]> www.ginac.de Git - ginac.git/blob - doc/tutorial/ginac.texi
* Removed @acronym{}, it looks silly.
[ginac.git] / doc / tutorial / ginac.texi
1 \input texinfo  @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename ginac.info
4 @settitle GiNaC, an open framework for symbolic computation within the C++ programming language
5 @setchapternewpage on
6 @afourpaper
7 @c For `info' only.
8 @paragraphindent 0
9 @c For TeX only.
10 @iftex
11 @c I hate putting "@noindent" in front of every paragraph.
12 @parindent=0pt
13 @end iftex
14 @c %**end of header
15
16 @include version.texi
17
18 @direntry
19 * ginac: (ginac).                   C++ library for symbolic computation.
20 @end direntry
21
22 @ifinfo
23 This is a tutorial that documents GiNaC @value{VERSION}, an open
24 framework for symbolic computation within the C++ programming language.
25
26 Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
27
28 Permission is granted to make and distribute verbatim copies of
29 this manual provided the copyright notice and this permission notice
30 are preserved on all copies.
31
32 @ignore
33 Permission is granted to process this file through TeX and print the
34 results, provided the printed document carries copying permission
35 notice identical to this one except for the removal of this paragraph
36
37 @end ignore
38 Permission is granted to copy and distribute modified versions of this
39 manual under the conditions for verbatim copying, provided that the entire
40 resulting derived work is distributed under the terms of a permission
41 notice identical to this one.
42 @end ifinfo
43
44 @finalout
45 @c finalout prevents ugly black rectangles on overfull hbox lines
46 @titlepage
47 @title GiNaC @value{VERSION}
48 @subtitle An open framework for symbolic computation within the C++ programming language
49 @subtitle @value{UPDATED}
50 @author The GiNaC Group:
51 @author Christian Bauer, Alexander Frink, Richard Kreckel
52
53 @page
54 @vskip 0pt plus 1filll
55 Copyright @copyright{} 1999-2001 Johannes Gutenberg University Mainz, Germany
56 @sp 2
57 Permission is granted to make and distribute verbatim copies of
58 this manual provided the copyright notice and this permission notice
59 are preserved on all copies.
60
61 Permission is granted to copy and distribute modified versions of this
62 manual under the conditions for verbatim copying, provided that the entire
63 resulting derived work is distributed under the terms of a permission
64 notice identical to this one.
65 @end titlepage
66
67 @page
68 @contents
69
70 @page
71
72
73 @node Top, Introduction, (dir), (dir)
74 @c    node-name, next, previous, up
75 @top GiNaC
76
77 This is a tutorial that documents GiNaC @value{VERSION}, an open
78 framework for symbolic computation within the C++ programming language.
79
80 @menu
81 * Introduction::                 GiNaC's purpose.
82 * A Tour of GiNaC::              A quick tour of the library.
83 * Installation::                 How to install the package.
84 * Basic Concepts::               Description of fundamental classes.
85 * Methods and Functions::        Algorithms for symbolic manipulations.
86 * Extending GiNaC::              How to extend the library.
87 * A Comparison With Other CAS::  Compares GiNaC to traditional CAS.
88 * Internal Structures::          Description of some internal structures.
89 * Package Tools::                Configuring packages to work with GiNaC.
90 * Bibliography::
91 * Concept Index::
92 @end menu
93
94
95 @node Introduction, A Tour of GiNaC, Top, Top
96 @c    node-name, next, previous, up
97 @chapter Introduction
98 @cindex history of GiNaC
99
100 The motivation behind GiNaC derives from the observation that most
101 present day computer algebra systems (CAS) are linguistically and
102 semantically impoverished.  Although they are quite powerful tools for
103 learning math and solving particular problems they lack modern
104 linguistic structures that allow for the creation of large-scale
105 projects.  GiNaC is an attempt to overcome this situation by extending a
106 well established and standardized computer language (C++) by some
107 fundamental symbolic capabilities, thus allowing for integrated systems
108 that embed symbolic manipulations together with more established areas
109 of computer science (like computation-intense numeric applications,
110 graphical interfaces, etc.) under one roof.
111
112 The particular problem that led to the writing of the GiNaC framework is
113 still a very active field of research, namely the calculation of higher
114 order corrections to elementary particle interactions.  There,
115 theoretical physicists are interested in matching present day theories
116 against experiments taking place at particle accelerators.  The
117 computations involved are so complex they call for a combined symbolical
118 and numerical approach.  This turned out to be quite difficult to
119 accomplish with the present day CAS we have worked with so far and so we
120 tried to fill the gap by writing GiNaC.  But of course its applications
121 are in no way restricted to theoretical physics.
122
123 This tutorial is intended for the novice user who is new to GiNaC but
124 already has some background in C++ programming.  However, since a
125 hand-made documentation like this one is difficult to keep in sync with
126 the development, the actual documentation is inside the sources in the
127 form of comments.  That documentation may be parsed by one of the many
128 Javadoc-like documentation systems.  If you fail at generating it you
129 may access it from @uref{http://www.ginac.de/reference/, the GiNaC home
130 page}.  It is an invaluable resource not only for the advanced user who
131 wishes to extend the system (or chase bugs) but for everybody who wants
132 to comprehend the inner workings of GiNaC.  This little tutorial on the
133 other hand only covers the basic things that are unlikely to change in
134 the near future.
135
136 @section License
137 The GiNaC framework for symbolic computation within the C++ programming
138 language is Copyright @copyright{} 1999-2001 Johannes Gutenberg
139 University Mainz, Germany.
140
141 This program is free software; you can redistribute it and/or
142 modify it under the terms of the GNU General Public License as
143 published by the Free Software Foundation; either version 2 of the
144 License, or (at your option) any later version.
145
146 This program is distributed in the hope that it will be useful, but
147 WITHOUT ANY WARRANTY; without even the implied warranty of
148 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
149 General Public License for more details.
150
151 You should have received a copy of the GNU General Public License
152 along with this program; see the file COPYING.  If not, write to the
153 Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
154 MA 02111-1307, USA.
155
156
157 @node A Tour of GiNaC, How to use it from within C++, Introduction, Top
158 @c    node-name, next, previous, up
159 @chapter A Tour of GiNaC
160
161 This quick tour of GiNaC wants to arise your interest in the
162 subsequent chapters by showing off a bit.  Please excuse us if it
163 leaves many open questions.
164
165 @menu
166 * How to use it from within C++::  Two simple examples.
167 * What it can do for you::         A Tour of GiNaC's features.
168 @end menu
169
170
171 @node How to use it from within C++, What it can do for you, A Tour of GiNaC, A Tour of GiNaC
172 @c    node-name, next, previous, up
173 @section How to use it from within C++
174
175 The GiNaC open framework for symbolic computation within the C++ programming
176 language does not try to define a language of its own as conventional
177 CAS do.  Instead, it extends the capabilities of C++ by symbolic
178 manipulations.  Here is how to generate and print a simple (and rather
179 pointless) bivariate polynomial with some large coefficients:
180
181 @example
182 #include <iostream>
183 #include <ginac/ginac.h>
184 using namespace std;
185 using namespace GiNaC;
186
187 int main()
188 @{
189     symbol x("x"), y("y");
190     ex poly;
191
192     for (int i=0; i<3; ++i)
193         poly += factorial(i+16)*pow(x,i)*pow(y,2-i);
194
195     cout << poly << endl;
196     return 0;
197 @}
198 @end example
199
200 Assuming the file is called @file{hello.cc}, on our system we can compile
201 and run it like this:
202
203 @example
204 $ c++ hello.cc -o hello -lcln -lginac
205 $ ./hello
206 355687428096000*x*y+20922789888000*y^2+6402373705728000*x^2
207 @end example
208
209 (@xref{Package Tools}, for tools that help you when creating a software
210 package that uses GiNaC.)
211
212 @cindex Hermite polynomial
213 Next, there is a more meaningful C++ program that calls a function which
214 generates Hermite polynomials in a specified free variable.
215
216 @example
217 #include <iostream>
218 #include <ginac/ginac.h>
219 using namespace std;
220 using namespace GiNaC;
221
222 ex HermitePoly(const symbol & x, int n)
223 @{
224     ex HKer=exp(-pow(x, 2));
225     // uses the identity H_n(x) == (-1)^n exp(x^2) (d/dx)^n exp(-x^2)
226     return normal(pow(-1, n) * diff(HKer, x, n) / HKer);
227 @}
228
229 int main()
230 @{
231     symbol z("z");
232
233     for (int i=0; i<6; ++i)
234         cout << "H_" << i << "(z) == " << HermitePoly(z,i) << endl;
235
236     return 0;
237 @}
238 @end example
239
240 When run, this will type out
241
242 @example
243 H_0(z) == 1
244 H_1(z) == 2*z
245 H_2(z) == 4*z^2-2
246 H_3(z) == -12*z+8*z^3
247 H_4(z) == -48*z^2+16*z^4+12
248 H_5(z) == 120*z-160*z^3+32*z^5
249 @end example
250
251 This method of generating the coefficients is of course far from optimal
252 for production purposes.
253
254 In order to show some more examples of what GiNaC can do we will now use
255 the @command{ginsh}, a simple GiNaC interactive shell that provides a
256 convenient window into GiNaC's capabilities.
257
258
259 @node What it can do for you, Installation, How to use it from within C++, A Tour of GiNaC
260 @c    node-name, next, previous, up
261 @section What it can do for you
262
263 @cindex @command{ginsh}
264 After invoking @command{ginsh} one can test and experiment with GiNaC's
265 features much like in other Computer Algebra Systems except that it does
266 not provide programming constructs like loops or conditionals.  For a
267 concise description of the @command{ginsh} syntax we refer to its
268 accompanied man page. Suffice to say that assignments and comparisons in
269 @command{ginsh} are written as they are in C, i.e. @code{=} assigns and
270 @code{==} compares.
271
272 It can manipulate arbitrary precision integers in a very fast way.
273 Rational numbers are automatically converted to fractions of coprime
274 integers:
275
276 @example
277 > x=3^150;
278 369988485035126972924700782451696644186473100389722973815184405301748249
279 > y=3^149;
280 123329495011708990974900260817232214728824366796574324605061468433916083
281 > x/y;
282 3
283 > y/x;
284 1/3
285 @end example
286
287 Exact numbers are always retained as exact numbers and only evaluated as
288 floating point numbers if requested.  For instance, with numeric
289 radicals is dealt pretty much as with symbols.  Products of sums of them
290 can be expanded:
291
292 @example
293 > expand((1+a^(1/5)-a^(2/5))^3);
294 1+3*a+3*a^(1/5)-5*a^(3/5)-a^(6/5)
295 > expand((1+3^(1/5)-3^(2/5))^3);
296 10-5*3^(3/5)
297 > evalf((1+3^(1/5)-3^(2/5))^3);
298 0.33408977534118624228
299 @end example
300
301 The function @code{evalf} that was used above converts any number in
302 GiNaC's expressions into floating point numbers.  This can be done to
303 arbitrary predefined accuracy:
304
305 @example
306 > evalf(1/7);
307 0.14285714285714285714
308 > Digits=150;
309 150
310 > evalf(1/7);
311 0.1428571428571428571428571428571428571428571428571428571428571428571428
312 5714285714285714285714285714285714285
313 @end example
314
315 Exact numbers other than rationals that can be manipulated in GiNaC
316 include predefined constants like Archimedes' @code{Pi}.  They can both
317 be used in symbolic manipulations (as an exact number) as well as in
318 numeric expressions (as an inexact number):
319
320 @example
321 > a=Pi^2+x;
322 x+Pi^2
323 > evalf(a);
324 9.869604401089358619+x
325 > x=2;
326 2
327 > evalf(a);
328 11.869604401089358619
329 @end example
330
331 Built-in functions evaluate immediately to exact numbers if
332 this is possible.  Conversions that can be safely performed are done
333 immediately; conversions that are not generally valid are not done:
334
335 @example
336 > cos(42*Pi);
337 1
338 > cos(acos(x));
339 x
340 > acos(cos(x));
341 acos(cos(x))
342 @end example
343
344 (Note that converting the last input to @code{x} would allow one to
345 conclude that @code{42*Pi} is equal to @code{0}.)
346
347 Linear equation systems can be solved along with basic linear
348 algebra manipulations over symbolic expressions.  In C++ GiNaC offers
349 a matrix class for this purpose but we can see what it can do using
350 @command{ginsh}'s bracket notation to type them in:
351
352 @example
353 > lsolve(a+x*y==z,x);
354 y^(-1)*(z-a);
355 > lsolve(@{3*x+5*y == 7, -2*x+10*y == -5@}, @{x, y@});
356 @{x==19/8,y==-1/40@}
357 > M = [ [1, 3], [-3, 2] ];
358 [[1,3],[-3,2]]
359 > determinant(M);
360 11
361 > charpoly(M,lambda);
362 lambda^2-3*lambda+11
363 > A = [ [1, 1], [2, -1] ];
364 [[1,1],[2,-1]]
365 > A+2*M;
366 [[1,1],[2,-1]]+2*[[1,3],[-3,2]]
367 > evalm(%);
368 [[3,7],[-4,3]]
369 > B = [ [0, 0, a], [b, 1, -b], [-1/a, 0, 0] ];
370 > evalm(B^(2^12345));
371 [[1,0,0],[0,1,0],[0,0,1]]
372 @end example
373
374 Multivariate polynomials and rational functions may be expanded,
375 collected and normalized (i.e. converted to a ratio of two coprime 
376 polynomials):
377
378 @example
379 > a = x^4 + 2*x^2*y^2 + 4*x^3*y + 12*x*y^3 - 3*y^4;
380 12*x*y^3+2*x^2*y^2+4*x^3*y-3*y^4+x^4
381 > b = x^2 + 4*x*y - y^2;
382 4*x*y-y^2+x^2
383 > expand(a*b);
384 8*x^5*y+17*x^4*y^2+43*x^2*y^4-24*x*y^5+16*x^3*y^3+3*y^6+x^6
385 > collect(a+b,x);
386 4*x^3*y-y^2-3*y^4+(12*y^3+4*y)*x+x^4+x^2*(1+2*y^2)
387 > collect(a+b,y);
388 12*x*y^3-3*y^4+(-1+2*x^2)*y^2+(4*x+4*x^3)*y+x^2+x^4
389 > normal(a/b);
390 3*y^2+x^2
391 @end example
392
393 You can differentiate functions and expand them as Taylor or Laurent
394 series in a very natural syntax (the second argument of @code{series} is
395 a relation defining the evaluation point, the third specifies the
396 order):
397
398 @cindex Zeta function
399 @example
400 > diff(tan(x),x);
401 tan(x)^2+1
402 > series(sin(x),x==0,4);
403 x-1/6*x^3+Order(x^4)
404 > series(1/tan(x),x==0,4);
405 x^(-1)-1/3*x+Order(x^2)
406 > series(tgamma(x),x==0,3);
407 x^(-1)-Euler+(1/12*Pi^2+1/2*Euler^2)*x+
408 (-1/3*zeta(3)-1/12*Pi^2*Euler-1/6*Euler^3)*x^2+Order(x^3)
409 > evalf(%);
410 x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x
411 -(0.90747907608088628905)*x^2+Order(x^3)
412 > series(tgamma(2*sin(x)-2),x==Pi/2,6);
413 -(x-1/2*Pi)^(-2)+(-1/12*Pi^2-1/2*Euler^2-1/240)*(x-1/2*Pi)^2
414 -Euler-1/12+Order((x-1/2*Pi)^3)
415 @end example
416
417 Here we have made use of the @command{ginsh}-command @code{%} to pop the
418 previously evaluated element from @command{ginsh}'s internal stack.
419
420 If you ever wanted to convert units in C or C++ and found this is
421 cumbersome, here is the solution.  Symbolic types can always be used as
422 tags for different types of objects.  Converting from wrong units to the
423 metric system is now easy:
424
425 @example
426 > in=.0254*m;
427 0.0254*m
428 > lb=.45359237*kg;
429 0.45359237*kg
430 > 200*lb/in^2;
431 140613.91592783185568*kg*m^(-2)
432 @end example
433
434
435 @node Installation, Prerequisites, What it can do for you, Top
436 @c    node-name, next, previous, up
437 @chapter Installation
438
439 @cindex CLN
440 GiNaC's installation follows the spirit of most GNU software. It is
441 easily installed on your system by three steps: configuration, build,
442 installation.
443
444 @menu
445 * Prerequisites::                Packages upon which GiNaC depends.
446 * Configuration::                How to configure GiNaC.
447 * Building GiNaC::               How to compile GiNaC.
448 * Installing GiNaC::             How to install GiNaC on your system.
449 @end menu
450
451
452 @node Prerequisites, Configuration, Installation, Installation
453 @c    node-name, next, previous, up
454 @section Prerequisites
455
456 In order to install GiNaC on your system, some prerequisites need to be
457 met.  First of all, you need to have a C++-compiler adhering to the
458 ANSI-standard @cite{ISO/IEC 14882:1998(E)}.  We used @acronym{GCC} for
459 development so if you have a different compiler you are on your own.
460 For the configuration to succeed you need a Posix compliant shell
461 installed in @file{/bin/sh}, GNU @command{bash} is fine.  Perl is needed
462 by the built process as well, since some of the source files are
463 automatically generated by Perl scripts.  Last but not least, Bruno
464 Haible's library @acronym{CLN} is extensively used and needs to be
465 installed on your system.  Please get it either from
466 @uref{ftp://ftp.santafe.edu/pub/gnu/}, from
467 @uref{ftp://ftpthep.physik.uni-mainz.de/pub/gnu/, GiNaC's FTP site} or
468 from @uref{ftp://ftp.ilog.fr/pub/Users/haible/gnu/, Bruno Haible's FTP
469 site} (it is covered by GPL) and install it prior to trying to install
470 GiNaC.  The configure script checks if it can find it and if it cannot
471 it will refuse to continue.
472
473
474 @node Configuration, Building GiNaC, Prerequisites, Installation
475 @c    node-name, next, previous, up
476 @section Configuration
477 @cindex configuration
478 @cindex Autoconf
479
480 To configure GiNaC means to prepare the source distribution for
481 building.  It is done via a shell script called @command{configure} that
482 is shipped with the sources and was originally generated by GNU
483 Autoconf.  Since a configure script generated by GNU Autoconf never
484 prompts, all customization must be done either via command line
485 parameters or environment variables.  It accepts a list of parameters,
486 the complete set of which can be listed by calling it with the
487 @option{--help} option.  The most important ones will be shortly
488 described in what follows:
489
490 @itemize @bullet
491
492 @item
493 @option{--disable-shared}: When given, this option switches off the
494 build of a shared library, i.e. a @file{.so} file.  This may be convenient
495 when developing because it considerably speeds up compilation.
496
497 @item
498 @option{--prefix=@var{PREFIX}}: The directory where the compiled library
499 and headers are installed. It defaults to @file{/usr/local} which means
500 that the library is installed in the directory @file{/usr/local/lib},
501 the header files in @file{/usr/local/include/ginac} and the documentation
502 (like this one) into @file{/usr/local/share/doc/GiNaC}.
503
504 @item
505 @option{--libdir=@var{LIBDIR}}: Use this option in case you want to have
506 the library installed in some other directory than
507 @file{@var{PREFIX}/lib/}.
508
509 @item
510 @option{--includedir=@var{INCLUDEDIR}}: Use this option in case you want
511 to have the header files installed in some other directory than
512 @file{@var{PREFIX}/include/ginac/}. For instance, if you specify
513 @option{--includedir=/usr/include} you will end up with the header files
514 sitting in the directory @file{/usr/include/ginac/}. Note that the
515 subdirectory @file{ginac} is enforced by this process in order to
516 keep the header files separated from others.  This avoids some
517 clashes and allows for an easier deinstallation of GiNaC. This ought
518 to be considered A Good Thing (tm).
519
520 @item
521 @option{--datadir=@var{DATADIR}}: This option may be given in case you
522 want to have the documentation installed in some other directory than
523 @file{@var{PREFIX}/share/doc/GiNaC/}.
524
525 @end itemize
526
527 In addition, you may specify some environment variables.  @env{CXX}
528 holds the path and the name of the C++ compiler in case you want to
529 override the default in your path.  (The @command{configure} script
530 searches your path for @command{c++}, @command{g++}, @command{gcc},
531 @command{CC}, @command{cxx} and @command{cc++} in that order.)  It may
532 be very useful to define some compiler flags with the @env{CXXFLAGS}
533 environment variable, like optimization, debugging information and
534 warning levels.  If omitted, it defaults to @option{-g
535 -O2}.@footnote{The @command{configure} script is itself generated from
536 the file @file{configure.ac}.  It is only distributed in packaged
537 releases of GiNaC.  If you got the naked sources, e.g. from CVS, you
538 must generate @command{configure} along with the various
539 @file{Makefile.in} by using the @command{autogen.sh} script.  This will
540 require a fair amount of support from your local toolchain, though.}
541
542 The whole process is illustrated in the following two
543 examples. (Substitute @command{setenv @var{VARIABLE} @var{value}} for
544 @command{export @var{VARIABLE}=@var{value}} if the Berkeley C shell is
545 your login shell.)
546
547 Here is a simple configuration for a site-wide GiNaC library assuming
548 everything is in default paths:
549
550 @example
551 $ export CXXFLAGS="-Wall -O2"
552 $ ./configure
553 @end example
554
555 And here is a configuration for a private static GiNaC library with
556 several components sitting in custom places (site-wide @acronym{GCC} and
557 private @acronym{CLN}).  The compiler is persuaded to be picky and full
558 assertions and debugging information are switched on:
559
560 @example
561 $ export CXX=/usr/local/gnu/bin/c++
562 $ export CPPFLAGS="$(CPPFLAGS) -I$(HOME)/include"
563 $ export CXXFLAGS="$(CXXFLAGS) -DDO_GINAC_ASSERT -ggdb -Wall -pedantic"
564 $ export LDFLAGS="$(LDFLAGS) -L$(HOME)/lib"
565 $ ./configure --disable-shared --prefix=$(HOME)
566 @end example
567
568
569 @node Building GiNaC, Installing GiNaC, Configuration, Installation
570 @c    node-name, next, previous, up
571 @section Building GiNaC
572 @cindex building GiNaC
573
574 After proper configuration you should just build the whole
575 library by typing
576 @example
577 $ make
578 @end example
579 at the command prompt and go for a cup of coffee.  The exact time it
580 takes to compile GiNaC depends not only on the speed of your machines
581 but also on other parameters, for instance what value for @env{CXXFLAGS}
582 you entered.  Optimization may be very time-consuming.
