]> www.ginac.de Git - ginac.git/blob - ginac/inifcns.cpp
28d54fed3e79924dffbd95c457add5ff2bbd662a
[ginac.git] / ginac / inifcns.cpp
1 /** @file inifcns.cpp
2  *
3  *  Implementation of GiNaC's initially known functions. */
4
5 /*
6  *  GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
21  */
22
23 #include "inifcns.h"
24 #include "ex.h"
25 #include "constant.h"
26 #include "lst.h"
27 #include "fderivative.h"
28 #include "matrix.h"
29 #include "mul.h"
30 #include "power.h"
31 #include "operators.h"
32 #include "relational.h"
33 #include "pseries.h"
34 #include "symbol.h"
35 #include "symmetry.h"
36 #include "utils.h"
37
38 #include <stdexcept>
39 #include <vector>
40
41 namespace GiNaC {
42
43 //////////
44 // complex conjugate
45 //////////
46
47 static ex conjugate_evalf(const ex & arg)
48 {
49         if (is_exactly_a<numeric>(arg)) {
50                 return ex_to<numeric>(arg).conjugate();
51         }
52         return conjugate_function(arg).hold();
53 }
54
55 static ex conjugate_eval(const ex & arg)
56 {
57         return arg.conjugate();
58 }
59
60 static void conjugate_print_latex(const ex & arg, const print_context & c)
61 {
62         c.s << "\\bar{"; arg.print(c); c.s << "}";
63 }
64
65 static ex conjugate_conjugate(const ex & arg)
66 {
67         return arg;
68 }
69
70 // If x is real then U.diff(x)-I*V.diff(x) represents both conjugate(U+I*V).diff(x) 
71 // and conjugate((U+I*V).diff(x))
72 static ex conjugate_expl_derivative(const ex & arg, const symbol & s)
73 {
74         if (s.info(info_flags::real))
75                 return conjugate(arg.diff(s));
76         else {
77                 exvector vec_arg;
78                 vec_arg.push_back(arg);
79                 return fderivative(ex_to<function>(conjugate(arg)).get_serial(),0,vec_arg).hold()*arg.diff(s);
80         }
81 }
82
83 static ex conjugate_real_part(const ex & arg)
84 {
85         return arg.real_part();
86 }
87
88 static ex conjugate_imag_part(const ex & arg)
89 {
90         return -arg.imag_part();
91 }
92
93 static bool func_arg_info(const ex & arg, unsigned inf)
94 {
95         // for some functions we can return the info() of its argument
96         // (think of conjugate())
97         switch (inf) {
98                 case info_flags::polynomial:
99                 case info_flags::integer_polynomial:
100                 case info_flags::cinteger_polynomial:
101                 case info_flags::rational_polynomial:
102                 case info_flags::real:
103                 case info_flags::rational:
104                 case info_flags::integer:
105                 case info_flags::crational:
106                 case info_flags::cinteger:
107                 case info_flags::even:
108                 case info_flags::odd:
109                 case info_flags::prime:
110                 case info_flags::crational_polynomial:
111                 case info_flags::rational_function:
112                 case info_flags::algebraic:
113                 case info_flags::positive:
114                 case info_flags::negative:
115                 case info_flags::nonnegative:
116                 case info_flags::posint:
117                 case info_flags::negint:
118                 case info_flags::nonnegint:
119                 case info_flags::has_indices:
120                         return arg.info(inf);
121         }
122         return false;
123 }
124
125 static bool conjugate_info(const ex & arg, unsigned inf)
126 {
127         return func_arg_info(arg, inf);
128 }
129
130 REGISTER_FUNCTION(conjugate_function, eval_func(conjugate_eval).
131                                       evalf_func(conjugate_evalf).
132                                       expl_derivative_func(conjugate_expl_derivative).
133                                       info_func(conjugate_info).
134                                       print_func<print_latex>(conjugate_print_latex).
135                                       conjugate_func(conjugate_conjugate).
136                                       real_part_func(conjugate_real_part).
137                                       imag_part_func(conjugate_imag_part).
138                                       set_name("conjugate","conjugate"));
139
140 //////////
141 // real part
142 //////////
143
144 static ex real_part_evalf(const ex & arg)
145 {
146         if (is_exactly_a<numeric>(arg)) {
147                 return ex_to<numeric>(arg).real();
148         }
149         return real_part_function(arg).hold();
150 }
151
152 static ex real_part_eval(const ex & arg)
153 {
154         return arg.real_part();
155 }
156
157 static void real_part_print_latex(const ex & arg, const print_context & c)
158 {
159         c.s << "\\Re"; arg.print(c); c.s << "";
160 }
161
162 static ex real_part_conjugate(const ex & arg)
163 {
164         return real_part_function(arg).hold();
165 }
166
167 static ex real_part_real_part(const ex & arg)
168 {
169         return real_part_function(arg).hold();
170 }
171
172 static ex real_part_imag_part(const ex & arg)
173 {
174         return 0;
175 }
176
177 // If x is real then Re(e).diff(x) is equal to Re(e.diff(x)) 
178 static ex real_part_expl_derivative(const ex & arg, const symbol & s)
179 {
180         if (s.info(info_flags::real))
181                 return real_part_function(arg.diff(s));
182         else {
183                 exvector vec_arg;
184                 vec_arg.push_back(arg);
185                 return fderivative(ex_to<function>(real_part(arg)).get_serial(),0,vec_arg).hold()*arg.diff(s);
186         }
187 }
188
189 REGISTER_FUNCTION(real_part_function, eval_func(real_part_eval).
190                                       evalf_func(real_part_evalf).
191                                       expl_derivative_func(real_part_expl_derivative).
192                                       print_func<print_latex>(real_part_print_latex).
193                                       conjugate_func(real_part_conjugate).
194                                       real_part_func(real_part_real_part).
