                                                 lst newparameter;
2940                                                 std::size_t j = 0;
2941                                                 for (; j<=i; j++) {
2942                                                         newparameter.append(parameter[j+1]);
2943                                                 }
2944                                                 newparameter.append(1);
2945                                                 for (; j<parameter.nops()-1; j++) {
2946                                                         newparameter.append(parameter[j+1]);
2947                                                 }
2948                                                 res -= H(newparameter, arg).hold();
2949                                         }
2950                                         res = recursion(res).expand() / firstzero;
2951                                         return unify(res);
2952
2953                                 }
2954
2955                         }
2956                 }
2957                 return e;
2958         }
2959 };
2960
2961
2962 // do x -> (1-x)/(1+x) transformation
2963 struct map_trafo_H_1mxt1px : public map_function
2964 {
2965         ex operator()(const ex& e)
2966         {
2967                 if (is_a<add>(e) || is_a<mul>(e)) {
2968                         return e.map(*this);
2969                 }
2970
2971                 if (is_a<function>(e)) {
2972                         std::string name = ex_to<function>(e).get_name();
2973                         if (name == "H") {
2974
2975                                 lst parameter = ex_to<lst>(e.op(0));
2976                                 ex arg = e.op(1);
2977
2978                                 // special cases if all parameters are either 0, 1 or -1
2979                                 bool allthesame = true;
2980                                 if (parameter.op(0) == 0) {
2981                                         for (std::size_t i = 1; i < parameter.nops(); i++) {
2982                                                 if (parameter.op(i) != 0) {
2983                                                         allthesame = false;
2984                                                         break;
2985                                                 }
2986                                         }
2987                                         if (allthesame) {
2988                                                 map_trafo_H_mult unify;
2989                                                 return unify((pow(-H(lst(ex(1)),(1-arg)/(1+arg)).hold() - H(lst(ex(-1)),(1-arg)/(1+arg)).hold(), parameter.nops())
2990                                                        / factorial(parameter.nops())).expand());
2991                                         }
2992                                 } else if (parameter.op(0) == -1) {
2993                                         for (std::size_t i = 1; i < parameter.nops(); i++) {
2994                                                 if (parameter.op(i) != -1) {
2995                                                         allthesame = false;
2996                                                         break;
2997                                                 }
2998                                         }
2999                                         if (allthesame) {
3000                                                 map_trafo_H_mult unify;
3001                                                 return unify((pow(log(2) - H(lst(ex(-1)),(1-arg)/(1+arg)).hold(), parameter.nops())
3002                                                        / factorial(parameter.nops())).expand());
3003                                         }
3004                                 } else {
3005                                         for (std::size_t i = 1; i < parameter.nops(); i++) {
3006                                                 if (parameter.op(i) != 1) {
3007                                                         allthesame = false;
3008                                                         break;
3009                                                 }
3010                                         }
3011                                         if (allthesame) {
3012                                                 map_trafo_H_mult unify;
3013                                                 return unify((pow(-log(2) - H(lst(ex(0)),(1-arg)/(1+arg)).hold() + H(lst(ex(-1)),(1-arg)/(1+arg)).hold(), parameter.nops())
3014                                                        / factorial(parameter.nops())).expand());
3015                                         }
3016                                 }
3017
3018                                 lst newparameter = parameter;
3019                                 newparameter.remove_first();
3020
3021                                 if (parameter.op(0) == 0) {
3022
3023                                         // leading zero
3024                                         ex res = convert_H_to_zeta(parameter);
3025                                         map_trafo_H_1mxt1px recursion;
3026                                         ex buffer = recursion(H(newparameter, arg).hold());
3027                                         if (is_a<add>(buffer)) {
3028                                                 for (std::size_t i = 0; i < buffer.nops(); i++) {
3029                                                         res -= trafo_H_1mxt1px_prepend_one(buffer.op(i), arg) + trafo_H_1mxt1px_prepend_minusone(buffer.op(i), arg);
3030                                                 }
3031                                         } else {
3032                                                 res -= trafo_H_1mxt1px_prepend_one(buffer, arg) + trafo_H_1mxt1px_prepend_minusone(buffer, arg);
3033                                         }
3034                                         return res;
3035
3036                                 } else if (parameter.op(0) == -1) {
3037
3038                                         // leading negative one
3039                                         ex res = convert_H_to_zeta(parameter);
3040                                         map_trafo_H_1mxt1px recursion;
3041                                         ex buffer = recursion(H(newparameter, arg).hold());
3042                                         if (is_a<add>(buffer)) {
3043                                                 for (std::size_t i = 0; i < buffer.nops(); i++) {
3044                                                         res -= trafo_H_1mxt1px_prepend_minusone(buffer.op(i), arg);
3045                                                 }
3046                                         } else {
3047                                                 res -= trafo_H_1mxt1px_prepend_minusone(buffer, arg);
3048                                         }
3049                                         return res;
3050
3051                                 } else {
3052
3053                                         // leading one
3054                                         map_trafo_H_1mxt1px recursion;
3055                                         map_trafo_H_mult unify;
3056                                         ex res = H(lst(ex(1)), arg).hold() * H(newparameter, arg).hold();
3057                                         std::size_t firstzero = 0;
3058                                         while (parameter.op(firstzero) == 1) {
3059                                                 firstzero++;
3060                                         }
3061                                         for (std::size_t i = firstzero - 1; i < parameter.nops() - 1; i++) {
3062                                                 lst newparameter;
3063                                                 std::size_t j=0;
3064                                                 for (; j<=i; j++) {
3065                                                         newparameter.append(parameter[j+1]);
3066                                                 }
3067                                                 newparameter.append(1);
3068                                                 for (; j<parameter.nops()-1; j++) {
3069                                                         newparameter.append(parameter[j+1]);
3070                                                 }
3071                                                 res -= H(newparameter, arg).hold();
3072                                         }
3073                                         res = recursion(res).expand() / firstzero;
3074                                         return unify(res);
3075
3076                                 }
3077
3078                         }
3079                 }
3080                 return e;
3081         }
3082 };
3083
3084
3085 // do the actual summation.
