exam_inifcns_nstdsums.cpp: prec set to 10*pow(10,-Digits) in inifcns_test_HLi to...
[ginac.git] / doc / tutorial / ginac.texi
1 \input texinfo  @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename ginac.info
4 @settitle GiNaC, an open framework for symbolic computation within the C++ programming language
5 @setchapternewpage on
6 @afourpaper
7 @c For `info' only.
8 @paragraphindent 0
9 @c For TeX only.
10 @iftex
11 @c I hate putting "@noindent" in front of every paragraph.
12 @parindent=0pt
13 @end iftex
14 @c %**end of header
15
16 @include version.texi
17
18 @dircategory Mathematics
19 @direntry
20 * ginac: (ginac).                   C++ library for symbolic computation.
21 @end direntry
22
23 @ifinfo
24 This is a tutorial that documents GiNaC @value{VERSION}, an open
25 framework for symbolic computation within the C++ programming language.
26
27 Copyright (C) 1999-2021 Johannes Gutenberg University Mainz, Germany
28
29 Permission is granted to make and distribute verbatim copies of
30 this manual provided the copyright notice and this permission notice
31 are preserved on all copies.
32
33 @ignore
34 Permission is granted to process this file through TeX and print the
35 results, provided the printed document carries copying permission
36 notice identical to this one except for the removal of this paragraph
37
38 @end ignore
39 Permission is granted to copy and distribute modified versions of this
40 manual under the conditions for verbatim copying, provided that the entire
41 resulting derived work is distributed under the terms of a permission
42 notice identical to this one.
43 @end ifinfo
44
45 @finalout
46 @c finalout prevents ugly black rectangles on overfull hbox lines
47 @titlepage
48 @title GiNaC @value{VERSION}
49 @subtitle An open framework for symbolic computation within the C++ programming language
50 @subtitle @value{UPDATED}
51 @author @uref{https://www.ginac.de}
52
53 @page
54 @vskip 0pt plus 1filll
55 Copyright @copyright{} 1999-2021 Johannes Gutenberg University Mainz, Germany
56 @sp 2
57 Permission is granted to make and distribute verbatim copies of
58 this manual provided the copyright notice and this permission notice
59 are preserved on all copies.
60
61 Permission is granted to copy and distribute modified versions of this
62 manual under the conditions for verbatim copying, provided that the entire
63 resulting derived work is distributed under the terms of a permission
64 notice identical to this one.
65 @end titlepage
66
67 @page
68 @contents
69
70 @page
71
72
73 @node Top, Introduction, (dir), (dir)
74 @c    node-name, next, previous, up
75 @top GiNaC
76
77 This is a tutorial that documents GiNaC @value{VERSION}, an open
78 framework for symbolic computation within the C++ programming language.
79
80 @menu
81 * Introduction::                 GiNaC's purpose.
82 * A tour of GiNaC::              A quick tour of the library.
83 * Installation::                 How to install the package.
84 * Basic concepts::               Description of fundamental classes.
85 * Methods and functions::        Algorithms for symbolic manipulations.
86 * Extending GiNaC::              How to extend the library.
87 * A comparison with other CAS::  Compares GiNaC to traditional CAS.
88 * Internal structures::          Description of some internal structures.
89 * Package tools::                Configuring packages to work with GiNaC.
90 * Bibliography::
91 * Concept index::
92 @end menu
93
94
95 @node Introduction, A tour of GiNaC, Top, Top
96 @c    node-name, next, previous, up
97 @chapter Introduction
98 @cindex history of GiNaC
99
100 The motivation behind GiNaC derives from the observation that most
101 present day computer algebra systems (CAS) are linguistically and
102 semantically impoverished.  Although they are quite powerful tools for
103 learning math and solving particular problems they lack modern
104 linguistic structures that allow for the creation of large-scale
105 projects.  GiNaC is an attempt to overcome this situation by extending a
106 well established and standardized computer language (C++) by some
107 fundamental symbolic capabilities, thus allowing for integrated systems
108 that embed symbolic manipulations together with more established areas
109 of computer science (like computation-intense numeric applications,
110 graphical interfaces, etc.) under one roof.
111
112 The particular problem that led to the writing of the GiNaC framework is
113 still a very active field of research, namely the calculation of higher
114 order corrections to elementary particle interactions.  There,
115 theoretical physicists are interested in matching present day theories
116 against experiments taking place at particle accelerators.  The
117 computations involved are so complex they call for a combined symbolical
118 and numerical approach.  This turned out to be quite difficult to
119 accomplish with the present day CAS we have worked with so far and so we
120 tried to fill the gap by writing GiNaC.  But of course its applications
121 are in no way restricted to theoretical physics.
122
123 This tutorial is intended for the novice user who is new to GiNaC but
124 already has some background in C++ programming.  However, since a
125 hand-made documentation like this one is difficult to keep in sync with
126 the development, the actual documentation is inside the sources in the
127 form of comments.  That documentation may be parsed by one of the many
128 Javadoc-like documentation systems.  If you fail at generating it you
129 may access it from @uref{https://www.ginac.de/reference/, the GiNaC home
130 page}.  It is an invaluable resource not only for the advanced user who
131 wishes to extend the system (or chase bugs) but for everybody who wants
132 to comprehend the inner workings of GiNaC.  This little tutorial on the
133 other hand only covers the basic things that are unlikely to change in
134 the near future.
135
136 @section License
137 The GiNaC framework for symbolic computation within the C++ programming
138 language is Copyright @copyright{} 1999-2021 Johannes Gutenberg
139 University Mainz, Germany.
140
141 This program is free software; you can redistribute it and/or
142 modify it under the terms of the GNU General Public License as
143 published by the Free Software Foundation; either version 2 of the
144 License, or (at your option) any later version.
145
146 This program is distributed in the hope that it will be useful, but
147 WITHOUT ANY WARRANTY; without even the implied warranty of
148 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
149 General Public License for more details.
150
151 You should have received a copy of the GNU General Public License
152 along with this program; see the file COPYING.  If not, write to the
153 Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
154 MA 02110-1301, USA.
155
156
157 @node A tour of GiNaC, How to use it from within C++, Introduction, Top
158 @c    node-name, next, previous, up
159 @chapter A Tour of GiNaC
160
161 This quick tour of GiNaC wants to arise your interest in the
162 subsequent chapters by showing off a bit.  Please excuse us if it
163 leaves many open questions.
164
165 @menu
166 * How to use it from within C++::  Two simple examples.
167 * What it can do for you::         A Tour of GiNaC's features.
168 @end menu
169
170
171 @node How to use it from within C++, What it can do for you, A tour of GiNaC, A tour of GiNaC
172 @c    node-name, next, previous, up
173 @section How to use it from within C++
174
175 The GiNaC open framework for symbolic computation within the C++ programming
176 language does not try to define a language of its own as conventional
177 CAS do.  Instead, it extends the capabilities of C++ by symbolic
178 manipulations.  Here is how to generate and print a simple (and rather
179 pointless) bivariate polynomial with some large coefficients:
180
181 @example
182 #include <iostream>
183 #include <ginac/ginac.h>
184 using namespace std;
185 using namespace GiNaC;
186
187 int main()
188 @{
189     symbol x("x"), y("y");
190     ex poly;
191
192     for (int i=0; i<3; ++i)
193         poly += factorial(i+16)*pow(x,i)*pow(y,2-i);
194
195     cout << poly << endl;
196     return 0;
197 @}
198 @end example
199
200 Assuming the file is called @file{hello.cc}, on our system we can compile
201 and run it like this:
202
203 @example
204 $ c++ hello.cc -o hello -lginac -lcln
205 $ ./hello
206 355687428096000*x*y+20922789888000*y^2+6402373705728000*x^2
207 @end example
208
209 (@xref{Package tools}, for tools that help you when creating a software
210 package that uses GiNaC.)
211
212 @cindex Hermite polynomial
213 Next, there is a more meaningful C++ program that calls a function which
214 generates Hermite polynomials in a specified free variable.
215
216 @example
217 #include <iostream>
218 #include <ginac/ginac.h>
219 using namespace std;
220 using namespace GiNaC;
221
222 ex HermitePoly(const symbol & x, int n)
223 @{
224     ex HKer=exp(-pow(x, 2));
225     // uses the identity H_n(x) == (-1)^n exp(x^2) (d/dx)^n exp(-x^2)
226     return normal(pow(-1, n) * diff(HKer, x, n) / HKer);
227 @}
228
229 int main()
230 @{
231     symbol z("z");
232
233     for (int i=0; i<6; ++i)
234         cout << "H_" << i << "(z) == " << HermitePoly(z,i) << endl;
235
236     return 0;
237 @}
238 @end example
239
240 When run, this will type out
241
242 @example
243 H_0(z) == 1
244 H_1(z) == 2*z
245 H_2(z) == 4*z^2-2
246 H_3(z) == -12*z+8*z^3
247 H_4(z) == -48*z^2+16*z^4+12
248 H_5(z) == 120*z-160*z^3+32*z^5
249 @end example
250
251 This method of generating the coefficients is of course far from optimal
252 for production purposes.
253
254 In order to show some more examples of what GiNaC can do we will now use
255 the @command{ginsh}, a simple GiNaC interactive shell that provides a
256 convenient window into GiNaC's capabilities.
257
258
259 @node What it can do for you, Installation, How to use it from within C++, A tour of GiNaC
260 @c    node-name, next, previous, up
261 @section What it can do for you
262
263 @cindex @command{ginsh}
264 After invoking @command{ginsh} one can test and experiment with GiNaC's
265 features much like in other Computer Algebra Systems except that it does
266 not provide programming constructs like loops or conditionals.  For a
267 concise description of the @command{ginsh} syntax we refer to its
268 accompanied man page. Suffice to say that assignments and comparisons in
269 @command{ginsh} are written as they are in C, i.e. @code{=} assigns and
270 @code{==} compares.