195                                       imag_part_func(real_part_imag_part).
196                                       set_name("real_part","real_part"));
197
198 //////////
199 // imag part
200 //////////
201
202 static ex imag_part_evalf(const ex & arg)
203 {
204         if (is_exactly_a<numeric>(arg)) {
205                 return ex_to<numeric>(arg).imag();
206         }
207         return imag_part_function(arg).hold();
208 }
209
210 static ex imag_part_eval(const ex & arg)
211 {
212         return arg.imag_part();
213 }
214
215 static void imag_part_print_latex(const ex & arg, const print_context & c)
216 {
217         c.s << "\\Im"; arg.print(c); c.s << "";
218 }
219
220 static ex imag_part_conjugate(const ex & arg)
221 {
222         return imag_part_function(arg).hold();
223 }
224
225 static ex imag_part_real_part(const ex & arg)
226 {
227         return imag_part_function(arg).hold();
228 }
229
230 static ex imag_part_imag_part(const ex & arg)
231 {
232         return 0;
233 }
234
235 // If x is real then Im(e).diff(x) is equal to Im(e.diff(x)) 
236 static ex imag_part_expl_derivative(const ex & arg, const symbol & s)
237 {
238         if (s.info(info_flags::real))
239                 return imag_part_function(arg.diff(s));
240         else {
241                 exvector vec_arg;
242                 vec_arg.push_back(arg);
243                 return fderivative(ex_to<function>(imag_part(arg)).get_serial(),0,vec_arg).hold()*arg.diff(s);
244         }
245 }
246
247 REGISTER_FUNCTION(imag_part_function, eval_func(imag_part_eval).
248                                       evalf_func(imag_part_evalf).
249                                       expl_derivative_func(imag_part_expl_derivative).
250                                       print_func<print_latex>(imag_part_print_latex).
251                                       conjugate_func(imag_part_conjugate).
252                                       real_part_func(imag_part_real_part).
253                                       imag_part_func(imag_part_imag_part).
254                                       set_name("imag_part","imag_part"));
255
256 //////////
257 // absolute value
258 //////////
259
260 static ex abs_evalf(const ex & arg)
261 {
262         if (is_exactly_a<numeric>(arg))
263                 return abs(ex_to<numeric>(arg));
264         
265         return abs(arg).hold();
266 }
267
268 static ex abs_eval(const ex & arg)
269 {
270         if (is_exactly_a<numeric>(arg))
271                 return abs(ex_to<numeric>(arg));
272
273         if (arg.info(info_flags::nonnegative))
274                 return arg;
275
276         if (is_ex_the_function(arg, abs))
277                 return arg;
278
279         if (is_ex_the_function(arg, exp))
280                 return exp(arg.op(0).real_part());
281
282         if (is_exactly_a<power>(arg)) {
283                 const ex& base = arg.op(0);
284                 const ex& exponent = arg.op(1);
285                 if (base.info(info_flags::positive) || exponent.info(info_flags::real))
286                         return pow(abs(base), exponent.real_part());
287         }
288
289         if (is_ex_the_function(arg, conjugate_function))
290                 return abs(arg.op(0));
291
292         if (is_ex_the_function(arg, step))
293                 return arg;
294
295         return abs(arg).hold();
296 }
297
298 static ex abs_expand(const ex & arg, unsigned options)
299 {
300         if ((options & expand_options::expand_transcendental)
301                 && is_exactly_a<mul>(arg)) {
302                 exvector prodseq;
303                 prodseq.reserve(arg.nops());
304                 for (const_iterator i = arg.begin(); i != arg.end(); ++i) {
305                         if (options & expand_options::expand_function_args)
306                                 prodseq.push_back(abs(i->expand(options)));
307                         else
308                                 prodseq.push_back(abs(*i));
309                 }
310                 return (new mul(prodseq))->setflag(status_flags::dynallocated | status_flags::expanded);
311         }
312
313         if (options & expand_options::expand_function_args)
314                 return abs(arg.expand(options)).hold();
315         else
316                 return abs(arg).hold();
317 }
318
319 static ex abs_expl_derivative(const ex & arg, const symbol & s)
320 {
321         ex diff_arg = arg.diff(s);
322         return (diff_arg*arg.conjugate()+arg*diff_arg.conjugate())/2/abs(arg);
323 }
324
325 static void abs_print_latex(const ex & arg, const print_context & c)
326 {
327         c.s << "{|"; arg.print(c); c.s << "|}";
328 }
329
330 static void abs_print_csrc_float(const ex & arg, const print_context & c)
331 {
332         c.s << "fabs("; arg.print(c); c.s << ")";
333 }
334
335 static ex abs_conjugate(const ex & arg)
336 {
337         return abs(arg).hold();
338 }
339
340 static ex abs_real_part(const ex & arg)
341 {
342         return abs(arg).hold();
343 }
344
345 static ex abs_imag_part(const ex& arg)
346 {
347         return 0;
348 }
349
350 static ex abs_power(const ex & arg, const ex & exp)
351 {
352         if ((is_a<numeric>(exp) && ex_to<numeric>(exp).is_even()) || exp.info(info_flags::even)) {
353                 if (arg.info(info_flags::real) || arg.is_equal(arg.conjugate()))
354                         return power(arg, exp);
355                 else
356                         return power(arg, exp/2)*power(arg.conjugate(), exp/2);
357         } else
358                 return power(abs(arg), exp).hold();
359 }
360
361 bool abs_info(const ex & arg, unsigned inf)
362 {
363         switch (inf) {
364                 case info_flags::integer:
365                 case info_flags::even:
366                 case info_flags::odd:
367                 case info_flags::prime:
368                         return arg.info(inf);
369                 case info_flags::nonnegint:
370                         return arg.info(info_flags::integer);
371                 case info_flags::nonnegative:
372                 case info_flags::real:
373                         return true;
374                 case info_flags::negative:
375                         return false;
376                 case info_flags::positive:
377                         return arg.info(info_flags::positive) || arg.info(info_flags::negative);
378                 case info_flags::has_indices: {
379                         if (arg.info(info_flags::has_indices))
380                                 return true;
381                         else
382                                 return false;
383                 }
384         }
385         return false;
386 }
387
388 REGISTER_FUNCTION(abs, eval_func(abs_eval).
389                        evalf_func(abs_evalf).