3086 cln::cl_N H_do_sum(const std::vector<int>& m, const cln::cl_N& x)
3087 {
3088         const int j = m.size();
3089
3090         std::vector<cln::cl_N> t(j);
3091
3092         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
3093         cln::cl_N factor = cln::expt(x, j) * one;
3094         cln::cl_N t0buf;
3095         int q = 0;
3096         do {
3097                 t0buf = t[0];
3098                 q++;
3099                 t[j-1] = t[j-1] + 1 / cln::expt(cln::cl_I(q),m[j-1]);
3100                 for (int k=j-2; k>=1; k--) {
3101                         t[k] = t[k] + t[k+1] / cln::expt(cln::cl_I(q+j-1-k), m[k]);
3102                 }
3103                 t[0] = t[0] + t[1] * factor / cln::expt(cln::cl_I(q+j-1), m[0]);
3104                 factor = factor * x;
3105         } while (t[0] != t0buf);
3106
3107         return t[0];
3108 }
3109
3110
3111 } // end of anonymous namespace
3112
3113
3114 //////////////////////////////////////////////////////////////////////
3115 //
3116 // Harmonic polylogarithm  H(m,x)
3117 //
3118 // GiNaC function
3119 //
3120 //////////////////////////////////////////////////////////////////////
3121
3122
3123 static ex H_evalf(const ex& x1, const ex& x2)
3124 {
3125         if (is_a<lst>(x1)) {
3126                 
3127                 cln::cl_N x;
3128                 if (is_a<numeric>(x2)) {
3129                         x = ex_to<numeric>(x2).to_cl_N();
3130                 } else {
3131                         ex x2_val = x2.evalf();
3132                         if (is_a<numeric>(x2_val)) {
3133                                 x = ex_to<numeric>(x2_val).to_cl_N();
3134                         }
3135                 }
3136
3137                 for (std::size_t i = 0; i < x1.nops(); i++) {
3138                         if (!x1.op(i).info(info_flags::integer)) {
3139                                 return H(x1, x2).hold();
3140                         }
3141                 }
3142                 if (x1.nops() < 1) {
3143                         return H(x1, x2).hold();
3144                 }
3145
3146                 const lst& morg = ex_to<lst>(x1);
3147                 // remove trailing zeros ...
3148                 if (*(--morg.end()) == 0) {
3149                         symbol xtemp("xtemp");
3150                         map_trafo_H_reduce_trailing_zeros filter;
3151                         return filter(H(x1, xtemp).hold()).subs(xtemp==x2).evalf();
3152                 }
3153                 // ... and expand parameter notation
3154                 bool has_minus_one = false;
3155                 lst m;
3156                 for (lst::const_iterator it = morg.begin(); it != morg.end(); it++) {
3157                         if (*it > 1) {
3158                                 for (ex count=*it-1; count > 0; count--) {
3159                                         m.append(0);
3160                                 }
3161                                 m.append(1);
3162                         } else if (*it <= -1) {
3163                                 for (ex count=*it+1; count < 0; count++) {
3164                                         m.append(0);
3165                                 }
3166                                 m.append(-1);
3167                                 has_minus_one = true;
3168                         } else {
3169                                 m.append(*it);
3170                         }
3171                 }
3172
3173                 // do summation
3174                 if (cln::abs(x) < 0.95) {
3175                         lst m_lst;
3176                         lst s_lst;
3177                         ex pf;
3178                         if (convert_parameter_H_to_Li(m, m_lst, s_lst, pf)) {
3179                                 // negative parameters -> s_lst is filled
3180                                 std::vector<int> m_int;
3181                                 std::vector<cln::cl_N> x_cln;
3182                                 for (lst::const_iterator it_int = m_lst.begin(), it_cln = s_lst.begin(); 
3183                                      it_int != m_lst.end(); it_int++, it_cln++) {
3184                                         m_int.push_back(ex_to<numeric>(*it_int).to_int());
3185                                         x_cln.push_back(ex_to<numeric>(*it_cln).to_cl_N());
3186                                 }
3187                                 x_cln.front() = x_cln.front() * x;
3188                                 return pf * numeric(multipleLi_do_sum(m_int, x_cln));
3189                         } else {
3190                                 // only positive parameters
3191                                 //TODO
3192                                 if (m_lst.nops() == 1) {
3193                                         return Li(m_lst.op(0), x2).evalf();
3194                                 }
3195                                 std::vector<int> m_int;
3196                                 for (lst::const_iterator it = m_lst.begin(); it != m_lst.end(); it++) {
3197                                         m_int.push_back(ex_to<numeric>(*it).to_int());
3198                                 }
3199                                 return numeric(H_do_sum(m_int, x));
3200                         }
3201                 }
3202
3203                 symbol xtemp("xtemp");