583
584 Just to make sure GiNaC works properly you may run a collection of
585 regression tests by typing
586
587 @example
588 $ make check
589 @end example
590
591 This will compile some sample programs, run them and check the output
592 for correctness.  The regression tests fall in three categories.  First,
593 the so called @emph{exams} are performed, simple tests where some
594 predefined input is evaluated (like a pupils' exam).  Second, the
595 @emph{checks} test the coherence of results among each other with
596 possible random input.  Third, some @emph{timings} are performed, which
597 benchmark some predefined problems with different sizes and display the
598 CPU time used in seconds.  Each individual test should return a message
599 @samp{passed}.  This is mostly intended to be a QA-check if something
600 was broken during development, not a sanity check of your system.  Some
601 of the tests in sections @emph{checks} and @emph{timings} may require
602 insane amounts of memory and CPU time.  Feel free to kill them if your
603 machine catches fire.  Another quite important intent is to allow people
604 to fiddle around with optimization.
605
606 Generally, the top-level Makefile runs recursively to the
607 subdirectories.  It is therefore safe to go into any subdirectory
608 (@code{doc/}, @code{ginsh/}, @dots{}) and simply type @code{make}
609 @var{target} there in case something went wrong.
610
611
612 @node Installing GiNaC, Basic Concepts, Building GiNaC, Installation
613 @c    node-name, next, previous, up
614 @section Installing GiNaC
615 @cindex installation
616
617 To install GiNaC on your system, simply type
618
619 @example
620 $ make install
621 @end example
622
623 As described in the section about configuration the files will be
624 installed in the following directories (the directories will be created
625 if they don't already exist):
626
627 @itemize @bullet
628
629 @item
630 @file{libginac.a} will go into @file{@var{PREFIX}/lib/} (or
631 @file{@var{LIBDIR}}) which defaults to @file{/usr/local/lib/}.
632 So will @file{libginac.so} unless the configure script was
633 given the option @option{--disable-shared}.  The proper symlinks
634 will be established as well.
635
636 @item
637 All the header files will be installed into @file{@var{PREFIX}/include/ginac/}
638 (or @file{@var{INCLUDEDIR}/ginac/}, if specified).
639
640 @item
641 All documentation (HTML and Postscript) will be stuffed into
642 @file{@var{PREFIX}/share/doc/GiNaC/} (or
643 @file{@var{DATADIR}/doc/GiNaC/}, if @var{DATADIR} was specified).
644
645 @end itemize
646
647 For the sake of completeness we will list some other useful make
648 targets: @command{make clean} deletes all files generated by
649 @command{make}, i.e. all the object files.  In addition @command{make
650 distclean} removes all files generated by the configuration and
651 @command{make maintainer-clean} goes one step further and deletes files
652 that may require special tools to rebuild (like the @command{libtool}
653 for instance).  Finally @command{make uninstall} removes the installed
654 library, header files and documentation@footnote{Uninstallation does not
655 work after you have called @command{make distclean} since the
656 @file{Makefile} is itself generated by the configuration from
657 @file{Makefile.in} and hence deleted by @command{make distclean}.  There
658 are two obvious ways out of this dilemma.  First, you can run the
659 configuration again with the same @var{PREFIX} thus creating a
660 @file{Makefile} with a working @samp{uninstall} target.  Second, you can
661 do it by hand since you now know where all the files went during
662 installation.}.
663
664
665 @node Basic Concepts, Expressions, Installing GiNaC, Top
666 @c    node-name, next, previous, up
667 @chapter Basic Concepts
668
669 This chapter will describe the different fundamental objects that can be
670 handled by GiNaC.  But before doing so, it is worthwhile introducing you
671 to the more commonly used class of expressions, representing a flexible
672 meta-class for storing all mathematical objects.
673
674 @menu
675 * Expressions::                  The fundamental GiNaC class.
676 * The Class Hierarchy::          Overview of GiNaC's classes.
677 * Error handling::               How the library reports errors.
678 * Symbols::                      Symbolic objects.
679 * Numbers::                      Numerical objects.
680 * Constants::                    Pre-defined constants.
681 * Fundamental containers::       The power, add and mul classes.
682 * Lists::                        Lists of expressions.
683 * Mathematical functions::       Mathematical functions.
684 * Relations::                    Equality, Inequality and all that.
685 * Matrices::                     Matrices.
686 * Indexed objects::              Handling indexed quantities.
687 * Non-commutative objects::      Algebras with non-commutative products.
688 @end menu
689
690
691 @node Expressions, The Class Hierarchy, Basic Concepts, Basic Concepts
692 @c    node-name, next, previous, up
693 @section Expressions
694 @cindex expression (class @code{ex})
695 @cindex @code{has()}
696
697 The most common class of objects a user deals with is the expression
698 @code{ex}, representing a mathematical object like a variable, number,
699 function, sum, product, etc@dots{}  Expressions may be put together to form
700 new expressions, passed as arguments to functions, and so on.  Here is a
701 little collection of valid expressions:
702
703 @example
704 ex MyEx1 = 5;                       // simple number
705 ex MyEx2 = x + 2*y;                 // polynomial in x and y
706 ex MyEx3 = (x + 1)/(x - 1);         // rational expression
707 ex MyEx4 = sin(x + 2*y) + 3*z + 41; // containing a function
708 ex MyEx5 = MyEx4 + 1;               // similar to above
709 @end example
710
711 Expressions are handles to other more fundamental objects, that often
712 contain other expressions thus creating a tree of expressions
713 (@xref{Internal Structures}, for particular examples).  Most methods on
714 @code{ex} therefore run top-down through such an expression tree.  For
715 example, the method @code{has()} scans recursively for occurrences of
716 something inside an expression.  Thus, if you have declared @code{MyEx4}
717 as in the example above @code{MyEx4.has(y)} will find @code{y} inside
718 the argument of @code{sin} and hence return @code{true}.
719
720 The next sections will outline the general picture of GiNaC's class
721 hierarchy and describe the classes of objects that are handled by
722 @code{ex}.
723
724
725 @node The Class Hierarchy, Error handling, Expressions, Basic Concepts
726 @c    node-name, next, previous, up
727 @section The Class Hierarchy
728
729 GiNaC's class hierarchy consists of several classes representing
730 mathematical objects, all of which (except for @code{ex} and some
731 helpers) are internally derived from one abstract base class called
732 @code{basic}.  You do not have to deal with objects of class
733 @code{basic}, instead you'll be dealing with symbols, numbers,
734 containers of expressions and so on.
735
736 @cindex container
737 @cindex atom
738 To get an idea about what kinds of symbolic composits may be built we
739 have a look at the most important classes in the class hierarchy and
740 some of the relations among the classes:
741
742 @image{classhierarchy}
743
744 The abstract classes shown here (the ones without drop-shadow) are of no
745 interest for the user.  They are used internally in order to avoid code
746 duplication if two or more classes derived from them share certain
747 features.  An example is @code{expairseq}, a container for a sequence of
748 pairs each consisting of one expression and a number (@code{numeric}).
749 What @emph{is} visible to the user are the derived classes @code{add}
750 and @code{mul}, representing sums and products.  @xref{Internal
751 Structures}, where these two classes are described in more detail.  The
752 following table shortly summarizes what kinds of mathematical objects
753 are stored in the different classes:
754
755 @cartouche
756 @multitable @columnfractions .22 .78
757 @item @code{symbol} @tab Algebraic symbols @math{a}, @math{x}, @math{y}@dots{}
758 @item @code{constant} @tab Constants like 
759 @tex
760 $\pi$
761 @end tex
762 @ifnottex
763 @math{Pi}
764 @end ifnottex
765 @item @code{numeric} @tab All kinds of numbers, @math{42}, @math{7/3*I}, @math{3.14159}@dots{}
766 @item @code{add} @tab Sums like @math{x+y} or @math{a-(2*b)+3}
767 @item @code{mul} @tab Products like @math{x*y} or @math{2*a^2*(x+y+z)/b}
768 @item @code{ncmul} @tab Products of non-commutative objects
769 @item @code{power} @tab Exponentials such as @math{x^2}, @math{a^b}, 
770 @tex
771 $\sqrt{2}$
772 @end tex
773 @ifnottex
774 @code{sqrt(}@math{2}@code{)}
775 @end ifnottex
776 @dots{}
777 @item @code{pseries} @tab Power Series, e.g. @math{x-1/6*x^3+1/120*x^5+O(x^7)}
778 @item @code{function} @tab A symbolic function like @math{sin(2*x)}
779 @item @code{lst} @tab Lists of expressions @{@math{x}, @math{2*y}, @math{3+z}@}
780 @item @code{matrix} @tab @math{m}x@math{n} matrices of expressions
781 @item @code{relational} @tab A relation like the identity @math{x}@code{==}@math{y}
782 @item @code{indexed} @tab Indexed object like @math{A_ij}
783 @item @code{tensor} @tab Special tensor like the delta and metric tensors
784 @item @code{idx} @tab Index of an indexed object
785 @item @code{varidx} @tab Index with variance
786 @item @code{spinidx} @tab Index with variance and dot (used in Weyl-van-der-Waerden spinor formalism)
787 @item @code{wildcard} @tab Wildcard for pattern matching
788 @end multitable
789 @end cartouche
790
791
792 @node Error handling, Symbols, The Class Hierarchy, Basic Concepts
793 @c    node-name, next, previous, up
794 @section Error handling
795 @cindex exceptions
796 @cindex @code{pole_error} (class)
797
798 GiNaC reports run-time errors by throwing C++ exceptions. All exceptions
799 generated by GiNaC are subclassed from the standard @code{exception} class
800 defined in the @file{<stdexcept>} header. In addition to the predefined
801 @code{logic_error}, @code{domain_error}, @code{out_of_range},
802 @code{invalid_argument}, @code{runtime_error}, @code{range_error} and
803 @code{overflow_error} types, GiNaC also defines a @code{pole_error}
804 exception that gets thrown when trying to evaluate a mathematical function
805 at a singularity.
806
807 The @code{pole_error} class has a member function
808
809 @example
810 int pole_error::degree(void) const;
811 @end example
812
813 that returns the order of the singularity (or 0 when the pole is
814 logarithmic or the order is undefined).
815
816 When using GiNaC it is useful to arrange for exceptions to be catched in
817 the main program even if you don't want to do any special error handling.
818 Otherwise whenever an error occurs in GiNaC, it will be delegated to the
819 default exception handler of your C++ compiler's run-time system which
820 usually only aborts the program without giving any information what went
821 wrong.
822
823 Here is an example for a @code{main()} function that catches and prints
824 exceptions generated by GiNaC:
825
826 @example
827 #include <iostream>
828 #include <stdexcept>
829 #include <ginac/ginac.h>
830 using namespace std;
831 using namespace GiNaC;
832
833 int main(void)
834 @{
835     try @{
836         ...
837         // code using GiNaC
838         ...
839     @} catch (exception &p) @{
840         cerr << p.what() << endl;
841         return 1;
842     @}
843     return 0;
844 @}
845 @end example
846
847
848 @node Symbols, Numbers, Error handling, Basic Concepts
849 @c    node-name, next, previous, up
850 @section Symbols
851 @cindex @code{symbol} (class)
852 @cindex hierarchy of classes
853
854 @cindex atom
855 Symbols are for symbolic manipulation what atoms are for chemistry.  You
856 can declare objects of class @code{symbol} as any other object simply by
857 saying @code{symbol x,y;}.  There is, however, a catch in here having to
858 do with the fact that C++ is a compiled language.  The information about
859 the symbol's name is thrown away by the compiler but at a later stage
860 you may want to print expressions holding your symbols.  In order to
861 avoid confusion GiNaC's symbols are able to know their own name.  This
862 is accomplished by declaring its name for output at construction time in
863 the fashion @code{symbol x("x");}.  If you declare a symbol using the
864 default constructor (i.e. without string argument) the system will deal
865 out a unique name.  That name may not be suitable for printing but for
866 internal routines when no output is desired it is often enough.  We'll
867 come across examples of such symbols later in this tutorial.
868
869 This implies that the strings passed to symbols at construction time may
870 not be used for comparing two of them.  It is perfectly legitimate to
871 write @code{symbol x("x"),y("x");} but it is likely to lead into
872 trouble.  Here, @code{x} and @code{y} are different symbols and
873 statements like @code{x-y} will not be simplified to zero although the
874 output @code{x-x} looks funny.  Such output may also occur when there
875 are two different symbols in two scopes, for instance when you call a
876 function that declares a symbol with a name already existent in a symbol
877 in the calling function.  Again, comparing them (using @code{operator==}
878 for instance) will always reveal their difference.  Watch out, please.
879
880 @cindex @code{subs()}
881 Although symbols can be assigned expressions for internal reasons, you
882 should not do it (and we are not going to tell you how it is done).  If
883 you want to replace a symbol with something else in an expression, you
884 can use the expression's @code{.subs()} method (@pxref{Substituting Expressions}).
885
886
887 @node Numbers, Constants, Symbols, Basic Concepts
888 @c    node-name, next, previous, up
889 @section Numbers
890 @cindex @code{numeric} (class)
891
892 @cindex GMP
893 @cindex CLN
894 @cindex rational
895 @cindex fraction
896 For storing numerical things, GiNaC uses Bruno Haible's library
897 @acronym{CLN}.  The classes therein serve as foundation classes for
898 GiNaC.  @acronym{CLN} stands for Class Library for Numbers or
899 alternatively for Common Lisp Numbers.  In order to find out more about
900 @acronym{CLN}'s internals the reader is refered to the documentation of
901 that library.  @inforef{Introduction, , cln}, for more
902 information. Suffice to say that it is by itself build on top of another
903 library, the GNU Multiple Precision library @acronym{GMP}, which is an
904 extremely fast library for arbitrary long integers and rationals as well
905 as arbitrary precision floating point numbers.  It is very commonly used
906 by several popular cryptographic applications.  @acronym{CLN} extends
907 @acronym{GMP} by several useful things: First, it introduces the complex
908 number field over either reals (i.e. floating point numbers with
909 arbitrary precision) or rationals.  Second, it automatically converts
910 rationals to integers if the denominator is unity and complex numbers to
911 real numbers if the imaginary part vanishes and also correctly treats
912 algebraic functions.  Third it provides good implementations of
913 state-of-the-art algorithms for all trigonometric and hyperbolic
914 functions as well as for calculation of some useful constants.
915
916 The user can construct an object of class @code{numeric} in several
917 ways.  The following example shows the four most important constructors.
918 It uses construction from C-integer, construction of fractions from two
919 integers, construction from C-float and construction from a string:
920
921 @example
922 #include <iostream>
923 #include <ginac/ginac.h>
924 using namespace GiNaC;
925
926 int main()
927 @{
928     numeric two = 2;                      // exact integer 2
929     numeric r(2,3);                       // exact fraction 2/3
930     numeric e(2.71828);                   // floating point number
931     numeric p = "3.14159265358979323846"; // constructor from string
932     // Trott's constant in scientific notation:
933     numeric trott("1.0841015122311136151E-2");
934     
935     std::cout << two*p << std::endl;  // floating point 6.283...
936 @}
937 @end example
938
939 It may be tempting to construct numbers writing @code{numeric r(3/2)}.
940 This would, however, call C's built-in operator @code{/} for integers
941 first and result in a numeric holding a plain integer 1.  @strong{Never
942 use the operator @code{/} on integers} unless you know exactly what you
943 are doing!  Use the constructor from two integers instead, as shown in
944 the example above.  Writing @code{numeric(1)/2} may look funny but works
945 also.
946
947 @cindex @code{Digits}
948 @cindex accuracy
949 We have seen now the distinction between exact numbers and floating
950 point numbers.  Clearly, the user should never have to worry about
951 dynamically created exact numbers, since their `exactness' always
952 determines how they ought to be handled, i.e. how `long' they are.  The
953 situation is different for floating point numbers.  Their accuracy is
954 controlled by one @emph{global} variable, called @code{Digits}.  (For
955 those readers who know about Maple: it behaves very much like Maple's
956 @code{Digits}).  All objects of class numeric that are constructed from
957 then on will be stored with a precision matching that number of decimal
958 digits:
959
960 @example
961 #include <iostream>
962 #include <ginac/ginac.h>
963 using namespace std;
964 using namespace GiNaC;
965
966 void foo()
967 @{
968     numeric three(3.0), one(1.0);
969     numeric x = one/three;
970
971     cout << "in " << Digits << " digits:" << endl;
972     cout << x << endl;
973     cout << Pi.evalf() << endl;
974 @}
975
976 int main()
977 @{
978     foo();
979     Digits = 60;
980     foo();
981     return 0;
982 @}
983 @end example
984
985 The above example prints the following output to screen:
986
987 @example
988 in 17 digits:
989 0.333333333333333333
990 3.14159265358979324
991 in 60 digits:
992 0.333333333333333333333333333333333333333333333333333333333333333333
993 3.14159265358979323846264338327950288419716939937510582097494459231
994 @end example
995
996 It should be clear that objects of class @code{numeric} should be used
997 for constructing numbers or for doing arithmetic with them.  The objects
998 one deals with most of the time are the polymorphic expressions @code{ex}.
999
1000 @subsection Tests on numbers
1001
1002 Once you have declared some numbers, assigned them to expressions and
1003 done some arithmetic with them it is frequently desired to retrieve some
1004 kind of information from them like asking whether that number is
1005 integer, rational, real or complex.  For those cases GiNaC provides
1006 several useful methods.  (Internally, they fall back to invocations of
1007 certain @acronym{CLN} functions.)
1008
1009 As an example, let's construct some rational number, multiply it with
1010 some multiple of its denominator and test what comes out:
1011
1012 @example
1013 #include <iostream>
1014 #include <ginac/ginac.h>
1015 using namespace std;
1016 using namespace GiNaC;
1017
1018 // some very important constants:
1019 const numeric twentyone(21);
1020 const numeric ten(10);
1021 const numeric five(5);
1022
1023 int main()
1024 @{
1025     numeric answer = twentyone;
1026
1027     answer /= five;
1028     cout << answer.is_integer() << endl;  // false, it's 21/5
1029     answer *= ten;
1030     cout << answer.is_integer() << endl;  // true, it's 42 now!
1031 @}
1032 @end example
1033
1034 Note that the variable @code{answer} is constructed here as an integer
1035 by @code{numeric}'s copy constructor but in an intermediate step it
1036 holds a rational number represented as integer numerator and integer
1037 denominator.  When multiplied by 10, the denominator becomes unity and
1038 the result is automatically converted to a pure integer again.
1039 Internally, the underlying @acronym{CLN} is responsible for this
1040 behavior and we refer the reader to @acronym{CLN}'s documentation.
1041 Suffice to say that the same behavior applies to complex numbers as
1042 well as return values of certain functions.  Complex numbers are
1043 automatically converted to real numbers if the imaginary part becomes
1044 zero.  The full set of tests that can be applied is listed in the
1045 following table.
1046
1047 @cartouche
1048 @multitable @columnfractions .30 .70
1049 @item @strong{Method} @tab @strong{Returns true if the object is@dots{}}
1050 @item @code{.is_zero()}
1051 @tab @dots{}equal to zero
1052 @item @code{.is_positive()}
1053 @tab @dots{}not complex and greater than 0
1054 @item @code{.is_integer()}
1055 @tab @dots{}a (non-complex) integer
1056 @item @code{.is_pos_integer()}
1057 @tab @dots{}an integer and greater than 0
1058 @item @code{.is_nonneg_integer()}
1059 @tab @dots{}an integer and greater equal 0
1060 @item @code{.is_even()}
1061 @tab @dots{}an even integer
1062 @item @code{.is_odd()}
1063 @tab @dots{}an odd integer
1064 @item @code{.is_prime()}
1065 @tab @dots{}a prime integer (probabilistic primality test)
1066 @item @code{.is_rational()}
1067 @tab @dots{}an exact rational number (integers are rational, too)
1068 @item @code{.is_real()}
1069 @tab @dots{}a real integer, rational or float (i.e. is not complex)
1070 @item @code{.is_cinteger()}
1071 @tab @dots{}a (complex) integer (such as @math{2-3*I})
1072 @item @code{.is_crational()}
1073 @tab @dots{}an exact (complex) rational number (such as @math{2/3+7/2*I})
1074 @end multitable
1075 @end cartouche
1076
1077
1078 @node Constants, Fundamental containers, Numbers, Basic Concepts
1079 @c    node-name, next, previous, up
1080 @section Constants
1081 @cindex @code{constant} (class)
1082
1083 @cindex @code{Pi}
1084 @cindex @code{Catalan}
1085 @cindex @code{Euler}
1086 @cindex @code{evalf()}
1087 Constants behave pretty much like symbols except that they return some
1088 specific number when the method @code{.evalf()} is called.
1089
1090 The predefined known constants are:
1091
1092 @cartouche
1093 @multitable @columnfractions .14 .30 .56
1094 @item @strong{Name} @tab @strong{Common Name} @tab @strong{Numerical Value (to 35 digits)}
1095 @item @code{Pi}
1096 @tab Archimedes' constant
1097 @tab 3.14159265358979323846264338327950288
1098 @item @code{Catalan}
1099 @tab Catalan's constant
1100 @tab 0.91596559417721901505460351493238411
1101 @item @code{Euler}
1102 @tab Euler's (or Euler-Mascheroni) constant
1103 @tab 0.57721566490153286060651209008240243
1104 @end multitable
1105 @end cartouche
1106
1107
1108 @node Fundamental containers, Lists, Constants, Basic Concepts
1109 @c    node-name, next, previous, up
1110 @section Fundamental containers: the @code{power}, @code{add} and @code{mul} classes
1111 @cindex polynomial
1112 @cindex @code{add}
1113 @cindex @code{mul}
1114 @cindex @code{power}
1115
1116 Simple polynomial expressions are written down in GiNaC pretty much like
1117 in other CAS or like expressions involving numerical variables in C.
1118 The necessary operators @code{+}, @code{-}, @code{*} and @code{/} have
1119 been overloaded to achieve this goal.  When you run the following
1120 code snippet, the constructor for an object of type @code{mul} is
1121 automatically called to hold the product of @code{a} and @code{b} and
1122 then the constructor for an object of type @code{add} is called to hold
1123 the sum of that @code{mul} object and the number one:
1124
1125 @example
1126     ...
1127     symbol a("a"), b("b");
1128     ex MyTerm = 1+a*b;
1129     ...