271
272 It can manipulate arbitrary precision integers in a very fast way.
273 Rational numbers are automatically converted to fractions of coprime
274 integers:
275
276 @example
277 > x=3^150;
278 369988485035126972924700782451696644186473100389722973815184405301748249
279 > y=3^149;
280 123329495011708990974900260817232214728824366796574324605061468433916083
281 > x/y;
282 3
283 > y/x;
284 1/3
285 @end example
286
287 Exact numbers are always retained as exact numbers and only evaluated as
288 floating point numbers if requested.  For instance, with numeric
289 radicals is dealt pretty much as with symbols.  Products of sums of them
290 can be expanded:
291
292 @example
293 > expand((1+a^(1/5)-a^(2/5))^3);
294 1+3*a+3*a^(1/5)-5*a^(3/5)-a^(6/5)
295 > expand((1+3^(1/5)-3^(2/5))^3);
296 10-5*3^(3/5)
297 > evalf((1+3^(1/5)-3^(2/5))^3);
298 0.33408977534118624228
299 @end example
300
301 The function @code{evalf} that was used above converts any number in
302 GiNaC's expressions into floating point numbers.  This can be done to
303 arbitrary predefined accuracy:
304
305 @example
306 > evalf(1/7);
307 0.14285714285714285714
308 > Digits=150;
309 150
310 > evalf(1/7);
311 0.1428571428571428571428571428571428571428571428571428571428571428571428
312 5714285714285714285714285714285714285
313 @end example
314
315 Exact numbers other than rationals that can be manipulated in GiNaC
316 include predefined constants like Archimedes' @code{Pi}.  They can both
317 be used in symbolic manipulations (as an exact number) as well as in
318 numeric expressions (as an inexact number):
319
320 @example
321 > a=Pi^2+x;
322 x+Pi^2
323 > evalf(a);
324 9.869604401089358619+x
325 > x=2;
326 2
327 > evalf(a);
328 11.869604401089358619
329 @end example
330
331 Built-in functions evaluate immediately to exact numbers if
332 this is possible.  Conversions that can be safely performed are done
333 immediately; conversions that are not generally valid are not done:
334
335 @example
336 > cos(42*Pi);
337 1
338 > cos(acos(x));
339 x
340 > acos(cos(x));
341 acos(cos(x))
342 @end example
343
344 (Note that converting the last input to @code{x} would allow one to
345 conclude that @code{42*Pi} is equal to @code{0}.)
346
347 Linear equation systems can be solved along with basic linear
348 algebra manipulations over symbolic expressions.  In C++ GiNaC offers
349 a matrix class for this purpose but we can see what it can do using
350 @command{ginsh}'s bracket notation to type them in:
351
352 @example
353 > lsolve(a+x*y==z,x);
354 y^(-1)*(z-a);
355 > lsolve(@{3*x+5*y == 7, -2*x+10*y == -5@}, @{x, y@});
356 @{x==19/8,y==-1/40@}
357 > M = [ [1, 3], [-3, 2] ];
358 [[1,3],[-3,2]]
359 > determinant(M);
360 11
361 > charpoly(M,lambda);
362 lambda^2-3*lambda+11
363 > A = [ [1, 1], [2, -1] ];
364 [[1,1],[2,-1]]
365 > A+2*M;
366 [[1,1],[2,-1]]+2*[[1,3],[-3,2]]
367 > evalm(%);
368 [[3,7],[-4,3]]
369 > B = [ [0, 0, a], [b, 1, -b], [-1/a, 0, 0] ];
370 > evalm(B^(2^12345));
371 [[1,0,0],[0,1,0],[0,0,1]]
372 @end example
373
374 Multivariate polynomials and rational functions may be expanded,
375 collected, factorized, and normalized (i.e. converted to a ratio of
376 two coprime polynomials):
377
378 @example
379 > a = x^4 + 2*x^2*y^2 + 4*x^3*y + 12*x*y^3 - 3*y^4;
380 12*x*y^3+2*x^2*y^2+4*x^3*y-3*y^4+x^4
381 > b = x^2 + 4*x*y - y^2;
382 4*x*y-y^2+x^2
383 > expand(a*b);
384 8*x^5*y+17*x^4*y^2+43*x^2*y^4-24*x*y^5+16*x^3*y^3+3*y^6+x^6
385 > factor(%);
386 (4*x*y+x^2-y^2)^2*(x^2+3*y^2)
387 > collect(a+b,x);
388 4*x^3*y-y^2-3*y^4+(12*y^3+4*y)*x+x^4+x^2*(1+2*y^2)
389 > collect(a+b,y);
390 12*x*y^3-3*y^4+(-1+2*x^2)*y^2+(4*x+4*x^3)*y+x^2+x^4
391 > normal(a/b);
392 3*y^2+x^2
393 @end example
394
395 Here we have made use of the @command{ginsh}-command @code{%} to pop the
396 previously evaluated element from @command{ginsh}'s internal stack.
397
398 You can differentiate functions and expand them as Taylor or Laurent
399 series in a very natural syntax (the second argument of @code{series} is
400 a relation defining the evaluation point, the third specifies the
401 order):
402
403 @cindex Zeta function
404 @example
405 > diff(tan(x),x);
406 tan(x)^2+1
407 > series(sin(x),x==0,4);
408 x-1/6*x^3+Order(x^4)
409 > series(1/tan(x),x==0,4);
410 x^(-1)-1/3*x+Order(x^2)
411 > series(tgamma(x),x==0,3);
412 x^(-1)-Euler+(1/12*Pi^2+1/2*Euler^2)*x+
413 (-1/3*zeta(3)-1/12*Pi^2*Euler-1/6*Euler^3)*x^2+Order(x^3)
414 > evalf(%);
415 x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x
416 -(0.90747907608088628905)*x^2+Order(x^3)
417 > series(tgamma(2*sin(x)-2),x==Pi/2,6);
418 -(x-1/2*Pi)^(-2)+(-1/12*Pi^2-1/2*Euler^2-1/240)*(x-1/2*Pi)^2
419 -Euler-1/12+Order((x-1/2*Pi)^3)
420 @end example
421
422 Often, functions don't have roots in closed form.  Nevertheless, it's
423 quite easy to compute a solution numerically, to arbitrary precision:
424
425 @cindex fsolve
426 @example
427 > Digits=50:
428 > fsolve(cos(x)==x,x,0,2);
429 0.7390851332151606416553120876738734040134117589007574649658
430 > f=exp(sin(x))-x:
431 > X=fsolve(f,x,-10,10);
432 2.2191071489137460325957851882042901681753665565320678854155
433 > subs(f,x==X);
434 -6.372367644529809108115521591070847222364418220770475144296E-58
435 @end example
436
437 Notice how the final result above differs slightly from zero by about
438 @math{6*10^(-58)}.  This is because with 50 decimal digits precision the
439 root cannot be represented more accurately than @code{X}.  Such
440 inaccuracies are to be expected when computing with finite floating
441 point values.
442
443 If you ever wanted to convert units in C or C++ and found this is
444 cumbersome, here is the solution.  Symbolic types can always be used as
445 tags for different types of objects.  Converting from wrong units to the
446 metric system is now easy:
447
448 @example
449 > in=.0254*m;
450 0.0254*m
451 > lb=.45359237*kg;
452 0.45359237*kg
453 > 200*lb/in^2;
454 140613.91592783185568*kg*m^(-2)
455 @end example
456
457
458 @node Installation, Prerequisites, What it can do for you, Top
459 @c    node-name, next, previous, up
460 @chapter Installation
461
462 @cindex CLN
463 GiNaC's installation follows the spirit of most GNU software. It is
464 easily installed on your system by three steps: configuration, build,
465 installation.
466
467 @menu
468 * Prerequisites::                Packages upon which GiNaC depends.
469 * Configuration::                How to configure GiNaC.
470 * Building GiNaC::               How to compile GiNaC.
471 * Installing GiNaC::             How to install GiNaC on your system.
472 @end menu
473
474
475 @node Prerequisites, Configuration, Installation, Installation
476 @c    node-name, next, previous, up
477 @section Prerequisites
478
479 In order to install GiNaC on your system, some prerequisites need to be
480 met.  First of all, you need to have a C++-compiler adhering to the
481 ISO standard @cite{ISO/IEC 14882:2011(E)}.  We used GCC for development
482 so if you have a different compiler you are on your own.  For the
483 configuration to succeed you need a Posix compliant shell installed in
484 @file{/bin/sh}, GNU @command{bash} is fine. The pkg-config utility is
485 required for the configuration, it can be downloaded from
486 @uref{http://pkg-config.freedesktop.org}.
487 Last but not least, the CLN library
488 is used extensively and needs to be installed on your system.
489 Please get it from @uref{https://www.ginac.de/CLN/} (it is licensed under
490 the GPL) and install it prior to trying to install GiNaC.  The configure
491 script checks if it can find it and if it cannot, it will refuse to
492 continue.
493
494
495 @node Configuration, Building GiNaC, Prerequisites, Installation
496 @c    node-name, next, previous, up
497 @section Configuration
498 @cindex configuration
499 @cindex Autoconf
500
501 To configure GiNaC means to prepare the source distribution for
502 building.  It is done via a shell script called @command{configure} that
503 is shipped with the sources and was originally generated by GNU
504 Autoconf.  Since a configure script generated by GNU Autoconf never
505 prompts, all customization must be done either via command line
506 parameters or environment variables.  It accepts a list of parameters,
507 the complete set of which can be listed by calling it with the
508 @option{--help} option.  The most important ones will be shortly
509 described in what follows:
510
511 @itemize @bullet
512
513 @item
514 @option{--disable-shared}: When given, this option switches off the
515 build of a shared library, i.e. a @file{.so} file.  This may be convenient
516 when developing because it considerably speeds up compilation.
517
518 @item
519 @option{--prefix=@var{PREFIX}}: The directory where the compiled library
520 and headers are installed. It defaults to @file{/usr/local} which means
521 that the library is installed in the directory @file{/usr/local/lib},
522 the header files in @file{/usr/local/include/ginac} and the documentation
523 (like this one) into @file{/usr/local/share/doc/GiNaC}.
524
525 @item
526 @option{--libdir=@var{LIBDIR}}: Use this option in case you want to have
527 the library installed in some other directory than
528 @file{@var{PREFIX}/lib/}.