3204                 ex res = 1;     
3205                 
3206                 // ensure that the realpart of the argument is positive
3207                 if (cln::realpart(x) < 0) {
3208                         x = -x;
3209                         for (std::size_t i = 0; i < m.nops(); i++) {
3210                                 if (m.op(i) != 0) {
3211                                         m.let_op(i) = -m.op(i);
3212                                         res *= -1;
3213                                 }
3214                         }
3215                 }
3216
3217                 // x -> 1/x
3218                 if (cln::abs(x) >= 2.0) {
3219                         map_trafo_H_1overx trafo;
3220                         res *= trafo(H(m, xtemp));
3221                         if (cln::imagpart(x) <= 0) {
3222                                 res = res.subs(H_polesign == -I*Pi);
3223                         } else {
3224                                 res = res.subs(H_polesign == I*Pi);
3225                         }
3226                         return res.subs(xtemp == numeric(x)).evalf();
3227                 }
3228                 
3229                 // check transformations for 0.95 <= |x| < 2.0
3230                 
3231                 // |(1-x)/(1+x)| < 0.9 -> circular area with center=9.53+0i and radius=9.47
3232                 if (cln::abs(x-9.53) <= 9.47) {
3233                         // x -> (1-x)/(1+x)
3234                         map_trafo_H_1mxt1px trafo;
3235                         res *= trafo(H(m, xtemp));
3236                 } else {
3237                         // x -> 1-x
3238                         if (has_minus_one) {
3239                                 map_trafo_H_convert_to_Li filter;
3240                                 return filter(H(m, numeric(x)).hold()).evalf();
3241                         }
3242                         map_trafo_H_1mx trafo;
3243                         res *= trafo(H(m, xtemp));
3244                 }
3245
3246                 return res.subs(xtemp == numeric(x)).evalf();
3247         }
3248
3249         return H(x1,x2).hold();
3250 }
3251
3252
3253 static ex H_eval(const ex& m_, const ex& x)
3254 {
3255         lst m;
3256         if (is_a<lst>(m_)) {
3257                 m = ex_to<lst>(m_);
3258         } else {
3259                 m = lst(m_);
3260         }
3261         if (m.nops() == 0) {
3262                 return _ex1;
3263         }
3264         ex pos1;
3265         ex pos2;
3266         ex n;
3267         ex p;
3268         int step = 0;
3269         if (*m.begin() > _ex1) {
3270                 step++;
3271                 pos1 = _ex0;
3272                 pos2 = _ex1;
3273                 n = *m.begin()-1;
3274                 p = _ex1;
3275         } else if (*m.begin() < _ex_1) {
3276                 step++;
3277                 pos1 = _ex0;
3278                 pos2 = _ex_1;
3279                 n = -*m.begin()-1;
3280                 p = _ex1;
3281         } else if (*m.begin() == _ex0) {
3282                 pos1 = _ex0;
3283                 n = _ex1;
3284         } else {
3285                 pos1 = *m.begin();
3286                 p = _ex1;
3287         }
3288         for (lst::const_iterator it = ++m.begin(); it != m.end(); it++) {
3289                 if ((*it).info(info_flags::integer)) {
3290                         if (step == 0) {
3291                                 if (*it > _ex1) {
3292                                         if (pos1 == _ex0) {
3293                                                 step = 1;
3294                                                 pos2 = _ex1;
3295                                                 n += *it-1;
3296                                                 p = _ex1;
3297                                         } else {
3298                                                 step = 2;
3299                                         }
3300                                 } else if (*it < _ex_1) {
3301                                         if (pos1 == _ex0) {
3302                                                 step = 1;
3303                                                 pos2 = _ex_1;
3304                                                 n += -*it-1;
3305                                                 p = _ex1;
3306                                         } else {
3307                                                 step = 2;
3308                                         }
3309                                 } else {
3310                                         if (*it != pos1) {
3311                                                 step = 1;
3312                                                 pos2 = *it;
3313                                         }
3314                                         if (*it == _ex0) {
3315                                                 n++;
3316                                         } else {
3317                                                 p++;
3318                                         }
3319                                 }
3320                         } else if (step == 1) {
3321                                 if (*it != pos2) {
3322                                         step = 2;
3323                                 } else {
3324                                         if (*it == _ex0) {