390                        expand_func(abs_expand).
391                        expl_derivative_func(abs_expl_derivative).
392                        info_func(abs_info).
393                        print_func<print_latex>(abs_print_latex).
394                        print_func<print_csrc_float>(abs_print_csrc_float).
395                        print_func<print_csrc_double>(abs_print_csrc_float).
396                        conjugate_func(abs_conjugate).
397                        real_part_func(abs_real_part).
398                        imag_part_func(abs_imag_part).
399                        power_func(abs_power));
400
401 //////////
402 // Step function
403 //////////
404
405 static ex step_evalf(const ex & arg)
406 {
407         if (is_exactly_a<numeric>(arg))
408                 return step(ex_to<numeric>(arg));
409         
410         return step(arg).hold();
411 }
412
413 static ex step_eval(const ex & arg)
414 {
415         if (is_exactly_a<numeric>(arg))
416                 return step(ex_to<numeric>(arg));
417         
418         else if (is_exactly_a<mul>(arg) &&
419                  is_exactly_a<numeric>(arg.op(arg.nops()-1))) {
420                 numeric oc = ex_to<numeric>(arg.op(arg.nops()-1));
421                 if (oc.is_real()) {
422                         if (oc > 0)
423                                 // step(42*x) -> step(x)
424                                 return step(arg/oc).hold();
425                         else
426                                 // step(-42*x) -> step(-x)
427                                 return step(-arg/oc).hold();
428                 }
429                 if (oc.real().is_zero()) {
430                         if (oc.imag() > 0)
431                                 // step(42*I*x) -> step(I*x)
432                                 return step(I*arg/oc).hold();
433                         else
434                                 // step(-42*I*x) -> step(-I*x)
435                                 return step(-I*arg/oc).hold();
436                 }
437         }
438         
439         return step(arg).hold();
440 }
441
442 static ex step_series(const ex & arg,
443                       const relational & rel,
444                       int order,
445                       unsigned options)
446 {
447         const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
448         if (arg_pt.info(info_flags::numeric)
449             && ex_to<numeric>(arg_pt).real().is_zero()
450             && !(options & series_options::suppress_branchcut))
451                 throw (std::domain_error("step_series(): on imaginary axis"));
452         
453         epvector seq;
454         seq.push_back(expair(step(arg_pt), _ex0));
455         return pseries(rel,seq);
456 }
457
458 static ex step_conjugate(const ex& arg)
459 {
460         return step(arg).hold();
461 }
462
463 static ex step_real_part(const ex& arg)
464 {
465         return step(arg).hold();
466 }
467
468 static ex step_imag_part(const ex& arg)
469 {
470         return 0;
471 }
472
473 REGISTER_FUNCTION(step, eval_func(step_eval).
474                         evalf_func(step_evalf).
475                         series_func(step_series).
476                         conjugate_func(step_conjugate).
477                         real_part_func(step_real_part).
478                         imag_part_func(step_imag_part));
479
480 //////////
481 // Complex sign
482 //////////
483
484 static ex csgn_evalf(const ex & arg)
485 {
486         if (is_exactly_a<numeric>(arg))
487                 return csgn(ex_to<numeric>(arg));
488         
489         return csgn(arg).hold();
490 }
491
492 static ex csgn_eval(const ex & arg)
493 {
494         if (is_exactly_a<numeric>(arg))
495                 return csgn(ex_to<numeric>(arg));
496         
497         else if (is_exactly_a<mul>(arg) &&
498                  is_exactly_a<numeric>(arg.op(arg.nops()-1))) {
499                 numeric oc = ex_to<numeric>(arg.op(arg.nops()-1));
500                 if (oc.is_real()) {
501                         if (oc > 0)
502                                 // csgn(42*x) -> csgn(x)
503                                 return csgn(arg/oc).hold();
504                         else
505                                 // csgn(-42*x) -> -csgn(x)
506                                 return -csgn(arg/oc).hold();
507                 }
508                 if (oc.real().is_zero()) {
509                         if (oc.imag() > 0)
510                                 // csgn(42*I*x) -> csgn(I*x)
511                                 return csgn(I*arg/oc).hold();
512                         else
513                                 // csgn(-42*I*x) -> -csgn(I*x)
514                                 return -csgn(I*arg/oc).hold();
515                 }
516         }
517         
518         return csgn(arg).hold();
519 }
520
521 static ex csgn_series(const ex & arg,
522                       const relational & rel,
523                       int order,
524                       unsigned options)
525 {
526         const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
527         if (arg_pt.info(info_flags::numeric)
528             && ex_to<numeric>(arg_pt).real().is_zero()
529             && !(options & series_options::suppress_branchcut))
530                 throw (std::domain_error("csgn_series(): on imaginary axis"));
531         
532         epvector seq;
533         seq.push_back(expair(csgn(arg_pt), _ex0));
534         return pseries(rel,seq);
535 }
536
537 static ex csgn_conjugate(const ex& arg)
538 {
539         return csgn(arg).hold();
540 }
541
542 static ex csgn_real_part(const ex& arg)
543 {
544         return csgn(arg).hold();
545 }
546
547 static ex csgn_imag_part(const ex& arg)
548 {
549         return 0;
550 }
551
552 static ex csgn_power(const ex & arg, const ex & exp)
553 {
554         if (is_a<numeric>(exp) && exp.info(info_flags::positive) && ex_to<numeric>(exp).is_integer()) {
555                 if (ex_to<numeric>(exp).is_odd())
556                         return csgn(arg).hold();
557                 else
558                         return power(csgn(arg), _ex2).hold();
559         } else
560                 return power(csgn(arg), exp).hold();
561 }
562
563
564 REGISTER_FUNCTION(csgn, eval_func(csgn_eval).
565                         evalf_func(csgn_evalf).