529
530 @item
531 @option{--includedir=@var{INCLUDEDIR}}: Use this option in case you want
532 to have the header files installed in some other directory than
533 @file{@var{PREFIX}/include/ginac/}. For instance, if you specify
534 @option{--includedir=/usr/include} you will end up with the header files
535 sitting in the directory @file{/usr/include/ginac/}. Note that the
536 subdirectory @file{ginac} is enforced by this process in order to
537 keep the header files separated from others.  This avoids some
538 clashes and allows for an easier deinstallation of GiNaC. This ought
539 to be considered A Good Thing (tm).
540
541 @item
542 @option{--datadir=@var{DATADIR}}: This option may be given in case you
543 want to have the documentation installed in some other directory than
544 @file{@var{PREFIX}/share/doc/GiNaC/}.
545
546 @end itemize
547
548 In addition, you may specify some environment variables.  @env{CXX}
549 holds the path and the name of the C++ compiler in case you want to
550 override the default in your path.  (The @command{configure} script
551 searches your path for @command{c++}, @command{g++}, @command{gcc},
552 @command{CC}, @command{cxx} and @command{cc++} in that order.)  It may
553 be very useful to define some compiler flags with the @env{CXXFLAGS}
554 environment variable, like optimization, debugging information and
555 warning levels.  If omitted, it defaults to @option{-g
556 -O2}.@footnote{The @command{configure} script is itself generated from
557 the file @file{configure.ac}.  It is only distributed in packaged
558 releases of GiNaC.  If you got the naked sources, e.g. from git, you
559 must generate @command{configure} along with the various
560 @file{Makefile.in} by using the @command{autoreconf} utility.  This will
561 require a fair amount of support from your local toolchain, though.}
562
563 The whole process is illustrated in the following two
564 examples. (Substitute @command{setenv @var{VARIABLE} @var{value}} for
565 @command{export @var{VARIABLE}=@var{value}} if the Berkeley C shell is
566 your login shell.)
567
568 Here is a simple configuration for a site-wide GiNaC library assuming
569 everything is in default paths:
570
571 @example
572 $ export CXXFLAGS="-Wall -O2"
573 $ ./configure
574 @end example
575
576 And here is a configuration for a private static GiNaC library with
577 several components sitting in custom places (site-wide GCC and private
578 CLN).  The compiler is persuaded to be picky and full assertions and
579 debugging information are switched on:
580
581 @example
582 $ export CXX=/usr/local/gnu/bin/c++
583 $ export CPPFLAGS="$(CPPFLAGS) -I$(HOME)/include"
584 $ export CXXFLAGS="$(CXXFLAGS) -DDO_GINAC_ASSERT -ggdb -Wall -pedantic"
585 $ export LDFLAGS="$(LDFLAGS) -L$(HOME)/lib"
586 $ ./configure --disable-shared --prefix=$(HOME)
587 @end example
588
589
590 @node Building GiNaC, Installing GiNaC, Configuration, Installation
591 @c    node-name, next, previous, up
592 @section Building GiNaC
593 @cindex building GiNaC
594
595 After proper configuration you should just build the whole
596 library by typing
597 @example
598 $ make
599 @end example
600 at the command prompt and go for a cup of coffee.  The exact time it
601 takes to compile GiNaC depends not only on the speed of your machines
602 but also on other parameters, for instance what value for @env{CXXFLAGS}
603 you entered.  Optimization may be very time-consuming.
604
605 Just to make sure GiNaC works properly you may run a collection of
606 regression tests by typing
607
608 @example
609 $ make check
610 @end example
611
612 This will compile some sample programs, run them and check the output
613 for correctness.  The regression tests fall in three categories.  First,
614 the so called @emph{exams} are performed, simple tests where some
615 predefined input is evaluated (like a pupils' exam).  Second, the
616 @emph{checks} test the coherence of results among each other with
617 possible random input.  Third, some @emph{timings} are performed, which
618 benchmark some predefined problems with different sizes and display the
619 CPU time used in seconds.  Each individual test should return a message
620 @samp{passed}.  This is mostly intended to be a QA-check if something
621 was broken during development, not a sanity check of your system.  Some
622 of the tests in sections @emph{checks} and @emph{timings} may require
623 insane amounts of memory and CPU time.  Feel free to kill them if your
624 machine catches fire.  Another quite important intent is to allow people
625 to fiddle around with optimization.
626
627 By default, the only documentation that will be built is this tutorial
628 in @file{.info} format. To build the GiNaC tutorial and reference manual
629 in HTML, DVI, PostScript, or PDF formats, use one of
630
631 @example
632 $ make html
633 $ make dvi
634 $ make ps
635 $ make pdf
636 @end example
637
638 Generally, the top-level Makefile runs recursively to the
639 subdirectories.  It is therefore safe to go into any subdirectory
640 (@code{doc/}, @code{ginsh/}, @dots{}) and simply type @code{make}
641 @var{target} there in case something went wrong.
642
643
644 @node Installing GiNaC, Basic concepts, Building GiNaC, Installation
645 @c    node-name, next, previous, up
646 @section Installing GiNaC
647 @cindex installation
648
649 To install GiNaC on your system, simply type
650
651 @example
652 $ make install
653 @end example
654
655 As described in the section about configuration the files will be
656 installed in the following directories (the directories will be created
657 if they don't already exist):
658
659 @itemize @bullet
660
661 @item
662 @file{libginac.a} will go into @file{@var{PREFIX}/lib/} (or
663 @file{@var{LIBDIR}}) which defaults to @file{/usr/local/lib/}.
664 So will @file{libginac.so} unless the configure script was
665 given the option @option{--disable-shared}.  The proper symlinks
666 will be established as well.
667
668 @item
669 All the header files will be installed into @file{@var{PREFIX}/include/ginac/}
670 (or @file{@var{INCLUDEDIR}/ginac/}, if specified).
671
672 @item
673 All documentation (info) will be stuffed into
674 @file{@var{PREFIX}/share/doc/GiNaC/} (or
675 @file{@var{DATADIR}/doc/GiNaC/}, if @var{DATADIR} was specified).
676
677 @end itemize
678
679 For the sake of completeness we will list some other useful make
680 targets: @command{make clean} deletes all files generated by
681 @command{make}, i.e. all the object files.  In addition @command{make
682 distclean} removes all files generated by the configuration and
683 @command{make maintainer-clean} goes one step further and deletes files
684 that may require special tools to rebuild (like the @command{libtool}
685 for instance).  Finally @command{make uninstall} removes the installed
686 library, header files and documentation@footnote{Uninstallation does not
687 work after you have called @command{make distclean} since the
688 @file{Makefile} is itself generated by the configuration from
689 @file{Makefile.in} and hence deleted by @command{make distclean}.  There
690 are two obvious ways out of this dilemma.  First, you can run the
691 configuration again with the same @var{PREFIX} thus creating a
692 @file{Makefile} with a working @samp{uninstall} target.  Second, you can
693 do it by hand since you now know where all the files went during
694 installation.}.
695
696
697 @node Basic concepts, Expressions, Installing GiNaC, Top
698 @c    node-name, next, previous, up
699 @chapter Basic concepts
700
701 This chapter will describe the different fundamental objects that can be
702 handled by GiNaC.  But before doing so, it is worthwhile introducing you
703 to the more commonly used class of expressions, representing a flexible
704 meta-class for storing all mathematical objects.
705
706 @menu
707 * Expressions::                  The fundamental GiNaC class.
708 * Automatic evaluation::         Evaluation and canonicalization.
709 * Error handling::               How the library reports errors.
710 * The class hierarchy::          Overview of GiNaC's classes.
711 * Symbols::                      Symbolic objects.
712 * Numbers::                      Numerical objects.
713 * Constants::                    Pre-defined constants.
714 * Fundamental containers::       Sums, products and powers.
715 * Lists::                        Lists of expressions.
716 * Mathematical functions::       Mathematical functions.
717 * Relations::                    Equality, Inequality and all that.
718 * Integrals::                    Symbolic integrals.
719 * Matrices::                     Matrices.
720 * Indexed objects::              Handling indexed quantities.
721 * Non-commutative objects::      Algebras with non-commutative products.
722 @end menu
723
724
725 @node Expressions, Automatic evaluation, Basic concepts, Basic concepts
726 @c    node-name, next, previous, up
727 @section Expressions
728 @cindex expression (class @code{ex})
729 @cindex @code{has()}
730
731 The most common class of objects a user deals with is the expression
732 @code{ex}, representing a mathematical object like a variable, number,
733 function, sum, product, etc@dots{}  Expressions may be put together to form
734 new expressions, passed as arguments to functions, and so on.  Here is a
735 little collection of valid expressions:
736
737 @example
738 ex MyEx1 = 5;                       // simple number
739 ex MyEx2 = x + 2*y;                 // polynomial in x and y
740 ex MyEx3 = (x + 1)/(x - 1);         // rational expression
741 ex MyEx4 = sin(x + 2*y) + 3*z + 41; // containing a function
742 ex MyEx5 = MyEx4 + 1;               // similar to above
743 @end example
744
745 Expressions are handles to other more fundamental objects, that often
746 contain other expressions thus creating a tree of expressions
747 (@xref{Internal structures}, for particular examples).  Most methods on
748 @code{ex} therefore run top-down through such an expression tree.  For
749 example, the method @code{has()} scans recursively for occurrences of
750 something inside an expression.  Thus, if you have declared @code{MyEx4}
751 as in the example above @code{MyEx4.has(y)} will find @code{y} inside
752 the argument of @code{sin} and hence return @code{true}.
753
754 The next sections will outline the general picture of GiNaC's class
755 hierarchy and describe the classes of objects that are handled by
756 @code{ex}.
757
758 @subsection Note: Expressions and STL containers
759
760 GiNaC expressions (@code{ex} objects) have value semantics (they can be
761 assigned, reassigned and copied like integral types) but the operator
762 @code{<} doesn't provide a well-defined ordering on them. In STL-speak,
763 expressions are @samp{Assignable} but not @samp{LessThanComparable}.