3325                                                 n++;
3326                                         } else {
3327                                                 p++;
3328                                         }
3329                                 }
3330                         }
3331                 } else {
3332                         // if some m_i is not an integer
3333                         return H(m_, x).hold();
3334                 }
3335         }
3336         if ((x == _ex1) && (*(--m.end()) != _ex0)) {
3337                 return convert_H_to_zeta(m);
3338         }
3339         if (step == 0) {
3340                 if (pos1 == _ex0) {
3341                         // all zero
3342                         if (x == _ex0) {
3343                                 return H(m_, x).hold();
3344                         }
3345                         return pow(log(x), m.nops()) / factorial(m.nops());
3346                 } else {
3347                         // all (minus) one
3348                         return pow(-pos1*log(1-pos1*x), m.nops()) / factorial(m.nops());
3349                 }
3350         } else if ((step == 1) && (pos1 == _ex0)){
3351                 // convertible to S
3352                 if (pos2 == _ex1) {
3353                         return S(n, p, x);
3354                 } else {
3355                         return pow(-1, p) * S(n, p, -x);
3356                 }
3357         }
3358         if (x == _ex0) {
3359                 return _ex0;
3360         }
3361         if (x.info(info_flags::numeric) && (!x.info(info_flags::crational))) {
3362                 return H(m_, x).evalf();
3363         }
3364         return H(m_, x).hold();
3365 }
3366
3367
3368 static ex H_series(const ex& m, const ex& x, const relational& rel, int order, unsigned options)
3369 {
3370         epvector seq;
3371         seq.push_back(expair(H(m, x), 0));
3372         return pseries(rel, seq);
3373 }
3374
3375
3376 static ex H_deriv(const ex& m_, const ex& x, unsigned deriv_param)
3377 {
3378         GINAC_ASSERT(deriv_param < 2);
3379         if (deriv_param == 0) {
3380                 return _ex0;
3381         }
3382         lst m;
3383         if (is_a<lst>(m_)) {
3384                 m = ex_to<lst>(m_);
3385         } else {
3386                 m = lst(m_);
3387         }
3388         ex mb = *m.begin();
3389         if (mb > _ex1) {
3390                 m[0]--;
3391                 return H(m, x) / x;
3392         }
3393         if (mb < _ex_1) {
3394                 m[0]++;
3395                 return H(m, x) / x;
3396         }
3397         m.remove_first();
3398         if (mb == _ex1) {
3399                 return 1/(1-x) * H(m, x);
3400         } else if (mb == _ex_1) {
3401                 return 1/(1+x) * H(m, x);
3402         } else {
3403                 return H(m, x) / x;
3404         }
3405 }
3406
3407
3408 static void H_print_latex(const ex& m_, const ex& x, const print_context& c)
3409 {
3410         lst m;
3411         if (is_a<lst>(m_)) {
3412                 m = ex_to<lst>(m_);
3413         } else {
3414                 m = lst(m_);
3415         }
3416         c.s << "\\mathrm{H}_{";
3417         lst::const_iterator itm = m.begin();
3418         (*itm).print(c);
3419         itm++;
3420         for (; itm != m.end(); itm++) {
3421                 c.s << ",";
3422                 (*itm).print(c);
3423         }
3424         c.s << "}(";
3425         x.print(c);
3426         c.s << ")";
3427 }
3428
3429
3430 REGISTER_FUNCTION(H,
3431                   evalf_func(H_evalf).
3432                   eval_func(H_eval).
3433                   series_func(H_series).
3434                   derivative_func(H_deriv).
3435                   print_func<print_latex>(H_print_latex).
3436                   do_not_evalf_params());
3437
3438
3439 // takes a parameter list for H and returns an expression with corresponding multiple polylogarithms
3440 ex convert_H_to_Li(const ex& m, const ex& x)
3441 {
3442         map_trafo_H_reduce_trailing_zeros filter;
3443         map_trafo_H_convert_to_Li filter2;
3444         if (is_a<lst>(m)) {
3445                 return filter2(filter(H(m, x).hold()));
3446         } else {
3447                 return filter2(filter(H(lst(m), x).hold()));
3448         }
3449 }
3450
3451
3452 //////////////////////////////////////////////////////////////////////
3453 //
3454 // Multiple zeta values  zeta(x) and zeta(x,s)
3455 //
3456 // helper functions
3457 //
3458 //////////////////////////////////////////////////////////////////////
3459
3460
3461 // anonymous namespace for helper functions
3462 namespace {
3463
3464
3465 // parameters and data for [Cra] algorithm
3466 const cln::cl_N lambda = cln::cl_N("319/320");
3467
3468 void halfcyclic_convolute(const std::vector<cln::cl_N>& a, const std::vector<cln::cl_N>& b, std::vector<cln::cl_N>& c)
3469 {
3470         const int size = a.size();
3471         for (int n=0; n<size; n++) {
3472                 c[n] = 0;
3473                 for (int m=0; m<=n; m++) {
3474                         c[n] = c[n] + a[m]*b[n-m];
3475                 }
3476         }
3477 }
3478
3479
3480 // [Cra] section 4
3481 static void initcX(std::vector<cln::cl_N>& crX,
3482                    const std::vector<int>& s,
3483                    const int L2)
3484 {
3485         std::vector<cln::cl_N> crB(L2 + 1);