566                         series_func(csgn_series).
567                         conjugate_func(csgn_conjugate).
568                         real_part_func(csgn_real_part).
569                         imag_part_func(csgn_imag_part).
570                         power_func(csgn_power));
571
572
573 //////////
574 // Eta function: eta(x,y) == log(x*y) - log(x) - log(y).
575 // This function is closely related to the unwinding number K, sometimes found
576 // in modern literature: K(z) == (z-log(exp(z)))/(2*Pi*I).
577 //////////
578
579 static ex eta_evalf(const ex &x, const ex &y)
580 {
581         // It seems like we basically have to replicate the eval function here,
582         // since the expression might not be fully evaluated yet.
583         if (x.info(info_flags::positive) || y.info(info_flags::positive))
584                 return _ex0;
585
586         if (x.info(info_flags::numeric) &&      y.info(info_flags::numeric)) {
587                 const numeric nx = ex_to<numeric>(x);
588                 const numeric ny = ex_to<numeric>(y);
589                 const numeric nxy = ex_to<numeric>(x*y);
590                 int cut = 0;
591                 if (nx.is_real() && nx.is_negative())
592                         cut -= 4;
593                 if (ny.is_real() && ny.is_negative())
594                         cut -= 4;
595                 if (nxy.is_real() && nxy.is_negative())
596                         cut += 4;
597                 return evalf(I/4*Pi)*((csgn(-imag(nx))+1)*(csgn(-imag(ny))+1)*(csgn(imag(nxy))+1)-
598                                       (csgn(imag(nx))+1)*(csgn(imag(ny))+1)*(csgn(-imag(nxy))+1)+cut);
599         }
600
601         return eta(x,y).hold();
602 }
603
604 static ex eta_eval(const ex &x, const ex &y)
605 {
606         // trivial:  eta(x,c) -> 0  if c is real and positive
607         if (x.info(info_flags::positive) || y.info(info_flags::positive))
608                 return _ex0;
609
610         if (x.info(info_flags::numeric) &&      y.info(info_flags::numeric)) {
611                 // don't call eta_evalf here because it would call Pi.evalf()!
612                 const numeric nx = ex_to<numeric>(x);
613                 const numeric ny = ex_to<numeric>(y);
614                 const numeric nxy = ex_to<numeric>(x*y);
615                 int cut = 0;
616                 if (nx.is_real() && nx.is_negative())
617                         cut -= 4;
618                 if (ny.is_real() && ny.is_negative())
619                         cut -= 4;
620                 if (nxy.is_real() && nxy.is_negative())
621                         cut += 4;
622                 return (I/4)*Pi*((csgn(-imag(nx))+1)*(csgn(-imag(ny))+1)*(csgn(imag(nxy))+1)-
623                                  (csgn(imag(nx))+1)*(csgn(imag(ny))+1)*(csgn(-imag(nxy))+1)+cut);
624         }
625         
626         return eta(x,y).hold();
627 }
628
629 static ex eta_series(const ex & x, const ex & y,
630                      const relational & rel,
631                      int order,
632                      unsigned options)
633 {
634         const ex x_pt = x.subs(rel, subs_options::no_pattern);
635         const ex y_pt = y.subs(rel, subs_options::no_pattern);
636         if ((x_pt.info(info_flags::numeric) && x_pt.info(info_flags::negative)) ||
637             (y_pt.info(info_flags::numeric) && y_pt.info(info_flags::negative)) ||
638             ((x_pt*y_pt).info(info_flags::numeric) && (x_pt*y_pt).info(info_flags::negative)))
639                         throw (std::domain_error("eta_series(): on discontinuity"));
640         epvector seq;
641         seq.push_back(expair(eta(x_pt,y_pt), _ex0));
642         return pseries(rel,seq);
643 }
644
645 static ex eta_conjugate(const ex & x, const ex & y)
646 {
647         return -eta(x, y).hold();
648 }
649
650 static ex eta_real_part(const ex & x, const ex & y)
651 {
652         return 0;
653 }
654
655 static ex eta_imag_part(const ex & x, const ex & y)
656 {
657         return -I*eta(x, y).hold();
658 }
659
660 REGISTER_FUNCTION(eta, eval_func(eta_eval).
661                        evalf_func(eta_evalf).
662                        series_func(eta_series).
663                        latex_name("\\eta").
664                        set_symmetry(sy_symm(0, 1)).
665                        conjugate_func(eta_conjugate).
666                        real_part_func(eta_real_part).