764
765 This implies that in order to use expressions in sorted containers such as
766 @code{std::map<>} and @code{std::set<>} you have to supply a suitable
767 comparison predicate. GiNaC provides such a predicate, called
768 @code{ex_is_less}. For example, a set of expressions should be defined
769 as @code{std::set<ex, ex_is_less>}.
770
771 Unsorted containers such as @code{std::vector<>} and @code{std::list<>}
772 don't pose a problem. A @code{std::vector<ex>} works as expected.
773
774 @xref{Information about expressions}, for more about comparing and ordering
775 expressions.
776
777
778 @node Automatic evaluation, Error handling, Expressions, Basic concepts
779 @c    node-name, next, previous, up
780 @section Automatic evaluation and canonicalization of expressions
781 @cindex evaluation
782
783 GiNaC performs some automatic transformations on expressions, to simplify
784 them and put them into a canonical form. Some examples:
785
786 @example
787 ex MyEx1 = 2*x - 1 + x;  // 3*x-1
788 ex MyEx2 = x - x;        // 0
789 ex MyEx3 = cos(2*Pi);    // 1
790 ex MyEx4 = x*y/x;        // y
791 @end example
792
793 This behavior is usually referred to as @dfn{automatic} or @dfn{anonymous
794 evaluation}. GiNaC only performs transformations that are
795
796 @itemize @bullet
797 @item
798 at most of complexity
799 @tex
800 $O(n\log n)$
801 @end tex
802 @ifnottex
803 @math{O(n log n)}
804 @end ifnottex
805 @item
806 algebraically correct, possibly except for a set of measure zero (e.g.
807 @math{x/x} is transformed to @math{1} although this is incorrect for @math{x=0})
808 @end itemize
809
810 There are two types of automatic transformations in GiNaC that may not
811 behave in an entirely obvious way at first glance:
812
813 @itemize
814 @item
815 The terms of sums and products (and some other things like the arguments of
816 symmetric functions, the indices of symmetric tensors etc.) are re-ordered
817 into a canonical form that is deterministic, but not lexicographical or in
818 any other way easy to guess (it almost always depends on the number and
819 order of the symbols you define). However, constructing the same expression
820 twice, either implicitly or explicitly, will always result in the same
821 canonical form.
822 @item
823 Expressions of the form 'number times sum' are automatically expanded (this
824 has to do with GiNaC's internal representation of sums and products). For
825 example
826 @example
827 ex MyEx5 = 2*(x + y);   // 2*x+2*y
828 ex MyEx6 = z*(x + y);   // z*(x+y)
829 @end example
830 @end itemize
831
832 The general rule is that when you construct expressions, GiNaC automatically
833 creates them in canonical form, which might differ from the form you typed in
834 your program. This may create some awkward looking output (@samp{-y+x} instead
835 of @samp{x-y}) but allows for more efficient operation and usually yields
836 some immediate simplifications.
837
838 @cindex @code{eval()}
839 Internally, the anonymous evaluator in GiNaC is implemented by the methods
840
841 @example
842 ex ex::eval() const;
843 ex basic::eval() const;
844 @end example
845
846 but unless you are extending GiNaC with your own classes or functions, there
847 should never be any reason to call them explicitly. All GiNaC methods that
848 transform expressions, like @code{subs()} or @code{normal()}, automatically
849 re-evaluate their results.
850
851
852 @node Error handling, The class hierarchy, Automatic evaluation, Basic concepts
853 @c    node-name, next, previous, up
854 @section Error handling
855 @cindex exceptions
856 @cindex @code{pole_error} (class)
857
858 GiNaC reports run-time errors by throwing C++ exceptions. All exceptions
859 generated by GiNaC are subclassed from the standard @code{exception} class
860 defined in the @file{<stdexcept>} header. In addition to the predefined
861 @code{logic_error}, @code{domain_error}, @code{out_of_range},
862 @code{invalid_argument}, @code{runtime_error}, @code{range_error} and
863 @code{overflow_error} types, GiNaC also defines a @code{pole_error}
864 exception that gets thrown when trying to evaluate a mathematical function
865 at a singularity.
866
867 The @code{pole_error} class has a member function
868
869 @example
870 int pole_error::degree() const;
871 @end example
872
873 that returns the order of the singularity (or 0 when the pole is
874 logarithmic or the order is undefined).
875
876 When using GiNaC it is useful to arrange for exceptions to be caught in
877 the main program even if you don't want to do any special error handling.
878 Otherwise whenever an error occurs in GiNaC, it will be delegated to the
879 default exception handler of your C++ compiler's run-time system which
880 usually only aborts the program without giving any information what went
881 wrong.
882
883 Here is an example for a @code{main()} function that catches and prints
884 exceptions generated by GiNaC:
885
886 @example
887 #include <iostream>
888 #include <stdexcept>
889 #include <ginac/ginac.h>
890 using namespace std;
891 using namespace GiNaC;
892
893 int main()
894 @{
895     try @{
896         ...
897         // code using GiNaC
898         ...
899     @} catch (exception &p) @{
900         cerr << p.what() << endl;
901         return 1;
902     @}
903     return 0;
904 @}
905 @end example
906
907
908 @node The class hierarchy, Symbols, Error handling, Basic concepts
909 @c    node-name, next, previous, up
910 @section The class hierarchy
911
912 GiNaC's class hierarchy consists of several classes representing
913 mathematical objects, all of which (except for @code{ex} and some
914 helpers) are internally derived from one abstract base class called
915 @code{basic}.  You do not have to deal with objects of class
916 @code{basic}, instead you'll be dealing with symbols, numbers,
917 containers of expressions and so on.
918
919 @cindex container
920 @cindex atom
921 To get an idea about what kinds of symbolic composites may be built we
922 have a look at the most important classes in the class hierarchy and
923 some of the relations among the classes:
924
925 @ifnotinfo
926 @image{classhierarchy}
927 @end ifnotinfo
928 @ifinfo
929 <PICTURE MISSING>
930 @end ifinfo
931
932 The abstract classes shown here (the ones without drop-shadow) are of no
933 interest for the user.  They are used internally in order to avoid code
934 duplication if two or more classes derived from them share certain
935 features.  An example is @code{expairseq}, a container for a sequence of
936 pairs each consisting of one expression and a number (@code{numeric}).
937 What @emph{is} visible to the user are the derived classes @code{add}
938 and @code{mul}, representing sums and products.  @xref{Internal
939 structures}, where these two classes are described in more detail.  The
940 following table shortly summarizes what kinds of mathematical objects
941 are stored in the different classes:
942
943 @cartouche
944 @multitable @columnfractions .22 .78
945 @item @code{symbol} @tab Algebraic symbols @math{a}, @math{x}, @math{y}@dots{}
946 @item @code{constant} @tab Constants like 
947 @tex
948 $\pi$
949 @end tex
950 @ifnottex
951 @math{Pi}
952 @end ifnottex
953 @item @code{numeric} @tab All kinds of numbers, @math{42}, @math{7/3*I}, @math{3.14159}@dots{}
954 @item @code{add} @tab Sums like @math{x+y} or @math{a-(2*b)+3}
955 @item @code{mul} @tab Products like @math{x*y} or @math{2*a^2*(x+y+z)/b}
956 @item @code{ncmul} @tab Products of non-commutative objects
957 @item @code{power} @tab Exponentials such as @math{x^2}, @math{a^b}, 
958 @tex
959 $\sqrt{2}$
960 @end tex
961 @ifnottex
962 @code{sqrt(}@math{2}@code{)}
963 @end ifnottex
964 @dots{}
965 @item @code{pseries} @tab Power Series, e.g. @math{x-1/6*x^3+1/120*x^5+O(x^7)}
966 @item @code{function} @tab A symbolic function like
967 @tex
968 $\sin 2x$
969 @end tex
970 @ifnottex
971 @math{sin(2*x)}
972 @end ifnottex
973 @item @code{lst} @tab Lists of expressions @{@math{x}, @math{2*y}, @math{3+z}@}
974 @item @code{matrix} @tab @math{m}x@math{n} matrices of expressions
975 @item @code{relational} @tab A relation like the identity @math{x}@code{==}@math{y}
976 @item @code{indexed} @tab Indexed object like @math{A_ij}
977 @item @code{tensor} @tab Special tensor like the delta and metric tensors
978 @item @code{idx} @tab Index of an indexed object
979 @item @code{varidx} @tab Index with variance
980 @item @code{spinidx} @tab Index with variance and dot (used in Weyl-van-der-Waerden spinor formalism)
981 @item @code{wildcard} @tab Wildcard for pattern matching
982 @item @code{structure} @tab Template for user-defined classes
983 @end multitable
984 @end cartouche
985
986
987 @node Symbols, Numbers, The class hierarchy, Basic concepts
988 @c    node-name, next, previous, up
989 @section Symbols
990 @cindex @code{symbol} (class)
991 @cindex hierarchy of classes
992
993 @cindex atom
994 Symbolic indeterminates, or @dfn{symbols} for short, are for symbolic
995 manipulation what atoms are for chemistry.
996
997 A typical symbol definition looks like this:
998 @example
999 symbol x("x");
1000 @end example
1001
1002 This definition actually contains three very different things:
1003 @itemize
1004 @item a C++ variable named @code{x}
1005 @item a @code{symbol} object stored in this C++ variable; this object
1006   represents the symbol in a GiNaC expression
1007 @item the string @code{"x"} which is the name of the symbol, used (almost)
1008   exclusively for printing expressions holding the symbol
1009 @end itemize
1010
1011 Symbols have an explicit name, supplied as a string during construction,
1012 because in C++, variable names can't be used as values, and the C++ compiler
1013 throws them away during compilation.
1014
1015 It is possible to omit the symbol name in the definition:
1016 @example
1017 symbol x;
1018 @end example
1019
1020 In this case, GiNaC will assign the symbol an internal, unique name of the
1021 form @code{symbolNNN}. This won't affect the usability of the symbol but
1022 the output of your calculations will become more readable if you give your
1023 symbols sensible names (for intermediate expressions that are only used
1024 internally such anonymous symbols can be quite useful, however).
