]> www.ginac.de Git - ginac.git/blob - ginac/inifcns.cpp
* Methods of class ex which do absolutely nothing than type dispatch should
[ginac.git] / ginac / inifcns.cpp
1 /** @file inifcns.cpp
2  *
3  *  Implementation of GiNaC's initially known functions. */
4
5 /*
6  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include <vector>
24 #include <stdexcept>
25
26 #include "inifcns.h"
27 #include "ex.h"
28 #include "constant.h"
29 #include "lst.h"
30 #include "matrix.h"
31 #include "mul.h"
32 #include "ncmul.h"
33 #include "numeric.h"
34 #include "power.h"
35 #include "relational.h"
36 #include "pseries.h"
37 #include "symbol.h"
38 #include "utils.h"
39
40 namespace GiNaC {
41
42 //////////
43 // absolute value
44 //////////
45
46 static ex abs_evalf(const ex & arg)
47 {
48         BEGIN_TYPECHECK
49                 TYPECHECK(arg,numeric)
50         END_TYPECHECK(abs(arg))
51         
52         return abs(ex_to_numeric(arg));
53 }
54
55 static ex abs_eval(const ex & arg)
56 {
57         if (is_ex_exactly_of_type(arg, numeric))
58                 return abs(ex_to_numeric(arg));
59         else
60                 return abs(arg).hold();
61 }
62
63 REGISTER_FUNCTION(abs, eval_func(abs_eval).
64                        evalf_func(abs_evalf));
65
66
67 //////////
68 // Complex sign
69 //////////
70
71 static ex csgn_evalf(const ex & arg)
72 {
73         BEGIN_TYPECHECK
74                 TYPECHECK(arg,numeric)
75         END_TYPECHECK(csgn(arg))
76         
77         return csgn(ex_to_numeric(arg));
78 }
79
80 static ex csgn_eval(const ex & arg)
81 {
82         if (is_ex_exactly_of_type(arg, numeric))
83                 return csgn(ex_to_numeric(arg));
84         
85         else if (is_ex_exactly_of_type(arg, mul)) {
86                 numeric oc = ex_to_numeric(arg.op(arg.nops()-1));
87                 if (oc.is_real()) {
88                         if (oc > 0)
89                                 // csgn(42*x) -> csgn(x)
90                                 return csgn(arg/oc).hold();
91                         else
92                                 // csgn(-42*x) -> -csgn(x)
93                                 return -csgn(arg/oc).hold();
94                 }
95                 if (oc.real().is_zero()) {
96                         if (oc.imag() > 0)
97                                 // csgn(42*I*x) -> csgn(I*x)
98                                 return csgn(I*arg/oc).hold();
99                         else
100                                 // csgn(-42*I*x) -> -csgn(I*x)
101                                 return -csgn(I*arg/oc).hold();
102                 }
103         }
104    
105         return csgn(arg).hold();
106 }
107
108 static ex csgn_series(const ex & arg,
109                       const relational & rel,
110                       int order,
111                       unsigned options)
112 {
113         const ex arg_pt = arg.subs(rel);
114         if (arg_pt.info(info_flags::numeric)
115             && ex_to_numeric(arg_pt).real().is_zero()
116             && !(options & series_options::suppress_branchcut))
117                 throw (std::domain_error("csgn_series(): on imaginary axis"));
118         
119         epvector seq;
120         seq.push_back(expair(csgn(arg_pt), _ex0()));
121         return pseries(rel,seq);
122 }
123
124 REGISTER_FUNCTION(csgn, eval_func(csgn_eval).
125                         evalf_func(csgn_evalf).
126                         series_func(csgn_series));
127
128
129 //////////
130 // Eta function: log(x*y) == log(x) + log(y) + eta(x,y).