667                        imag_part_func(eta_imag_part));
668
669
670 //////////
671 // dilogarithm
672 //////////
673
674 static ex Li2_evalf(const ex & x)
675 {
676         if (is_exactly_a<numeric>(x))
677                 return Li2(ex_to<numeric>(x));
678         
679         return Li2(x).hold();
680 }
681
682 static ex Li2_eval(const ex & x)
683 {
684         if (x.info(info_flags::numeric)) {
685                 // Li2(0) -> 0
686                 if (x.is_zero())
687                         return _ex0;
688                 // Li2(1) -> Pi^2/6
689                 if (x.is_equal(_ex1))
690                         return power(Pi,_ex2)/_ex6;
691                 // Li2(1/2) -> Pi^2/12 - log(2)^2/2
692                 if (x.is_equal(_ex1_2))
693                         return power(Pi,_ex2)/_ex12 + power(log(_ex2),_ex2)*_ex_1_2;
694                 // Li2(-1) -> -Pi^2/12
695                 if (x.is_equal(_ex_1))
696                         return -power(Pi,_ex2)/_ex12;
697                 // Li2(I) -> -Pi^2/48+Catalan*I
698                 if (x.is_equal(I))
699                         return power(Pi,_ex2)/_ex_48 + Catalan*I;
700                 // Li2(-I) -> -Pi^2/48-Catalan*I
701                 if (x.is_equal(-I))
702                         return power(Pi,_ex2)/_ex_48 - Catalan*I;
703                 // Li2(float)
704                 if (!x.info(info_flags::crational))
705                         return Li2(ex_to<numeric>(x));
706         }
707         
708         return Li2(x).hold();
709 }
710
711 static ex Li2_deriv(const ex & x, unsigned deriv_param)
712 {
713         GINAC_ASSERT(deriv_param==0);
714         
715         // d/dx Li2(x) -> -log(1-x)/x
716         return -log(_ex1-x)/x;
717 }
718
719 static ex Li2_series(const ex &x, const relational &rel, int order, unsigned options)
720 {
721         const ex x_pt = x.subs(rel, subs_options::no_pattern);
722         if (x_pt.info(info_flags::numeric)) {
723                 // First special case: x==0 (derivatives have poles)
724                 if (x_pt.is_zero()) {
725                         // method:
726                         // The problem is that in d/dx Li2(x==0) == -log(1-x)/x we cannot 
727                         // simply substitute x==0.  The limit, however, exists: it is 1.
728                         // We also know all higher derivatives' limits:
729                         // (d/dx)^n Li2(x) == n!/n^2.
730                         // So the primitive series expansion is
731                         // Li2(x==0) == x + x^2/4 + x^3/9 + ...
732                         // and so on.
733                         // We first construct such a primitive series expansion manually in
734                         // a dummy symbol s and then insert the argument's series expansion
735                         // for s.  Reexpanding the resulting series returns the desired
736                         // result.
737                         const symbol s;
738                         ex ser;
739                         // manually construct the primitive expansion
740                         for (int i=1; i<order; ++i)
741                                 ser += pow(s,i) / pow(numeric(i), *_num2_p);
742                         // substitute the argument's series expansion
743                         ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
744                         // maybe that was terminating, so add a proper order term
745                         epvector nseq;
746                         nseq.push_back(expair(Order(_ex1), order));
747                         ser += pseries(rel, nseq);
748                         // reexpanding it will collapse the series again
749                         return ser.series(rel, order);
750                         // NB: Of course, this still does not allow us to compute anything
751                         // like sin(Li2(x)).series(x==0,2), since then this code here is
752                         // not reached and the derivative of sin(Li2(x)) doesn't allow the
753                         // substitution x==0.  Probably limits *are* needed for the general
754                         // cases.  In case L'Hospital's rule is implemented for limits and
755                         // basic::series() takes care of this, this whole block is probably
756                         // obsolete!
757                 }
758                 // second special case: x==1 (branch point)
759                 if (x_pt.is_equal(_ex1)) {
760                         // method:
761                         // construct series manually in a dummy symbol s
762                         const symbol s;
763                         ex ser = zeta(_ex2);
764                         // manually construct the primitive expansion
765                         for (int i=1; i<order; ++i)
766                                 ser += pow(1-s,i) * (numeric(1,i)*(I*Pi+log(s-1)) - numeric(1,i*i));
767                         // substitute the argument's series expansion
768                         ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
769                         // maybe that was terminating, so add a proper order term
770                         epvector nseq;
771                         nseq.push_back(expair(Order(_ex1), order));
772                         ser += pseries(rel, nseq);
773                         // reexpanding it will collapse the series again
774                         return ser.series(rel, order);
775                 }
776                 // third special case: x real, >=1 (branch cut)
777                 if (!(options & series_options::suppress_branchcut) &&
778                         ex_to<numeric>(x_pt).is_real() && ex_to<numeric>(x_pt)>1) {
779                         // method:
780                         // This is the branch cut: assemble the primitive series manually
781                         // and then add the corresponding complex step function.
782                         const symbol &s = ex_to<symbol>(rel.lhs());
783                         const ex point = rel.rhs();
784                         const symbol foo;
785                         epvector seq;
786                         // zeroth order term:
787                         seq.push_back(expair(Li2(x_pt), _ex0));
788                         // compute the intermediate terms:
789                         ex replarg = series(Li2(x), s==foo, order);
790                         for (size_t i=1; i<replarg.nops()-1; ++i)
791                                 seq.push_back(expair((replarg.op(i)/power(s-foo,i)).series(foo==point,1,options).op(0).subs(foo==s, subs_options::no_pattern),i));
792                         // append an order term:
793                         seq.push_back(expair(Order(_ex1), replarg.nops()-1));
794                         return pseries(rel, seq);
795                 }
796         }
797         // all other cases should be safe, by now:
798         throw do_taylor();  // caught by function::series()
799 }
800
801 static ex Li2_conjugate(const ex & x)
802 {
803         // conjugate(Li2(x))==Li2(conjugate(x)) unless on the branch cuts which
804         // run along the positive real axis beginning at 1.
805         if (x.info(info_flags::negative)) {
806                 return Li2(x).hold();
807         }
808         if (is_exactly_a<numeric>(x) &&
809             (!x.imag_part().is_zero() || x < *_num1_p)) {
810                 return Li2(x.conjugate());
811         }
812         return conjugate_function(Li2(x)).hold();
813 }
814
815 REGISTER_FUNCTION(Li2, eval_func(Li2_eval).
816                        evalf_func(Li2_evalf).
817                        derivative_func(Li2_deriv).
818                        series_func(Li2_series).
819                        conjugate_func(Li2_conjugate).
