]> www.ginac.de Git - ginac.git/blob - ginac/add.cpp
Make add::eval(), mul::eval() work without compromise.
[ginac.git] / ginac / add.cpp
1 /** @file add.cpp
2  *
3  *  Implementation of GiNaC's sums of expressions. */
4
5 /*
6  *  GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
21  */
22
23 #include "add.h"
24 #include "mul.h"
25 #include "archive.h"
26 #include "operators.h"
27 #include "matrix.h"
28 #include "utils.h"
29 #include "clifford.h"
30 #include "ncmul.h"
31 #include "compiler.h"
32
33 #include <iostream>
34 #include <limits>
35 #include <stdexcept>
36 #include <string>
37
38 namespace GiNaC {
39
40 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(add, expairseq,
41   print_func<print_context>(&add::do_print).
42   print_func<print_latex>(&add::do_print_latex).
43   print_func<print_csrc>(&add::do_print_csrc).
44   print_func<print_tree>(&add::do_print_tree).
45   print_func<print_python_repr>(&add::do_print_python_repr))
46
47 //////////
48 // default constructor
49 //////////
50
51 add::add()
52 {
53 }
54
55 //////////
56 // other constructors
57 //////////
58
59 // public
60
61 add::add(const ex & lh, const ex & rh)
62 {
63         overall_coeff = _ex0;
64         construct_from_2_ex(lh,rh);
65         GINAC_ASSERT(is_canonical());
66 }
67
68 add::add(const exvector & v)
69 {
70         overall_coeff = _ex0;
71         construct_from_exvector(v);
72         GINAC_ASSERT(is_canonical());
73 }
74
75 add::add(const epvector & v)
76 {
77         overall_coeff = _ex0;
78         construct_from_epvector(v);
79         GINAC_ASSERT(is_canonical());
80 }
81
82 add::add(const epvector & v, const ex & oc)
83 {
84         overall_coeff = oc;
85         construct_from_epvector(v);
86         GINAC_ASSERT(is_canonical());
87 }
88
89 add::add(epvector && vp, const ex & oc)
90 {
91         overall_coeff = oc;
92         construct_from_epvector(std::move(vp));
93         GINAC_ASSERT(is_canonical());
94 }
95
96 //////////
97 // archiving
98 //////////
99
100 GINAC_BIND_UNARCHIVER(add);
101
102 //////////
103 // functions overriding virtual functions from base classes
104 //////////
105
106 // public
107
108 void add::print_add(const print_context & c, const char *openbrace, const char *closebrace, const char *mul_sym, unsigned level) const
109 {
110         if (precedence() <= level)
111                 c.s << openbrace << '(';
112
113         numeric coeff;
114         bool first = true;
115
116         // First print the overall numeric coefficient, if present
117         if (!overall_coeff.is_zero()) {
118                 overall_coeff.print(c, 0);
119                 first = false;
120         }
121
122         // Then proceed with the remaining factors
123         for (auto & it : seq) {
124                 coeff = ex_to<numeric>(it.coeff);
125                 if (!first) {
126                         if (coeff.csgn() == -1) c.s << '-'; else c.s << '+';
127                 } else {
128                         if (coeff.csgn() == -1) c.s << '-';
129                         first = false;
130                 }
131                 if (!coeff.is_equal(*_num1_p) &&
132                     !coeff.is_equal(*_num_1_p)) {
133                         if (coeff.is_rational()) {
134                                 if (coeff.is_negative())
135                                         (-coeff).print(c);
136                                 else
137                                         coeff.print(c);
138                         } else {
139                                 if (coeff.csgn() == -1)
140                                         (-coeff).print(c, precedence());
141                                 else
142                                         coeff.print(c, precedence());
143                         }
144                         c.s << mul_sym;
145                 }
146                 it.rest.print(c, precedence());
147         }
148
149         if (precedence() <= level)
150                 c.s << ')' << closebrace;
151 }
152
153 void add::do_print(const print_context & c, unsigned level) const
154 {
155         print_add(c, "", "", "*", level);
156 }
157
158 void add::do_print_latex(const print_latex & c, unsigned level) const
159 {
160         print_add(c, "{", "}", " ", level);
161 }
162
163 void add::do_print_csrc(const print_csrc & c, unsigned level) const
164 {
165         if (precedence() <= level)
166                 c.s << "(";
167         
168         // Print arguments, separated by "+" or "-"