131 //////////
132
133 static ex eta_evalf(const ex & x, const ex & y)
134 {
135         BEGIN_TYPECHECK
136                 TYPECHECK(x,numeric)
137                 TYPECHECK(y,numeric)
138         END_TYPECHECK(eta(x,y))
139                 
140         numeric xim = imag(ex_to_numeric(x));
141         numeric yim = imag(ex_to_numeric(y));
142         numeric xyim = imag(ex_to_numeric(x*y));
143         return evalf(I/4*Pi)*((csgn(-xim)+1)*(csgn(-yim)+1)*(csgn(xyim)+1)-(csgn(xim)+1)*(csgn(yim)+1)*(csgn(-xyim)+1));
144 }
145
146 static ex eta_eval(const ex & x, const ex & y)
147 {
148         if (is_ex_exactly_of_type(x, numeric) &&
149                 is_ex_exactly_of_type(y, numeric)) {
150                 // don't call eta_evalf here because it would call Pi.evalf()!
151                 numeric xim = imag(ex_to_numeric(x));
152                 numeric yim = imag(ex_to_numeric(y));
153                 numeric xyim = imag(ex_to_numeric(x*y));
154                 return (I/4)*Pi*((csgn(-xim)+1)*(csgn(-yim)+1)*(csgn(xyim)+1)-(csgn(xim)+1)*(csgn(yim)+1)*(csgn(-xyim)+1));
155         }
156         
157         return eta(x,y).hold();
158 }
159
160 static ex eta_series(const ex & arg1,
161                      const ex & arg2,
162                      const relational & rel,
163                      int order,
164                      unsigned options)
165 {
166         const ex arg1_pt = arg1.subs(rel);
167         const ex arg2_pt = arg2.subs(rel);
168         if (ex_to_numeric(arg1_pt).imag().is_zero() ||
169                 ex_to_numeric(arg2_pt).imag().is_zero() ||
170                 ex_to_numeric(arg1_pt*arg2_pt).imag().is_zero()) {
171                 throw (std::domain_error("eta_series(): on discontinuity"));
172         }
173         epvector seq;
174         seq.push_back(expair(eta(arg1_pt,arg2_pt), _ex0()));
175         return pseries(rel,seq);
176 }
177
178 REGISTER_FUNCTION(eta, eval_func(eta_eval).
179                        evalf_func(eta_evalf).
180                        series_func(eta_series).
181                        latex_name("\\eta"));
182
183
184 //////////
185 // dilogarithm
186 //////////
187
188 static ex Li2_evalf(const ex & x)
189 {
190         BEGIN_TYPECHECK
191                 TYPECHECK(x,numeric)
192         END_TYPECHECK(Li2(x))
193         
194         return Li2(ex_to_numeric(x));  // -> numeric Li2(numeric)
195 }
196
197 static ex Li2_eval(const ex & x)
198 {
199         if (x.info(info_flags::numeric)) {
200                 // Li2(0) -> 0
201                 if (x.is_zero())
202                         return _ex0();
203                 // Li2(1) -> Pi^2/6
204                 if (x.is_equal(_ex1()))
205                         return power(Pi,_ex2())/_ex6();
206                 // Li2(1/2) -> Pi^2/12 - log(2)^2/2
207                 if (x.is_equal(_ex1_2()))
208                         return power(Pi,_ex2())/_ex12() + power(log(_ex2()),_ex2())*_ex_1_2();
209                 // Li2(-1) -> -Pi^2/12
210                 if (x.is_equal(_ex_1()))
211                         return -power(Pi,_ex2())/_ex12();
212                 // Li2(I) -> -Pi^2/48+Catalan*I
213                 if (x.is_equal(I))
214                         return power(Pi,_ex2())/_ex_48() + Catalan*I;
215                 // Li2(-I) -> -Pi^2/48-Catalan*I
216                 if (x.is_equal(-I))
217                         return power(Pi,_ex2())/_ex_48() - Catalan*I;
218                 // Li2(float)
219                 if (!x.info(info_flags::crational))
220                         return Li2_evalf(x);
221         }
222         
223         return Li2(x).hold();
224 }
225
226 static ex Li2_deriv(const ex & x, unsigned deriv_param)
227 {
228         GINAC_ASSERT(deriv_param==0);
229         
230         // d/dx Li2(x) -> -log(1-x)/x
231         return -log(1-x)/x;
232 }
233
234 static ex Li2_series(const ex &x, const relational &rel, int order, unsigned options)
235 {
236         const ex x_pt = x.subs(rel);
237         if (x_pt.info(info_flags::numeric)) {
238                 // First special case: x==0 (derivatives have poles)
239                 if (x_pt.is_zero()) {
240                         // method:
241                         // The problem is that in d/dx Li2(x==0) == -log(1-x)/x we cannot 
242                         // simply substitute x==0.  The limit, however, exists: it is 1.