820                        latex_name("\\mathrm{Li}_2"));
821
822 //////////
823 // trilogarithm
824 //////////
825
826 static ex Li3_eval(const ex & x)
827 {
828         if (x.is_zero())
829                 return x;
830         return Li3(x).hold();
831 }
832
833 REGISTER_FUNCTION(Li3, eval_func(Li3_eval).
834                        latex_name("\\mathrm{Li}_3"));
835
836 //////////
837 // Derivatives of Riemann's Zeta-function  zetaderiv(0,x)==zeta(x)
838 //////////
839
840 static ex zetaderiv_eval(const ex & n, const ex & x)
841 {
842         if (n.info(info_flags::numeric)) {
843                 // zetaderiv(0,x) -> zeta(x)
844                 if (n.is_zero())
845                         return zeta(x).hold();
846         }
847         
848         return zetaderiv(n, x).hold();
849 }
850
851 static ex zetaderiv_deriv(const ex & n, const ex & x, unsigned deriv_param)
852 {
853         GINAC_ASSERT(deriv_param<2);
854         
855         if (deriv_param==0) {
856                 // d/dn zeta(n,x)
857                 throw(std::logic_error("cannot diff zetaderiv(n,x) with respect to n"));
858         }
859         // d/dx psi(n,x)
860         return zetaderiv(n+1,x);
861 }
862
863 REGISTER_FUNCTION(zetaderiv, eval_func(zetaderiv_eval).
864                                  derivative_func(zetaderiv_deriv).
865                                  latex_name("\\zeta^\\prime"));
866
867 //////////
868 // factorial
869 //////////
870
871 static ex factorial_evalf(const ex & x)
872 {
873         return factorial(x).hold();
874 }
875
876 static ex factorial_eval(const ex & x)
877 {
878         if (is_exactly_a<numeric>(x))
879                 return factorial(ex_to<numeric>(x));
880         else
881                 return factorial(x).hold();
882 }
883
884 static void factorial_print_dflt_latex(const ex & x, const print_context & c)
885 {
886         if (is_exactly_a<symbol>(x) ||
887             is_exactly_a<constant>(x) ||
888                 is_exactly_a<function>(x)) {
889                 x.print(c); c.s << "!";
890         } else {
891                 c.s << "("; x.print(c); c.s << ")!";
892         }
893 }
894
895 static ex factorial_conjugate(const ex & x)
896 {
897         return factorial(x).hold();
898 }
899
900 static ex factorial_real_part(const ex & x)
901 {
902         return factorial(x).hold();
903 }
904
905 static ex factorial_imag_part(const ex & x)
906 {
907         return 0;
908 }
909
910 REGISTER_FUNCTION(factorial, eval_func(factorial_eval).
911                              evalf_func(factorial_evalf).
912                              print_func<print_dflt>(factorial_print_dflt_latex).
913                              print_func<print_latex>(factorial_print_dflt_latex).
914                              conjugate_func(factorial_conjugate).
915                              real_part_func(factorial_real_part).
916                              imag_part_func(factorial_imag_part));
917
918 //////////
919 // binomial
920 //////////
921
922 static ex binomial_evalf(const ex & x, const ex & y)
923 {
924         return binomial(x, y).hold();
925 }
926
927 static ex binomial_sym(const ex & x, const numeric & y)
928 {
929         if (y.is_integer()) {
930                 if (y.is_nonneg_integer()) {
931                         const unsigned N = y.to_int();
932                         if (N == 0) return _ex1;
933                         if (N == 1) return x;
934                         ex t = x.expand();
935                         for (unsigned i = 2; i <= N; ++i)
936                                 t = (t * (x + i - y - 1)).expand() / i;
937                         return t;
938                 } else
939                         return _ex0;
940         }
941
942         return binomial(x, y).hold();
943 }
944
945 static ex binomial_eval(const ex & x, const ex &y)
946 {
947         if (is_exactly_a<numeric>(y)) {
948                 if (is_exactly_a<numeric>(x) && ex_to<numeric>(x).is_integer())
949                         return binomial(ex_to<numeric>(x), ex_to<numeric>(y));
950                 else
951                         return binomial_sym(x, ex_to<numeric>(y));
952         } else
953                 return binomial(x, y).hold();
954 }
955
956 // At the moment the numeric evaluation of a binomail function always
957 // gives a real number, but if this would be implemented using the gamma
958 // function, also complex conjugation should be changed (or rather, deleted).
959 static ex binomial_conjugate(const ex & x, const ex & y)
960 {
961         return binomial(x,y).hold();
962 }
963
964 static ex binomial_real_part(const ex & x, const ex & y)
965 {
966         return binomial(x,y).hold();
967 }
968
969 static ex binomial_imag_part(const ex & x, const ex & y)
970 {
971         return 0;
972 }
973
974 REGISTER_FUNCTION(binomial, eval_func(binomial_eval).
975                             evalf_func(binomial_evalf).
976                             conjugate_func(binomial_conjugate).
977                             real_part_func(binomial_real_part).
978                             imag_part_func(binomial_imag_part));
979
980 //////////
981 // Order term function (for truncated power series)
982 //////////
983
984 static ex Order_eval(const ex & x)
985 {
986         if (is_exactly_a<numeric>(x)) {
987                 // O(c) -> O(1) or 0
988                 if (!x.is_zero())
989                         return Order(_ex1).hold();
990                 else
991                         return _ex0;
992         } else if (is_exactly_a<mul>(x)) {
993                 const mul &m = ex_to<mul>(x);
994                 // O(c*expr) -> O(expr)
995                 if (is_exactly_a<numeric>(m.op(m.nops() - 1)))
996                         return Order(x / m.op(m.nops() - 1)).hold();
997         }
998         return Order(x).hold();
999 }
1000
1001 static ex Order_series(const ex & x, const relational & r, int order, unsigned options)
1002 {
1003         // Just wrap the function into a pseries object
1004         epvector new_seq;
1005         GINAC_ASSERT(is_a<symbol>(r.lhs()));
1006         const symbol &s = ex_to<symbol>(r.lhs());
1007         new_seq.push_back(expair(Order(_ex1), numeric(std::min(x.ldegree(s), order))));
1008         return pseries(r, new_seq);
1009 }
1010
1011 static ex Order_conjugate(const ex & x)
1012 {
1013         return Order(x).hold();
1014 }
1015
1016 static ex Order_real_part(const ex & x)
1017 {
1018         return Order(x).hold();
1019 }
1020
1021 static ex Order_imag_part(const ex & x)
1022 {
1023         if(x.info(info_flags::real))
1024                 return 0;
1025         return Order(x).hold();
1026 }
1027
1028 static ex Order_expl_derivative(const ex & arg, const symbol & s)
1029 {
1030         return Order(arg.diff(s));