169         char separator = ' ';
170         for (auto & it : seq) {
171                 
172                 // If the coefficient is negative, separator is "-"
173                 if (it.coeff.is_equal(_ex_1) ||
174                         ex_to<numeric>(it.coeff).numer().is_equal(*_num_1_p))
175                         separator = '-';
176                 c.s << separator;
177                 if (it.coeff.is_equal(_ex1) || it.coeff.is_equal(_ex_1)) {
178                         it.rest.print(c, precedence());
179                 } else if (ex_to<numeric>(it.coeff).numer().is_equal(*_num1_p) ||
180                                  ex_to<numeric>(it.coeff).numer().is_equal(*_num_1_p))
181                 {
182                         it.rest.print(c, precedence());
183                         c.s << '/';
184                         ex_to<numeric>(it.coeff).denom().print(c, precedence());
185                 } else {
186                         it.coeff.print(c, precedence());
187                         c.s << '*';
188                         it.rest.print(c, precedence());
189                 }
190                 
191                 separator = '+';
192         }
193         
194         if (!overall_coeff.is_zero()) {
195                 if (overall_coeff.info(info_flags::positive)
196                  || is_a<print_csrc_cl_N>(c) || !overall_coeff.info(info_flags::real))  // sign inside ctor argument
197                         c.s << '+';
198                 overall_coeff.print(c, precedence());
199         }
200                 
201         if (precedence() <= level)
202                 c.s << ")";
203 }
204
205 void add::do_print_python_repr(const print_python_repr & c, unsigned level) const
206 {
207         c.s << class_name() << '(';
208         op(0).print(c);
209         for (size_t i=1; i<nops(); ++i) {
210                 c.s << ',';
211                 op(i).print(c);
212         }
213         c.s << ')';
214 }
215
216 bool add::info(unsigned inf) const
217 {
218         switch (inf) {
219                 case info_flags::polynomial:
220                 case info_flags::integer_polynomial:
221                 case info_flags::cinteger_polynomial:
222                 case info_flags::rational_polynomial:
223                 case info_flags::real:
224                 case info_flags::rational:
225                 case info_flags::integer:
226                 case info_flags::crational:
227                 case info_flags::cinteger:
228                 case info_flags::positive:
229                 case info_flags::nonnegative:
230                 case info_flags::posint:
231                 case info_flags::nonnegint:
232                 case info_flags::even:
233                 case info_flags::crational_polynomial:
234                 case info_flags::rational_function: {
235                         for (auto & i : seq) {
236                                 if (!(recombine_pair_to_ex(i).info(inf)))
237                                         return false;
238                         }
239                         if (overall_coeff.is_zero() && (inf == info_flags::positive || inf == info_flags::posint))
240                                 return true;
241                         return overall_coeff.info(inf);
242                 }
243                 case info_flags::algebraic: {
244                         epvector::const_iterator i = seq.begin(), end = seq.end();
245                         while (i != end) {
246                                 if ((recombine_pair_to_ex(*i).info(inf)))
247                                         return true;
248                                 ++i;
249                         }
250                         return false;
251                 }
252         }
253         return inherited::info(inf);
254 }
255
256 bool add::is_polynomial(const ex & var) const
257 {
258         for (auto & i : seq) {
259                 if (!i.rest.is_polynomial(var)) {
260                         return false;
261                 }
262         }
263         return true;
264 }
265
266 int add::degree(const ex & s) const
267 {
268         int deg = std::numeric_limits<int>::min();
269         if (!overall_coeff.is_zero())
270                 deg = 0;
271         
272         // Find maximum of degrees of individual terms
273         for (auto & i : seq) {
274                 int cur_deg = i.rest.degree(s);
275                 if (cur_deg > deg)
276                         deg = cur_deg;
277         }