1025
1026 Now, here is one important property of GiNaC that differentiates it from
1027 other computer algebra programs you may have used: GiNaC does @emph{not} use
1028 the names of symbols to tell them apart, but a (hidden) serial number that
1029 is unique for each newly created @code{symbol} object. If you want to use
1030 one and the same symbol in different places in your program, you must only
1031 create one @code{symbol} object and pass that around. If you create another
1032 symbol, even if it has the same name, GiNaC will treat it as a different
1033 indeterminate.
1034
1035 Observe:
1036 @example
1037 ex f(int n)
1038 @{
1039     symbol x("x");
1040     return pow(x, n);
1041 @}
1042
1043 int main()
1044 @{
1045     symbol x("x");
1046     ex e = f(6);
1047
1048     cout << e << endl;
1049      // prints "x^6" which looks right, but...
1050
1051     cout << e.degree(x) << endl;
1052      // ...this doesn't work. The symbol "x" here is different from the one
1053      // in f() and in the expression returned by f(). Consequently, it
1054      // prints "0".
1055 @}
1056 @end example
1057
1058 One possibility to ensure that @code{f()} and @code{main()} use the same
1059 symbol is to pass the symbol as an argument to @code{f()}:
1060 @example
1061 ex f(int n, const ex & x)
1062 @{
1063     return pow(x, n);
1064 @}
1065
1066 int main()
1067 @{
1068     symbol x("x");
1069
1070     // Now, f() uses the same symbol.
1071     ex e = f(6, x);
1072
1073     cout << e.degree(x) << endl;
1074      // prints "6", as expected
1075 @}
1076 @end example
1077
1078 Another possibility would be to define a global symbol @code{x} that is used
1079 by both @code{f()} and @code{main()}. If you are using global symbols and
1080 multiple compilation units you must take special care, however. Suppose
1081 that you have a header file @file{globals.h} in your program that defines
1082 a @code{symbol x("x");}. In this case, every unit that includes
1083 @file{globals.h} would also get its own definition of @code{x} (because
1084 header files are just inlined into the source code by the C++ preprocessor),
1085 and hence you would again end up with multiple equally-named, but different,
1086 symbols. Instead, the @file{globals.h} header should only contain a
1087 @emph{declaration} like @code{extern symbol x;}, with the definition of
1088 @code{x} moved into a C++ source file such as @file{globals.cpp}.
1089
1090 A different approach to ensuring that symbols used in different parts of
1091 your program are identical is to create them with a @emph{factory} function
1092 like this one:
1093 @example
1094 const symbol & get_symbol(const string & s)
1095 @{
1096     static map<string, symbol> directory;
1097     map<string, symbol>::iterator i = directory.find(s);
1098     if (i != directory.end())
1099         return i->second;
1100     else
1101         return directory.insert(make_pair(s, symbol(s))).first->second;
1102 @}
1103 @end example
1104
1105 This function returns one newly constructed symbol for each name that is
1106 passed in, and it returns the same symbol when called multiple times with
1107 the same name. Using this symbol factory, we can rewrite our example like
1108 this:
1109 @example
1110 ex f(int n)
1111 @{
1112     return pow(get_symbol("x"), n);
1113 @}
1114
1115 int main()
1116 @{
1117     ex e = f(6);
1118
1119     // Both calls of get_symbol("x") yield the same symbol.
1120     cout << e.degree(get_symbol("x")) << endl;
1121      // prints "6"
1122 @}
1123 @end example
1124
1125 Instead of creating symbols from strings we could also have
1126 @code{get_symbol()} take, for example, an integer number as its argument.
1127 In this case, we would probably want to give the generated symbols names
1128 that include this number, which can be accomplished with the help of an
1129 @code{ostringstream}.
1130
1131 In general, if you're getting weird results from GiNaC such as an expression
1132 @samp{x-x} that is not simplified to zero, you should check your symbol
1133 definitions.
1134
1135 As we said, the names of symbols primarily serve for purposes of expression
1136 output. But there are actually two instances where GiNaC uses the names for
1137 identifying symbols: When constructing an expression from a string, and when
1138 recreating an expression from an archive (@pxref{Input/output}).
1139
1140 In addition to its name, a symbol may contain a special string that is used
1141 in LaTeX output:
1142 @example
1143 symbol x("x", "\\Box");
1144 @end example
1145
1146 This creates a symbol that is printed as "@code{x}" in normal output, but
1147 as "@code{\Box}" in LaTeX code (@xref{Input/output}, for more
1148 information about the different output formats of expressions in GiNaC).
1149 GiNaC automatically creates proper LaTeX code for symbols having names of
1150 greek letters (@samp{alpha}, @samp{mu}, etc.). You can retrieve the name
1151 and the LaTeX name of a symbol using the respective methods:
1152 @cindex @code{get_name()}
1153 @cindex @code{get_TeX_name()}
1154 @example
1155 symbol::get_name() const;
1156 symbol::get_TeX_name() const;
1157 @end example
1158
1159 @cindex @code{subs()}
1160 Symbols in GiNaC can't be assigned values. If you need to store results of
1161 calculations and give them a name, use C++ variables of type @code{ex}.
1162 If you want to replace a symbol in an expression with something else, you
1163 can invoke the expression's @code{.subs()} method
1164 (@pxref{Substituting expressions}).
1165
1166 @cindex @code{realsymbol()}
1167 By default, symbols are expected to stand in for complex values, i.e. they live
1168 in the complex domain.  As a consequence, operations like complex conjugation,
1169 for example (@pxref{Complex expressions}), do @emph{not} evaluate if applied
1170 to such symbols. Likewise @code{log(exp(x))} does not evaluate to @code{x},
1171 because of the unknown imaginary part of @code{x}.
1172 On the other hand, if you are sure that your symbols will hold only real
1173 values, you would like to have such functions evaluated. Therefore GiNaC
1174 allows you to specify
1175 the domain of the symbol. Instead of @code{symbol x("x");} you can write
1176 @code{realsymbol x("x");} to tell GiNaC that @code{x} stands in for real values.
1177
1178 @cindex @code{possymbol()}
1179 Furthermore, it is also possible to declare a symbol as positive. This will,
1180 for instance, enable the automatic simplification of @code{abs(x)} into 
1181 @code{x}. This is done by declaring the symbol as @code{possymbol x("x");}.
1182
1183
1184 @node Numbers, Constants, Symbols, Basic concepts
1185 @c    node-name, next, previous, up
1186 @section Numbers
1187 @cindex @code{numeric} (class)
1188
1189 @cindex GMP
1190 @cindex CLN
1191 @cindex rational
1192 @cindex fraction
1193 For storing numerical things, GiNaC uses Bruno Haible's library CLN.
1194 The classes therein serve as foundation classes for GiNaC.  CLN stands
1195 for Class Library for Numbers or alternatively for Common Lisp Numbers.
1196 In order to find out more about CLN's internals, the reader is referred to
1197 the documentation of that library.  @inforef{Introduction, , cln}, for
1198 more information. Suffice to say that it is by itself build on top of
1199 another library, the GNU Multiple Precision library GMP, which is an
1200 extremely fast library for arbitrary long integers and rationals as well
1201 as arbitrary precision floating point numbers.  It is very commonly used
1202 by several popular cryptographic applications.  CLN extends GMP by
1203 several useful things: First, it introduces the complex number field
1204 over either reals (i.e. floating point numbers with arbitrary precision)
1205 or rationals.  Second, it automatically converts rationals to integers
1206 if the denominator is unity and complex numbers to real numbers if the
1207 imaginary part vanishes and also correctly treats algebraic functions.
1208 Third it provides good implementations of state-of-the-art algorithms
1209 for all trigonometric and hyperbolic functions as well as for
1210 calculation of some useful constants.
1211
1212 The user can construct an object of class @code{numeric} in several
1213 ways.  The following example shows the four most important constructors.
1214 It uses construction from C-integer, construction of fractions from two
1215 integers, construction from C-float and construction from a string:
1216
1217 @example
1218 #include <iostream>
1219 #include <ginac/ginac.h>
1220 using namespace GiNaC;
1221
1222 int main()
1223 @{
1224     numeric two = 2;                      // exact integer 2
1225     numeric r(2,3);                       // exact fraction 2/3
1226     numeric e(2.71828);                   // floating point number
1227     numeric p = "3.14159265358979323846"; // constructor from string
1228     // Trott's constant in scientific notation:
1229     numeric trott("1.0841015122311136151E-2");
1230     
1231     std::cout << two*p << std::endl;  // floating point 6.283...
1232     ...
1233 @end example
1234
1235 @cindex @code{I}
1236 @cindex complex numbers
1237 The imaginary unit in GiNaC is a predefined @code{numeric} object with the
1238 name @code{I}:
1239
1240 @example
1241     ...
1242     numeric z1 = 2-3*I;                    // exact complex number 2-3i
1243     numeric z2 = 5.9+1.6*I;                // complex floating point number
1244 @}
1245 @end example
1246
1247 It may be tempting to construct fractions by writing @code{numeric r(3/2)}.
1248 This would, however, call C's built-in operator @code{/} for integers
1249 first and result in a numeric holding a plain integer 1.  @strong{Never
1250 use the operator @code{/} on integers} unless you know exactly what you
1251 are doing!  Use the constructor from two integers instead, as shown in
1252 the example above.  Writing @code{numeric(1)/2} may look funny but works
1253 also.