1031 }
1032
1033 REGISTER_FUNCTION(Order, eval_func(Order_eval).
1034                          series_func(Order_series).
1035                          latex_name("\\mathcal{O}").
1036                          expl_derivative_func(Order_expl_derivative).
1037                          conjugate_func(Order_conjugate).
1038                          real_part_func(Order_real_part).
1039                          imag_part_func(Order_imag_part));
1040
1041 //////////
1042 // Solve linear system
1043 //////////
1044
1045 ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
1046 {
1047         // solve a system of linear equations
1048         if (eqns.info(info_flags::relation_equal)) {
1049                 if (!symbols.info(info_flags::symbol))
1050                         throw(std::invalid_argument("lsolve(): 2nd argument must be a symbol"));
1051                 const ex sol = lsolve(lst(eqns),lst(symbols));
1052                 
1053                 GINAC_ASSERT(sol.nops()==1);
1054                 GINAC_ASSERT(is_exactly_a<relational>(sol.op(0)));
1055                 
1056                 return sol.op(0).op(1); // return rhs of first solution
1057         }
1058         
1059         // syntax checks
1060         if (!eqns.info(info_flags::list)) {
1061                 throw(std::invalid_argument("lsolve(): 1st argument must be a list or an equation"));
1062         }
1063         for (size_t i=0; i<eqns.nops(); i++) {
1064                 if (!eqns.op(i).info(info_flags::relation_equal)) {
1065                         throw(std::invalid_argument("lsolve(): 1st argument must be a list of equations"));
1066                 }
1067         }
1068         if (!symbols.info(info_flags::list)) {
1069                 throw(std::invalid_argument("lsolve(): 2nd argument must be a list or a symbol"));
1070         }
1071         for (size_t i=0; i<symbols.nops(); i++) {
1072                 if (!symbols.op(i).info(info_flags::symbol)) {
1073                         throw(std::invalid_argument("lsolve(): 2nd argument must be a list of symbols"));
1074                 }
1075         }
1076         
1077         // build matrix from equation system
1078         matrix sys(eqns.nops(),symbols.nops());
1079         matrix rhs(eqns.nops(),1);
1080         matrix vars(symbols.nops(),1);
1081         
1082         for (size_t r=0; r<eqns.nops(); r++) {
1083                 const ex eq = eqns.op(r).op(0)-eqns.op(r).op(1); // lhs-rhs==0
1084                 ex linpart = eq;
1085                 for (size_t c=0; c<symbols.nops(); c++) {
1086                         const ex co = eq.coeff(ex_to<symbol>(symbols.op(c)),1);
1087                         linpart -= co*symbols.op(c);
1088                         sys(r,c) = co;
1089                 }
1090                 linpart = linpart.expand();
1091                 rhs(r,0) = -linpart;
1092         }
1093         
1094         // test if system is linear and fill vars matrix
1095         for (size_t i=0; i<symbols.nops(); i++) {
1096                 vars(i,0) = symbols.op(i);
1097                 if (sys.has(symbols.op(i)))
1098                         throw(std::logic_error("lsolve: system is not linear"));
1099                 if (rhs.has(symbols.op(i)))
1100                         throw(std::logic_error("lsolve: system is not linear"));
1101         }
1102         
1103         matrix solution;
1104         try {
1105                 solution = sys.solve(vars,rhs,options);
1106         } catch (const std::runtime_error & e) {
1107                 // Probably singular matrix or otherwise overdetermined system:
1108                 // It is consistent to return an empty list
1109                 return lst();
1110         }
1111         GINAC_ASSERT(solution.cols()==1);
1112         GINAC_ASSERT(solution.rows()==symbols.nops());
1113         
1114         // return list of equations of the form lst(var1==sol1,var2==sol2,...)
1115         lst sollist;
1116         for (size_t i=0; i<symbols.nops(); i++)
1117                 sollist.append(symbols.op(i)==solution(i,0));
1118         
1119         return sollist;
1120 }
1121
1122 //////////
1123 // Find real root of f(x) numerically
1124 //////////
1125
1126 const numeric
1127 fsolve(const ex& f_in, const symbol& x, const numeric& x1, const numeric& x2)
1128 {
1129         if (!x1.is_real() || !x2.is_real()) {
1130                 throw std::runtime_error("fsolve(): interval not bounded by real numbers");
1131         }
1132         if (x1==x2) {
1133                 throw std::runtime_error("fsolve(): vanishing interval");
1134         }
1135         // xx[0] == left interval limit, xx[1] == right interval limit.
1136         // fx[0] == f(xx[0]), fx[1] == f(xx[1]).
1137         // We keep the root bracketed: xx[0]<xx[1] and fx[0]*fx[1]<0.