1130 @end example
1131
1132 @cindex @code{pow()}
1133 For exponentiation, you have already seen the somewhat clumsy (though C-ish)
1134 statement @code{pow(x,2);} to represent @code{x} squared.  This direct
1135 construction is necessary since we cannot safely overload the constructor
1136 @code{^} in C++ to construct a @code{power} object.  If we did, it would
1137 have several counterintuitive and undesired effects:
1138
1139 @itemize @bullet
1140 @item
1141 Due to C's operator precedence, @code{2*x^2} would be parsed as @code{(2*x)^2}.
1142 @item
1143 Due to the binding of the operator @code{^}, @code{x^a^b} would result in
1144 @code{(x^a)^b}. This would be confusing since most (though not all) other CAS
1145 interpret this as @code{x^(a^b)}.
1146 @item
1147 Also, expressions involving integer exponents are very frequently used,
1148 which makes it even more dangerous to overload @code{^} since it is then
1149 hard to distinguish between the semantics as exponentiation and the one
1150 for exclusive or.  (It would be embarrassing to return @code{1} where one
1151 has requested @code{2^3}.)
1152 @end itemize
1153
1154 @cindex @command{ginsh}
1155 All effects are contrary to mathematical notation and differ from the
1156 way most other CAS handle exponentiation, therefore overloading @code{^}
1157 is ruled out for GiNaC's C++ part.  The situation is different in
1158 @command{ginsh}, there the exponentiation-@code{^} exists.  (Also note
1159 that the other frequently used exponentiation operator @code{**} does
1160 not exist at all in C++).
1161
1162 To be somewhat more precise, objects of the three classes described
1163 here, are all containers for other expressions.  An object of class
1164 @code{power} is best viewed as a container with two slots, one for the
1165 basis, one for the exponent.  All valid GiNaC expressions can be
1166 inserted.  However, basic transformations like simplifying
1167 @code{pow(pow(x,2),3)} to @code{x^6} automatically are only performed
1168 when this is mathematically possible.  If we replace the outer exponent
1169 three in the example by some symbols @code{a}, the simplification is not
1170 safe and will not be performed, since @code{a} might be @code{1/2} and
1171 @code{x} negative.
1172
1173 Objects of type @code{add} and @code{mul} are containers with an
1174 arbitrary number of slots for expressions to be inserted.  Again, simple
1175 and safe simplifications are carried out like transforming
1176 @code{3*x+4-x} to @code{2*x+4}.
1177
1178 The general rule is that when you construct such objects, GiNaC
1179 automatically creates them in canonical form, which might differ from
1180 the form you typed in your program.  This allows for rapid comparison of
1181 expressions, since after all @code{a-a} is simply zero.  Note, that the
1182 canonical form is not necessarily lexicographical ordering or in any way
1183 easily guessable.  It is only guaranteed that constructing the same
1184 expression twice, either implicitly or explicitly, results in the same
1185 canonical form.
1186
1187
1188 @node Lists, Mathematical functions, Fundamental containers, Basic Concepts
1189 @c    node-name, next, previous, up
1190 @section Lists of expressions
1191 @cindex @code{lst} (class)
1192 @cindex lists
1193 @cindex @code{nops()}
1194 @cindex @code{op()}
1195 @cindex @code{append()}
1196 @cindex @code{prepend()}
1197 @cindex @code{remove_first()}
1198 @cindex @code{remove_last()}
1199
1200 The GiNaC class @code{lst} serves for holding a @dfn{list} of arbitrary
1201 expressions. These are sometimes used to supply a variable number of
1202 arguments of the same type to GiNaC methods such as @code{subs()} and
1203 @code{to_rational()}, so you should have a basic understanding about them.
1204
1205 Lists of up to 16 expressions can be directly constructed from single
1206 expressions:
1207
1208 @example
1209 @{
1210     symbol x("x"), y("y");
1211     lst l(x, 2, y, x+y);
1212     // now, l is a list holding the expressions 'x', '2', 'y', and 'x+y'
1213     // ...
1214 @end example
1215
1216 Use the @code{nops()} method to determine the size (number of expressions) of
1217 a list and the @code{op()} method to access individual elements:
1218
1219 @example
1220     // ...
1221     cout << l.nops() << endl;                   // prints '4'
1222     cout << l.op(2) << " " << l.op(0) << endl;  // prints 'y x'
1223     // ...
1224 @end example
1225
1226 You can append or prepend an expression to a list with the @code{append()}
1227 and @code{prepend()} methods:
1228
1229 @example
1230     // ...
1231     l.append(4*x);   // l is now @{x, 2, y, x+y, 4*x@}
1232     l.prepend(0);    // l is now @{0, x, 2, y, x+y, 4*x@}
1233     // ...
1234 @end example
1235
1236 Finally you can remove the first or last element of a list with
1237 @code{remove_first()} and @code{remove_last()}:
1238
1239 @example
1240     // ...
1241     l.remove_first();   // l is now @{x, 2, y, x+y, 4*x@}
1242     l.remove_last();    // l is now @{x, 2, y, x+y@}
1243 @}
1244 @end example
1245
1246
1247 @node Mathematical functions, Relations, Lists, Basic Concepts
1248 @c    node-name, next, previous, up
1249 @section Mathematical functions
1250 @cindex @code{function} (class)
1251 @cindex trigonometric function
1252 @cindex hyperbolic function
1253
1254 There are quite a number of useful functions hard-wired into GiNaC.  For
1255 instance, all trigonometric and hyperbolic functions are implemented
1256 (@xref{Built-in Functions}, for a complete list).
1257
1258 These functions (better called @emph{pseudofunctions}) are all objects
1259 of class @code{function}.  They accept one or more expressions as
1260 arguments and return one expression.  If the arguments are not
1261 numerical, the evaluation of the function may be halted, as it does in
1262 the next example, showing how a function returns itself twice and
1263 finally an expression that may be really useful:
1264
1265 @cindex Gamma function
1266 @cindex @code{subs()}
1267 @example
1268     ...
1269     symbol x("x"), y("y");    
1270     ex foo = x+y/2;
1271     cout << tgamma(foo) << endl;
1272      // -> tgamma(x+(1/2)*y)
1273     ex bar = foo.subs(y==1);
1274     cout << tgamma(bar) << endl;
1275      // -> tgamma(x+1/2)
1276     ex foobar = bar.subs(x==7);
1277     cout << tgamma(foobar) << endl;
1278      // -> (135135/128)*Pi^(1/2)
1279     ...
1280 @end example
1281
1282 Besides evaluation most of these functions allow differentiation, series
1283 expansion and so on.  Read the next chapter in order to learn more about
1284 this.
1285
1286 It must be noted that these pseudofunctions are created by inline
1287 functions, where the argument list is templated.  This means that
1288 whenever you call @code{GiNaC::sin(1)} it is equivalent to
1289 @code{sin(ex(1))} and will therefore not result in a floating point
1290 number.  Unless of course the function prototype is explicitly
1291 overridden -- which is the case for arguments of type @code{numeric}
1292 (not wrapped inside an @code{ex}).  Hence, in order to obtain a floating
1293 point number of class @code{numeric} you should call
1294 @code{sin(numeric(1))}.  This is almost the same as calling
1295 @code{sin(1).evalf()} except that the latter will return a numeric
1296 wrapped inside an @code{ex}.
1297
1298
1299 @node Relations, Matrices, Mathematical functions, Basic Concepts
1300 @c    node-name, next, previous, up
1301 @section Relations
1302 @cindex @code{relational} (class)
1303
1304 Sometimes, a relation holding between two expressions must be stored
1305 somehow.  The class @code{relational} is a convenient container for such
1306 purposes.  A relation is by definition a container for two @code{ex} and
1307 a relation between them that signals equality, inequality and so on.
1308 They are created by simply using the C++ operators @code{==}, @code{!=},
1309 @code{<}, @code{<=}, @code{>} and @code{>=} between two expressions.
1310
1311 @xref{Mathematical functions}, for examples where various applications
1312 of the @code{.subs()} method show how objects of class relational are
1313 used as arguments.  There they provide an intuitive syntax for
1314 substitutions.  They are also used as arguments to the @code{ex::series}
1315 method, where the left hand side of the relation specifies the variable
1316 to expand in and the right hand side the expansion point.  They can also
1317 be used for creating systems of equations that are to be solved for
1318 unknown variables.  But the most common usage of objects of this class
1319 is rather inconspicuous in statements of the form @code{if
1320 (expand(pow(a+b,2))==a*a+2*a*b+b*b) @{...@}}.  Here, an implicit
1321 conversion from @code{relational} to @code{bool} takes place.  Note,
1322 however, that @code{==} here does not perform any simplifications, hence
1323 @code{expand()} must be called explicitly.
1324
1325
1326 @node Matrices, Indexed objects, Relations, Basic Concepts
1327 @c    node-name, next, previous, up
1328 @section Matrices
1329 @cindex @code{matrix} (class)
1330
1331 A @dfn{matrix} is a two-dimensional array of expressions. The elements of a
1332 matrix with @math{m} rows and @math{n} columns are accessed with two
1333 @code{unsigned} indices, the first one in the range 0@dots{}@math{m-1}, the
1334 second one in the range 0@dots{}@math{n-1}.
1335
1336 There are a couple of ways to construct matrices, with or without preset
1337 elements:
1338
1339 @example
1340 matrix::matrix(unsigned r, unsigned c);
1341 matrix::matrix(unsigned r, unsigned c, const lst & l);
1342 ex lst_to_matrix(const lst & l);
1343 ex diag_matrix(const lst & l);
1344 @end example
1345
1346 The first two functions are @code{matrix} constructors which create a matrix
1347 with @samp{r} rows and @samp{c} columns. The matrix elements can be
1348 initialized from a (flat) list of expressions @samp{l}. Otherwise they are
1349 all set to zero. The @code{lst_to_matrix()} function constructs a matrix
1350 from a list of lists, each list representing a matrix row. Finally,
1351 @code{diag_matrix()} constructs a diagonal matrix given the list of diagonal
1352 elements. Note that the last two functions return expressions, not matrix
1353 objects.
1354
1355 Matrix elements can be accessed and set using the parenthesis (function call)
1356 operator:
1357
1358 @example
1359 const ex & matrix::operator()(unsigned r, unsigned c) const;
1360 ex & matrix::operator()(unsigned r, unsigned c);
1361 @end example
1362
1363 It is also possible to access the matrix elements in a linear fashion with
1364 the @code{op()} method. But C++-style subscripting with square brackets
1365 @samp{[]} is not available.
1366
1367 Here are a couple of examples that all construct the same 2x2 diagonal
1368 matrix:
1369
1370 @example
1371 @{
1372     symbol a("a"), b("b");
1373     ex e;
1374
1375     matrix M(2, 2);
1376     M(0, 0) = a;
1377     M(1, 1) = b;
1378     e = M;
1379
1380     e = matrix(2, 2, lst(a, 0, 0, b));
1381
1382     e = lst_to_matrix(lst(lst(a, 0), lst(0, b)));
1383
1384     e = diag_matrix(lst(a, b));
1385
1386     cout << e << endl;
1387      // -> [[a,0],[0,b]]
1388 @}
1389 @end example
1390
1391 @cindex @code{transpose()}
1392 @cindex @code{inverse()}
1393 There are three ways to do arithmetic with matrices. The first (and most
1394 efficient one) is to use the methods provided by the @code{matrix} class:
1395
1396 @example
1397 matrix matrix::add(const matrix & other) const;
1398 matrix matrix::sub(const matrix & other) const;
1399 matrix matrix::mul(const matrix & other) const;
1400 matrix matrix::mul_scalar(const ex & other) const;
1401 matrix matrix::pow(const ex & expn) const;
1402 matrix matrix::transpose(void) const;
1403 matrix matrix::inverse(void) const;
1404 @end example
1405
1406 All of these methods return the result as a new matrix object. Here is an
1407 example that calculates @math{A*B-2*C} for three matrices @math{A}, @math{B}
1408 and @math{C}:
1409
1410 @example
1411 @{
1412     matrix A(2, 2, lst(1, 2, 3, 4));
1413     matrix B(2, 2, lst(-1, 0, 2, 1));
1414     matrix C(2, 2, lst(8, 4, 2, 1));
1415
1416     matrix result = A.mul(B).sub(C.mul_scalar(2));
1417     cout << result << endl;
1418      // -> [[-13,-6],[1,2]]
1419     ...
1420 @}
1421 @end example
1422
1423 @cindex @code{evalm()}
1424 The second (and probably the most natural) way is to construct an expression
1425 containing matrices with the usual arithmetic operators and @code{pow()}.
1426 For efficiency reasons, expressions with sums, products and powers of
1427 matrices are not automatically evaluated in GiNaC. You have to call the
1428 method
1429
1430 @example
1431 ex ex::evalm() const;
1432 @end example
1433
1434 to obtain the result:
1435
1436 @example
1437 @{
1438     ...
1439     ex e = A*B - 2*C;
1440     cout << e << endl;
1441      // -> [[1,2],[3,4]]*[[-1,0],[2,1]]-2*[[8,4],[2,1]]
1442     cout << e.evalm() << endl;
1443      // -> [[-13,-6],[1,2]]
1444     ...
1445 @}
1446 @end example
1447
1448 The non-commutativity of the product @code{A*B} in this example is
1449 automatically recognized by GiNaC. There is no need to use a special
1450 operator here. @xref{Non-commutative objects}, for more information about
1451 dealing with non-commutative expressions.
1452
1453 Finally, you can work with indexed matrices and call @code{simplify_indexed()}
1454 to perform the arithmetic:
1455
1456 @example
1457 @{
1458     ...
1459     idx i(symbol("i"), 2), j(symbol("j"), 2), k(symbol("k"), 2);
1460     e = indexed(A, i, k) * indexed(B, k, j) - 2 * indexed(C, i, j);
1461     cout << e << endl;
1462      // -> -2*[[8,4],[2,1]].i.j+[[-1,0],[2,1]].k.j*[[1,2],[3,4]].i.k
1463     cout << e.simplify_indexed() << endl;
1464      // -> [[-13,-6],[1,2]].i.j
1465 @}
1466 @end example
1467
1468 Using indices is most useful when working with rectangular matrices and
1469 one-dimensional vectors because you don't have to worry about having to
1470 transpose matrices before multiplying them. @xref{Indexed objects}, for
1471 more information about using matrices with indices, and about indices in
1472 general.
1473
1474 The @code{matrix} class provides a couple of additional methods for
1475 computing determinants, traces, and characteristic polynomials:
1476
1477 @example
1478 ex matrix::determinant(unsigned algo = determinant_algo::automatic) const;
1479 ex matrix::trace(void) const;
1480 ex matrix::charpoly(const symbol & lambda) const;
1481 @end example
1482
1483 The @samp{algo} argument of @code{determinant()} allows to select between
1484 different algorithms for calculating the determinant. The possible values
1485 are defined in the @file{flags.h} header file. By default, GiNaC uses a
1486 heuristic to automatically select an algorithm that is likely to give the
1487 result most quickly.
1488
1489
1490 @node Indexed objects, Non-commutative objects, Matrices, Basic Concepts
1491 @c    node-name, next, previous, up
1492 @section Indexed objects
1493
1494 GiNaC allows you to handle expressions containing general indexed objects in
1495 arbitrary spaces. It is also able to canonicalize and simplify such
1496 expressions and perform symbolic dummy index summations. There are a number
1497 of predefined indexed objects provided, like delta and metric tensors.
1498
1499 There are few restrictions placed on indexed objects and their indices and
1500 it is easy to construct nonsense expressions, but our intention is to
1501 provide a general framework that allows you to implement algorithms with
1502 indexed quantities, getting in the way as little as possible.
1503
1504 @cindex @code{idx} (class)
1505 @cindex @code{indexed} (class)
1506 @subsection Indexed quantities and their indices
1507
1508 Indexed expressions in GiNaC are constructed of two special types of objects,
1509 @dfn{index objects} and @dfn{indexed objects}.
1510
1511 @itemize @bullet
1512
1513 @cindex contravariant
1514 @cindex covariant
1515 @cindex variance
1516 @item Index objects are of class @code{idx} or a subclass. Every index has
1517 a @dfn{value} and a @dfn{dimension} (which is the dimension of the space
1518 the index lives in) which can both be arbitrary expressions but are usually
1519 a number or a simple symbol. In addition, indices of class @code{varidx} have
1520 a @dfn{variance} (they can be co- or contravariant), and indices of class
1521 @code{spinidx} have a variance and can be @dfn{dotted} or @dfn{undotted}.
1522
1523 @item Indexed objects are of class @code{indexed} or a subclass. They
1524 contain a @dfn{base expression} (which is the expression being indexed), and
1525 one or more indices.
1526
1527 @end itemize
1528
1529 @strong{Note:} when printing expressions, covariant indices and indices
1530 without variance are denoted @samp{.i} while contravariant indices are
1531 denoted @samp{~i}. Dotted indices have a @samp{*} in front of the index
1532 value. In the following, we are going to use that notation in the text so
1533 instead of @math{A^i_jk} we will write @samp{A~i.j.k}. Index dimensions are
1534 not visible in the output.
1535
1536 A simple example shall illustrate the concepts:
1537
1538 @example
1539 #include <iostream>
1540 #include <ginac/ginac.h>
1541 using namespace std;
1542 using namespace GiNaC;
1543
1544 int main()
1545 @{
1546     symbol i_sym("i"), j_sym("j");
1547     idx i(i_sym, 3), j(j_sym, 3);
1548
1549     symbol A("A");
1550     cout << indexed(A, i, j) << endl;
1551      // -> A.i.j
1552     ...
1553 @end example
1554
1555 The @code{idx} constructor takes two arguments, the index value and the
1556 index dimension. First we define two index objects, @code{i} and @code{j},
1557 both with the numeric dimension 3. The value of the index @code{i} is the
1558 symbol @code{i_sym} (which prints as @samp{i}) and the value of the index
1559 @code{j} is the symbol @code{j_sym} (which prints as @samp{j}). Next we
1560 construct an expression containing one indexed object, @samp{A.i.j}. It has
1561 the symbol @code{A} as its base expression and the two indices @code{i} and
1562 @code{j}.
1563
1564 Note the difference between the indices @code{i} and @code{j} which are of
1565 class @code{idx}, and the index values which are the symbols @code{i_sym}
1566 and @code{j_sym}. The indices of indexed objects cannot directly be symbols
1567 or numbers but must be index objects. For example, the following is not
1568 correct and will raise an exception:
1569
1570 @example
1571 symbol i("i"), j("j");
1572 e = indexed(A, i, j); // ERROR: indices must be of type idx
1573 @end example
1574
1575 You can have multiple indexed objects in an expression, index values can
1576 be numeric, and index dimensions symbolic:
1577
1578 @example
1579     ...
1580     symbol B("B"), dim("dim");
1581     cout << 4 * indexed(A, i)
1582           + indexed(B, idx(j_sym, 4), idx(2, 3), idx(i_sym, dim)) << endl;
1583      // -> B.j.2.i+4*A.i
1584     ...
1585 @end example
1586
1587 @code{B} has a 4-dimensional symbolic index @samp{k}, a 3-dimensional numeric
1588 index of value 2, and a symbolic index @samp{i} with the symbolic dimension
1589 @samp{dim}. Note that GiNaC doesn't automatically notify you that the free
1590 indices of @samp{A} and @samp{B} in the sum don't match (you have to call
1591 @code{simplify_indexed()} for that, see below).
1592
1593 In fact, base expressions, index values and index dimensions can be
1594 arbitrary expressions:
1595
1596 @example
1597     ...
1598     cout << indexed(A+B, idx(2*i_sym+1, dim/2)) << endl;
1599      // -> (B+A).(1+2*i)
1600     ...
1601 @end example
1602
1603 It's also possible to construct nonsense like @samp{Pi.sin(x)}. You will not
1604 get an error message from this but you will probably not be able to do
1605 anything useful with it.
1606
1607 @cindex @code{get_value()}
1608 @cindex @code{get_dimension()}
1609 The methods
1610
1611 @example
1612 ex idx::get_value(void);
1613 ex idx::get_dimension(void);
1614 @end example
1615
1616 return the value and dimension of an @code{idx} object. If you have an index
1617 in an expression, such as returned by calling @code{.op()} on an indexed
1618 object, you can get a reference to the @code{idx} object with the function
1619 @code{ex_to<idx>()} on the expression.
1620
1621 There are also the methods
1622
1623 @example
1624 bool idx::is_numeric(void);
1625 bool idx::is_symbolic(void);
1626 bool idx::is_dim_numeric(void);
1627 bool idx::is_dim_symbolic(void);
1628 @end example
1629
1630 for checking whether the value and dimension are numeric or symbolic
1631 (non-numeric). Using the @code{info()} method of an index (see @ref{Information
1632 About Expressions}) returns information about the index value.
1633
1634 @cindex @code{varidx} (class)
1635 If you need co- and contravariant indices, use the @code{varidx} class:
1636
1637 @example
1638     ...
1639     symbol mu_sym("mu"), nu_sym("nu");
1640     varidx mu(mu_sym, 4), nu(nu_sym, 4); // default is contravariant ~mu, ~nu
1641     varidx mu_co(mu_sym, 4, true);       // covariant index .mu
1642
1643     cout << indexed(A, mu, nu) << endl;
1644      // -> A~mu~nu
1645     cout << indexed(A, mu_co, nu) << endl;
1646      // -> A.mu~nu
1647     cout << indexed(A, mu.toggle_variance(), nu) << endl;
1648      // -> A.mu~nu
1649     ...
1650 @end example
1651
1652 A @code{varidx} is an @code{idx} with an additional flag that marks it as
1653 co- or contravariant. The default is a contravariant (upper) index, but
1654 this can be overridden by supplying a third argument to the @code{varidx}
1655 constructor. The two methods
1656
1657 @example
1658 bool varidx::is_covariant(void);
1659 bool varidx::is_contravariant(void);
1660 @end example
1661
1662 allow you to check the variance of a @code{varidx} object (use @code{ex_to<varidx>()}
1663 to get the object reference from an expression). There's also the very useful
1664 method
1665
1666 @example
1667 ex varidx::toggle_variance(void);
1668 @end example
1669
1670 which makes a new index with the same value and dimension but the opposite
1671 variance. By using it you only have to define the index once.
1672
1673 @cindex @code{spinidx} (class)
1674 The @code{spinidx} class provides dotted and undotted variant indices, as
1675 used in the Weyl-van-der-Waerden spinor formalism:
1676
1677 @example
1678     ...