1254
1255 @cindex @code{Digits}
1256 @cindex accuracy
1257 We have seen now the distinction between exact numbers and floating
1258 point numbers.  Clearly, the user should never have to worry about
1259 dynamically created exact numbers, since their `exactness' always
1260 determines how they ought to be handled, i.e. how `long' they are.  The
1261 situation is different for floating point numbers.  Their accuracy is
1262 controlled by one @emph{global} variable, called @code{Digits}.  (For
1263 those readers who know about Maple: it behaves very much like Maple's
1264 @code{Digits}).  All objects of class numeric that are constructed from
1265 then on will be stored with a precision matching that number of decimal
1266 digits:
1267
1268 @example
1269 #include <iostream>
1270 #include <ginac/ginac.h>
1271 using namespace std;
1272 using namespace GiNaC;
1273
1274 void foo()
1275 @{
1276     numeric three(3.0), one(1.0);
1277     numeric x = one/three;
1278
1279     cout << "in " << Digits << " digits:" << endl;
1280     cout << x << endl;
1281     cout << Pi.evalf() << endl;
1282 @}
1283
1284 int main()
1285 @{
1286     foo();
1287     Digits = 60;
1288     foo();
1289     return 0;
1290 @}
1291 @end example
1292
1293 The above example prints the following output to screen:
1294
1295 @example
1296 in 17 digits:
1297 0.33333333333333333334
1298 3.1415926535897932385
1299 in 60 digits:
1300 0.33333333333333333333333333333333333333333333333333333333333333333334
1301 3.1415926535897932384626433832795028841971693993751058209749445923078
1302 @end example
1303
1304 @cindex rounding
1305 Note that the last number is not necessarily rounded as you would
1306 naively expect it to be rounded in the decimal system.  But note also,
1307 that in both cases you got a couple of extra digits.  This is because
1308 numbers are internally stored by CLN as chunks of binary digits in order
1309 to match your machine's word size and to not waste precision.  Thus, on
1310 architectures with different word size, the above output might even
1311 differ with regard to actually computed digits.
1312
1313 It should be clear that objects of class @code{numeric} should be used
1314 for constructing numbers or for doing arithmetic with them.  The objects
1315 one deals with most of the time are the polymorphic expressions @code{ex}.
1316
1317 @subsection Tests on numbers
1318
1319 Once you have declared some numbers, assigned them to expressions and
1320 done some arithmetic with them it is frequently desired to retrieve some
1321 kind of information from them like asking whether that number is
1322 integer, rational, real or complex.  For those cases GiNaC provides
1323 several useful methods.  (Internally, they fall back to invocations of
1324 certain CLN functions.)
1325
1326 As an example, let's construct some rational number, multiply it with
1327 some multiple of its denominator and test what comes out:
1328
1329 @example
1330 #include <iostream>
1331 #include <ginac/ginac.h>
1332 using namespace std;
1333 using namespace GiNaC;
1334
1335 // some very important constants:
1336 const numeric twentyone(21);
1337 const numeric ten(10);
1338 const numeric five(5);
1339
1340 int main()
1341 @{
1342     numeric answer = twentyone;
1343
1344     answer /= five;
1345     cout << answer.is_integer() << endl;  // false, it's 21/5
1346     answer *= ten;
1347     cout << answer.is_integer() << endl;  // true, it's 42 now!
1348 @}
1349 @end example
1350
1351 Note that the variable @code{answer} is constructed here as an integer
1352 by @code{numeric}'s copy constructor, but in an intermediate step it
1353 holds a rational number represented as integer numerator and integer
1354 denominator.  When multiplied by 10, the denominator becomes unity and
1355 the result is automatically converted to a pure integer again.
1356 Internally, the underlying CLN is responsible for this behavior and we
1357 refer the reader to CLN's documentation.  Suffice to say that
1358 the same behavior applies to complex numbers as well as return values of
1359 certain functions.  Complex numbers are automatically converted to real
1360 numbers if the imaginary part becomes zero.  The full set of tests that
1361 can be applied is listed in the following table.
1362
1363 @cartouche
1364 @multitable @columnfractions .30 .70
1365 @item @strong{Method} @tab @strong{Returns true if the object is@dots{}}
1366 @item @code{.is_zero()}
1367 @tab @dots{}equal to zero
1368 @item @code{.is_positive()}
1369 @tab @dots{}not complex and greater than 0
1370 @item @code{.is_negative()}
1371 @tab @dots{}not complex and smaller than 0
1372 @item @code{.is_integer()}
1373 @tab @dots{}a (non-complex) integer
1374 @item @code{.is_pos_integer()}
1375 @tab @dots{}an integer and greater than 0
1376 @item @code{.is_nonneg_integer()}
1377 @tab @dots{}an integer and greater equal 0
1378 @item @code{.is_even()}
1379 @tab @dots{}an even integer
1380 @item @code{.is_odd()}
1381 @tab @dots{}an odd integer
1382 @item @code{.is_prime()}
1383 @tab @dots{}a prime integer (probabilistic primality test)
1384 @item @code{.is_rational()}
1385 @tab @dots{}an exact rational number (integers are rational, too)
1386 @item @code{.is_real()}
1387 @tab @dots{}a real integer, rational or float (i.e. is not complex)
1388 @item @code{.is_cinteger()}
1389 @tab @dots{}a (complex) integer (such as @math{2-3*I})
1390 @item @code{.is_crational()}
1391 @tab @dots{}an exact (complex) rational number (such as @math{2/3+7/2*I})
1392 @end multitable
1393 @end cartouche
1394
1395 @page
1396
1397 @subsection Numeric functions
1398
1399 The following functions can be applied to @code{numeric} objects and will be
1400 evaluated immediately:
1401
1402 @cartouche
1403 @multitable @columnfractions .30 .70
1404 @item @strong{Name} @tab @strong{Function}
1405 @item @code{inverse(z)}
1406 @tab returns @math{1/z}
1407 @cindex @code{inverse()} (numeric)
1408 @item @code{pow(a, b)}
1409 @tab exponentiation @math{a^b}
1410 @item @code{abs(z)}
1411 @tab absolute value
1412 @item @code{real(z)}
1413 @tab real part
1414 @cindex @code{real()}
1415 @item @code{imag(z)}
1416 @tab imaginary part
1417 @cindex @code{imag()}
1418 @item @code{csgn(z)}
1419 @tab complex sign (returns an @code{int})
1420 @item @code{step(x)}
1421 @tab step function (returns an @code{numeric})
1422 @item @code{numer(z)}
1423 @tab numerator of rational or complex rational number
1424 @item @code{denom(z)}
1425 @tab denominator of rational or complex rational number
1426 @item @code{sqrt(z)}
1427 @tab square root
1428 @item @code{isqrt(n)}
1429 @tab integer square root
1430 @cindex @code{isqrt()}
1431 @item @code{sin(z)}
1432 @tab sine
1433 @item @code{cos(z)}
1434 @tab cosine
1435 @item @code{tan(z)}
1436 @tab tangent
1437 @item @code{asin(z)}
1438 @tab inverse sine
1439 @item @code{acos(z)}
1440 @tab inverse cosine
1441 @item @code{atan(z)}
1442 @tab inverse tangent
1443 @item @code{atan(y, x)}
1444 @tab inverse tangent with two arguments
1445 @item @code{sinh(z)}
1446 @tab hyperbolic sine
1447 @item @code{cosh(z)}
1448 @tab hyperbolic cosine
1449 @item @code{tanh(z)}
1450 @tab hyperbolic tangent
1451 @item @code{asinh(z)}
1452 @tab inverse hyperbolic sine
1453 @item @code{acosh(z)}
1454 @tab inverse hyperbolic cosine
1455 @item @code{atanh(z)}
1456 @tab inverse hyperbolic tangent
1457 @item @code{exp(z)}
1458 @tab exponential function
1459 @item @code{log(z)}
1460 @tab natural logarithm
1461 @item @code{Li2(z)}
1462 @tab dilogarithm
1463 @item @code{zeta(z)}
1464 @tab Riemann's zeta function
1465 @item @code{tgamma(z)}
1466 @tab gamma function
1467 @item @code{lgamma(z)}
1468 @tab logarithm of gamma function
1469 @item @code{psi(z)}
1470 @tab psi (digamma) function
1471 @item @code{psi(n, z)}
1472 @tab derivatives of psi function (polygamma functions)
1473 @item @code{factorial(n)}
1474 @tab factorial function @math{n!}
1475 @item @code{doublefactorial(n)}
1476 @tab double factorial function @math{n!!}
1477 @cindex @code{doublefactorial()}
1478 @item @code{binomial(n, k)}
1479 @tab binomial coefficients
1480 @item @code{bernoulli(n)}
1481 @tab Bernoulli numbers
1482 @cindex @code{bernoulli()}
1483 @item @code{fibonacci(n)}
1484 @tab Fibonacci numbers
1485 @cindex @code{fibonacci()}
1486 @item @code{mod(a, b)}
1487 @tab modulus in positive representation (in the range @code{[0, abs(b)-1]} with the sign of b, or zero)
1488 @cindex @code{mod()}
1489 @item @code{smod(a, b)}
1490 @tab modulus in symmetric representation (in the range @code{[-iquo(abs(b), 2), iquo(abs(b), 2)]})
1491 @cindex @code{smod()}
1492 @item @code{irem(a, b)}
1493 @tab integer remainder (has the sign of @math{a}, or is zero)
1494 @cindex @code{irem()}
1495 @item @code{irem(a, b, q)}
1496 @tab integer remainder and quotient, @code{irem(a, b, q) == a-q*b}
1497 @item @code{iquo(a, b)}
1498 @tab integer quotient
1499 @cindex @code{iquo()}
1500 @item @code{iquo(a, b, r)}
1501 @tab integer quotient and remainder, @code{r == a-iquo(a, b)*b}
1502 @item @code{gcd(a, b)}
1503 @tab greatest common divisor
1504 @item @code{lcm(a, b)}
1505 @tab least common multiple
1506 @end multitable
1507 @end cartouche
1508
1509 Most of these functions are also available as symbolic functions that can be
1510 used in expressions (@pxref{Mathematical functions}) or, like @code{gcd()},
1511 as polynomial algorithms.
1512
1513 @subsection Converting numbers
1514
1515 Sometimes it is desirable to convert a @code{numeric} object back to a
1516 built-in arithmetic type (@code{int}, @code{double}, etc.). The @code{numeric}
1517 class provides a couple of methods for this purpose:
1518
1519 @cindex @code{to_int()}
1520 @cindex @code{to_long()}
1521 @cindex @code{to_double()}
1522 @cindex @code{to_cl_N()}
1523 @example
1524 int numeric::to_int() const;
1525 long numeric::to_long() const;
1526 double numeric::to_double() const;
1527 cln::cl_N numeric::to_cl_N() const;
1528 @end example
1529
1530 @code{to_int()} and @code{to_long()} only work when the number they are
1531 applied on is an exact integer. Otherwise the program will halt with a
1532 message like @samp{Not a 32-bit integer}. @code{to_double()} applied on a
1533 rational number will return a floating-point approximation. Both
1534 @code{to_int()/to_long()} and @code{to_double()} discard the imaginary
1535 part of complex numbers.