243                         // We also know all higher derivatives' limits:
244                         // (d/dx)^n Li2(x) == n!/n^2.
245                         // So the primitive series expansion is
246                         // Li2(x==0) == x + x^2/4 + x^3/9 + ...
247                         // and so on.
248                         // We first construct such a primitive series expansion manually in
249                         // a dummy symbol s and then insert the argument's series expansion
250                         // for s.  Reexpanding the resulting series returns the desired
251                         // result.
252                         const symbol s;
253                         ex ser;
254                         // manually construct the primitive expansion
255                         for (int i=1; i<order; ++i)
256                                 ser += pow(s,i) / pow(numeric(i), _num2());
257                         // substitute the argument's series expansion
258                         ser = ser.subs(s==x.series(rel, order));
259                         // maybe that was terminating, so add a proper order term
260                         epvector nseq;
261                         nseq.push_back(expair(Order(_ex1()), order));
262                         ser += pseries(rel, nseq);
263                         // reexpanding it will collapse the series again
264                         return ser.series(rel, order);
265                         // NB: Of course, this still does not allow us to compute anything
266                         // like sin(Li2(x)).series(x==0,2), since then this code here is
267                         // not reached and the derivative of sin(Li2(x)) doesn't allow the
268                         // substitution x==0.  Probably limits *are* needed for the general
269                         // cases.  In case L'Hospital's rule is implemented for limits and
270                         // basic::series() takes care of this, this whole block is probably
271                         // obsolete!
272                 }
273                 // second special case: x==1 (branch point)
274                 if (x_pt == _ex1()) {
275                         // method:
276                         // construct series manually in a dummy symbol s
277                         const symbol s;
278                         ex ser = zeta(2);
279                         // manually construct the primitive expansion
280                         for (int i=1; i<order; ++i)
281                                 ser += pow(1-s,i) * (numeric(1,i)*(I*Pi+log(s-1)) - numeric(1,i*i));
282                         // substitute the argument's series expansion
283                         ser = ser.subs(s==x.series(rel, order));
284                         // maybe that was terminating, so add a proper order term
285                         epvector nseq;
286                         nseq.push_back(expair(Order(_ex1()), order));
287                         ser += pseries(rel, nseq);
288                         // reexpanding it will collapse the series again
289                         return ser.series(rel, order);
290                 }
291                 // third special case: x real, >=1 (branch cut)
292                 if (!(options & series_options::suppress_branchcut) &&
293                         ex_to_numeric(x_pt).is_real() && ex_to_numeric(x_pt)>1) {
294                         // method:
295                         // This is the branch cut: assemble the primitive series manually
296                         // and then add the corresponding complex step function.
297                         const symbol *s = static_cast<symbol *>(rel.lhs().bp);
298                         const ex point = rel.rhs();
299                         const symbol foo;
300                         epvector seq;
301                         // zeroth order term:
302                         seq.push_back(expair(Li2(x_pt), _ex0()));
303                         // compute the intermediate terms:
304                         ex replarg = series(Li2(x), *s==foo, order);
305                         for (unsigned i=1; i<replarg.nops()-1; ++i)
306                                 seq.push_back(expair((replarg.op(i)/power(*s-foo,i)).series(foo==point,1,options).op(0).subs(foo==*s),i));
307                         // append an order term:
308                         seq.push_back(expair(Order(_ex1()), replarg.nops()-1));
309                         return pseries(rel, seq);
310                 }
311         }
312         // all other cases should be safe, by now:
313         throw do_taylor();  // caught by function::series()
314 }
315
316 REGISTER_FUNCTION(Li2, eval_func(Li2_eval).
317                        evalf_func(Li2_evalf).