1679     symbol K("K"), C_sym("C"), D_sym("D");
1680     spinidx C(C_sym, 2), D(D_sym);          // default is 2-dimensional,
1681                                             // contravariant, undotted
1682     spinidx C_co(C_sym, 2, true);           // covariant index
1683     spinidx D_dot(D_sym, 2, false, true);   // contravariant, dotted
1684     spinidx D_co_dot(D_sym, 2, true, true); // covariant, dotted
1685
1686     cout << indexed(K, C, D) << endl;
1687      // -> K~C~D
1688     cout << indexed(K, C_co, D_dot) << endl;
1689      // -> K.C~*D
1690     cout << indexed(K, D_co_dot, D) << endl;
1691      // -> K.*D~D
1692     ...
1693 @end example
1694
1695 A @code{spinidx} is a @code{varidx} with an additional flag that marks it as
1696 dotted or undotted. The default is undotted but this can be overridden by
1697 supplying a fourth argument to the @code{spinidx} constructor. The two
1698 methods
1699
1700 @example
1701 bool spinidx::is_dotted(void);
1702 bool spinidx::is_undotted(void);
1703 @end example
1704
1705 allow you to check whether or not a @code{spinidx} object is dotted (use
1706 @code{ex_to<spinidx>()} to get the object reference from an expression).
1707 Finally, the two methods
1708
1709 @example
1710 ex spinidx::toggle_dot(void);
1711 ex spinidx::toggle_variance_dot(void);
1712 @end example
1713
1714 create a new index with the same value and dimension but opposite dottedness
1715 and the same or opposite variance.
1716
1717 @subsection Substituting indices
1718
1719 @cindex @code{subs()}
1720 Sometimes you will want to substitute one symbolic index with another
1721 symbolic or numeric index, for example when calculating one specific element
1722 of a tensor expression. This is done with the @code{.subs()} method, as it
1723 is done for symbols (see @ref{Substituting Expressions}).
1724
1725 You have two possibilities here. You can either substitute the whole index
1726 by another index or expression:
1727
1728 @example
1729     ...
1730     ex e = indexed(A, mu_co);
1731     cout << e << " becomes " << e.subs(mu_co == nu) << endl;
1732      // -> A.mu becomes A~nu
1733     cout << e << " becomes " << e.subs(mu_co == varidx(0, 4)) << endl;
1734      // -> A.mu becomes A~0
1735     cout << e << " becomes " << e.subs(mu_co == 0) << endl;
1736      // -> A.mu becomes A.0
1737     ...
1738 @end example
1739
1740 The third example shows that trying to replace an index with something that
1741 is not an index will substitute the index value instead.
1742
1743 Alternatively, you can substitute the @emph{symbol} of a symbolic index by
1744 another expression:
1745
1746 @example
1747     ...
1748     ex e = indexed(A, mu_co);
1749     cout << e << " becomes " << e.subs(mu_sym == nu_sym) << endl;
1750      // -> A.mu becomes A.nu
1751     cout << e << " becomes " << e.subs(mu_sym == 0) << endl;
1752      // -> A.mu becomes A.0
1753     ...
1754 @end example
1755
1756 As you see, with the second method only the value of the index will get
1757 substituted. Its other properties, including its dimension, remain unchanged.
1758 If you want to change the dimension of an index you have to substitute the
1759 whole index by another one with the new dimension.
1760
1761 Finally, substituting the base expression of an indexed object works as
1762 expected:
1763
1764 @example
1765     ...
1766     ex e = indexed(A, mu_co);
1767     cout << e << " becomes " << e.subs(A == A+B) << endl;
1768      // -> A.mu becomes (B+A).mu
1769     ...
1770 @end example
1771
1772 @subsection Symmetries
1773 @cindex @code{symmetry} (class)
1774 @cindex @code{sy_none()}
1775 @cindex @code{sy_symm()}
1776 @cindex @code{sy_anti()}
1777 @cindex @code{sy_cycl()}
1778
1779 Indexed objects can have certain symmetry properties with respect to their
1780 indices. Symmetries are specified as a tree of objects of class @code{symmetry}
1781 that is constructed with the helper functions
1782
1783 @example
1784 symmetry sy_none(...);
1785 symmetry sy_symm(...);
1786 symmetry sy_anti(...);
1787 symmetry sy_cycl(...);
1788 @end example
1789
1790 @code{sy_none()} stands for no symmetry, @code{sy_symm()} and @code{sy_anti()}
1791 specify fully symmetric or antisymmetric, respectively, and @code{sy_cycl()}
1792 represents a cyclic symmetry. Each of these functions accepts up to four
1793 arguments which can be either symmetry objects themselves or unsigned integer
1794 numbers that represent an index position (counting from 0). A symmetry
1795 specification that consists of only a single @code{sy_symm()}, @code{sy_anti()}
1796 or @code{sy_cycl()} with no arguments specifies the respective symmetry for
1797 all indices.
1798
1799 Here are some examples of symmetry definitions:
1800
1801 @example
1802     ...
1803     // No symmetry:
1804     e = indexed(A, i, j);
1805     e = indexed(A, sy_none(), i, j);     // equivalent
1806     e = indexed(A, sy_none(0, 1), i, j); // equivalent
1807
1808     // Symmetric in all three indices:
1809     e = indexed(A, sy_symm(), i, j, k);
1810     e = indexed(A, sy_symm(0, 1, 2), i, j, k); // equivalent
1811     e = indexed(A, sy_symm(2, 0, 1), i, j, k); // same symmetry, but yields a
1812                                                // different canonical order
1813
1814     // Symmetric in the first two indices only:
1815     e = indexed(A, sy_symm(0, 1), i, j, k);
1816     e = indexed(A, sy_none(sy_symm(0, 1), 2), i, j, k); // equivalent
1817
1818     // Antisymmetric in the first and last index only (index ranges need not
1819     // be contiguous):
1820     e = indexed(A, sy_anti(0, 2), i, j, k);
1821     e = indexed(A, sy_none(sy_anti(0, 2), 1), i, j, k); // equivalent
1822
1823     // An example of a mixed symmetry: antisymmetric in the first two and
1824     // last two indices, symmetric when swapping the first and last index
1825     // pairs (like the Riemann curvature tensor):
1826     e = indexed(A, sy_symm(sy_anti(0, 1), sy_anti(2, 3)), i, j, k, l);
1827
1828     // Cyclic symmetry in all three indices:
1829     e = indexed(A, sy_cycl(), i, j, k);
1830     e = indexed(A, sy_cycl(0, 1, 2), i, j, k); // equivalent
1831
1832     // The following examples are invalid constructions that will throw
1833     // an exception at run time.
1834
1835     // An index may not appear multiple times:
1836     e = indexed(A, sy_symm(0, 0, 1), i, j, k); // ERROR
1837     e = indexed(A, sy_none(sy_symm(0, 1), sy_anti(0, 2)), i, j, k); // ERROR
1838
1839     // Every child of sy_symm(), sy_anti() and sy_cycl() must refer to the
1840     // same number of indices:
1841     e = indexed(A, sy_symm(sy_anti(0, 1), 2), i, j, k); // ERROR
1842
1843     // And of course, you cannot specify indices which are not there:
1844     e = indexed(A, sy_symm(0, 1, 2, 3), i, j, k); // ERROR
1845     ...
1846 @end example
1847
1848 If you need to specify more than four indices, you have to use the
1849 @code{.add()} method of the @code{symmetry} class. For example, to specify
1850 full symmetry in the first six indices you would write
1851 @code{sy_symm(0, 1, 2, 3).add(4).add(5)}.
1852
1853 If an indexed object has a symmetry, GiNaC will automatically bring the
1854 indices into a canonical order which allows for some immediate simplifications:
1855
1856 @example
1857     ...
1858     cout << indexed(A, sy_symm(), i, j)
1859           + indexed(A, sy_symm(), j, i) << endl;
1860      // -> 2*A.j.i
1861     cout << indexed(B, sy_anti(), i, j)
1862           + indexed(B, sy_anti(), j, i) << endl;
1863      // -> -B.j.i
1864     cout << indexed(B, sy_anti(), i, j, k)
1865           + indexed(B, sy_anti(), j, i, k) << endl;
1866      // -> 0
1867     ...
1868 @end example
1869
1870 @cindex @code{get_free_indices()}
1871 @cindex Dummy index
1872 @subsection Dummy indices
1873
1874 GiNaC treats certain symbolic index pairs as @dfn{dummy indices} meaning
1875 that a summation over the index range is implied. Symbolic indices which are
1876 not dummy indices are called @dfn{free indices}. Numeric indices are neither
1877 dummy nor free indices.
1878
1879 To be recognized as a dummy index pair, the two indices must be of the same
1880 class and dimension and their value must be the same single symbol (an index
1881 like @samp{2*n+1} is never a dummy index). If the indices are of class
1882 @code{varidx} they must also be of opposite variance; if they are of class
1883 @code{spinidx} they must be both dotted or both undotted.
1884
1885 The method @code{.get_free_indices()} returns a vector containing the free
1886 indices of an expression. It also checks that the free indices of the terms
1887 of a sum are consistent:
1888
1889 @example
1890 @{
1891     symbol A("A"), B("B"), C("C");
1892
1893     symbol i_sym("i"), j_sym("j"), k_sym("k"), l_sym("l");
1894     idx i(i_sym, 3), j(j_sym, 3), k(k_sym, 3), l(l_sym, 3);
1895
1896     ex e = indexed(A, i, j) * indexed(B, j, k) + indexed(C, k, l, i, l);
1897     cout << exprseq(e.get_free_indices()) << endl;
1898      // -> (.i,.k)
1899      // 'j' and 'l' are dummy indices
1900
1901     symbol mu_sym("mu"), nu_sym("nu"), rho_sym("rho"), sigma_sym("sigma");
1902     varidx mu(mu_sym, 4), nu(nu_sym, 4), rho(rho_sym, 4), sigma(sigma_sym, 4);
1903
1904     e = indexed(A, mu, nu) * indexed(B, nu.toggle_variance(), rho)
1905       + indexed(C, mu, sigma, rho, sigma.toggle_variance());
1906     cout << exprseq(e.get_free_indices()) << endl;
1907      // -> (~mu,~rho)
1908      // 'nu' is a dummy index, but 'sigma' is not
1909
1910     e = indexed(A, mu, mu);
1911     cout << exprseq(e.get_free_indices()) << endl;
1912      // -> (~mu)
1913      // 'mu' is not a dummy index because it appears twice with the same
1914      // variance
1915
1916     e = indexed(A, mu, nu) + 42;
1917     cout << exprseq(e.get_free_indices()) << endl; // ERROR
1918      // this will throw an exception:
1919      // "add::get_free_indices: inconsistent indices in sum"
1920 @}
1921 @end example
1922
1923 @cindex @code{simplify_indexed()}
1924 @subsection Simplifying indexed expressions
1925
1926 In addition to the few automatic simplifications that GiNaC performs on
1927 indexed expressions (such as re-ordering the indices of symmetric tensors
1928 and calculating traces and convolutions of matrices and predefined tensors)
1929 there is the method
1930
1931 @example
1932 ex ex::simplify_indexed(void);
1933 ex ex::simplify_indexed(const scalar_products & sp);
1934 @end example
1935
1936 that performs some more expensive operations:
1937
1938 @itemize
1939 @item it checks the consistency of free indices in sums in the same way
1940   @code{get_free_indices()} does
1941 @item it tries to give dummy indices that appear in different terms of a sum
1942   the same name to allow simplifications like @math{a_i*b_i-a_j*b_j=0}
1943 @item it (symbolically) calculates all possible dummy index summations/contractions
1944   with the predefined tensors (this will be explained in more detail in the
1945   next section)
1946 @item it detects contractions that vanish for symmetry reasons, for example
1947   the contraction of a symmetric and a totally antisymmetric tensor
1948 @item as a special case of dummy index summation, it can replace scalar products
1949   of two tensors with a user-defined value
1950 @end itemize
1951
1952 The last point is done with the help of the @code{scalar_products} class
1953 which is used to store scalar products with known values (this is not an
1954 arithmetic class, you just pass it to @code{simplify_indexed()}):
1955
1956 @example
1957 @{
1958     symbol A("A"), B("B"), C("C"), i_sym("i");
1959     idx i(i_sym, 3);
1960
1961     scalar_products sp;
1962     sp.add(A, B, 0); // A and B are orthogonal
1963     sp.add(A, C, 0); // A and C are orthogonal
1964     sp.add(A, A, 4); // A^2 = 4 (A has length 2)
1965
1966     e = indexed(A + B, i) * indexed(A + C, i);
1967     cout << e << endl;
1968      // -> (B+A).i*(A+C).i
1969
1970     cout << e.expand(expand_options::expand_indexed).simplify_indexed(sp)
1971          << endl;
1972      // -> 4+C.i*B.i
1973 @}
1974 @end example
1975
1976 The @code{scalar_products} object @code{sp} acts as a storage for the
1977 scalar products added to it with the @code{.add()} method. This method
1978 takes three arguments: the two expressions of which the scalar product is
1979 taken, and the expression to replace it with. After @code{sp.add(A, B, 0)},
1980 @code{simplify_indexed()} will replace all scalar products of indexed
1981 objects that have the symbols @code{A} and @code{B} as base expressions
1982 with the single value 0. The number, type and dimension of the indices
1983 don't matter; @samp{A~mu~nu*B.mu.nu} would also be replaced by 0.
1984
1985 @cindex @code{expand()}
1986 The example above also illustrates a feature of the @code{expand()} method:
1987 if passed the @code{expand_indexed} option it will distribute indices
1988 over sums, so @samp{(A+B).i} becomes @samp{A.i+B.i}.
1989
1990 @cindex @code{tensor} (class)
1991 @subsection Predefined tensors
1992
1993 Some frequently used special tensors such as the delta, epsilon and metric
1994 tensors are predefined in GiNaC. They have special properties when
1995 contracted with other tensor expressions and some of them have constant
1996 matrix representations (they will evaluate to a number when numeric
1997 indices are specified).
1998
1999 @cindex @code{delta_tensor()}
2000 @subsubsection Delta tensor
2001
2002 The delta tensor takes two indices, is symmetric and has the matrix
2003 representation @code{diag(1, 1, 1, ...)}. It is constructed by the function
2004 @code{delta_tensor()}:
2005
2006 @example
2007 @{
2008     symbol A("A"), B("B");
2009
2010     idx i(symbol("i"), 3), j(symbol("j"), 3),
2011         k(symbol("k"), 3), l(symbol("l"), 3);
2012
2013     ex e = indexed(A, i, j) * indexed(B, k, l)
2014          * delta_tensor(i, k) * delta_tensor(j, l) << endl;
2015     cout << e.simplify_indexed() << endl;
2016      // -> B.i.j*A.i.j
2017
2018     cout << delta_tensor(i, i) << endl;
2019      // -> 3
2020 @}
2021 @end example
2022
2023 @cindex @code{metric_tensor()}
2024 @subsubsection General metric tensor
2025
2026 The function @code{metric_tensor()} creates a general symmetric metric
2027 tensor with two indices that can be used to raise/lower tensor indices. The
2028 metric tensor is denoted as @samp{g} in the output and if its indices are of
2029 mixed variance it is automatically replaced by a delta tensor:
2030
2031 @example
2032 @{
2033     symbol A("A");
2034
2035     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4);
2036
2037     ex e = metric_tensor(mu, nu) * indexed(A, nu.toggle_variance(), rho);
2038     cout << e.simplify_indexed() << endl;
2039      // -> A~mu~rho
2040
2041     e = delta_tensor(mu, nu.toggle_variance()) * metric_tensor(nu, rho);
2042     cout << e.simplify_indexed() << endl;
2043      // -> g~mu~rho
2044
2045     e = metric_tensor(mu.toggle_variance(), nu.toggle_variance())
2046       * metric_tensor(nu, rho);
2047     cout << e.simplify_indexed() << endl;
2048      // -> delta.mu~rho
2049
2050     e = metric_tensor(nu.toggle_variance(), rho.toggle_variance())
2051       * metric_tensor(mu, nu) * (delta_tensor(mu.toggle_variance(), rho)
2052         + indexed(A, mu.toggle_variance(), rho));
2053     cout << e.simplify_indexed() << endl;
2054      // -> 4+A.rho~rho
2055 @}
2056 @end example
2057
2058 @cindex @code{lorentz_g()}
2059 @subsubsection Minkowski metric tensor
2060
2061 The Minkowski metric tensor is a special metric tensor with a constant
2062 matrix representation which is either @code{diag(1, -1, -1, ...)} (negative
2063 signature, the default) or @code{diag(-1, 1, 1, ...)} (positive signature).
2064 It is created with the function @code{lorentz_g()} (although it is output as
2065 @samp{eta}):
2066
2067 @example
2068 @{
2069     varidx mu(symbol("mu"), 4);
2070
2071     e = delta_tensor(varidx(0, 4), mu.toggle_variance())
2072       * lorentz_g(mu, varidx(0, 4));       // negative signature
2073     cout << e.simplify_indexed() << endl;
2074      // -> 1
2075
2076     e = delta_tensor(varidx(0, 4), mu.toggle_variance())
2077       * lorentz_g(mu, varidx(0, 4), true); // positive signature
2078     cout << e.simplify_indexed() << endl;
2079      // -> -1
2080 @}
2081 @end example
2082
2083 @cindex @code{spinor_metric()}
2084 @subsubsection Spinor metric tensor
2085
2086 The function @code{spinor_metric()} creates an antisymmetric tensor with
2087 two indices that is used to raise/lower indices of 2-component spinors.
2088 It is output as @samp{eps}:
2089
2090 @example
2091 @{
2092     symbol psi("psi");
2093
2094     spinidx A(symbol("A")), B(symbol("B")), C(symbol("C"));
2095     ex A_co = A.toggle_variance(), B_co = B.toggle_variance();
2096
2097     e = spinor_metric(A, B) * indexed(psi, B_co);
2098     cout << e.simplify_indexed() << endl;
2099      // -> psi~A
2100
2101     e = spinor_metric(A, B) * indexed(psi, A_co);
2102     cout << e.simplify_indexed() << endl;
2103      // -> -psi~B
2104
2105     e = spinor_metric(A_co, B_co) * indexed(psi, B);
2106     cout << e.simplify_indexed() << endl;
2107      // -> -psi.A
2108
2109     e = spinor_metric(A_co, B_co) * indexed(psi, A);
2110     cout << e.simplify_indexed() << endl;
2111      // -> psi.B
2112
2113     e = spinor_metric(A_co, B_co) * spinor_metric(A, B);
2114     cout << e.simplify_indexed() << endl;
2115      // -> 2
2116
2117     e = spinor_metric(A_co, B_co) * spinor_metric(B, C);
2118     cout << e.simplify_indexed() << endl;
2119      // -> -delta.A~C
2120 @}
2121 @end example
2122
2123 The matrix representation of the spinor metric is @code{[[0, 1], [-1, 0]]}.
2124
2125 @cindex @code{epsilon_tensor()}
2126 @cindex @code{lorentz_eps()}
2127 @subsubsection Epsilon tensor
2128
2129 The epsilon tensor is totally antisymmetric, its number of indices is equal
2130 to the dimension of the index space (the indices must all be of the same
2131 numeric dimension), and @samp{eps.1.2.3...} (resp. @samp{eps~0~1~2...}) is
2132 defined to be 1. Its behavior with indices that have a variance also
2133 depends on the signature of the metric. Epsilon tensors are output as
2134 @samp{eps}.
2135
2136 There are three functions defined to create epsilon tensors in 2, 3 and 4
2137 dimensions:
2138
2139 @example
2140 ex epsilon_tensor(const ex & i1, const ex & i2);
2141 ex epsilon_tensor(const ex & i1, const ex & i2, const ex & i3);
2142 ex lorentz_eps(const ex & i1, const ex & i2, const ex & i3, const ex & i4, bool pos_sig = false);
2143 @end example
2144
2145 The first two functions create an epsilon tensor in 2 or 3 Euclidean
2146 dimensions, the last function creates an epsilon tensor in a 4-dimensional
2147 Minkowski space (the last @code{bool} argument specifies whether the metric
2148 has negative or positive signature, as in the case of the Minkowski metric
2149 tensor):
2150
2151 @example
2152 @{
2153     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4),
2154            sig(symbol("sig"), 4), lam(symbol("lam"), 4), bet(symbol("bet"), 4);
2155     e = lorentz_eps(mu, nu, rho, sig) *
2156         lorentz_eps(mu.toggle_variance(), nu.toggle_variance(), lam, bet);
2157     cout << simplify_indexed(e) << endl;
2158      // -> 2*eta~bet~rho*eta~sig~lam-2*eta~sig~bet*eta~rho~lam
2159
2160     idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3);
2161     symbol A("A"), B("B");
2162     e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(B, k);
2163     cout << simplify_indexed(e) << endl;
2164      // -> -B.k*A.j*eps.i.k.j
2165     e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(A, k);
2166     cout << simplify_indexed(e) << endl;
2167      // -> 0
2168 @}
2169 @end example
2170
2171 @subsection Linear algebra
2172
2173 The @code{matrix} class can be used with indices to do some simple linear
2174 algebra (linear combinations and products of vectors and matrices, traces
2175 and scalar products):
2176
2177 @example
2178 @{
2179     idx i(symbol("i"), 2), j(symbol("j"), 2);
2180     symbol x("x"), y("y");
2181
2182     // A is a 2x2 matrix, X is a 2x1 vector
2183     matrix A(2, 2, lst(1, 2, 3, 4)), X(2, 1, lst(x, y));
2184
2185     cout << indexed(A, i, i) << endl;
2186      // -> 5
2187
2188     ex e = indexed(A, i, j) * indexed(X, j);
2189     cout << e.simplify_indexed() << endl;
2190      // -> [[2*y+x],[4*y+3*x]].i
2191
2192     e = indexed(A, i, j) * indexed(X, i) + indexed(X, j) * 2;
2193     cout << e.simplify_indexed() << endl;
2194      // -> [[3*y+3*x,6*y+2*x]].j
2195 @}
2196 @end example
2197
2198 You can of course obtain the same results with the @code{matrix::add()},
2199 @code{matrix::mul()} and @code{matrix::trace()} methods (@pxref{Matrices})
2200 but with indices you don't have to worry about transposing matrices.
2201
2202 Matrix indices always start at 0 and their dimension must match the number
2203 of rows/columns of the matrix. Matrices with one row or one column are
2204 vectors and can have one or two indices (it doesn't matter whether it's a
2205 row or a column vector). Other matrices must have two indices.