278         return deg;
279 }
280
281 int add::ldegree(const ex & s) const
282 {
283         int deg = std::numeric_limits<int>::max();
284         if (!overall_coeff.is_zero())
285                 deg = 0;
286         
287         // Find minimum of degrees of individual terms
288         for (auto & i : seq) {
289                 int cur_deg = i.rest.ldegree(s);
290                 if (cur_deg < deg)
291                         deg = cur_deg;
292         }
293         return deg;
294 }
295
296 ex add::coeff(const ex & s, int n) const
297 {
298         epvector coeffseq;
299         epvector coeffseq_cliff;
300         int rl = clifford_max_label(s);
301         bool do_clifford = (rl != -1);
302         bool nonscalar = false;
303
304         // Calculate sum of coefficients in each term
305         for (auto & i : seq) {
306                 ex restcoeff = i.rest.coeff(s, n);
307                 if (!restcoeff.is_zero()) {
308                         if (do_clifford) {
309                                 if (clifford_max_label(restcoeff) == -1) {
310                                         coeffseq_cliff.push_back(expair(ncmul(restcoeff, dirac_ONE(rl)), i.coeff));
311                                 } else {
312                                         coeffseq_cliff.push_back(expair(restcoeff, i.coeff));
313                                         nonscalar = true;
314                                 }
315                         }
316                         coeffseq.push_back(expair(restcoeff, i.coeff));
317                 }
318         }
319
320         return dynallocate<add>(nonscalar ? std::move(coeffseq_cliff) : std::move(coeffseq),
321                                 n==0 ? overall_coeff : _ex0);
322 }
323
324 /** Perform automatic term rewriting rules in this class.  In the following
325  *  x stands for a symbolic variables of type ex and c stands for such
326  *  an expression that contain a plain number.
327  *  - +(;c) -> c
328  *  - +(x;0) -> x
329  *
330  *  @param level cut-off in recursive evaluation */
331 ex add::eval(int level) const
332 {
333         if ((level == 1) && (flags & status_flags::evaluated)) {
334                 GINAC_ASSERT(seq.size()>0);
335                 GINAC_ASSERT(seq.size()>1 || !overall_coeff.is_zero());
336                 return *this;
337         }
338
339         const epvector evaled = evalchildren(level);
340         if (unlikely(!evaled.empty())) {
341                 // start over evaluating a new object
342                 return dynallocate<add>(std::move(evaled), overall_coeff);
343         }
344
345 #ifdef DO_GINAC_ASSERT
346         for (auto & i : seq) {
347                 GINAC_ASSERT(!is_exactly_a<add>(i.rest));
348         }
349 #endif // def DO_GINAC_ASSERT
350
351         int seq_size = seq.size();
352         if (seq_size == 0) {
353                 // +(;c) -> c
354                 return overall_coeff;
355         } else if (seq_size == 1 && overall_coeff.is_zero()) {
356                 // +(x;0) -> x
357                 return recombine_pair_to_ex(*(seq.begin()));
358         } else if (!overall_coeff.is_zero() && seq[0].rest.return_type() != return_types::commutative) {
359                 throw (std::logic_error("add::eval(): sum of non-commutative objects has non-zero numeric term"));
360         }
361         
362         // if any terms in the sum still are purely numeric, then they are more
363         // appropriately collected into the overall coefficient
364         int terms_to_collect = 0;
365         for (auto & it : seq) {
366                 if (unlikely(is_a<numeric>(it.rest)))
367                         ++terms_to_collect;
368         }
369         if (terms_to_collect) {
370                 epvector s;
371                 s.reserve(seq_size - terms_to_collect);
372                 numeric oc = *_num1_p;
373                 for (auto & it : seq) {
374                         if (unlikely(is_a<numeric>(it.rest)))
375                                 oc = oc.mul(ex_to<numeric>(it.rest)).mul(ex_to<numeric>(it.coeff));
376                         else
377                                 s.push_back(it);
378                 }
379                 return dynallocate<add>(std::move(s), ex_to<numeric>(overall_coeff).add_dyn(oc));
380         }
381         
382         return this->hold();
383 }
384
385 ex add::evalm() const
386 {
387         // Evaluate children first and add up all matrices. Stop if there's one
388         // term that is not a matrix.