1536
1537 Note the signature of the above methods, you may need to apply a type
1538 conversion and call @code{evalf()} as shown in the following example:
1539 @example
1540     ...
1541     ex e1 = 1, e2 = sin(Pi/5);
1542     cout << ex_to<numeric>(e1).to_int() << endl
1543          << ex_to<numeric>(e2.evalf()).to_double() << endl;
1544     ...
1545 @end example
1546
1547 @node Constants, Fundamental containers, Numbers, Basic concepts
1548 @c    node-name, next, previous, up
1549 @section Constants
1550 @cindex @code{constant} (class)
1551
1552 @cindex @code{Pi}
1553 @cindex @code{Catalan}
1554 @cindex @code{Euler}
1555 @cindex @code{evalf()}
1556 Constants behave pretty much like symbols except that they return some
1557 specific number when the method @code{.evalf()} is called.
1558
1559 The predefined known constants are:
1560
1561 @cartouche
1562 @multitable @columnfractions .14 .32 .54
1563 @item @strong{Name} @tab @strong{Common Name} @tab @strong{Numerical Value (to 35 digits)}
1564 @item @code{Pi}
1565 @tab Archimedes' constant
1566 @tab 3.14159265358979323846264338327950288
1567 @item @code{Catalan}
1568 @tab Catalan's constant
1569 @tab 0.91596559417721901505460351493238411
1570 @item @code{Euler}
1571 @tab Euler's (or Euler-Mascheroni) constant
1572 @tab 0.57721566490153286060651209008240243
1573 @end multitable
1574 @end cartouche
1575
1576
1577 @node Fundamental containers, Lists, Constants, Basic concepts
1578 @c    node-name, next, previous, up
1579 @section Sums, products and powers
1580 @cindex polynomial
1581 @cindex @code{add}
1582 @cindex @code{mul}
1583 @cindex @code{power}
1584
1585 Simple rational expressions are written down in GiNaC pretty much like
1586 in other CAS or like expressions involving numerical variables in C.
1587 The necessary operators @code{+}, @code{-}, @code{*} and @code{/} have
1588 been overloaded to achieve this goal.  When you run the following
1589 code snippet, the constructor for an object of type @code{mul} is
1590 automatically called to hold the product of @code{a} and @code{b} and
1591 then the constructor for an object of type @code{add} is called to hold
1592 the sum of that @code{mul} object and the number one:
1593
1594 @example
1595     ...
1596     symbol a("a"), b("b");
1597     ex MyTerm = 1+a*b;
1598     ...
1599 @end example
1600
1601 @cindex @code{pow()}
1602 For exponentiation, you have already seen the somewhat clumsy (though C-ish)
1603 statement @code{pow(x,2);} to represent @code{x} squared.  This direct
1604 construction is necessary since we cannot safely overload the constructor
1605 @code{^} in C++ to construct a @code{power} object.  If we did, it would
1606 have several counterintuitive and undesired effects:
1607
1608 @itemize @bullet
1609 @item
1610 Due to C's operator precedence, @code{2*x^2} would be parsed as @code{(2*x)^2}.
1611 @item
1612 Due to the binding of the operator @code{^}, @code{x^a^b} would result in
1613 @code{(x^a)^b}. This would be confusing since most (though not all) other CAS
1614 interpret this as @code{x^(a^b)}.
1615 @item
1616 Also, expressions involving integer exponents are very frequently used,
1617 which makes it even more dangerous to overload @code{^} since it is then
1618 hard to distinguish between the semantics as exponentiation and the one
1619 for exclusive or.  (It would be embarrassing to return @code{1} where one
1620 has requested @code{2^3}.)
1621 @end itemize
1622
1623 @cindex @command{ginsh}
1624 All effects are contrary to mathematical notation and differ from the
1625 way most other CAS handle exponentiation, therefore overloading @code{^}
1626 is ruled out for GiNaC's C++ part.  The situation is different in
1627 @command{ginsh}, there the exponentiation-@code{^} exists.  (Also note
1628 that the other frequently used exponentiation operator @code{**} does
1629 not exist at all in C++).
1630
1631 To be somewhat more precise, objects of the three classes described
1632 here, are all containers for other expressions.  An object of class
1633 @code{power} is best viewed as a container with two slots, one for the
1634 basis, one for the exponent.  All valid GiNaC expressions can be
1635 inserted.  However, basic transformations like simplifying
1636 @code{pow(pow(x,2),3)} to @code{x^6} automatically are only performed
1637 when this is mathematically possible.  If we replace the outer exponent
1638 three in the example by some symbols @code{a}, the simplification is not
1639 safe and will not be performed, since @code{a} might be @code{1/2} and
1640 @code{x} negative.
1641
1642 Objects of type @code{add} and @code{mul} are containers with an
1643 arbitrary number of slots for expressions to be inserted.  Again, simple
1644 and safe simplifications are carried out like transforming
1645 @code{3*x+4-x} to @code{2*x+4}.
1646
1647
1648 @node Lists, Mathematical functions, Fundamental containers, Basic concepts
1649 @c    node-name, next, previous, up
1650 @section Lists of expressions
1651 @cindex @code{lst} (class)
1652 @cindex lists
1653 @cindex @code{nops()}
1654 @cindex @code{op()}
1655 @cindex @code{append()}
1656 @cindex @code{prepend()}
1657 @cindex @code{remove_first()}
1658 @cindex @code{remove_last()}
1659 @cindex @code{remove_all()}
1660
1661 The GiNaC class @code{lst} serves for holding a @dfn{list} of arbitrary
1662 expressions. They are not as ubiquitous as in many other computer algebra
1663 packages, but are sometimes used to supply a variable number of arguments of
1664 the same type to GiNaC methods such as @code{subs()} and some @code{matrix}
1665 constructors, so you should have a basic understanding of them.
1666
1667 Lists can be constructed from an initializer list of expressions:
1668
1669 @example
1670 @{
1671     symbol x("x"), y("y");
1672     lst l = @{x, 2, y, x+y@};
1673     // now, l is a list holding the expressions 'x', '2', 'y', and 'x+y',
1674     // in that order
1675     ...
1676 @end example
1677
1678 Use the @code{nops()} method to determine the size (number of expressions) of
1679 a list and the @code{op()} method or the @code{[]} operator to access
1680 individual elements:
1681
1682 @example
1683     ...
1684     cout << l.nops() << endl;                // prints '4'
1685     cout << l.op(2) << " " << l[0] << endl;  // prints 'y x'
1686     ...
1687 @end example
1688
1689 As with the standard @code{list<T>} container, accessing random elements of a
1690 @code{lst} is generally an operation of order @math{O(N)}. Faster read-only
1691 sequential access to the elements of a list is possible with the
1692 iterator types provided by the @code{lst} class:
1693
1694 @example
1695 typedef ... lst::const_iterator;
1696 typedef ... lst::const_reverse_iterator;
1697 lst::const_iterator lst::begin() const;
1698 lst::const_iterator lst::end() const;
1699 lst::const_reverse_iterator lst::rbegin() const;
1700 lst::const_reverse_iterator lst::rend() const;
1701 @end example
1702
1703 For example, to print the elements of a list individually you can use:
1704
1705 @example
1706     ...
1707     // O(N)
1708     for (lst::const_iterator i = l.begin(); i != l.end(); ++i)
1709         cout << *i << endl;
1710     ...
1711 @end example
1712
1713 which is one order faster than
1714
1715 @example
1716     ...
1717     // O(N^2)
1718     for (size_t i = 0; i < l.nops(); ++i)
1719         cout << l.op(i) << endl;
1720     ...
1721 @end example
1722
1723 These iterators also allow you to use some of the algorithms provided by
1724 the C++ standard library:
1725
1726 @example
1727     ...
1728     // print the elements of the list (requires #include <iterator>)
1729     std::copy(l.begin(), l.end(), ostream_iterator<ex>(cout, "\n"));
1730
1731     // sum up the elements of the list (requires #include <numeric>)
1732     ex sum = std::accumulate(l.begin(), l.end(), ex(0));
1733     cout << sum << endl;  // prints '2+2*x+2*y'
1734     ...
1735 @end example
1736
1737 @code{lst} is one of the few GiNaC classes that allow in-place modifications
1738 (the only other one is @code{matrix}). You can modify single elements:
1739
1740 @example
1741     ...
1742     l[1] = 42;       // l is now @{x, 42, y, x+y@}
1743     l.let_op(1) = 7; // l is now @{x, 7, y, x+y@}
1744     ...
1745 @end example
1746
1747 You can append or prepend an expression to a list with the @code{append()}
1748 and @code{prepend()} methods:
1749
1750 @example
1751     ...
1752     l.append(4*x);   // l is now @{x, 7, y, x+y, 4*x@}
1753     l.prepend(0);    // l is now @{0, x, 7, y, x+y, 4*x@}
1754     ...
1755 @end example
1756
1757 You can remove the first or last element of a list with @code{remove_first()}
1758 and @code{remove_last()}:
1759
1760 @example
1761     ...
1762     l.remove_first();   // l is now @{x, 7, y, x+y, 4*x@}
1763     l.remove_last();    // l is now @{x, 7, y, x+y@}
1764     ...
1765 @end example
1766
1767 You can remove all the elements of a list with @code{remove_all()}:
1768
1769 @example
1770     ...
1771     l.remove_all();     // l is now empty
1772     ...
1773 @end example
1774
1775 You can bring the elements of a list into a canonical order with @code{sort()}:
1776
1777 @example
1778     ...
1779     lst l1 = @{x, 2, y, x+y@};
1780     lst l2 = @{2, x+y, x, y@};
1781     l1.sort();
1782     l2.sort();
1783     // l1 and l2 are now equal
1784     ...
1785 @end example
1786
1787 Finally, you can remove all but the first element of consecutive groups of
1788 elements with @code{unique()}:
1789
1790 @example
1791     ...