3486         for (int i=0; i<=L2; i++)
3487                 crB[i] = bernoulli(i).to_cl_N() / cln::factorial(i);
3488
3489         int Sm = 0;
3490         int Smp1 = 0;
3491         std::vector<std::vector<cln::cl_N> > crG(s.size() - 1, std::vector<cln::cl_N>(L2 + 1));
3492         for (int m=0; m < (int)s.size() - 1; m++) {
3493                 Sm += s[m];
3494                 Smp1 = Sm + s[m+1];
3495                 for (int i = 0; i <= L2; i++)
3496                         crG[m][i] = cln::factorial(i + Sm - m - 2) / cln::factorial(i + Smp1 - m - 2);
3497         }
3498
3499         crX = crB;
3500
3501         for (std::size_t m = 0; m < s.size() - 1; m++) {
3502                 std::vector<cln::cl_N> Xbuf(L2 + 1);
3503                 for (int i = 0; i <= L2; i++)
3504                         Xbuf[i] = crX[i] * crG[m][i];
3505
3506                 halfcyclic_convolute(Xbuf, crB, crX);
3507         }
3508 }
3509
3510
3511 // [Cra] section 4
3512 static cln::cl_N crandall_Y_loop(const cln::cl_N& Sqk,
3513                                  const std::vector<cln::cl_N>& crX)
3514 {
3515         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
3516         cln::cl_N factor = cln::expt(lambda, Sqk);
3517         cln::cl_N res = factor / Sqk * crX[0] * one;
3518         cln::cl_N resbuf;
3519         int N = 0;
3520         do {
3521                 resbuf = res;
3522                 factor = factor * lambda;
3523                 N++;
3524                 res = res + crX[N] * factor / (N+Sqk);
3525         } while ((res != resbuf) || cln::zerop(crX[N]));
3526         return res;
3527 }
3528
3529
3530 // [Cra] section 4
3531 static void calc_f(std::vector<std::vector<cln::cl_N> >& f_kj,
3532                    const int maxr, const int L1)
3533 {
3534         cln::cl_N t0, t1, t2, t3, t4;
3535         int i, j, k;
3536         std::vector<std::vector<cln::cl_N> >::iterator it = f_kj.begin();
3537         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
3538         
3539         t0 = cln::exp(-lambda);
3540         t2 = 1;
3541         for (k=1; k<=L1; k++) {
3542                 t1 = k * lambda;
3543                 t2 = t0 * t2;
3544                 for (j=1; j<=maxr; j++) {
3545                         t3 = 1;
3546                         t4 = 1;
3547                         for (i=2; i<=j; i++) {
3548                                 t4 = t4 * (j-i+1);
3549                                 t3 = t1 * t3 + t4;
3550                         }
3551                         (*it).push_back(t2 * t3 * cln::expt(cln::cl_I(k),-j) * one);
3552                 }
3553                 it++;
3554         }
3555 }
3556
3557
3558 // [Cra] (3.1)
3559 static cln::cl_N crandall_Z(const std::vector<int>& s,
3560                             const std::vector<std::vector<cln::cl_N> >& f_kj)
3561 {
3562         const int j = s.size();
3563
3564         if (j == 1) {   
3565                 cln::cl_N t0;
3566                 cln::cl_N t0buf;
3567                 int q = 0;
3568                 do {
3569                         t0buf = t0;
3570                         q++;
3571                         t0 = t0 + f_kj[q+j-2][s[0]-1];
3572                 } while (t0 != t0buf);
3573                 
3574                 return t0 / cln::factorial(s[0]-1);
3575         }
3576
3577         std::vector<cln::cl_N> t(j);
3578
3579         cln::cl_N t0buf;
3580         int q = 0;
3581         do {
3582                 t0buf = t[0];
3583                 q++;
3584                 t[j-1] = t[j-1] + 1 / cln::expt(cln::cl_I(q),s[j-1]);
3585                 for (int k=j-2; k>=1; k--) {
3586                         t[k] = t[k] + t[k+1] / cln::expt(cln::cl_I(q+j-1-k), s[k]);
3587                 }
3588                 t[0] = t[0] + t[1] * f_kj[q+j-2][s[0]-1];
3589         } while (t[0] != t0buf);
3590         
3591         return t[0] / cln::factorial(s[0]-1);
3592 }
3593
3594
3595 // [Cra] (2.4)
3596 cln::cl_N zeta_do_sum_Crandall(const std::vector<int>& s)
3597 {
3598         std::vector<int> r = s;
3599         const int j = r.size();
3600
3601         std::size_t L1;
3602
3603         // decide on maximal size of f_kj for crandall_Z
3604         if (Digits < 50) {
3605                 L1 = 150;
3606         } else {
3607                 L1 = Digits * 3 + j*2;
3608         }
3609
3610         std::size_t L2;
3611         // decide on maximal size of crX for crandall_Y
3612         if (Digits < 38) {
3613                 L2 = 63;
3614         } else if (Digits < 86) {
3615                 L2 = 127;
3616         } else if (Digits < 192) {
3617                 L2 = 255;
3618         } else if (Digits < 394) {
3619                 L2 = 511;
3620         } else if (Digits < 808) {
3621                 L2 = 1023;
3622         } else {
3623                 L2 = 2047;
3624         }
3625
3626         cln::cl_N res;
3627
3628         int maxr = 0;
3629         int S = 0;
3630         for (int i=0; i<j; i++) {
3631                 S += r[i];
3632                 if (r[i] > maxr) {
3633                         maxr = r[i];
3634                 }
3635         }
3636
3637         std::vector<std::vector<cln::cl_N> > f_kj(L1);
3638         calc_f(f_kj, maxr, L1);
3639
3640         const cln::cl_N r0factorial = cln::factorial(r[0]-1);
3641
3642         std::vector<int> rz;
3643         int skp1buf;