2206
2207 You should be careful when using indices with variance on matrices. GiNaC
2208 doesn't look at the variance and doesn't know that @samp{F~mu~nu} and
2209 @samp{F.mu.nu} are different matrices. In this case you should use only
2210 one form for @samp{F} and explicitly multiply it with a matrix representation
2211 of the metric tensor.
2212
2213
2214 @node Non-commutative objects, Methods and Functions, Indexed objects, Basic Concepts
2215 @c    node-name, next, previous, up
2216 @section Non-commutative objects
2217
2218 GiNaC is equipped to handle certain non-commutative algebras. Three classes of
2219 non-commutative objects are built-in which are mostly of use in high energy
2220 physics:
2221
2222 @itemize
2223 @item Clifford (Dirac) algebra (class @code{clifford})
2224 @item su(3) Lie algebra (class @code{color})
2225 @item Matrices (unindexed) (class @code{matrix})
2226 @end itemize
2227
2228 The @code{clifford} and @code{color} classes are subclasses of
2229 @code{indexed} because the elements of these algebras usually carry
2230 indices. The @code{matrix} class is described in more detail in
2231 @ref{Matrices}.
2232
2233 Unlike most computer algebra systems, GiNaC does not primarily provide an
2234 operator (often denoted @samp{&*}) for representing inert products of
2235 arbitrary objects. Rather, non-commutativity in GiNaC is a property of the
2236 classes of objects involved, and non-commutative products are formed with
2237 the usual @samp{*} operator, as are ordinary products. GiNaC is capable of
2238 figuring out by itself which objects commute and will group the factors
2239 by their class. Consider this example:
2240
2241 @example
2242     ...
2243     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);
2244     idx a(symbol("a"), 8), b(symbol("b"), 8);
2245     ex e = -dirac_gamma(mu) * (2*color_T(a)) * 8 * color_T(b) * dirac_gamma(nu);
2246     cout << e << endl;
2247      // -> -16*(gamma~mu*gamma~nu)*(T.a*T.b)
2248     ...
2249 @end example
2250
2251 As can be seen, GiNaC pulls out the overall commutative factor @samp{-16} and
2252 groups the non-commutative factors (the gammas and the su(3) generators)
2253 together while preserving the order of factors within each class (because
2254 Clifford objects commute with color objects). The resulting expression is a
2255 @emph{commutative} product with two factors that are themselves non-commutative
2256 products (@samp{gamma~mu*gamma~nu} and @samp{T.a*T.b}). For clarification,
2257 parentheses are placed around the non-commutative products in the output.
2258
2259 @cindex @code{ncmul} (class)
2260 Non-commutative products are internally represented by objects of the class
2261 @code{ncmul}, as opposed to commutative products which are handled by the
2262 @code{mul} class. You will normally not have to worry about this distinction,
2263 though.
2264
2265 The advantage of this approach is that you never have to worry about using
2266 (or forgetting to use) a special operator when constructing non-commutative
2267 expressions. Also, non-commutative products in GiNaC are more intelligent
2268 than in other computer algebra systems; they can, for example, automatically
2269 canonicalize themselves according to rules specified in the implementation
2270 of the non-commutative classes. The drawback is that to work with other than
2271 the built-in algebras you have to implement new classes yourself. Symbols
2272 always commute and it's not possible to construct non-commutative products
2273 using symbols to represent the algebra elements or generators. User-defined
2274 functions can, however, be specified as being non-commutative.
2275
2276 @cindex @code{return_type()}
2277 @cindex @code{return_type_tinfo()}
2278 Information about the commutativity of an object or expression can be
2279 obtained with the two member functions
2280
2281 @example
2282 unsigned ex::return_type(void) const;
2283 unsigned ex::return_type_tinfo(void) const;
2284 @end example
2285
2286 The @code{return_type()} function returns one of three values (defined in
2287 the header file @file{flags.h}), corresponding to three categories of
2288 expressions in GiNaC:
2289
2290 @itemize
2291 @item @code{return_types::commutative}: Commutes with everything. Most GiNaC
2292   classes are of this kind.
2293 @item @code{return_types::noncommutative}: Non-commutative, belonging to a
2294   certain class of non-commutative objects which can be determined with the
2295   @code{return_type_tinfo()} method. Expressions of this category commute
2296   with everything except @code{noncommutative} expressions of the same
2297   class.
2298 @item @code{return_types::noncommutative_composite}: Non-commutative, composed
2299   of non-commutative objects of different classes. Expressions of this
2300   category don't commute with any other @code{noncommutative} or
2301   @code{noncommutative_composite} expressions.
2302 @end itemize
2303
2304 The value returned by the @code{return_type_tinfo()} method is valid only
2305 when the return type of the expression is @code{noncommutative}. It is a
2306 value that is unique to the class of the object and usually one of the
2307 constants in @file{tinfos.h}, or derived therefrom.
2308
2309 Here are a couple of examples:
2310
2311 @cartouche
2312 @multitable @columnfractions 0.33 0.33 0.34
2313 @item @strong{Expression} @tab @strong{@code{return_type()}} @tab @strong{@code{return_type_tinfo()}}
2314 @item @code{42} @tab @code{commutative} @tab -
2315 @item @code{2*x-y} @tab @code{commutative} @tab -
2316 @item @code{dirac_ONE()} @tab @code{noncommutative} @tab @code{TINFO_clifford}
2317 @item @code{dirac_gamma(mu)*dirac_gamma(nu)} @tab @code{noncommutative} @tab @code{TINFO_clifford}
2318 @item @code{2*color_T(a)} @tab @code{noncommutative} @tab @code{TINFO_color}
2319 @item @code{dirac_ONE()*color_T(a)} @tab @code{noncommutative_composite} @tab -
2320 @end multitable
2321 @end cartouche
2322
2323 Note: the @code{return_type_tinfo()} of Clifford objects is only equal to
2324 @code{TINFO_clifford} for objects with a representation label of zero.
2325 Other representation labels yield a different @code{return_type_tinfo()},
2326 but it's the same for any two objects with the same label. This is also true
2327 for color objects.
2328
2329 A last note: With the exception of matrices, positive integer powers of
2330 non-commutative objects are automatically expanded in GiNaC. For example,
2331 @code{pow(a*b, 2)} becomes @samp{a*b*a*b} if @samp{a} and @samp{b} are
2332 non-commutative expressions).
2333
2334
2335 @cindex @code{clifford} (class)
2336 @subsection Clifford algebra
2337
2338 @cindex @code{dirac_gamma()}
2339 Clifford algebra elements (also called Dirac gamma matrices, although GiNaC
2340 doesn't treat them as matrices) are designated as @samp{gamma~mu} and satisfy
2341 @samp{gamma~mu*gamma~nu + gamma~nu*gamma~mu = 2*eta~mu~nu} where @samp{eta~mu~nu}
2342 is the Minkowski metric tensor. Dirac gammas are constructed by the function
2343
2344 @example
2345 ex dirac_gamma(const ex & mu, unsigned char rl = 0);
2346 @end example
2347
2348 which takes two arguments: the index and a @dfn{representation label} in the
2349 range 0 to 255 which is used to distinguish elements of different Clifford
2350 algebras (this is also called a @dfn{spin line index}). Gammas with different
2351 labels commute with each other. The dimension of the index can be 4 or (in
2352 the framework of dimensional regularization) any symbolic value. Spinor
2353 indices on Dirac gammas are not supported in GiNaC.
2354
2355 @cindex @code{dirac_ONE()}
2356 The unity element of a Clifford algebra is constructed by
2357
2358 @example
2359 ex dirac_ONE(unsigned char rl = 0);
2360 @end example
2361
2362 @strong{Note:} You must always use @code{dirac_ONE()} when referring to
2363 multiples of the unity element, even though it's customary to omit it.
2364 E.g. instead of @code{dirac_gamma(mu)*(dirac_slash(q,4)+m)} you have to
2365 write @code{dirac_gamma(mu)*(dirac_slash(q,4)+m*dirac_ONE())}. Otherwise,
2366 GiNaC may produce incorrect results.
2367
2368 @cindex @code{dirac_gamma5()}
2369 There's a special element @samp{gamma5} that commutes with all other
2370 gammas and in 4 dimensions equals @samp{gamma~0 gamma~1 gamma~2 gamma~3},
2371 provided by
2372
2373 @example
2374 ex dirac_gamma5(unsigned char rl = 0);
2375 @end example
2376
2377 @cindex @code{dirac_gamma6()}
2378 @cindex @code{dirac_gamma7()}
2379 The two additional functions
2380
2381 @example
2382 ex dirac_gamma6(unsigned char rl = 0);
2383 ex dirac_gamma7(unsigned char rl = 0);
2384 @end example
2385
2386 return @code{dirac_ONE(rl) + dirac_gamma5(rl)} and @code{dirac_ONE(rl) - dirac_gamma5(rl)},
2387 respectively.
2388
2389 @cindex @code{dirac_slash()}
2390 Finally, the function
2391
2392 @example
2393 ex dirac_slash(const ex & e, const ex & dim, unsigned char rl = 0);
2394 @end example
2395
2396 creates a term that represents a contraction of @samp{e} with the Dirac
2397 Lorentz vector (it behaves like a term of the form @samp{e.mu gamma~mu}
2398 with a unique index whose dimension is given by the @code{dim} argument).
2399 Such slashed expressions are printed with a trailing backslash, e.g. @samp{e\}.
2400
2401 In products of dirac gammas, superfluous unity elements are automatically
2402 removed, squares are replaced by their values and @samp{gamma5} is
2403 anticommuted to the front. The @code{simplify_indexed()} function performs
2404 contractions in gamma strings, for example
2405
2406 @example
2407 @{
2408     ...
2409     symbol a("a"), b("b"), D("D");
2410     varidx mu(symbol("mu"), D);
2411     ex e = dirac_gamma(mu) * dirac_slash(a, D)
2412          * dirac_gamma(mu.toggle_variance());
2413     cout << e << endl;
2414      // -> gamma~mu*a\*gamma.mu
2415     e = e.simplify_indexed();
2416     cout << e << endl;
2417      // -> -D*a\+2*a\
2418     cout << e.subs(D == 4) << endl;
2419      // -> -2*a\
2420     ...
2421 @}
2422 @end example
2423
2424 @cindex @code{dirac_trace()}
2425 To calculate the trace of an expression containing strings of Dirac gammas
2426 you use the function
2427
2428 @example
2429 ex dirac_trace(const ex & e, unsigned char rl = 0, const ex & trONE = 4);
2430 @end example
2431
2432 This function takes the trace of all gammas with the specified representation
2433 label; gammas with other labels are left standing. The last argument to
2434 @code{dirac_trace()} is the value to be returned for the trace of the unity
2435 element, which defaults to 4. The @code{dirac_trace()} function is a linear
2436 functional that is equal to the usual trace only in @math{D = 4} dimensions.
2437 In particular, the functional is not cyclic in @math{D != 4} dimensions when
2438 acting on expressions containing @samp{gamma5}, so it's not a proper trace.
2439 This @samp{gamma5} scheme is described in greater detail in
2440 @cite{The Role of gamma5 in Dimensional Regularization}.
2441
2442 The value of the trace itself is also usually different in 4 and in
2443 @math{D != 4} dimensions:
2444
2445 @example
2446 @{
2447     // 4 dimensions
2448     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4);
2449     ex e = dirac_gamma(mu) * dirac_gamma(nu) *
2450            dirac_gamma(mu.toggle_variance()) * dirac_gamma(rho);
2451     cout << dirac_trace(e).simplify_indexed() << endl;
2452      // -> -8*eta~rho~nu
2453 @}
2454 ...
2455 @{
2456     // D dimensions
2457     symbol D("D");
2458     varidx mu(symbol("mu"), D), nu(symbol("nu"), D), rho(symbol("rho"), D);
2459     ex e = dirac_gamma(mu) * dirac_gamma(nu) *
2460            dirac_gamma(mu.toggle_variance()) * dirac_gamma(rho);
2461     cout << dirac_trace(e).simplify_indexed() << endl;
2462      // -> 8*eta~rho~nu-4*eta~rho~nu*D
2463 @}
2464 @end example
2465
2466 Here is an example for using @code{dirac_trace()} to compute a value that
2467 appears in the calculation of the one-loop vacuum polarization amplitude in
2468 QED:
2469
2470 @example
2471 @{
2472     symbol q("q"), l("l"), m("m"), ldotq("ldotq"), D("D");
2473     varidx mu(symbol("mu"), D), nu(symbol("nu"), D);
2474
2475     scalar_products sp;
2476     sp.add(l, l, pow(l, 2));
2477     sp.add(l, q, ldotq);
2478
2479     ex e = dirac_gamma(mu) *
2480            (dirac_slash(l, D) + dirac_slash(q, D) + m * dirac_ONE()) *    
2481            dirac_gamma(mu.toggle_variance()) *
2482            (dirac_slash(l, D) + m * dirac_ONE());   
2483     e = dirac_trace(e).simplify_indexed(sp);
2484     e = e.collect(lst(l, ldotq, m));
2485     cout << e << endl;
2486      // -> (8-4*D)*l^2+(8-4*D)*ldotq+4*D*m^2
2487 @}
2488 @end example
2489
2490 The @code{canonicalize_clifford()} function reorders all gamma products that
2491 appear in an expression to a canonical (but not necessarily simple) form.
2492 You can use this to compare two expressions or for further simplifications:
2493
2494 @example
2495 @{
2496     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);
2497     ex e = dirac_gamma(mu) * dirac_gamma(nu) + dirac_gamma(nu) * dirac_gamma(mu);
2498     cout << e << endl;
2499      // -> gamma~mu*gamma~nu+gamma~nu*gamma~mu
2500
2501     e = canonicalize_clifford(e);
2502     cout << e << endl;
2503      // -> 2*eta~mu~nu
2504 @}
2505 @end example
2506
2507
2508 @cindex @code{color} (class)
2509 @subsection Color algebra
2510
2511 @cindex @code{color_T()}
2512 For computations in quantum chromodynamics, GiNaC implements the base elements
2513 and structure constants of the su(3) Lie algebra (color algebra). The base
2514 elements @math{T_a} are constructed by the function
2515
2516 @example
2517 ex color_T(const ex & a, unsigned char rl = 0);
2518 @end example
2519
2520 which takes two arguments: the index and a @dfn{representation label} in the
2521 range 0 to 255 which is used to distinguish elements of different color
2522 algebras. Objects with different labels commute with each other. The
2523 dimension of the index must be exactly 8 and it should be of class @code{idx},
2524 not @code{varidx}.
2525
2526 @cindex @code{color_ONE()}
2527 The unity element of a color algebra is constructed by
2528
2529 @example
2530 ex color_ONE(unsigned char rl = 0);
2531 @end example
2532
2533 @strong{Note:} You must always use @code{color_ONE()} when referring to
2534 multiples of the unity element, even though it's customary to omit it.
2535 E.g. instead of @code{color_T(a)*(color_T(b)*indexed(X,b)+1)} you have to
2536 write @code{color_T(a)*(color_T(b)*indexed(X,b)+color_ONE())}. Otherwise,
2537 GiNaC may produce incorrect results.
2538
2539 @cindex @code{color_d()}
2540 @cindex @code{color_f()}
2541 The functions
2542
2543 @example
2544 ex color_d(const ex & a, const ex & b, const ex & c);
2545 ex color_f(const ex & a, const ex & b, const ex & c);
2546 @end example
2547
2548 create the symmetric and antisymmetric structure constants @math{d_abc} and
2549 @math{f_abc} which satisfy @math{@{T_a, T_b@} = 1/3 delta_ab + d_abc T_c}
2550 and @math{[T_a, T_b] = i f_abc T_c}.
2551
2552 @cindex @code{color_h()}
2553 There's an additional function
2554
2555 @example
2556 ex color_h(const ex & a, const ex & b, const ex & c);
2557 @end example
2558
2559 which returns the linear combination @samp{color_d(a, b, c)+I*color_f(a, b, c)}.
2560
2561 The function @code{simplify_indexed()} performs some simplifications on
2562 expressions containing color objects:
2563
2564 @example
2565 @{
2566     ...
2567     idx a(symbol("a"), 8), b(symbol("b"), 8), c(symbol("c"), 8),
2568         k(symbol("k"), 8), l(symbol("l"), 8);
2569
2570     e = color_d(a, b, l) * color_f(a, b, k);
2571     cout << e.simplify_indexed() << endl;
2572      // -> 0
2573
2574     e = color_d(a, b, l) * color_d(a, b, k);
2575     cout << e.simplify_indexed() << endl;
2576      // -> 5/3*delta.k.l
2577
2578     e = color_f(l, a, b) * color_f(a, b, k);
2579     cout << e.simplify_indexed() << endl;
2580      // -> 3*delta.k.l
2581
2582     e = color_h(a, b, c) * color_h(a, b, c);
2583     cout << e.simplify_indexed() << endl;
2584      // -> -32/3
2585
2586     e = color_h(a, b, c) * color_T(b) * color_T(c);
2587     cout << e.simplify_indexed() << endl;
2588      // -> -2/3*T.a
2589
2590     e = color_h(a, b, c) * color_T(a) * color_T(b) * color_T(c);
2591     cout << e.simplify_indexed() << endl;
2592      // -> -8/9*ONE
2593
2594     e = color_T(k) * color_T(a) * color_T(b) * color_T(k);
2595     cout << e.simplify_indexed() << endl;
2596      // -> 1/4*delta.b.a*ONE-1/6*T.a*T.b
2597     ...
2598 @end example
2599
2600 @cindex @code{color_trace()}
2601 To calculate the trace of an expression containing color objects you use the
2602 function
2603
2604 @example
2605 ex color_trace(const ex & e, unsigned char rl = 0);
2606 @end example
2607
2608 This function takes the trace of all color @samp{T} objects with the
2609 specified representation label; @samp{T}s with other labels are left
2610 standing. For example:
2611
2612 @example
2613     ...
2614     e = color_trace(4 * color_T(a) * color_T(b) * color_T(c));
2615     cout << e << endl;
2616      // -> -I*f.a.c.b+d.a.c.b
2617 @}
2618 @end example
2619
2620
2621 @node Methods and Functions, Information About Expressions, Non-commutative objects, Top
2622 @c    node-name, next, previous, up
2623 @chapter Methods and Functions
2624 @cindex polynomial
2625
2626 In this chapter the most important algorithms provided by GiNaC will be
2627 described.  Some of them are implemented as functions on expressions,
2628 others are implemented as methods provided by expression objects.  If
2629 they are methods, there exists a wrapper function around it, so you can
2630 alternatively call it in a functional way as shown in the simple
2631 example:
2632
2633 @example
2634     ...
2635     cout << "As method:   " << sin(1).evalf() << endl;
2636     cout << "As function: " << evalf(sin(1)) << endl;
2637     ...
2638 @end example
2639
2640 @cindex @code{subs()}
2641 The general rule is that wherever methods accept one or more parameters
2642 (@var{arg1}, @var{arg2}, @dots{}) the order of arguments the function
2643 wrapper accepts is the same but preceded by the object to act on
2644 (@var{object}, @var{arg1}, @var{arg2}, @dots{}).  This approach is the
2645 most natural one in an OO model but it may lead to confusion for MapleV
2646 users because where they would type @code{A:=x+1; subs(x=2,A);} GiNaC
2647 would require @code{A=x+1; subs(A,x==2);} (after proper declaration of
2648 @code{A} and @code{x}).  On the other hand, since MapleV returns 3 on
2649 @code{A:=x^2+3; coeff(A,x,0);} (GiNaC: @code{A=pow(x,2)+3;
2650 coeff(A,x,0);}) it is clear that MapleV is not trying to be consistent
2651 here.  Also, users of MuPAD will in most cases feel more comfortable
2652 with GiNaC's convention.  All function wrappers are implemented
2653 as simple inline functions which just call the corresponding method and
2654 are only provided for users uncomfortable with OO who are dead set to
2655 avoid method invocations.  Generally, nested function wrappers are much
2656 harder to read than a sequence of methods and should therefore be
2657 avoided if possible.  On the other hand, not everything in GiNaC is a
2658 method on class @code{ex} and sometimes calling a function cannot be
2659 avoided.
2660
2661 @menu
2662 * Information About Expressions::
2663 * Substituting Expressions::
2664 * Pattern Matching and Advanced Substitutions::
2665 * Applying a Function on Subexpressions::
2666 * Polynomial Arithmetic::           Working with polynomials.
2667 * Rational Expressions::            Working with rational functions.
2668 * Symbolic Differentiation::
2669 * Series Expansion::                Taylor and Laurent expansion.
2670 * Symmetrization::
2671 * Built-in Functions::              List of predefined mathematical functions.
2672 * Input/Output::                    Input and output of expressions.
2673 @end menu
2674
2675
2676 @node Information About Expressions, Substituting Expressions, Methods and Functions, Methods and Functions
2677 @c    node-name, next, previous, up
2678 @section Getting information about expressions
2679
2680 @subsection Checking expression types
2681 @cindex @code{is_a<@dots{}>()}
2682 @cindex @code{is_exactly_a<@dots{}>()}
2683 @cindex @code{ex_to<@dots{}>()}
2684 @cindex Converting @code{ex} to other classes
2685 @cindex @code{info()}
2686 @cindex @code{return_type()}
2687 @cindex @code{return_type_tinfo()}
2688
2689 Sometimes it's useful to check whether a given expression is a plain number,
2690 a sum, a polynomial with integer coefficients, or of some other specific type.
2691 GiNaC provides a couple of functions for this:
2692
2693 @example
2694 bool is_a<T>(const ex & e);
2695 bool is_exactly_a<T>(const ex & e);
2696 bool ex::info(unsigned flag);
2697 unsigned ex::return_type(void) const;
2698 unsigned ex::return_type_tinfo(void) const;
2699 @end example
2700
2701 When the test made by @code{is_a<T>()} returns true, it is safe to call
2702 one of the functions @code{ex_to<T>()}, where @code{T} is one of the
2703 class names (@xref{The Class Hierarchy}, for a list of all classes). For
2704 example, assuming @code{e} is an @code{ex}:
2705
2706 @example
2707 @{
2708     @dots{}
2709     if (is_a<numeric>(e))
2710         numeric n = ex_to<numeric>(e);
2711     @dots{}
2712 @}
2713 @end example
2714
2715 @code{is_a<T>(e)} allows you to check whether the top-level object of
2716 an expression @samp{e} is an instance of the GiNaC class @samp{T}
2717 (@xref{The Class Hierarchy}, for a list of all classes). This is most useful,
2718 e.g., for checking whether an expression is a number, a sum, or a product:
2719
2720 @example
2721 @{
2722     symbol x("x");
2723     ex e1 = 42;
2724     ex e2 = 4*x - 3;
2725     is_a<numeric>(e1);  // true
2726     is_a<numeric>(e2);  // false
2727     is_a<add>(e1);      // false
2728     is_a<add>(e2);      // true
2729     is_a<mul>(e1);      // false
2730     is_a<mul>(e2);      // false
2731 @}
2732 @end example
2733
2734 In contrast, @code{is_exactly_a<T>(e)} allows you to check whether the
2735 top-level object of an expression @samp{e} is an instance of the GiNaC
2736 class @samp{T}, not including parent classes.