389         epvector s;
390         s.reserve(seq.size());
391
392         bool all_matrices = true;
393         bool first_term = true;
394         matrix sum;
395
396         for (auto & it : seq) {
397                 const ex &m = recombine_pair_to_ex(it).evalm();
398                 s.push_back(split_ex_to_pair(m));
399                 if (is_a<matrix>(m)) {
400                         if (first_term) {
401                                 sum = ex_to<matrix>(m);
402                                 first_term = false;
403                         } else
404                                 sum = sum.add(ex_to<matrix>(m));
405                 } else
406                         all_matrices = false;
407         }
408
409         if (all_matrices)
410                 return sum + overall_coeff;
411         else
412                 return dynallocate<add>(std::move(s), overall_coeff);
413 }
414
415 ex add::conjugate() const
416 {
417         std::unique_ptr<exvector> v(nullptr);
418         for (size_t i=0; i<nops(); ++i) {
419                 if (v) {
420                         v->push_back(op(i).conjugate());
421                         continue;
422                 }
423                 ex term = op(i);
424                 ex ccterm = term.conjugate();
425                 if (are_ex_trivially_equal(term, ccterm))
426                         continue;
427                 v.reset(new exvector);
428                 v->reserve(nops());
429                 for (size_t j=0; j<i; ++j)
430                         v->push_back(op(j));
431                 v->push_back(ccterm);
432         }
433         if (v) {
434                 return add(std::move(*v));
435         }
436         return *this;
437 }
438
439 ex add::real_part() const
440 {
441         epvector v;
442         v.reserve(seq.size());
443         for (auto & it : seq)
444                 if (it.coeff.info(info_flags::real)) {
445                         ex rp = it.rest.real_part();
446                         if (!rp.is_zero())
447                                 v.push_back(expair(rp, it.coeff));
448                 } else {
449                         ex rp = recombine_pair_to_ex(it).real_part();
450                         if (!rp.is_zero())
451                                 v.push_back(split_ex_to_pair(rp));
452                 }
453         return dynallocate<add>(std::move(v), overall_coeff.real_part());
454 }
455
456 ex add::imag_part() const
457 {
458         epvector v;
459         v.reserve(seq.size());
460         for (auto & it : seq)
461                 if (it.coeff.info(info_flags::real)) {
462                         ex ip = it.rest.imag_part();
463                         if (!ip.is_zero())
464                                 v.push_back(expair(ip, it.coeff));
465                 } else {
466                         ex ip = recombine_pair_to_ex(it).imag_part();
467                         if (!ip.is_zero())
468                                 v.push_back(split_ex_to_pair(ip));
469                 }
470         return dynallocate<add>(std::move(v), overall_coeff.imag_part());
471 }
472
473 ex add::eval_ncmul(const exvector & v) const
474 {
475         if (seq.empty())
476                 return inherited::eval_ncmul(v);
477         else
478                 return seq.begin()->rest.eval_ncmul(v);
479 }    
480
481 // protected
482
483 /** Implementation of ex::diff() for a sum. It differentiates each term.
484  *  @see ex::diff */
485 ex add::derivative(const symbol & y) const
486 {
487         epvector s;
488         s.reserve(seq.size());
489         
490         // Only differentiate the "rest" parts of the expairs. This is faster
491         // than the default implementation in basic::derivative() although
492         // if performs the same function (differentiate each term).
493         for (auto & it : seq)
494                 s.push_back(expair(it.rest.diff(y), it.coeff));
495
496         return dynallocate<add>(std::move(s), _ex0);
497 }
498
499 int add::compare_same_type(const basic & other) const
500 {
501         return inherited::compare_same_type(other);
502 }
503
504 unsigned add::return_type() const
505 {
506         if (seq.empty())
507                 return return_types::commutative;
508         else
509                 return seq.begin()->rest.return_type();
510 }
511
512 return_type_t add::return_type_tinfo() const
513 {
514         if (seq.empty())
515                 return make_return_type_t<add>();
516         else
517                 return seq.begin()->rest.return_type_tinfo();
518 }
519
520 // Note: do_index_renaming is ignored because it makes no sense for an add.