3644         int Srun = S;
3645         for (int k=r.size()-1; k>0; k--) {
3646
3647                 rz.insert(rz.begin(), r.back());
3648                 skp1buf = rz.front();
3649                 Srun -= skp1buf;
3650                 r.pop_back();
3651
3652                 std::vector<cln::cl_N> crX;
3653                 initcX(crX, r, L2);
3654                 
3655                 for (int q=0; q<skp1buf; q++) {
3656                         
3657                         cln::cl_N pp1 = crandall_Y_loop(Srun+q-k, crX);
3658                         cln::cl_N pp2 = crandall_Z(rz, f_kj);
3659
3660                         rz.front()--;
3661                         
3662                         if (q & 1) {
3663                                 res = res - pp1 * pp2 / cln::factorial(q);
3664                         } else {
3665                                 res = res + pp1 * pp2 / cln::factorial(q);
3666                         }
3667                 }
3668                 rz.front() = skp1buf;
3669         }
3670         rz.insert(rz.begin(), r.back());
3671
3672         std::vector<cln::cl_N> crX;
3673         initcX(crX, rz, L2);
3674
3675         res = (res + crandall_Y_loop(S-j, crX)) / r0factorial
3676                 + crandall_Z(rz, f_kj);
3677
3678         return res;
3679 }
3680
3681
3682 cln::cl_N zeta_do_sum_simple(const std::vector<int>& r)
3683 {
3684         const int j = r.size();
3685
3686         // buffer for subsums
3687         std::vector<cln::cl_N> t(j);
3688         cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
3689
3690         cln::cl_N t0buf;
3691         int q = 0;
3692         do {
3693                 t0buf = t[0];
3694                 q++;
3695                 t[j-1] = t[j-1] + one / cln::expt(cln::cl_I(q),r[j-1]);
3696                 for (int k=j-2; k>=0; k--) {
3697                         t[k] = t[k] + one * t[k+1] / cln::expt(cln::cl_I(q+j-1-k), r[k]);
3698                 }
3699         } while (t[0] != t0buf);
3700
3701         return t[0];
3702 }
3703
3704
3705 // does Hoelder convolution. see [BBB] (7.0)
3706 cln::cl_N zeta_do_Hoelder_convolution(const std::vector<int>& m_, const std::vector<int>& s_)
3707 {
3708         // prepare parameters
3709         // holds Li arguments in [BBB] notation
3710         std::vector<int> s = s_;
3711         std::vector<int> m_p = m_;
3712         std::vector<int> m_q;
3713         // holds Li arguments in nested sums notation
3714         std::vector<cln::cl_N> s_p(s.size(), cln::cl_N(1));
3715         s_p[0] = s_p[0] * cln::cl_N("1/2");
3716         // convert notations
3717         int sig = 1;
3718         for (std::size_t i = 0; i < s_.size(); i++) {
3719                 if (s_[i] < 0) {
3720                         sig = -sig;
3721                         s_p[i] = -s_p[i];
3722                 }
3723                 s[i] = sig * std::abs(s[i]);
3724         }
3725         std::vector<cln::cl_N> s_q;
3726         cln::cl_N signum = 1;
3727
3728         // first term
3729         cln::cl_N res = multipleLi_do_sum(m_p, s_p);
3730
3731         // middle terms
3732         do {
3733
3734                 // change parameters
3735                 if (s.front() > 0) {
3736                         if (m_p.front() == 1) {
3737                                 m_p.erase(m_p.begin());
3738                                 s_p.erase(s_p.begin());
3739                                 if (s_p.size() > 0) {
3740                                         s_p.front() = s_p.front() * cln::cl_N("1/2");
3741                                 }
3742                                 s.erase(s.begin());
3743                                 m_q.front()++;
3744                         } else {
3745                                 m_p.front()--;
3746                                 m_q.insert(m_q.begin(), 1);
3747                                 if (s_q.size() > 0) {
3748                                         s_q.front() = s_q.front() * 2;
3749                                 }
3750                                 s_q.insert(s_q.begin(), cln::cl_N("1/2"));
3751                         }
3752                 } else {
3753                         if (m_p.front() == 1) {
3754                                 m_p.erase(m_p.begin());
3755                                 cln::cl_N spbuf = s_p.front();
3756                                 s_p.erase(s_p.begin());
3757                                 if (s_p.size() > 0) {
3758                                         s_p.front() = s_p.front() * spbuf;
3759                                 }
3760                                 s.erase(s.begin());
3761                                 m_q.insert(m_q.begin(), 1);
3762                                 if (s_q.size() > 0) {
3763                                         s_q.front() = s_q.front() * 4;
3764                                 }
3765                                 s_q.insert(s_q.begin(), cln::cl_N("1/4"));
3766                                 signum = -signum;
3767                         } else {
3768                                 m_p.front()--;
3769                                 m_q.insert(m_q.begin(), 1);
3770                                 if (s_q.size() > 0) {
3771                                         s_q.front() = s_q.front() * 2;
3772                                 }