318                        derivative_func(Li2_deriv).
319                        series_func(Li2_series).
320                        latex_name("\\mbox{Li}_2"));
321
322 //////////
323 // trilogarithm
324 //////////
325
326 static ex Li3_eval(const ex & x)
327 {
328         if (x.is_zero())
329                 return x;
330         return Li3(x).hold();
331 }
332
333 REGISTER_FUNCTION(Li3, eval_func(Li3_eval).
334                        latex_name("\\mbox{Li}_3"));
335
336 //////////
337 // factorial
338 //////////
339
340 static ex factorial_evalf(const ex & x)
341 {
342         return factorial(x).hold();
343 }
344
345 static ex factorial_eval(const ex & x)
346 {
347         if (is_ex_exactly_of_type(x, numeric))
348                 return factorial(ex_to_numeric(x));
349         else
350                 return factorial(x).hold();
351 }
352
353 REGISTER_FUNCTION(factorial, eval_func(factorial_eval).
354                              evalf_func(factorial_evalf));
355
356 //////////
357 // binomial
358 //////////
359
360 static ex binomial_evalf(const ex & x, const ex & y)
361 {
362         return binomial(x, y).hold();
363 }
364
365 static ex binomial_eval(const ex & x, const ex &y)
366 {
367         if (is_ex_exactly_of_type(x, numeric) && is_ex_exactly_of_type(y, numeric))
368                 return binomial(ex_to_numeric(x), ex_to_numeric(y));
369         else
370                 return binomial(x, y).hold();
371 }
372
373 REGISTER_FUNCTION(binomial, eval_func(binomial_eval).
374                             evalf_func(binomial_evalf));
375
376 //////////
377 // Order term function (for truncated power series)
378 //////////
379
380 static ex Order_eval(const ex & x)
381 {
382         if (is_ex_exactly_of_type(x, numeric)) {
383                 // O(c) -> O(1) or 0
384                 if (!x.is_zero())
385                         return Order(_ex1()).hold();
386                 else
387                         return _ex0();
388         } else if (is_ex_exactly_of_type(x, mul)) {
389                 mul *m = static_cast<mul *>(x.bp);
390                 // O(c*expr) -> O(expr)
391                 if (is_ex_exactly_of_type(m->op(m->nops() - 1), numeric))
392                         return Order(x / m->op(m->nops() - 1)).hold();
393         }
394         return Order(x).hold();
395 }
396
397 static ex Order_series(const ex & x, const relational & r, int order, unsigned options)
398 {
399         // Just wrap the function into a pseries object
400         epvector new_seq;
401         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
402         const symbol *s = static_cast<symbol *>(r.lhs().bp);
403         new_seq.push_back(expair(Order(_ex1()), numeric(std::min(x.ldegree(*s), order))));
404         return pseries(r, new_seq);
405 }
406
407 // Differentiation is handled in function::derivative because of its special requirements
408
409 REGISTER_FUNCTION(Order, eval_func(Order_eval).
410                          series_func(Order_series).