521 ex add::thisexpairseq(const epvector & v, const ex & oc, bool do_index_renaming) const
522 {
523         return dynallocate<add>(v, oc);
524 }
525
526 // Note: do_index_renaming is ignored because it makes no sense for an add.
527 ex add::thisexpairseq(epvector && vp, const ex & oc, bool do_index_renaming) const
528 {
529         return dynallocate<add>(std::move(vp), oc);
530 }
531
532 expair add::split_ex_to_pair(const ex & e) const
533 {
534         if (is_exactly_a<mul>(e)) {
535                 const mul &mulref(ex_to<mul>(e));
536                 const ex &numfactor = mulref.overall_coeff;
537                 if (numfactor.is_equal(_ex1))
538                         return expair(e, _ex1);
539                 mul & mulcopy = dynallocate<mul>(mulref);
540                 mulcopy.overall_coeff = _ex1;
541                 mulcopy.clearflag(status_flags::evaluated | status_flags::hash_calculated);
542                 return expair(mulcopy, numfactor);
543         }
544         return expair(e,_ex1);
545 }
546
547 expair add::combine_ex_with_coeff_to_pair(const ex & e,
548                                           const ex & c) const
549 {
550         GINAC_ASSERT(is_exactly_a<numeric>(c));
551         if (is_exactly_a<mul>(e)) {
552                 const mul &mulref(ex_to<mul>(e));
553                 const ex &numfactor = mulref.overall_coeff;
554                 if (likely(numfactor.is_equal(_ex1)))
555                         return expair(e, c);
556                 mul & mulcopy = dynallocate<mul>(mulref);
557                 mulcopy.overall_coeff = _ex1;
558                 mulcopy.clearflag(status_flags::evaluated | status_flags::hash_calculated);
559                 if (c.is_equal(_ex1))
560                         return expair(mulcopy, numfactor);
561                 else
562                         return expair(mulcopy, ex_to<numeric>(numfactor).mul_dyn(ex_to<numeric>(c)));
563         } else if (is_exactly_a<numeric>(e)) {
564                 if (c.is_equal(_ex1))
565                         return expair(e, _ex1);
566                 if (e.is_equal(_ex1))
567                         return expair(c, _ex1);
568                 return expair(ex_to<numeric>(e).mul_dyn(ex_to<numeric>(c)), _ex1);
569         }
570         return expair(e, c);
571 }
572
573 expair add::combine_pair_with_coeff_to_pair(const expair & p,
574                                             const ex & c) const
575 {
576         GINAC_ASSERT(is_exactly_a<numeric>(p.coeff));
577         GINAC_ASSERT(is_exactly_a<numeric>(c));
578
579         if (is_exactly_a<numeric>(p.rest)) {
580                 GINAC_ASSERT(ex_to<numeric>(p.coeff).is_equal(*_num1_p)); // should be normalized
581                 return expair(ex_to<numeric>(p.rest).mul_dyn(ex_to<numeric>(c)),_ex1);
582         }
583
584         return expair(p.rest,ex_to<numeric>(p.coeff).mul_dyn(ex_to<numeric>(c)));
585 }
586
587 ex add::recombine_pair_to_ex(const expair & p) const
588 {
589         if (ex_to<numeric>(p.coeff).is_equal(*_num1_p))
590                 return p.rest;
591         else
592                 return dynallocate<mul>(p.rest, p.coeff);
593 }
594
595 ex add::expand(unsigned options) const
596 {
597         epvector expanded = expandchildren(options);
598         if (expanded.empty())
599                 return (options == 0) ? setflag(status_flags::expanded) : *this;
600
601         return dynallocate<add>(std::move(expanded), overall_coeff).setflag(options == 0 ? status_flags::expanded : 0);
602 }
603
604 } // namespace GiNaC