3773                                 s_q.insert(s_q.begin(), cln::cl_N("1/2"));
3774                         }
3775                 }
3776
3777                 // exiting the loop
3778                 if (m_p.size() == 0) break;
3779
3780                 res = res + signum * multipleLi_do_sum(m_p, s_p) * multipleLi_do_sum(m_q, s_q);
3781
3782         } while (true);
3783
3784         // last term
3785         res = res + signum * multipleLi_do_sum(m_q, s_q);
3786
3787         return res;
3788 }
3789
3790
3791 } // end of anonymous namespace
3792
3793
3794 //////////////////////////////////////////////////////////////////////
3795 //
3796 // Multiple zeta values  zeta(x)
3797 //
3798 // GiNaC function
3799 //
3800 //////////////////////////////////////////////////////////////////////
3801
3802
3803 static ex zeta1_evalf(const ex& x)
3804 {
3805         if (is_exactly_a<lst>(x) && (x.nops()>1)) {
3806
3807                 // multiple zeta value
3808                 const int count = x.nops();
3809                 const lst& xlst = ex_to<lst>(x);
3810                 std::vector<int> r(count);
3811
3812                 // check parameters and convert them
3813                 lst::const_iterator it1 = xlst.begin();
3814                 std::vector<int>::iterator it2 = r.begin();
3815                 do {
3816                         if (!(*it1).info(info_flags::posint)) {
3817                                 return zeta(x).hold();
3818                         }
3819                         *it2 = ex_to<numeric>(*it1).to_int();
3820                         it1++;
3821                         it2++;
3822                 } while (it2 != r.end());
3823
3824                 // check for divergence
3825                 if (r[0] == 1) {
3826                         return zeta(x).hold();
3827                 }
3828
3829                 // decide on summation algorithm
3830                 // this is still a bit clumsy
3831                 int limit = (Digits>17) ? 10 : 6;
3832                 if ((r[0] < limit) || ((count > 3) && (r[1] < limit/2))) {
3833                         return numeric(zeta_do_sum_Crandall(r));
3834                 } else {
3835                         return numeric(zeta_do_sum_simple(r));
3836                 }
3837         }
3838
3839         // single zeta value
3840         if (is_exactly_a<numeric>(x) && (x != 1)) {
3841                 try {
3842                         return zeta(ex_to<numeric>(x));
3843                 } catch (const dunno &e) { }
3844         }
3845
3846         return zeta(x).hold();
3847 }
3848
3849
3850 static ex zeta1_eval(const ex& m)
3851 {
3852         if (is_exactly_a<lst>(m)) {
3853                 if (m.nops() == 1) {
3854                         return zeta(m.op(0));
3855                 }
3856                 return zeta(m).hold();
3857         }
3858
3859         if (m.info(info_flags::numeric)) {
3860                 const numeric& y = ex_to<numeric>(m);
3861                 // trap integer arguments:
3862                 if (y.is_integer()) {
3863                         if (y.is_zero()) {
3864                                 return _ex_1_2;
3865                         }
3866                         if (y.is_equal(*_num1_p)) {
3867                                 return zeta(m).hold();
3868                         }
3869                         if (y.info(info_flags::posint)) {
3870                                 if (y.info(info_flags::odd)) {
3871                                         return zeta(m).hold();
3872                                 } else {
3873                                         return abs(bernoulli(y)) * pow(Pi, y) * pow(*_num2_p, y-(*_num1_p)) / factorial(y);
3874                                 }
3875                         } else {
3876                                 if (y.info(info_flags::odd)) {
3877                                         return -bernoulli((*_num1_p)-y) / ((*_num1_p)-y);
3878                                 } else {
3879                                         return _ex0;
3880                                 }
3881                         }
3882                 }
3883                 // zeta(float)
3884                 if (y.info(info_flags::numeric) && !y.info(info_flags::crational)) {
3885                         return zeta1_evalf(m);
3886                 }
3887         }
3888         return zeta(m).hold();
3889 }
3890
3891
3892 static ex zeta1_deriv(const ex& m, unsigned deriv_param)
3893 {
3894         GINAC_ASSERT(deriv_param==0);
3895
3896         if (is_exactly_a<lst>(m)) {
3897                 return _ex0;
3898         } else {
3899                 return zetaderiv(_ex1, m);
3900         }
3901 }
3902
3903
3904 static void zeta1_print_latex(const ex& m_, const print_context& c)
3905 {
3906         c.s << "\\zeta(";
3907         if (is_a<lst>(m_)) {
3908                 const lst& m = ex_to<lst>(m_);
3909                 lst::const_iterator it = m.begin();
3910                 (*it).print(c);
3911                 it++;
3912                 for (; it != m.end(); it++) {
3913                         c.s << ",";
3914                         (*it).print(c);
3915                 }
3916         } else {
3917                 m_.print(c);
3918         }
3919         c.s << ")";
3920 }
3921
3922
3923 unsigned zeta1_SERIAL::serial = function::register_new(function_options("zeta", 1).