1138         numeric xx[2] = { x1<x2 ? x1 : x2,
1139                           x1<x2 ? x2 : x1 };
1140         ex f;
1141         if (is_a<relational>(f_in)) {
1142                 f = f_in.lhs()-f_in.rhs();
1143         } else {
1144                 f = f_in;
1145         }
1146         const ex fx_[2] = { f.subs(x==xx[0]).evalf(),
1147                             f.subs(x==xx[1]).evalf() };
1148         if (!is_a<numeric>(fx_[0]) || !is_a<numeric>(fx_[1])) {
1149                 throw std::runtime_error("fsolve(): function does not evaluate numerically");
1150         }
1151         numeric fx[2] = { ex_to<numeric>(fx_[0]),
1152                           ex_to<numeric>(fx_[1]) };
1153         if (!fx[0].is_real() || !fx[1].is_real()) {
1154                 throw std::runtime_error("fsolve(): function evaluates to complex values at interval boundaries");
1155         }
1156         if (fx[0]*fx[1]>=0) {
1157                 throw std::runtime_error("fsolve(): function does not change sign at interval boundaries");
1158         }
1159
1160         // The Newton-Raphson method has quadratic convergence!  Simply put, it
1161         // replaces x with x-f(x)/f'(x) at each step.  -f/f' is the delta:
1162         const ex ff = normal(-f/f.diff(x));
1163         int side = 0;  // Start at left interval limit.
1164         numeric xxprev;
1165         numeric fxprev;
1166         do {
1167                 xxprev = xx[side];
1168                 fxprev = fx[side];
1169                 ex dx_ = ff.subs(x == xx[side]).evalf();
1170                 if (!is_a<numeric>(dx_))
1171                         throw std::runtime_error("fsolve(): function derivative does not evaluate numerically");
1172                 xx[side] += ex_to<numeric>(dx_);
1173                 // Now check if Newton-Raphson method shot out of the interval 
1174                 bool bad_shot = (side == 0 && xx[0] < xxprev) || 
1175                                 (side == 1 && xx[1] > xxprev) || xx[0] > xx[1];
1176                 if (!bad_shot) {
1177                         // Compute f(x) only if new x is inside the interval.
1178                         // The function might be difficult to compute numerically
1179                         // or even ill defined outside the interval. Also it's
1180                         // a small optimization. 
1181                         ex f_x = f.subs(x == xx[side]).evalf();
1182                         if (!is_a<numeric>(f_x))
1183                                 throw std::runtime_error("fsolve(): function does not evaluate numerically");
1184                         fx[side] = ex_to<numeric>(f_x);
1185                 }
1186                 if (bad_shot) {
1187                         // Oops, Newton-Raphson method shot out of the interval.
1188                         // Restore, and try again with the other side instead!
1189                         xx[side] = xxprev;
1190                         fx[side] = fxprev;
1191                         side = !side;
1192                         xxprev = xx[side];
1193                         fxprev = fx[side];
1194
1195                         ex dx_ = ff.subs(x == xx[side]).evalf();
1196                         if (!is_a<numeric>(dx_))
1197                                 throw std::runtime_error("fsolve(): function derivative does not evaluate numerically [2]");
1198                         xx[side] += ex_to<numeric>(dx_);
1199
1200                         ex f_x = f.subs(x==xx[side]).evalf();
1201                         if (!is_a<numeric>(f_x))
1202                                 throw std::runtime_error("fsolve(): function does not evaluate numerically [2]");
1203                         fx[side] = ex_to<numeric>(f_x);
1204                 }
1205                 if ((fx[side]<0 && fx[!side]<0) || (fx[side]>0 && fx[!side]>0)) {
1206                         // Oops, the root isn't bracketed any more.
1207                         // Restore, and perform a bisection!
1208                         xx[side] = xxprev;
1209                         fx[side] = fxprev;
1210
1211                         // Ah, the bisection! Bisections converge linearly. Unfortunately,
1212                         // they occur pretty often when Newton-Raphson arrives at an x too
1213                         // close to the result on one side of the interval and
1214                         // f(x-f(x)/f'(x)) turns out to have the same sign as f(x) due to
1215                         // precision errors! Recall that this function does not have a
1216                         // precision goal as one of its arguments but instead relies on
1217                         // x converging to a fixed point. We speed up the (safe but slow)
1218                         // bisection method by mixing in a dash of the (unsafer but faster)
1219                         // secant method: Instead of splitting the interval at the
1220                         // arithmetic mean (bisection), we split it nearer to the root as
1221                         // determined by the secant between the values xx[0] and xx[1].
1222                         // Don't set the secant_weight to one because that could disturb
1223                         // the convergence in some corner cases!
1224                         static const double secant_weight = 0.984375;  // == 63/64 < 1
1225                         numeric xxmid = (1-secant_weight)*0.5*(xx[0]+xx[1])
1226                             + secant_weight*(xx[0]+fx[0]*(xx[0]-xx[1])/(fx[1]-fx[0]));
1227                         ex fxmid_ = f.subs(x == xxmid).evalf();
1228                         if (!is_a<numeric>(fxmid_))
1229                                 throw std::runtime_error("fsolve(): function does not evaluate numerically [3]");
1230                         numeric fxmid = ex_to<numeric>(fxmid_);
1231                         if (fxmid.is_zero()) {
1232                                 // Luck strikes...
1233                                 return xxmid;
1234                         }
1235                         if ((fxmid<0 && fx[side]>0) || (fxmid>0 && fx[side]<0)) {
1236                                 side = !side;
1237                         }
1238                         xxprev = xx[side];
1239                         fxprev = fx[side];
1240                         xx[side] = xxmid;
1241                         fx[side] = fxmid;
1242                 }
1243         } while (xxprev!=xx[side]);
1244         return xxprev;
1245 }
1246
1247
1248 /* Force inclusion of functions from inifcns_gamma and inifcns_zeta
1249  * for static lib (so ginsh will see them). */
1250 unsigned force_include_tgamma = tgamma_SERIAL::serial;
1251 unsigned force_include_zeta1 = zeta1_SERIAL::serial;
1252
1253 } // namespace GiNaC