411                          latex_name("\\mathcal{O}"));
412
413 //////////
414 // Inert partial differentiation operator
415 //////////
416
417 static ex Derivative_eval(const ex & f, const ex & l)
418 {
419         if (!is_ex_exactly_of_type(f, function)) {
420                 throw(std::invalid_argument("Derivative(): 1st argument must be a function"));
421         }
422         if (!is_ex_exactly_of_type(l, lst)) {
423                 throw(std::invalid_argument("Derivative(): 2nd argument must be a list"));
424         }
425         return Derivative(f, l).hold();
426 }
427
428 REGISTER_FUNCTION(Derivative, eval_func(Derivative_eval));
429
430 //////////
431 // Solve linear system
432 //////////
433
434 ex lsolve(const ex &eqns, const ex &symbols)
435 {
436         // solve a system of linear equations
437         if (eqns.info(info_flags::relation_equal)) {
438                 if (!symbols.info(info_flags::symbol))
439                         throw(std::invalid_argument("lsolve(): 2nd argument must be a symbol"));
440                 ex sol=lsolve(lst(eqns),lst(symbols));
441                 
442                 GINAC_ASSERT(sol.nops()==1);
443                 GINAC_ASSERT(is_ex_exactly_of_type(sol.op(0),relational));
444                 
445                 return sol.op(0).op(1); // return rhs of first solution
446         }
447         
448         // syntax checks
449         if (!eqns.info(info_flags::list)) {
450                 throw(std::invalid_argument("lsolve(): 1st argument must be a list"));
451         }
452         for (unsigned i=0; i<eqns.nops(); i++) {
453                 if (!eqns.op(i).info(info_flags::relation_equal)) {
454                         throw(std::invalid_argument("lsolve(): 1st argument must be a list of equations"));
455                 }
456         }
457         if (!symbols.info(info_flags::list)) {
458                 throw(std::invalid_argument("lsolve(): 2nd argument must be a list"));
459         }
460         for (unsigned i=0; i<symbols.nops(); i++) {
461                 if (!symbols.op(i).info(info_flags::symbol)) {
462                         throw(std::invalid_argument("lsolve(): 2nd argument must be a list of symbols"));
463                 }
464         }
465         
466         // build matrix from equation system
467         matrix sys(eqns.nops(),symbols.nops());
468         matrix rhs(eqns.nops(),1);
469         matrix vars(symbols.nops(),1);
470         
471         for (unsigned r=0; r<eqns.nops(); r++) {
472                 ex eq = eqns.op(r).op(0)-eqns.op(r).op(1); // lhs-rhs==0
473                 ex linpart = eq;
474                 for (unsigned c=0; c<symbols.nops(); c++) {
475                         ex co = eq.coeff(ex_to_symbol(symbols.op(c)),1);
476                         linpart -= co*symbols.op(c);
477                         sys.set(r,c,co);
478                 }
479                 linpart = linpart.expand();
480                 rhs.set(r,0,-linpart);
481         }
482         
483         // test if system is linear and fill vars matrix
484         for (unsigned i=0; i<symbols.nops(); i++) {
485                 vars.set(i,0,symbols.op(i));
486                 if (sys.has(symbols.op(i)))
487                         throw(std::logic_error("lsolve: system is not linear"));
488                 if (rhs.has(symbols.op(i)))
489                         throw(std::logic_error("lsolve: system is not linear"));
490         }
491         
492         matrix solution;
493         try {
494                 solution = sys.solve(vars,rhs);
495         } catch (const std::runtime_error & e) {
496                 // Probably singular matrix or otherwise overdetermined system:
497                 // It is consistent to return an empty list
498                 return lst();
499         }    
500         GINAC_ASSERT(solution.cols()==1);
501         GINAC_ASSERT(solution.rows()==symbols.nops());
502         
503         // return list of equations of the form lst(var1==sol1,var2==sol2,...)
504         lst sollist;
505         for (unsigned i=0; i<symbols.nops(); i++)
506                 sollist.append(symbols.op(i)==solution(i,0));
507         
508         return sollist;
509 }
510
511 /** non-commutative power. */
512 ex ncpower(const ex &basis, unsigned exponent)
513 {
514         if (exponent==0) {
515                 return _ex1();
516         }
517
518         exvector v;
519         v.reserve(exponent);
520         for (unsigned i=0; i<exponent; ++i) {
521                 v.push_back(basis);
522         }
523
524         return ncmul(v,1);
525 }
526
527 /** Force inclusion of functions from initcns_gamma and inifcns_zeta
528  *  for static lib (so ginsh will see them). */
529 unsigned force_include_tgamma = function_index_tgamma;
530 unsigned force_include_zeta1 = function_index_zeta1;
531
532 } // namespace GiNaC