3924                                 evalf_func(zeta1_evalf).
3925                                 eval_func(zeta1_eval).
3926                                 derivative_func(zeta1_deriv).
3927                                 print_func<print_latex>(zeta1_print_latex).
3928                                 do_not_evalf_params().
3929                                 overloaded(2));
3930
3931
3932 //////////////////////////////////////////////////////////////////////
3933 //
3934 // Alternating Euler sum  zeta(x,s)
3935 //
3936 // GiNaC function
3937 //
3938 //////////////////////////////////////////////////////////////////////
3939
3940
3941 static ex zeta2_evalf(const ex& x, const ex& s)
3942 {
3943         if (is_exactly_a<lst>(x)) {
3944
3945                 // alternating Euler sum
3946                 const int count = x.nops();
3947                 const lst& xlst = ex_to<lst>(x);
3948                 const lst& slst = ex_to<lst>(s);
3949                 std::vector<int> xi(count);
3950                 std::vector<int> si(count);
3951
3952                 // check parameters and convert them
3953                 lst::const_iterator it_xread = xlst.begin();
3954                 lst::const_iterator it_sread = slst.begin();
3955                 std::vector<int>::iterator it_xwrite = xi.begin();
3956                 std::vector<int>::iterator it_swrite = si.begin();
3957                 do {
3958                         if (!(*it_xread).info(info_flags::posint)) {
3959                                 return zeta(x, s).hold();
3960                         }
3961                         *it_xwrite = ex_to<numeric>(*it_xread).to_int();
3962                         if (*it_sread > 0) {
3963                                 *it_swrite = 1;
3964                         } else {
3965                                 *it_swrite = -1;
3966                         }
3967                         it_xread++;
3968                         it_sread++;
3969                         it_xwrite++;
3970                         it_swrite++;
3971                 } while (it_xwrite != xi.end());
3972
3973                 // check for divergence
3974                 if ((xi[0] == 1) && (si[0] == 1)) {
3975                         return zeta(x, s).hold();
3976                 }
3977
3978                 // use Hoelder convolution
3979                 return numeric(zeta_do_Hoelder_convolution(xi, si));
3980         }
3981
3982         return zeta(x, s).hold();
3983 }
3984
3985
3986 static ex zeta2_eval(const ex& m, const ex& s_)
3987 {
3988         if (is_exactly_a<lst>(s_)) {
3989                 const lst& s = ex_to<lst>(s_);
3990                 for (lst::const_iterator it = s.begin(); it != s.end(); it++) {
3991                         if ((*it).info(info_flags::positive)) {
3992                                 continue;
3993                         }
3994                         return zeta(m, s_).hold();
3995                 }
3996                 return zeta(m);
3997         } else if (s_.info(info_flags::positive)) {
3998                 return zeta(m);
3999         }
4000
4001         return zeta(m, s_).hold();
4002 }
4003
4004
4005 static ex zeta2_deriv(const ex& m, const ex& s, unsigned deriv_param)
4006 {
4007         GINAC_ASSERT(deriv_param==0);
4008
4009         if (is_exactly_a<lst>(m)) {
4010                 return _ex0;
4011         } else {
4012                 if ((is_exactly_a<lst>(s) && s.op(0).info(info_flags::positive)) || s.info(info_flags::positive)) {
4013                         return zetaderiv(_ex1, m);
4014                 }
4015                 return _ex0;
4016         }
4017 }
4018
4019
4020 static void zeta2_print_latex(const ex& m_, const ex& s_, const print_context& c)
4021 {
4022         lst m;
4023         if (is_a<lst>(m_)) {
4024                 m = ex_to<lst>(m_);
4025         } else {
4026                 m = lst(m_);
4027         }
4028         lst s;
4029         if (is_a<lst>(s_)) {
4030                 s = ex_to<lst>(s_);
4031         } else {
4032                 s = lst(s_);
4033         }
4034         c.s << "\\zeta(";
4035         lst::const_iterator itm = m.begin();
4036         lst::const_iterator its = s.begin();
4037         if (*its < 0) {
4038                 c.s << "\\overline{";
4039                 (*itm).print(c);
4040                 c.s << "}";
4041         } else {
4042                 (*itm).print(c);
4043         }
4044         its++;
4045         itm++;
4046         for (; itm != m.end(); itm++, its++) {
4047                 c.s << ",";
4048                 if (*its < 0) {
4049                         c.s << "\\overline{";
4050                         (*itm).print(c);
4051                         c.s << "}";
4052                 } else {
4053                         (*itm).print(c);
4054                 }
4055         }
4056         c.s << ")";
4057 }
4058
4059
4060 unsigned zeta2_SERIAL::serial = function::register_new(function_options("zeta", 2).
4061                                 evalf_func(zeta2_evalf).
4062                                 eval_func(zeta2_eval).
4063                                 derivative_func(zeta2_deriv).
4064                                 print_func<print_latex>(zeta2_print_latex).
4065                                 do_not_evalf_params().
4066                                 overloaded(2));
4067
4068
4069 } // namespace GiNaC
4070