2737
2738 The @code{info()} method is used for checking certain attributes of
2739 expressions. The possible values for the @code{flag} argument are defined
2740 in @file{ginac/flags.h}, the most important being explained in the following
2741 table:
2742
2743 @cartouche
2744 @multitable @columnfractions .30 .70
2745 @item @strong{Flag} @tab @strong{Returns true if the object is@dots{}}
2746 @item @code{numeric}
2747 @tab @dots{}a number (same as @code{is_<numeric>(...)})
2748 @item @code{real}
2749 @tab @dots{}a real integer, rational or float (i.e. is not complex)
2750 @item @code{rational}
2751 @tab @dots{}an exact rational number (integers are rational, too)
2752 @item @code{integer}
2753 @tab @dots{}a (non-complex) integer
2754 @item @code{crational}
2755 @tab @dots{}an exact (complex) rational number (such as @math{2/3+7/2*I})
2756 @item @code{cinteger}
2757 @tab @dots{}a (complex) integer (such as @math{2-3*I})
2758 @item @code{positive}
2759 @tab @dots{}not complex and greater than 0
2760 @item @code{negative}
2761 @tab @dots{}not complex and less than 0
2762 @item @code{nonnegative}
2763 @tab @dots{}not complex and greater than or equal to 0
2764 @item @code{posint}
2765 @tab @dots{}an integer greater than 0
2766 @item @code{negint}
2767 @tab @dots{}an integer less than 0
2768 @item @code{nonnegint}
2769 @tab @dots{}an integer greater than or equal to 0
2770 @item @code{even}
2771 @tab @dots{}an even integer
2772 @item @code{odd}
2773 @tab @dots{}an odd integer
2774 @item @code{prime}
2775 @tab @dots{}a prime integer (probabilistic primality test)
2776 @item @code{relation}
2777 @tab @dots{}a relation (same as @code{is_a<relational>(...)})
2778 @item @code{relation_equal}
2779 @tab @dots{}a @code{==} relation
2780 @item @code{relation_not_equal}
2781 @tab @dots{}a @code{!=} relation
2782 @item @code{relation_less}
2783 @tab @dots{}a @code{<} relation
2784 @item @code{relation_less_or_equal}
2785 @tab @dots{}a @code{<=} relation
2786 @item @code{relation_greater}
2787 @tab @dots{}a @code{>} relation
2788 @item @code{relation_greater_or_equal}
2789 @tab @dots{}a @code{>=} relation
2790 @item @code{symbol}
2791 @tab @dots{}a symbol (same as @code{is_a<symbol>(...)})
2792 @item @code{list}
2793 @tab @dots{}a list (same as @code{is_a<lst>(...)})
2794 @item @code{polynomial}
2795 @tab @dots{}a polynomial (i.e. only consists of sums and products of numbers and symbols with positive integer powers)
2796 @item @code{integer_polynomial}
2797 @tab @dots{}a polynomial with (non-complex) integer coefficients
2798 @item @code{cinteger_polynomial}
2799 @tab @dots{}a polynomial with (possibly complex) integer coefficients (such as @math{2-3*I})
2800 @item @code{rational_polynomial}
2801 @tab @dots{}a polynomial with (non-complex) rational coefficients
2802 @item @code{crational_polynomial}
2803 @tab @dots{}a polynomial with (possibly complex) rational coefficients (such as @math{2/3+7/2*I})
2804 @item @code{rational_function}
2805 @tab @dots{}a rational function (@math{x+y}, @math{z/(x+y)})
2806 @item @code{algebraic}
2807 @tab @dots{}an algebraic object (@math{sqrt(2)}, @math{sqrt(x)-1})
2808 @end multitable
2809 @end cartouche
2810
2811 To determine whether an expression is commutative or non-commutative and if
2812 so, with which other expressions it would commute, you use the methods
2813 @code{return_type()} and @code{return_type_tinfo()}. @xref{Non-commutative objects},
2814 for an explanation of these.
2815
2816
2817 @subsection Accessing subexpressions
2818 @cindex @code{nops()}
2819 @cindex @code{op()}
2820 @cindex container
2821 @cindex @code{relational} (class)
2822
2823 GiNaC provides the two methods
2824
2825 @example
2826 unsigned ex::nops();
2827 ex ex::op(unsigned i);
2828 @end example
2829
2830 for accessing the subexpressions in the container-like GiNaC classes like
2831 @code{add}, @code{mul}, @code{lst}, and @code{function}. @code{nops()}
2832 determines the number of subexpressions (@samp{operands}) contained, while
2833 @code{op()} returns the @code{i}-th (0..@code{nops()-1}) subexpression.
2834 In the case of a @code{power} object, @code{op(0)} will return the basis
2835 and @code{op(1)} the exponent. For @code{indexed} objects, @code{op(0)}
2836 is the base expression and @code{op(i)}, @math{i>0} are the indices.
2837
2838 The left-hand and right-hand side expressions of objects of class
2839 @code{relational} (and only of these) can also be accessed with the methods
2840
2841 @example
2842 ex ex::lhs();
2843 ex ex::rhs();
2844 @end example
2845
2846
2847 @subsection Comparing expressions
2848 @cindex @code{is_equal()}
2849 @cindex @code{is_zero()}
2850
2851 Expressions can be compared with the usual C++ relational operators like
2852 @code{==}, @code{>}, and @code{<} but if the expressions contain symbols,
2853 the result is usually not determinable and the result will be @code{false},
2854 except in the case of the @code{!=} operator. You should also be aware that
2855 GiNaC will only do the most trivial test for equality (subtracting both
2856 expressions), so something like @code{(pow(x,2)+x)/x==x+1} will return
2857 @code{false}.
2858
2859 Actually, if you construct an expression like @code{a == b}, this will be
2860 represented by an object of the @code{relational} class (@pxref{Relations})
2861 which is not evaluated until (explicitly or implicitly) cast to a @code{bool}.
2862
2863 There are also two methods
2864
2865 @example
2866 bool ex::is_equal(const ex & other);
2867 bool ex::is_zero();
2868 @end example
2869
2870 for checking whether one expression is equal to another, or equal to zero,
2871 respectively.
2872
2873 @strong{Warning:} You will also find an @code{ex::compare()} method in the
2874 GiNaC header files. This method is however only to be used internally by
2875 GiNaC to establish a canonical sort order for terms, and using it to compare
2876 expressions will give very surprising results.
2877
2878
2879 @node Substituting Expressions, Pattern Matching and Advanced Substitutions, Information About Expressions, Methods and Functions
2880 @c    node-name, next, previous, up
2881 @section Substituting expressions
2882 @cindex @code{subs()}
2883
2884 Algebraic objects inside expressions can be replaced with arbitrary
2885 expressions via the @code{.subs()} method:
2886
2887 @example
2888 ex ex::subs(const ex & e);
2889 ex ex::subs(const lst & syms, const lst & repls);
2890 @end example
2891
2892 In the first form, @code{subs()} accepts a relational of the form
2893 @samp{object == expression} or a @code{lst} of such relationals:
2894
2895 @example
2896 @{
2897     symbol x("x"), y("y");
2898
2899     ex e1 = 2*x^2-4*x+3;
2900     cout << "e1(7) = " << e1.subs(x == 7) << endl;
2901      // -> 73
2902
2903     ex e2 = x*y + x;
2904     cout << "e2(-2, 4) = " << e2.subs(lst(x == -2, y == 4)) << endl;
2905      // -> -10
2906 @}
2907 @end example
2908
2909 If you specify multiple substitutions, they are performed in parallel, so e.g.
2910 @code{subs(lst(x == y, y == x))} exchanges @samp{x} and @samp{y}.
2911
2912 The second form of @code{subs()} takes two lists, one for the objects to be
2913 replaced and one for the expressions to be substituted (both lists must
2914 contain the same number of elements). Using this form, you would write
2915 @code{subs(lst(x, y), lst(y, x))} to exchange @samp{x} and @samp{y}.
2916
2917 @code{subs()} performs syntactic substitution of any complete algebraic
2918 object; it does not try to match sub-expressions as is demonstrated by the
2919 following example:
2920
2921 @example
2922 @{
2923     symbol x("x"), y("y"), z("z");
2924
2925     ex e1 = pow(x+y, 2);
2926     cout << e1.subs(x+y == 4) << endl;
2927      // -> 16
2928
2929     ex e2 = sin(x)*sin(y)*cos(x);
2930     cout << e2.subs(sin(x) == cos(x)) << endl;
2931      // -> cos(x)^2*sin(y)
2932
2933     ex e3 = x+y+z;
2934     cout << e3.subs(x+y == 4) << endl;
2935      // -> x+y+z
2936      // (and not 4+z as one might expect)
2937 @}
2938 @end example
2939
2940 A more powerful form of substitution using wildcards is described in the
2941 next section.
2942
2943
2944 @node Pattern Matching and Advanced Substitutions, Applying a Function on Subexpressions, Substituting Expressions, Methods and Functions
2945 @c    node-name, next, previous, up
2946 @section Pattern matching and advanced substitutions
2947 @cindex @code{wildcard} (class)
2948 @cindex Pattern matching
2949
2950 GiNaC allows the use of patterns for checking whether an expression is of a
2951 certain form or contains subexpressions of a certain form, and for
2952 substituting expressions in a more general way.
2953
2954 A @dfn{pattern} is an algebraic expression that optionally contains wildcards.
2955 A @dfn{wildcard} is a special kind of object (of class @code{wildcard}) that
2956 represents an arbitrary expression. Every wildcard has a @dfn{label} which is
2957 an unsigned integer number to allow having multiple different wildcards in a
2958 pattern. Wildcards are printed as @samp{$label} (this is also the way they
2959 are specified in @command{ginsh}). In C++ code, wildcard objects are created
2960 with the call
2961
2962 @example
2963 ex wild(unsigned label = 0);
2964 @end example
2965
2966 which is simply a wrapper for the @code{wildcard()} constructor with a shorter
2967 name.
2968
2969 Some examples for patterns:
2970
2971 @multitable @columnfractions .5 .5
2972 @item @strong{Constructed as} @tab @strong{Output as}
2973 @item @code{wild()} @tab @samp{$0}
2974 @item @code{pow(x,wild())} @tab @samp{x^$0}
2975 @item @code{atan2(wild(1),wild(2))} @tab @samp{atan2($1,$2)}
2976 @item @code{indexed(A,idx(wild(),3))} @tab @samp{A.$0}
2977 @end multitable
2978
2979 Notes:
2980
2981 @itemize
2982 @item Wildcards behave like symbols and are subject to the same algebraic
2983   rules. E.g., @samp{$0+2*$0} is automatically transformed to @samp{3*$0}.
2984 @item As shown in the last example, to use wildcards for indices you have to
2985   use them as the value of an @code{idx} object. This is because indices must
2986   always be of class @code{idx} (or a subclass).
2987 @item Wildcards only represent expressions or subexpressions. It is not
2988   possible to use them as placeholders for other properties like index
2989   dimension or variance, representation labels, symmetry of indexed objects
2990   etc.
2991 @item Because wildcards are commutative, it is not possible to use wildcards
2992   as part of noncommutative products.
2993 @item A pattern does not have to contain wildcards. @samp{x} and @samp{x+y}
2994   are also valid patterns.
2995 @end itemize
2996
2997 @cindex @code{match()}
2998 The most basic application of patterns is to check whether an expression
2999 matches a given pattern. This is done by the function
3000
3001 @example
3002 bool ex::match(const ex & pattern);
3003 bool ex::match(const ex & pattern, lst & repls);
3004 @end example
3005
3006 This function returns @code{true} when the expression matches the pattern
3007 and @code{false} if it doesn't. If used in the second form, the actual
3008 subexpressions matched by the wildcards get returned in the @code{repls}
3009 object as a list of relations of the form @samp{wildcard == expression}.
3010 If @code{match()} returns false, the state of @code{repls} is undefined.
3011 For reproducible results, the list should be empty when passed to
3012 @code{match()}, but it is also possible to find similarities in multiple
3013 expressions by passing in the result of a previous match.
3014
3015 The matching algorithm works as follows:
3016
3017 @itemize
3018 @item A single wildcard matches any expression. If one wildcard appears
3019   multiple times in a pattern, it must match the same expression in all
3020   places (e.g. @samp{$0} matches anything, and @samp{$0*($0+1)} matches
3021   @samp{x*(x+1)} but not @samp{x*(y+1)}).
3022 @item If the expression is not of the same class as the pattern, the match
3023   fails (i.e. a sum only matches a sum, a function only matches a function,
3024   etc.).
3025 @item If the pattern is a function, it only matches the same function
3026   (i.e. @samp{sin($0)} matches @samp{sin(x)} but doesn't match @samp{exp(x)}).
3027 @item Except for sums and products, the match fails if the number of
3028   subexpressions (@code{nops()}) is not equal to the number of subexpressions
3029   of the pattern.
3030 @item If there are no subexpressions, the expressions and the pattern must
3031   be equal (in the sense of @code{is_equal()}).
3032 @item Except for sums and products, each subexpression (@code{op()}) must
3033   match the corresponding subexpression of the pattern.
3034 @end itemize
3035
3036 Sums (@code{add}) and products (@code{mul}) are treated in a special way to
3037 account for their commutativity and associativity:
3038
3039 @itemize
3040 @item If the pattern contains a term or factor that is a single wildcard,
3041   this one is used as the @dfn{global wildcard}. If there is more than one
3042   such wildcard, one of them is chosen as the global wildcard in a random
3043   way.
3044 @item Every term/factor of the pattern, except the global wildcard, is
3045   matched against every term of the expression in sequence. If no match is
3046   found, the whole match fails. Terms that did match are not considered in
3047   further matches.
3048 @item If there are no unmatched terms left, the match succeeds. Otherwise
3049   the match fails unless there is a global wildcard in the pattern, in
3050   which case this wildcard matches the remaining terms.
3051 @end itemize
3052
3053 In general, having more than one single wildcard as a term of a sum or a
3054 factor of a product (such as @samp{a+$0+$1}) will lead to unpredictable or
3055 ambiguous results.
3056
3057 Here are some examples in @command{ginsh} to demonstrate how it works (the
3058 @code{match()} function in @command{ginsh} returns @samp{FAIL} if the
3059 match fails, and the list of wildcard replacements otherwise):
3060
3061 @example
3062 > match((x+y)^a,(x+y)^a);
3063 @{@}
3064 > match((x+y)^a,(x+y)^b);
3065 FAIL
3066 > match((x+y)^a,$1^$2);
3067 @{$1==x+y,$2==a@}
3068 > match((x+y)^a,$1^$1);
3069 FAIL
3070 > match((x+y)^(x+y),$1^$1);
3071 @{$1==x+y@}
3072 > match((x+y)^(x+y),$1^$2);
3073 @{$1==x+y,$2==x+y@}
3074 > match((a+b)*(a+c),($1+b)*($1+c));
3075 @{$1==a@}
3076 > match((a+b)*(a+c),(a+$1)*(a+$2));
3077 @{$1==c,$2==b@}
3078   (Unpredictable. The result might also be [$1==c,$2==b].)
3079 > match((a+b)*(a+c),($1+$2)*($1+$3));
3080   (The result is undefined. Due to the sequential nature of the algorithm
3081    and the re-ordering of terms in GiNaC, the match for the first factor
3082    may be @{$1==a,$2==b@} in which case the match for the second factor
3083    succeeds, or it may be @{$1==b,$2==a@} which causes the second match to
3084    fail.)
3085 > match(a*(x+y)+a*z+b,a*$1+$2);
3086   (This is also ambiguous and may return either @{$1==z,$2==a*(x+y)+b@} or
3087    @{$1=x+y,$2=a*z+b@}.)
3088 > match(a+b+c+d+e+f,c);
3089 FAIL
3090 > match(a+b+c+d+e+f,c+$0);
3091 @{$0==a+e+b+f+d@}
3092 > match(a+b+c+d+e+f,c+e+$0);
3093 @{$0==a+b+f+d@}
3094 > match(a+b,a+b+$0);
3095 @{$0==0@}
3096 > match(a*b^2,a^$1*b^$2);
3097 FAIL
3098   (The matching is syntactic, not algebraic, and "a" doesn't match "a^$1"
3099    even though a==a^1.)
3100 > match(x*atan2(x,x^2),$0*atan2($0,$0^2));
3101 @{$0==x@}
3102 > match(atan2(y,x^2),atan2(y,$0));
3103 @{$0==x^2@}
3104 @end example
3105
3106 @cindex @code{has()}
3107 A more general way to look for patterns in expressions is provided by the
3108 member function
3109
3110 @example
3111 bool ex::has(const ex & pattern);
3112 @end example
3113
3114 This function checks whether a pattern is matched by an expression itself or
3115 by any of its subexpressions.
3116
3117 Again some examples in @command{ginsh} for illustration (in @command{ginsh},
3118 @code{has()} returns @samp{1} for @code{true} and @samp{0} for @code{false}):
3119
3120 @example
3121 > has(x*sin(x+y+2*a),y);
3122 1
3123 > has(x*sin(x+y+2*a),x+y);
3124 0
3125   (This is because in GiNaC, "x+y" is not a subexpression of "x+y+2*a" (which
3126    has the subexpressions "x", "y" and "2*a".)
3127 > has(x*sin(x+y+2*a),x+y+$1);
3128 1
3129   (But this is possible.)
3130 > has(x*sin(2*(x+y)+2*a),x+y);
3131 0
3132   (This fails because "2*(x+y)" automatically gets converted to "2*x+2*y" of
3133    which "x+y" is not a subexpression.)
3134 > has(x+1,x^$1);
3135 0
3136   (Although x^1==x and x^0==1, neither "x" nor "1" are actually of the form
3137    "x^something".)
3138 > has(4*x^2-x+3,$1*x);
3139 1
3140 > has(4*x^2+x+3,$1*x);
3141 0
3142   (Another possible pitfall. The first expression matches because the term
3143    "-x" has the form "(-1)*x" in GiNaC. To check whether a polynomial
3144    contains a linear term you should use the coeff() function instead.)
3145 @end example
3146
3147 @cindex @code{find()}
3148 The method
3149
3150 @example
3151 bool ex::find(const ex & pattern, lst & found);
3152 @end example
3153
3154 works a bit like @code{has()} but it doesn't stop upon finding the first
3155 match. Instead, it appends all found matches to the specified list. If there
3156 are multiple occurrences of the same expression, it is entered only once to
3157 the list. @code{find()} returns false if no matches were found (in
3158 @command{ginsh}, it returns an empty list):
3159
3160 @example
3161 > find(1+x+x^2+x^3,x);
3162 @{x@}
3163 > find(1+x+x^2+x^3,y);
3164 @{@}
3165 > find(1+x+x^2+x^3,x^$1);
3166 @{x^3,x^2@}
3167   (Note the absence of "x".)
3168 > expand((sin(x)+sin(y))*(a+b));
3169 sin(y)*a+sin(x)*b+sin(x)*a+sin(y)*b
3170 > find(%,sin($1));
3171 @{sin(y),sin(x)@}
3172 @end example
3173
3174 @cindex @code{subs()}
3175 Probably the most useful application of patterns is to use them for
3176 substituting expressions with the @code{subs()} method. Wildcards can be
3177 used in the search patterns as well as in the replacement expressions, where
3178 they get replaced by the expressions matched by them. @code{subs()} doesn't
3179 know anything about algebra; it performs purely syntactic substitutions.
3180
3181 Some examples:
3182
3183 @example
3184 > subs(a^2+b^2+(x+y)^2,$1^2==$1^3);
3185 b^3+a^3+(x+y)^3
3186 > subs(a^4+b^4+(x+y)^4,$1^2==$1^3);
3187 b^4+a^4+(x+y)^4
3188 > subs((a+b+c)^2,a+b=x);
3189 (a+b+c)^2
3190 > subs((a+b+c)^2,a+b+$1==x+$1);
3191 (x+c)^2
3192 > subs(a+2*b,a+b=x);
3193 a+2*b
3194 > subs(4*x^3-2*x^2+5*x-1,x==a);
3195 -1+5*a-2*a^2+4*a^3
3196 > subs(4*x^3-2*x^2+5*x-1,x^$0==a^$0);
3197 -1+5*x-2*a^2+4*a^3
3198 > subs(sin(1+sin(x)),sin($1)==cos($1));
3199 cos(1+cos(x))
3200 > expand(subs(a*sin(x+y)^2+a*cos(x+y)^2+b,cos($1)^2==1-sin($1)^2));
3201 a+b
3202 @end example
3203
3204 The last example would be written in C++ in this way:
3205
3206 @example
3207 @{
3208     symbol a("a"), b("b"), x("x"), y("y");
3209     e = a*pow(sin(x+y), 2) + a*pow(cos(x+y), 2) + b;
3210     e = e.subs(pow(cos(wild()), 2) == 1-pow(sin(wild()), 2));
3211     cout << e.expand() << endl;
3212      // -> a+b
3213 @}
3214 @end example
3215
3216
3217 @node Applying a Function on Subexpressions, Polynomial Arithmetic, Pattern Matching and Advanced Substitutions, Methods and Functions
3218 @c    node-name, next, previous, up
3219 @section Applying a Function on Subexpressions
3220 @cindex Tree traversal
3221 @cindex @code{map()}
3222
3223 Sometimes you may want to perform an operation on specific parts of an
3224 expression while leaving the general structure of it intact. An example
3225 of this would be a matrix trace operation: the trace of a sum is the sum
3226 of the traces of the individual terms. That is, the trace should @dfn{map}
3227 on the sum, by applying itself to each of the sum's operands. It is possible
3228 to do this manually which usually results in code like this:
3229
3230 @example
3231 ex calc_trace(ex e)
3232 @{
3233     if (is_a<matrix>(e))
3234         return ex_to<matrix>(e).trace();
3235     else if (is_a<add>(e)) @{
3236         ex sum = 0;
3237         for (unsigned i=0; i<e.nops(); i++)
3238             sum += calc_trace(e.op(i));
3239         return sum;
3240     @} else if (is_a<mul>)(e)) @{
3241         ...
3242     @} else @{
3243         ...
3244     @}
3245 @}
3246 @end example
3247
3248 This is, however, slightly inefficient (if the sum is very large it can take
3249 a long time to add the terms one-by-one), and its applicability is limited to
3250 a rather small class of expressions. If @code{calc_trace()} is called with
3251 a relation or a list as its argument, you will probably want the trace to
3252 be taken on both sides of the relation or of all elements of the list.
3253
3254 GiNaC offers the @code{map()} method to aid in the implementation of such
3255 operations:
3256
3257 @example
3258 ex ex::map(map_function & f) const;
3259 ex ex::map(ex (*f)(const ex & e)) const;
3260 @end example
3261
3262 In the first (preferred) form, @code{map()} takes a function object that
3263 is subclassed from the @code{map_function} class. In the second form, it
3264 takes a pointer to a function that accepts and returns an expression.
3265 @code{map()} constructs a new expression of the same type, applying the
3266 specified function on all subexpressions (in the sense of @code{op()}),
3267 non-recursively.
3268
3269 The use of a function object makes it possible to supply more arguments to
3270 the function that is being mapped, or to keep local state information.
3271 The @code{map_function} class declares a virtual function call operator
3272 that you can overload. Here is a sample implementation of @code{calc_trace()}
3273 that uses @code{map()} in a recursive fashion:
3274
3275 @example
3276 struct calc_trace : public map_function @{
3277     ex operator()(const ex &e)
3278     @{
3279         if (is_a<matrix>(e))
3280             return ex_to<matrix>(e).trace();
3281         else if (is_a<mul>(e)) @{
3282             ...
3283         @} else
3284             return e.map(*this);
3285     @}
3286 @};
3287 @end example
3288
3289 This function object could then be used like this:
3290
3291 @example
3292 @{
3293     ex M = ... // expression with matrices
3294     calc_trace do_trace;
3295     ex tr = do_trace(M);
3296 @}
3297 @end example
3298
3299 Here is another example for you to meditate over.  It removes quadratic
3300 terms in a variable from an expanded polynomial:
3301
3302 @example
3303 struct map_rem_quad : public map_function @{
3304     ex var;
3305     map_rem_quad(const ex & var_) : var(var_) @{@}
3306
3307     ex operator()(const ex & e)
3308     @{
3309         if (is_a<add>(e) || is_a<mul>(e))
3310             return e.map(*this);
3311         else if (is_a<power>(e) && 
3312                  e.op(0).is_equal(var) && e.op(1).info(info_flags::even))
3313             return 0;
3314         else
3315             return e;
3316     @}
3317 @};
3318
3319 ...
3320
3321 @{
3322     symbol x("x"), y("y");
3323
3324     ex e;
3325     for (int i=0; i<8; i++)
3326         e += pow(x, i) * pow(y, 8-i) * (i+1);
3327     cout << e << endl;
3328      // -> 4*y^5*x^3+5*y^4*x^4+8*y*x^7+7*y^2*x^6+2*y^7*x+6*y^3*x^5+3*y^6*x^2+y^8
3329
3330     map_rem_quad rem_quad(x);
3331     cout << rem_quad(e) << endl;
3332      // -> 4*y^5*x^3+8*y*x^7+2*y^7*x+6*y^3*x^5+y^8
3333 @}
3334 @end example
3335
3336 @command{ginsh} offers a slightly different implementation of @code{map()}
3337 that allows applying algebraic functions to operands. The second argument
3338 to @code{map()} is an expression containing the wildcard @samp{$0} which
3339 acts as the placeholder for the operands:
3340
3341 @example
3342 > map(a*b,sin($0));
3343 sin(a)*sin(b)
3344 > map(a+2*b,sin($0));
3345 sin(a)+sin(2*b)
3346 > map(@{a,b,c@},$0^2+$0);
3347 @{a^2+a,b^2+b,c^2+c@}
3348 @end example
3349
3350 Note that it is only possible to use algebraic functions in the second
3351 argument. You can not use functions like @samp{diff()}, @samp{op()},
3352 @samp{subs()} etc. because these are evaluated immediately:
3353
3354 @example
3355 > map(@{a,b,c@},diff($0,a));
3356 @{0,0,0@}
3357   This is because "diff($0,a)" evaluates to "0", so the command is equivalent
3358   to "map(@{a,b,c@},0)".
3359 @end example
3360
3361
3362 @node Polynomial Arithmetic, Rational Expressions, Applying a Function on Subexpressions, Methods and Functions
3363 @c    node-name, next, previous, up
3364 @section Polynomial arithmetic
3365
3366 @subsection Expanding and collecting
3367 @cindex @code{expand()}
3368 @cindex @code{collect()}
3369
3370 A polynomial in one or more variables has many equivalent
3371 representations.  Some useful ones serve a specific purpose.  Consider
3372 for example the trivariate polynomial @math{4*x*y + x*z + 20*y^2 +
3373 21*y*z + 4*z^2} (written down here in output-style).  It is equivalent
3374 to the factorized polynomial @math{(x + 5*y + 4*z)*(4*y + z)}.  Other
3375 representations are the recursive ones where one collects for exponents
3376 in one of the three variable.  Since the factors are themselves
3377 polynomials in the remaining two variables the procedure can be
3378 repeated.  In our example, two possibilities would be @math{(4*y + z)*x
3379 + 20*y^2 + 21*y*z + 4*z^2} and @math{20*y^2 + (21*z + 4*x)*y + 4*z^2 +
3380 x*z}.
3381
3382 To bring an expression into expanded form, its method
3383
3384 @example
3385 ex ex::expand();
3386 @end example
3387
3388 may be called.  In our example above, this corresponds to @math{4*x*y +
3389 x*z + 20*y^2 + 21*y*z + 4*z^2}.  Again, since the canonical form in
3390 GiNaC is not easily guessable you should be prepared to see different
3391 orderings of terms in such sums!
3392
3393 Another useful representation of multivariate polynomials is as a
3394 univariate polynomial in one of the variables with the coefficients
3395 being polynomials in the remaining variables.  The method
3396 @code{collect()} accomplishes this task:
3397
3398 @example
3399 ex ex::collect(const ex & s, bool distributed = false);
3400 @end example
3401
3402 The first argument to @code{collect()} can also be a list of objects in which
3403 case the result is either a recursively collected polynomial, or a polynomial
3404 in a distributed form with terms like @math{c*x1^e1*...*xn^en}, as specified
3405 by the @code{distributed} flag.
3406
3407 Note that the original polynomial needs to be in expanded form (for the
3408 variables concerned) in order for @code{collect()} to be able to find the
3409 coefficients properly.
3410
3411 The following @command{ginsh} transcript shows an application of @code{collect()}
3412 together with @code{find()}:
3413
3414 @example
3415 > a=expand((sin(x)+sin(y))*(1+p+q)*(1+d));
3416 d*p*sin(x)+p*sin(x)+q*d*sin(x)+q*sin(y)+d*sin(x)+q*d*sin(y)+sin(y)+d*sin(y)+q*sin(x)+d*sin(y)*p+sin(x)+sin(y)*p
3417 > collect(a,@{p,q@});
3418 d*sin(x)+(d*sin(x)+sin(y)+d*sin(y)+sin(x))*p+(d*sin(x)+sin(y)+d*sin(y)+sin(x))*q+sin(y)+d*sin(y)+sin(x)
3419 > collect(a,find(a,sin($1)));
3420 (1+q+d+q*d+d*p+p)*sin(y)+(1+q+d+q*d+d*p+p)*sin(x)
3421 > collect(a,@{find(a,sin($1)),p,q@});
3422 (1+(1+d)*p+d+q*(1+d))*sin(x)+(1+(1+d)*p+d+q*(1+d))*sin(y)
3423 > collect(a,@{find(a,sin($1)),d@});
3424 (1+q+d*(1+q+p)+p)*sin(y)+(1+q+d*(1+q+p)+p)*sin(x)
3425 @end example
3426
3427 @subsection Degree and coefficients
3428 @cindex @code{degree()}
3429 @cindex @code{ldegree()}
3430 @cindex @code{coeff()}
3431
3432 The degree and low degree of a polynomial can be obtained using the two
3433 methods
3434
3435 @example
3436 int ex::degree(const ex & s);
3437 int ex::ldegree(const ex & s);
3438 @end example
3439
3440 which also work reliably on non-expanded input polynomials (they even work
3441 on rational functions, returning the asymptotic degree). To extract
3442 a coefficient with a certain power from an expanded polynomial you use
3443
3444 @example
3445 ex ex::coeff(const ex & s, int n);
3446 @end example
3447
3448 You can also obtain the leading and trailing coefficients with the methods
3449
3450 @example
3451 ex ex::lcoeff(const ex & s);
3452 ex ex::tcoeff(const ex & s);
3453 @end example
3454
3455 which are equivalent to @code{coeff(s, degree(s))} and @code{coeff(s, ldegree(s))},
3456 respectively.
3457
3458 An application is illustrated in the next example, where a multivariate
3459 polynomial is analyzed:
3460
3461 @example
3462 @{
3463     symbol x("x"), y("y");
3464     ex PolyInp = 4*pow(x,3)*y + 5*x*pow(y,2) + 3*y
3465                  - pow(x+y,2) + 2*pow(y+2,2) - 8;
3466     ex Poly = PolyInp.expand();
3467     
3468     for (int i=Poly.ldegree(x); i<=Poly.degree(x); ++i) @{
3469         cout << "The x^" << i << "-coefficient is "
3470              << Poly.coeff(x,i) << endl;
3471     @}
3472     cout << "As polynomial in y: " 
3473          << Poly.collect(y) << endl;
3474 @}
3475 @end example
3476
3477 When run, it returns an output in the following fashion:
3478
3479 @example
3480 The x^0-coefficient is y^2+11*y
3481 The x^1-coefficient is 5*y^2-2*y
3482 The x^2-coefficient is -1
3483 The x^3-coefficient is 4*y
3484 As polynomial in y: -x^2+(5*x+1)*y^2+(-2*x+4*x^3+11)*y
3485 @end example
3486
3487 As always, the exact output may vary between different versions of GiNaC
3488 or even from run to run since the internal canonical ordering is not
3489 within the user's sphere of influence.
3490
3491 @code{degree()}, @code{ldegree()}, @code{coeff()}, @code{lcoeff()},
3492 @code{tcoeff()} and @code{collect()} can also be used to a certain degree
3493 with non-polynomial expressions as they not only work with symbols but with
3494 constants, functions and indexed objects as well:
3495
3496 @example
3497 @{
3498     symbol a("a"), b("b"), c("c");
3499     idx i(symbol("i"), 3);
3500
3501     ex e = pow(sin(x) - cos(x), 4);
3502     cout << e.degree(cos(x)) << endl;
3503      // -> 4
3504     cout << e.expand().coeff(sin(x), 3) << endl;
3505      // -> -4*cos(x)
3506
3507     e = indexed(a+b, i) * indexed(b+c, i); 
3508     e = e.expand(expand_options::expand_indexed);
3509     cout << e.collect(indexed(b, i)) << endl;
3510      // -> a.i*c.i+(a.i+c.i)*b.i+b.i^2
3511 @}
3512 @end example
3513
3514
3515 @subsection Polynomial division
3516 @cindex polynomial division
3517 @cindex quotient
3518 @cindex remainder
3519 @cindex pseudo-remainder
3520 @cindex @code{quo()}
3521 @cindex @code{rem()}
3522 @cindex @code{prem()}
3523 @cindex @code{divide()}
3524
3525 The two functions
3526
3527 @example
3528 ex quo(const ex & a, const ex & b, const symbol & x);
3529 ex rem(const ex & a, const ex & b, const symbol & x);
3530 @end example
3531
3532 compute the quotient and remainder of univariate polynomials in the variable
3533 @samp{x}. The results satisfy @math{a = b*quo(a, b, x) + rem(a, b, x)}.
3534
3535 The additional function
3536
3537 @example
3538 ex prem(const ex & a, const ex & b, const symbol & x);
3539 @end example
3540
3541 computes the pseudo-remainder of @samp{a} and @samp{b} which satisfies
3542 @math{c*a = b*q + prem(a, b, x)}, where @math{c = b.lcoeff(x) ^ (a.degree(x) - b.degree(x) + 1)}.
3543
3544 Exact division of multivariate polynomials is performed by the function
3545
3546 @example
3547 bool divide(const ex & a, const ex & b, ex & q);
3548 @end example
3549
3550 If @samp{b} divides @samp{a} over the rationals, this function returns @code{true}
3551 and returns the quotient in the variable @code{q}. Otherwise it returns @code{false}
3552 in which case the value of @code{q} is undefined.
3553
3554
3555 @subsection Unit, content and primitive part
3556 @cindex @code{unit()}
3557 @cindex @code{content()}
3558 @cindex @code{primpart()}
3559
3560 The methods
3561
3562 @example
3563 ex ex::unit(const symbol & x);
3564 ex ex::content(const symbol & x);
3565 ex ex::primpart(const symbol & x);
3566 @end example
3567
3568 return the unit part, content part, and primitive polynomial of a multivariate
3569 polynomial with respect to the variable @samp{x} (the unit part being the sign
3570 of the leading coefficient, the content part being the GCD of the coefficients,
3571 and the primitive polynomial being the input polynomial divided by the unit and
3572 content parts). The product of unit, content, and primitive part is the
3573 original polynomial.
3574
3575
3576 @subsection GCD and LCM
3577 @cindex GCD
3578 @cindex LCM
3579 @cindex @code{gcd()}
3580 @cindex @code{lcm()}
3581
3582 The functions for polynomial greatest common divisor and least common
3583 multiple have the synopsis
3584
3585 @example
3586 ex gcd(const ex & a, const ex & b);
3587 ex lcm(const ex & a, const ex & b);
3588 @end example
3589
3590 The functions @code{gcd()} and @code{lcm()} accept two expressions
3591 @code{a} and @code{b} as arguments and return a new expression, their
3592 greatest common divisor or least common multiple, respectively.  If the
3593 polynomials @code{a} and @code{b} are coprime @code{gcd(a,b)} returns 1
3594 and @code{lcm(a,b)} returns the product of @code{a} and @code{b}.
3595
3596 @example
3597 #include <ginac/ginac.h>
3598 using namespace GiNaC;
3599
3600 int main()
3601 @{
3602     symbol x("x"), y("y"), z("z");
3603     ex P_a = 4*x*y + x*z + 20*pow(y, 2) + 21*y*z + 4*pow(z, 2);
3604     ex P_b = x*y + 3*x*z + 5*pow(y, 2) + 19*y*z + 12*pow(z, 2);
3605
3606     ex P_gcd = gcd(P_a, P_b);
3607     // x + 5*y + 4*z
3608     ex P_lcm = lcm(P_a, P_b);
3609     // 4*x*y^2 + 13*y*x*z + 20*y^3 + 81*y^2*z + 67*y*z^2 + 3*x*z^2 + 12*z^3
3610 @}
3611 @end example
3612
3613
3614 @subsection Square-free decomposition
3615 @cindex square-free decomposition
3616 @cindex factorization
3617 @cindex @code{sqrfree()}
3618
3619 GiNaC still lacks proper factorization support.  Some form of
3620 factorization is, however, easily implemented by noting that factors
3621 appearing in a polynomial with power two or more also appear in the
3622 derivative and hence can easily be found by computing the GCD of the
3623 original polynomial and its derivatives.  Any system has an interface
3624 for this so called square-free factorization.  So we provide one, too:
3625 @example
3626 ex sqrfree(const ex & a, const lst & l = lst());
3627 @end example
3628 Here is an example that by the way illustrates how the result may depend
3629 on the order of differentiation:
3630 @example
3631     ...
3632     symbol x("x"), y("y");
3633     ex BiVarPol = expand(pow(x-2*y*x,3) * pow(x+y,2) * (x-y));
3634
3635     cout << sqrfree(BiVarPol, lst(x,y)) << endl;
3636      // -> (y+x)^2*(-1+6*y+8*y^3-12*y^2)*(y-x)*x^3
3637
3638     cout << sqrfree(BiVarPol, lst(y,x)) << endl;
3639      // -> (1-2*y)^3*(y+x)^2*(-y+x)*x^3
3640
3641     cout << sqrfree(BiVarPol) << endl;
3642      // -> depending on luck, any of the above
3643     ...
3644 @end example
3645
3646
3647 @node Rational Expressions, Symbolic Differentiation, Polynomial Arithmetic, Methods and Functions
3648 @c    node-name, next, previous, up
3649 @section Rational expressions
3650
3651 @subsection The @code{normal} method
3652 @cindex @code{normal()}
3653 @cindex simplification
3654 @cindex temporary replacement
3655
3656 Some basic form of simplification of expressions is called for frequently.
3657 GiNaC provides the method @code{.normal()}, which converts a rational function
3658 into an equivalent rational function of the form @samp{numerator/denominator}
3659 where numerator and denominator are coprime.  If the input expression is already
3660 a fraction, it just finds the GCD of numerator and denominator and cancels it,
3661 otherwise it performs fraction addition and multiplication.
3662
3663 @code{.normal()} can also be used on expressions which are not rational functions
3664 as it will replace all non-rational objects (like functions or non-integer
3665 powers) by temporary symbols to bring the expression to the domain of rational
3666 functions before performing the normalization, and re-substituting these
3667 symbols afterwards. This algorithm is also available as a separate method
3668 @code{.to_rational()}, described below.
3669
3670 This means that both expressions @code{t1} and @code{t2} are indeed
3671 simplified in this little code snippet:
3672
3673 @example
3674 @{
3675     symbol x("x");
3676     ex t1 = (pow(x,2) + 2*x + 1)/(x + 1);
3677     ex t2 = (pow(sin(x),2) + 2*sin(x) + 1)/(sin(x) + 1);
3678     std::cout << "t1 is " << t1.normal() << std::endl;
3679     std::cout << "t2 is " << t2.normal() << std::endl;
3680 @}
3681 @end example
3682
3683 Of course this works for multivariate polynomials too, so the ratio of
3684 the sample-polynomials from the section about GCD and LCM above would be
3685 normalized to @code{P_a/P_b} = @code{(4*y+z)/(y+3*z)}.
3686
3687
3688 @subsection Numerator and denominator
3689 @cindex numerator
3690 @cindex denominator
3691 @cindex @code{numer()}
3692 @cindex @code{denom()}
3693 @cindex @code{numer_denom()}
3694
3695 The numerator and denominator of an expression can be obtained with
3696
3697 @example
3698 ex ex::numer();
3699 ex ex::denom();
3700 ex ex::numer_denom();
3701 @end example
3702
3703 These functions will first normalize the expression as described above and
3704 then return the numerator, denominator, or both as a list, respectively.
3705 If you need both numerator and denominator, calling @code{numer_denom()} is
3706 faster than using @code{numer()} and @code{denom()} separately.
3707
3708
3709 @subsection Converting to a rational expression
3710 @cindex @code{to_rational()}
3711
3712 Some of the methods described so far only work on polynomials or rational
3713 functions. GiNaC provides a way to extend the domain of these functions to
3714 general expressions by using the temporary replacement algorithm described
3715 above. You do this by calling
3716
3717 @example
3718 ex ex::to_rational(lst &l);
3719 @end example
3720
3721 on the expression to be converted. The supplied @code{lst} will be filled
3722 with the generated temporary symbols and their replacement expressions in
3723 a format that can be used directly for the @code{subs()} method. It can also
3724 already contain a list of replacements from an earlier application of
3725 @code{.to_rational()}, so it's possible to use it on multiple expressions
3726 and get consistent results.
3727
3728 For example,
3729
3730 @example
3731 @{
3732     symbol x("x");
3733     ex a = pow(sin(x), 2) - pow(cos(x), 2);
3734     ex b = sin(x) + cos(x);
3735     ex q;
3736     lst l;
3737     divide(a.to_rational(l), b.to_rational(l), q);
3738     cout << q.subs(l) << endl;
3739 @}
3740 @end example
3741
3742 will print @samp{sin(x)-cos(x)}.
3743
3744
3745 @node Symbolic Differentiation, Series Expansion, Rational Expressions, Methods and Functions
3746 @c    node-name, next, previous, up
3747 @section Symbolic differentiation
3748 @cindex differentiation
3749 @cindex @code{diff()}
3750 @cindex chain rule
3751 @cindex product rule
3752
3753 GiNaC's objects know how to differentiate themselves.  Thus, a
3754 polynomial (class @code{add}) knows that its derivative is the sum of
3755 the derivatives of all the monomials:
3756
3757 @example
3758 @{
3759     symbol x("x"), y("y"), z("z");
3760     ex P = pow(x, 5) + pow(x, 2) + y;
3761
3762     cout << P.diff(x,2) << endl;
3763      // -> 20*x^3 + 2
3764     cout << P.diff(y) << endl;    // 1
3765      // -> 1
3766     cout << P.diff(z) << endl;    // 0
3767      // -> 0
3768 @}
3769 @end example
3770
3771 If a second integer parameter @var{n} is given, the @code{diff} method
3772 returns the @var{n}th derivative.
3773
3774 If @emph{every} object and every function is told what its derivative
3775 is, all derivatives of composed objects can be calculated using the
3776 chain rule and the product rule.  Consider, for instance the expression
3777 @code{1/cosh(x)}.  Since the derivative of @code{cosh(x)} is
3778 @code{sinh(x)} and the derivative of @code{pow(x,-1)} is
3779 @code{-pow(x,-2)}, GiNaC can readily compute the composition.  It turns
3780 out that the composition is the generating function for Euler Numbers,
3781 i.e. the so called @var{n}th Euler number is the coefficient of
3782 @code{x^n/n!} in the expansion of @code{1/cosh(x)}.  We may use this
3783 identity to code a function that generates Euler numbers in just three
3784 lines:
3785
3786 @cindex Euler numbers
3787 @example
3788 #include <ginac/ginac.h>
3789 using namespace GiNaC;
3790
3791 ex EulerNumber(unsigned n)
3792 @{
3793     symbol x;
3794     const ex generator = pow(cosh(x),-1);
3795     return generator.diff(x,n).subs(x==0);
3796 @}
3797
3798 int main()
3799 @{
3800     for (unsigned i=0; i<11; i+=2)
3801         std::cout << EulerNumber(i) << std::endl;
3802     return 0;
3803 @}
3804 @end example
3805
3806 When you run it, it produces the sequence @code{1}, @code{-1}, @code{5},
3807 @code{-61}, @code{1385}, @code{-50521}.  We increment the loop variable
3808 @code{i} by two since all odd Euler numbers vanish anyways.
3809
3810
3811 @node Series Expansion, Symmetrization, Symbolic Differentiation, Methods and Functions
3812 @c    node-name, next, previous, up
3813 @section Series expansion
3814 @cindex @code{series()}
3815 @cindex Taylor expansion
3816 @cindex Laurent expansion
3817 @cindex @code{pseries} (class)
3818 @cindex @code{Order()}
3819
3820 Expressions know how to expand themselves as a Taylor series or (more
3821 generally) a Laurent series.  As in most conventional Computer Algebra
3822 Systems, no distinction is made between those two.  There is a class of
3823 its own for storing such series (@code{class pseries}) and a built-in
3824 function (called @code{Order}) for storing the order term of the series.
3825 As a consequence, if you want to work with series, i.e. multiply two
3826 series, you need to call the method @code{ex::series} again to convert
3827 it to a series object with the usual structure (expansion plus order
3828 term).  A sample application from special relativity could read:
3829
3830 @example
3831 #include <ginac/ginac.h>
3832 using namespace std;
3833 using namespace GiNaC;
3834
3835 int main()
3836 @{
3837     symbol v("v"), c("c");
3838     
3839     ex gamma = 1/sqrt(1 - pow(v/c,2));
3840     ex mass_nonrel = gamma.series(v==0, 10);
3841     
3842     cout << "the relativistic mass increase with v is " << endl
3843          << mass_nonrel << endl;
3844     
3845     cout << "the inverse square of this series is " << endl
3846          << pow(mass_nonrel,-2).series(v==0, 10) << endl;
3847 @}
3848 @end example
3849
3850 Only calling the series method makes the last output simplify to
3851 @math{1-v^2/c^2+O(v^10)}, without that call we would just have a long
3852 series raised to the power @math{-2}.
3853
3854 @cindex M@'echain's formula
3855 As another instructive application, let us calculate the numerical 
3856 value of Archimedes' constant
3857 @tex
3858 $\pi$
3859 @end tex
3860 (for which there already exists the built-in constant @code{Pi}) 
3861 using M@'echain's amazing formula
3862 @tex
3863 $\pi=16$~atan~$\!\left(1 \over 5 \right)-4$~atan~$\!\left(1 \over 239 \right)$.
3864 @end tex
3865 @ifnottex
3866 @math{Pi==16*atan(1/5)-4*atan(1/239)}.
3867 @end ifnottex
3868 We may expand the arcus tangent around @code{0} and insert the fractions
3869 @code{1/5} and @code{1/239}.  But, as we have seen, a series in GiNaC
3870 carries an order term with it and the question arises what the system is
3871 supposed to do when the fractions are plugged into that order term.  The
3872 solution is to use the function @code{series_to_poly()} to simply strip
3873 the order term off:
3874
3875 @example
3876 #include <ginac/ginac.h>
3877 using namespace GiNaC;
3878
3879 ex mechain_pi(int degr)
3880 @{
3881     symbol x;
3882     ex pi_expansion = series_to_poly(atan(x).series(x,degr));
3883     ex pi_approx = 16*pi_expansion.subs(x==numeric(1,5))
3884                    -4*pi_expansion.subs(x==numeric(1,239));
3885     return pi_approx;
3886 @}
3887
3888 int main()
3889 @{
3890     using std::cout;  // just for fun, another way of...
3891     using std::endl;  // ...dealing with this namespace std.
3892     ex pi_frac;
3893     for (int i=2; i<12; i+=2) @{
3894         pi_frac = mechain_pi(i);
3895         cout << i << ":\t" << pi_frac << endl
3896              << "\t" << pi_frac.evalf() << endl;
3897     @}
3898     return 0;
3899 @}
3900 @end example
3901
3902 Note how we just called @code{.series(x,degr)} instead of
3903 @code{.series(x==0,degr)}.  This is a simple shortcut for @code{ex}'s
3904 method @code{series()}: if the first argument is a symbol the expression
3905 is expanded in that symbol around point @code{0}.  When you run this
3906 program, it will type out:
3907
3908 @example
3909 2:      3804/1195
3910         3.1832635983263598326
3911 4:      5359397032/1706489875
3912         3.1405970293260603143
3913 6:      38279241713339684/12184551018734375
3914         3.141621029325034425
3915 8:      76528487109180192540976/24359780855939418203125
3916         3.141591772182177295
3917 10:     327853873402258685803048818236/104359128170408663038552734375
3918         3.1415926824043995174
3919 @end example
3920
3921
3922 @node Symmetrization, Built-in Functions, Series Expansion, Methods and Functions
3923 @c    node-name, next, previous, up
3924 @section Symmetrization
3925 @cindex @code{symmetrize()}
3926 @cindex @code{antisymmetrize()}
3927 @cindex @code{symmetrize_cyclic()}
3928
3929 The three methods
3930
3931 @example
3932 ex ex::symmetrize(const lst & l);
3933 ex ex::antisymmetrize(const lst & l);
3934 ex ex::symmetrize_cyclic(const lst & l);
3935 @end example
3936
3937 symmetrize an expression by returning the sum over all symmetric,
3938 antisymmetric or cyclic permutations of the specified list of objects,
3939 weighted by the number of permutations.
3940
3941 The three additional methods
3942
3943 @example
3944 ex ex::symmetrize();
3945 ex ex::antisymmetrize();
3946 ex ex::symmetrize_cyclic();
3947 @end example
3948
3949 symmetrize or antisymmetrize an expression over its free indices.
3950
3951 Symmetrization is most useful with indexed expressions but can be used with
3952 almost any kind of object (anything that is @code{subs()}able):
3953
3954 @example
3955 @{
3956     idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3);
3957     symbol A("A"), B("B"), a("a"), b("b"), c("c");
3958                                            
3959     cout << indexed(A, i, j).symmetrize() << endl;
3960      // -> 1/2*A.j.i+1/2*A.i.j
3961     cout << indexed(A, i, j, k).antisymmetrize(lst(i, j)) << endl;
3962      // -> -1/2*A.j.i.k+1/2*A.i.j.k
3963     cout << lst(a, b, c).symmetrize_cyclic(lst(a, b, c)) << endl;
3964      // -> 1/3*@{a,b,c@}+1/3*@{b,c,a@}+1/3*@{c,a,b@}
3965 @}
3966 @end example
3967
3968
3969 @node Built-in Functions, Input/Output, Symmetrization, Methods and Functions
3970 @c    node-name, next, previous, up
3971 @section Predefined mathematical functions
3972
3973 GiNaC contains the following predefined mathematical functions:
3974
3975 @cartouche
3976 @multitable @columnfractions .30 .70
3977 @item @strong{Name} @tab @strong{Function}
3978 @item @code{abs(x)}
3979 @tab absolute value
3980 @cindex @code{abs()}
3981 @item @code{csgn(x)}
3982 @tab complex sign
3983 @cindex @code{csgn()}
3984 @item @code{sqrt(x)}
3985 @tab square root (not a GiNaC function, rather an alias for @code{pow(x, numeric(1, 2))})
3986 @cindex @code{sqrt()}
3987 @item @code{sin(x)}
3988 @tab sine
3989 @cindex @code{sin()}
3990 @item @code{cos(x)}
3991 @tab cosine
3992 @cindex @code{cos()}
3993 @item @code{tan(x)}
3994 @tab tangent
3995 @cindex @code{tan()}
3996 @item @code{asin(x)}
3997 @tab inverse sine
3998 @cindex @code{asin()}
3999 @item @code{acos(x)}
4000 @tab inverse cosine
4001 @cindex @code{acos()}
4002 @item @code{atan(x)}
4003 @tab inverse tangent
4004 @cindex @code{atan()}
4005 @item @code{atan2(y, x)}
4006 @tab inverse tangent with two arguments
4007 @item @code{sinh(x)}
4008 @tab hyperbolic sine
4009 @cindex @code{sinh()}
4010 @item @code{cosh(x)}
4011 @tab hyperbolic cosine
4012 @cindex @code{cosh()}
4013 @item @code{tanh(x)}
4014 @tab hyperbolic tangent
4015 @cindex @code{tanh()}
4016 @item @code{asinh(x)}
4017 @tab inverse hyperbolic sine
4018 @cindex @code{asinh()}
4019 @item @code{acosh(x)}
4020 @tab inverse hyperbolic cosine
4021 @cindex @code{acosh()}
4022 @item @code{atanh(x)}
4023 @tab inverse hyperbolic tangent
4024 @cindex @code{atanh()}
4025 @item @code{exp(x)}
4026 @tab exponential function
4027 @cindex @code{exp()}
4028 @item @code{log(x)}
4029 @tab natural logarithm
4030 @cindex @code{log()}
4031 @item @code{Li2(x)}
4032 @tab Dilogarithm
4033 @cindex @code{Li2()}
4034 @item @code{zeta(x)}
4035 @tab Riemann's zeta function
4036 @cindex @code{zeta()}
4037 @item @code{zeta(n, x)}
4038 @tab derivatives of Riemann's zeta function
4039 @item @code{tgamma(x)}
4040 @tab Gamma function
4041 @cindex @code{tgamma()}
4042 @cindex Gamma function
4043 @item @code{lgamma(x)}
4044 @tab logarithm of Gamma function
4045 @cindex @code{lgamma()}
4046 @item @code{beta(x, y)}
4047 @tab Beta function (@code{tgamma(x)*tgamma(y)/tgamma(x+y)})
4048 @cindex @code{beta()}
4049 @item @code{psi(x)}
4050 @tab psi (digamma) function
4051 @cindex @code{psi()}
4052 @item @code{psi(n, x)}
4053 @tab derivatives of psi function (polygamma functions)
4054 @item @code{factorial(n)}
4055 @tab factorial function
4056 @cindex @code{factorial()}
4057 @item @code{binomial(n, m)}
4058 @tab binomial coefficients
4059 @cindex @code{binomial()}
4060 @item @code{Order(x)}
4061 @tab order term function in truncated power series
4062 @cindex @code{Order()}
4063 @end multitable
4064 @end cartouche
4065
4066 @cindex branch cut
4067 For functions that have a branch cut in the complex plane GiNaC follows
4068 the conventions for C++ as defined in the ANSI standard as far as
4069 possible.  In particular: the natural logarithm (@code{log}) and the
4070 square root (@code{sqrt}) both have their branch cuts running along the
4071 negative real axis where the points on the axis itself belong to the
4072 upper part (i.e. continuous with quadrant II).  The inverse
4073 trigonometric and hyperbolic functions are not defined for complex
4074 arguments by the C++ standard, however.  In GiNaC we follow the
4075 conventions used by @acronym{CLN}, which in turn follow the carefully
4076 designed definitions in the Common Lisp standard.  It should be noted
4077 that this convention is identical to the one used by the C99 standard
4078 and by most serious CAS.  It is to be expected that future revisions of
4079 the C++ standard incorporate these functions in the complex domain in a
4080 manner compatible with C99.
4081
4082
4083 @node Input/Output, Extending GiNaC, Built-in Functions, Methods and Functions
4084 @c    node-name, next, previous, up
4085 @section Input and output of expressions
4086 @cindex I/O
4087
4088 @subsection Expression output
4089 @cindex printing
4090 @cindex output of expressions
4091
4092 The easiest way to print an expression is to write it to a stream:
4093
4094 @example
4095 @{
4096     symbol x("x");
4097     ex e = 4.5+pow(x,2)*3/2;
4098     cout << e << endl;    // prints '(4.5)+3/2*x^2'
4099     // ...
4100 @end example
4101
4102 The output format is identical to the @command{ginsh} input syntax and
4103 to that used by most computer algebra systems, but not directly pastable
4104 into a GiNaC C++ program (note that in the above example, @code{pow(x,2)}
4105 is printed as @samp{x^2}).
4106
4107 It is possible to print expressions in a number of different formats with
4108 the method
4109
4110 @example
4111 void ex::print(const print_context & c, unsigned level = 0);
4112 @end example
4113
4114 @cindex @code{print_context} (class)
4115 The type of @code{print_context} object passed in determines the format
4116 of the output. The possible types are defined in @file{ginac/print.h}.
4117 All constructors of @code{print_context} and derived classes take an
4118 @code{ostream &} as their first argument.
4119
4120 To print an expression in a way that can be directly used in a C or C++
4121 program, you pass a @code{print_csrc} object like this:
4122
4123 @example
4124     // ...
4125     cout << "float f = ";
4126     e.print(print_csrc_float(cout));
4127     cout << ";\n";
4128
4129     cout << "double d = ";
4130     e.print(print_csrc_double(cout));
4131     cout << ";\n";
4132
4133     cout << "cl_N n = ";
4134     e.print(print_csrc_cl_N(cout));
4135     cout << ";\n";
4136     // ...
4137 @end example
4138
4139 The three possible types mostly affect the way in which floating point
4140 numbers are written.
4141
4142 The above example will produce (note the @code{x^2} being converted to @code{x*x}):
4143
4144 @example
4145 float f = (3.000000e+00/2.000000e+00)*(x*x)+4.500000e+00;
4146 double d = (3.000000e+00/2.000000e+00)*(x*x)+4.500000e+00;
4147 cl_N n = (cln::cl_F("3.0")/cln::cl_F("2.0"))*(x*x)+cln::cl_F("4.5");
4148 @end example
4149
4150 The @code{print_context} type @code{print_tree} provides a dump of the
4151 internal structure of an expression for debugging purposes:
4152
4153 @example
4154     // ...
4155     e.print(print_tree(cout));
4156 @}
4157 @end example
4158
4159 produces
4160
4161 @example
4162 add, hash=0x0, flags=0x3, nops=2
4163     power, hash=0x9, flags=0x3, nops=2
4164         x (symbol), serial=3, hash=0x44a113a6, flags=0xf
4165         2 (numeric), hash=0x80000042, flags=0xf
4166     3/2 (numeric), hash=0x80000061, flags=0xf
4167     -----
4168     overall_coeff
4169     4.5L0 (numeric), hash=0x8000004b, flags=0xf
4170     =====
4171 @end example
4172
4173 This kind of output is also available in @command{ginsh} as the @code{print()}
4174 function.
4175
4176 Another useful output format is for LaTeX parsing in mathematical mode.
4177 It is rather similar to the default @code{print_context} but provides
4178 some braces needed by LaTeX for delimiting boxes and also converts some
4179 common objects to conventional LaTeX names. It is possible to give symbols
4180 a special name for LaTeX output by supplying it as a second argument to
4181 the @code{symbol} constructor.
4182
4183 For example, the code snippet
4184
4185 @example
4186     // ...
4187     symbol x("x");
4188     ex foo = lgamma(x).series(x==0,3);
4189     foo.print(print_latex(std::cout));
4190 @end example
4191
4192 will print out:
4193
4194 @example
4195     @{(-\ln(x))@}+@{(-\gamma_E)@} x+@{(1/12 \pi^2)@} x^@{2@}+\mathcal@{O@}(x^3)
4196 @end example
4197
4198 @cindex Tree traversal
4199 If you need any fancy special output format, e.g. for interfacing GiNaC
4200 with other algebra systems or for producing code for different
4201 programming languages, you can always traverse the expression tree yourself:
4202
4203 @example
4204 static void my_print(const ex & e)
4205 @{
4206     if (is_a<function>(e))
4207         cout << ex_to<function>(e).get_name();
4208     else
4209         cout << e.bp->class_name();
4210     cout << "(";
4211     unsigned n = e.nops();
4212     if (n)
4213         for (unsigned i=0; i<n; i++) @{
4214             my_print(e.op(i));
4215             if (i != n-1)
4216                 cout << ",";
4217         @}
4218     else
4219         cout << e;
4220     cout << ")";
4221 @}
4222
4223 int main(void)
4224 @{
4225     my_print(pow(3, x) - 2 * sin(y / Pi)); cout << endl;
4226     return 0;
4227 @}
4228 @end example
4229
4230 This will produce
4231
4232 @example
4233 add(power(numeric(3),symbol(x)),mul(sin(mul(power(constant(Pi),numeric(-1)),
4234 symbol(y))),numeric(-2)))
4235 @end example
4236
4237 If you need an output format that makes it possible to accurately
4238 reconstruct an expression by feeding the output to a suitable parser or
4239 object factory, you should consider storing the expression in an
4240 @code{archive} object and reading the object properties from there.
4241 See the section on archiving for more information.
4242
4243
4244 @subsection Expression input
4245 @cindex input of expressions
4246
4247 GiNaC provides no way to directly read an expression from a stream because
4248 you will usually want the user to be able to enter something like @samp{2*x+sin(y)}
4249 and have the @samp{x} and @samp{y} correspond to the symbols @code{x} and
4250 @code{y} you defined in your program and there is no way to specify the
4251 desired symbols to the @code{>>} stream input operator.
4252
4253 Instead, GiNaC lets you construct an expression from a string, specifying the
4254 list of symbols to be used:
4255
4256 @example
4257 @{
4258     symbol x("x"), y("y");
4259     ex e("2*x+sin(y)", lst(x, y));
4260 @}
4261 @end example
4262
4263 The input syntax is the same as that used by @command{ginsh} and the stream
4264 output operator @code{<<}. The symbols in the string are matched by name to
4265 the symbols in the list and if GiNaC encounters a symbol not specified in
4266 the list it will throw an exception.
4267
4268 With this constructor, it's also easy to implement interactive GiNaC programs:
4269
4270 @example
4271 #include <iostream>
4272 #include <string>
4273 #include <stdexcept>
4274 #include <ginac/ginac.h>
4275 using namespace std;
4276 using namespace GiNaC;
4277
4278 int main()
4279 @{
4280     symbol x("x");
4281     string s;
4282
4283     cout << "Enter an expression containing 'x': ";
4284     getline(cin, s);
4285
4286     try @{
4287         ex e(s, lst(x));
4288         cout << "The derivative of " << e << " with respect to x is ";
4289         cout << e.diff(x) << ".\n";
4290     @} catch (exception &p) @{
4291         cerr << p.what() << endl;
4292     @}
4293 @}
4294 @end example
4295
4296
4297 @subsection Archiving
4298 @cindex @code{archive} (class)
4299 @cindex archiving
4300
4301 GiNaC allows creating @dfn{archives} of expressions which can be stored
4302 to or retrieved from files. To create an archive, you declare an object
4303 of class @code{archive} and archive expressions in it, giving each
4304 expression a unique name:
4305
4306 @example
4307 #include <fstream>
4308 using namespace std;
4309 #include <ginac/ginac.h>
4310 using namespace GiNaC;
4311
4312 int main()
4313 @{
4314     symbol x("x"), y("y"), z("z");
4315
4316     ex foo = sin(x + 2*y) + 3*z + 41;
4317     ex bar = foo + 1;
4318
4319     archive a;
4320     a.archive_ex(foo, "foo");
4321     a.archive_ex(bar, "the second one");
4322     // ...
4323 @end example
4324
4325 The archive can then be written to a file:
4326
4327 @example
4328     // ...
4329     ofstream out("foobar.gar");
4330     out << a;
4331     out.close();
4332     // ...
4333 @end example
4334
4335 The file @file{foobar.gar} contains all information that is needed to
4336 reconstruct the expressions @code{foo} and @code{bar}.
4337
4338 @cindex @command{viewgar}
4339 The tool @command{viewgar} that comes with GiNaC can be used to view
4340 the contents of GiNaC archive files:
4341
4342 @example
4343 $ viewgar foobar.gar
4344 foo = 41+sin(x+2*y)+3*z
4345 the second one = 42+sin(x+2*y)+3*z
4346 @end example
4347
4348 The point of writing archive files is of course that they can later be
4349 read in again:
4350
4351 @example
4352     // ...
4353     archive a2;
4354     ifstream in("foobar.gar");
4355     in >> a2;
4356     // ...
4357 @end example
4358
4359 And the stored expressions can be retrieved by their name:
4360
4361 @example
4362     // ...
4363     lst syms(x, y);
4364
4365     ex ex1 = a2.unarchive_ex(syms, "foo");
4366     ex ex2 = a2.unarchive_ex(syms, "the second one");
4367
4368     cout << ex1 << endl;              // prints "41+sin(x+2*y)+3*z"
4369     cout << ex2 << endl;              // prints "42+sin(x+2*y)+3*z"
4370     cout << ex1.subs(x == 2) << endl; // prints "41+sin(2+2*y)+3*z"
4371 @}
4372 @end example
4373
4374 Note that you have to supply a list of the symbols which are to be inserted
4375 in the expressions. Symbols in archives are stored by their name only and
4376 if you don't specify which symbols you have, unarchiving the expression will
4377 create new symbols with that name. E.g. if you hadn't included @code{x} in
4378 the @code{syms} list above, the @code{ex1.subs(x == 2)} statement would
4379 have had no effect because the @code{x} in @code{ex1} would have been a
4380 different symbol than the @code{x} which was defined at the beginning of
4381 the program, although both would appear as @samp{x} when printed.
4382
4383 You can also use the information stored in an @code{archive} object to
4384 output expressions in a format suitable for exact reconstruction. The
4385 @code{archive} and @code{archive_node} classes have a couple of member
4386 functions that let you access the stored properties:
4387
4388 @example
4389 static void my_print2(const archive_node & n)
4390 @{
4391     string class_name;
4392     n.find_string("class", class_name);
4393     cout << class_name << "(";
4394
4395     archive_node::propinfovector p;
4396     n.get_properties(p);
4397
4398     unsigned num = p.size();
4399     for (unsigned i=0; i<num; i++) @{
4400         const string &name = p[i].name;
4401         if (name == "class")
4402             continue;
4403         cout << name << "=";
4404
4405         unsigned count = p[i].count;
4406         if (count > 1)
4407             cout << "@{";
4408
4409         for (unsigned j=0; j<count; j++) @{
4410             switch (p[i].type) @{
4411                 case archive_node::PTYPE_BOOL: @{
4412                     bool x;
4413                     n.find_bool(name, x, j);
4414                     cout << (x ? "true" : "false");
4415                     break;
4416                 @}
4417                 case archive_node::PTYPE_UNSIGNED: @{
4418                     unsigned x;
4419                     n.find_unsigned(name, x, j);
4420                     cout << x;
4421                     break;
4422                 @}
4423                 case archive_node::PTYPE_STRING: @{