1792     lst l3 = @{x, 2, 2, 2, y, x+y, y+x@};
1793     l3.unique();        // l3 is now @{x, 2, y, x+y@}
1794 @}
1795 @end example
1796
1797
1798 @node Mathematical functions, Relations, Lists, Basic concepts
1799 @c    node-name, next, previous, up
1800 @section Mathematical functions
1801 @cindex @code{function} (class)
1802 @cindex trigonometric function
1803 @cindex hyperbolic function
1804
1805 There are quite a number of useful functions hard-wired into GiNaC.  For
1806 instance, all trigonometric and hyperbolic functions are implemented
1807 (@xref{Built-in functions}, for a complete list).
1808
1809 These functions (better called @emph{pseudofunctions}) are all objects
1810 of class @code{function}.  They accept one or more expressions as
1811 arguments and return one expression.  If the arguments are not
1812 numerical, the evaluation of the function may be halted, as it does in
1813 the next example, showing how a function returns itself twice and
1814 finally an expression that may be really useful:
1815
1816 @cindex Gamma function
1817 @cindex @code{subs()}
1818 @example
1819     ...
1820     symbol x("x"), y("y");    
1821     ex foo = x+y/2;
1822     cout << tgamma(foo) << endl;
1823      // -> tgamma(x+(1/2)*y)
1824     ex bar = foo.subs(y==1);
1825     cout << tgamma(bar) << endl;
1826      // -> tgamma(x+1/2)
1827     ex foobar = bar.subs(x==7);
1828     cout << tgamma(foobar) << endl;
1829      // -> (135135/128)*Pi^(1/2)
1830     ...
1831 @end example
1832
1833 Besides evaluation most of these functions allow differentiation, series
1834 expansion and so on.  Read the next chapter in order to learn more about
1835 this.
1836
1837 It must be noted that these pseudofunctions are created by inline
1838 functions, where the argument list is templated.  This means that
1839 whenever you call @code{GiNaC::sin(1)} it is equivalent to
1840 @code{sin(ex(1))} and will therefore not result in a floating point
1841 number.  Unless of course the function prototype is explicitly
1842 overridden -- which is the case for arguments of type @code{numeric}
1843 (not wrapped inside an @code{ex}).  Hence, in order to obtain a floating
1844 point number of class @code{numeric} you should call
1845 @code{sin(numeric(1))}.  This is almost the same as calling
1846 @code{sin(1).evalf()} except that the latter will return a numeric
1847 wrapped inside an @code{ex}.
1848
1849
1850 @node Relations, Integrals, Mathematical functions, Basic concepts
1851 @c    node-name, next, previous, up
1852 @section Relations
1853 @cindex @code{relational} (class)
1854
1855 Sometimes, a relation holding between two expressions must be stored
1856 somehow.  The class @code{relational} is a convenient container for such
1857 purposes.  A relation is by definition a container for two @code{ex} and
1858 a relation between them that signals equality, inequality and so on.
1859 They are created by simply using the C++ operators @code{==}, @code{!=},
1860 @code{<}, @code{<=}, @code{>} and @code{>=} between two expressions.
1861
1862 @xref{Mathematical functions}, for examples where various applications
1863 of the @code{.subs()} method show how objects of class relational are
1864 used as arguments.  There they provide an intuitive syntax for
1865 substitutions.  They are also used as arguments to the @code{ex::series}
1866 method, where the left hand side of the relation specifies the variable
1867 to expand in and the right hand side the expansion point.  They can also
1868 be used for creating systems of equations that are to be solved for
1869 unknown variables.
1870
1871 But the most common usage of objects of this class
1872 is rather inconspicuous in statements of the form @code{if
1873 (expand(pow(a+b,2))==a*a+2*a*b+b*b) @{...@}}.  Here, an implicit
1874 conversion from @code{relational} to @code{bool} takes place.  Note,
1875 however, that @code{==} here does not perform any simplifications, hence
1876 @code{expand()} must be called explicitly.
1877
1878 Simplifications of
1879 relationals may be more efficient if preceded by a call to
1880 @example
1881 ex relational::canonical() const
1882 @end example
1883 which returns an equivalent relation with the zero
1884 right-hand side. For example:
1885 @example
1886 possymbol p("p");
1887 relational rel = (p >= (p*p-1)/p);
1888 if (ex_to<relational>(rel.canonical().normal()))
1889         cout << "correct inequality" << endl;
1890 @end example
1891 However, a user shall not expect that any inequality can be fully
1892 resolved by GiNaC.
1893
1894 @node Integrals, Matrices, Relations, Basic concepts
1895 @c    node-name, next, previous, up
1896 @section Integrals
1897 @cindex @code{integral} (class)
1898
1899 An object of class @dfn{integral} can be used to hold a symbolic integral.
1900 If you want to symbolically represent the integral of @code{x*x} from 0 to
1901 1, you would write this as
1902 @example
1903 integral(x, 0, 1, x*x)
1904 @end example
1905 The first argument is the integration variable. It should be noted that
1906 GiNaC is not very good (yet?) at symbolically evaluating integrals. In
1907 fact, it can only integrate polynomials. An expression containing integrals
1908 can be evaluated symbolically by calling the
1909 @example
1910 .eval_integ()
1911 @end example
1912 method on it. Numerical evaluation is available by calling the
1913 @example
1914 .evalf()
1915 @end example
1916 method on an expression containing the integral. This will only evaluate
1917 integrals into a number if @code{subs}ing the integration variable by a
1918 number in the fourth argument of an integral and then @code{evalf}ing the
1919 result always results in a number. Of course, also the boundaries of the
1920 integration domain must @code{evalf} into numbers. It should be noted that
1921 trying to @code{evalf} a function with discontinuities in the integration
1922 domain is not recommended. The accuracy of the numeric evaluation of
1923 integrals is determined by the static member variable
1924 @example
1925 ex integral::relative_integration_error
1926 @end example
1927 of the class @code{integral}. The default value of this is 10^-8.
1928 The integration works by halving the interval of integration, until numeric
1929 stability of the answer indicates that the requested accuracy has been
1930 reached. The maximum depth of the halving can be set via the static member
1931 variable
1932 @example
1933 int integral::max_integration_level
1934 @end example
1935 The default value is 15. If this depth is exceeded, @code{evalf} will simply
1936 return the integral unevaluated. The function that performs the numerical
1937 evaluation, is also available as
1938 @example
1939 ex adaptivesimpson(const ex & x, const ex & a, const ex & b, const ex & f,
1940                    const ex & error)
1941 @end example
1942 This function will throw an exception if the maximum depth is exceeded. The
1943 last parameter of the function is optional and defaults to the
1944 @code{relative_integration_error}. To make sure that we do not do too
1945 much work if an expression contains the same integral multiple times,
1946 a lookup table is used.
1947
1948 If you know that an expression holds an integral, you can get the
1949 integration variable, the left boundary, right boundary and integrand by
1950 respectively calling @code{.op(0)}, @code{.op(1)}, @code{.op(2)}, and
1951 @code{.op(3)}. Differentiating integrals with respect to variables works
1952 as expected. Note that it makes no sense to differentiate an integral
1953 with respect to the integration variable.
1954
1955 @node Matrices, Indexed objects, Integrals, Basic concepts
1956 @c    node-name, next, previous, up
1957 @section Matrices
1958 @cindex @code{matrix} (class)
1959
1960 A @dfn{matrix} is a two-dimensional array of expressions. The elements of a
1961 matrix with @math{m} rows and @math{n} columns are accessed with two
1962 @code{unsigned} indices, the first one in the range 0@dots{}@math{m-1}, the
1963 second one in the range 0@dots{}@math{n-1}.
1964
1965 There are a couple of ways to construct matrices, with or without preset
1966 elements. The constructor
1967
1968 @example
1969 matrix::matrix(unsigned r, unsigned c);
1970 @end example
1971
1972 creates a matrix with @samp{r} rows and @samp{c} columns with all elements
1973 set to zero.
1974
1975 The easiest way to create a matrix is using an initializer list of
1976 initializer lists, all of the same size:
1977
1978 @example
1979 @{
1980     matrix m = @{@{1, -a@},
1981                 @{a,  1@}@};
1982 @}
1983 @end example
1984
1985 You can also specify the elements as a (flat) list with
1986
1987 @example
1988 matrix::matrix(unsigned r, unsigned c, const lst & l);
1989 @end example
1990
1991 The function
1992
1993 @cindex @code{lst_to_matrix()}
1994 @example
1995 ex lst_to_matrix(const lst & l);
1996 @end example
1997
1998 constructs a matrix from a list of lists, each list representing a matrix row.
1999
2000 There is also a set of functions for creating some special types of
2001 matrices:
2002
2003 @cindex @code{diag_matrix()}
2004 @cindex @code{unit_matrix()}
2005 @cindex @code{symbolic_matrix()}
2006 @example
2007 ex diag_matrix(const lst & l);
2008 ex diag_matrix(initializer_list<ex> l);
2009 ex unit_matrix(unsigned x);
2010 ex unit_matrix(unsigned r, unsigned c);
2011 ex symbolic_matrix(unsigned r, unsigned c, const string & base_name);
2012 ex symbolic_matrix(unsigned r, unsigned c, const string & base_name,
2013                    const string & tex_base_name);
2014 @end example
2015
2016 @code{diag_matrix()} constructs a square diagonal matrix given the diagonal
2017 elements. @code{unit_matrix()} creates an @samp{x} by @samp{x} (or @samp{r}
2018 by @samp{c}) unit matrix. And finally, @code{symbolic_matrix} constructs a
2019 matrix filled with newly generated symbols made of the specified base name
2020 and the position of each element in the matrix.
2021
2022 Matrices often arise by omitting elements of another matrix. For
2023 instance, the submatrix @code{S} of a matrix @code{M} takes a
2024 rectangular block from @code{M}. The reduced matrix @code{R} is defined
2025 by removing one row and one column from a matrix @code{M}. (The
2026 determinant of a reduced matrix is called a @emph{Minor} of @code{M} and
2027 can be used for computing the inverse using Cramer's rule.)
2028
2029 @cindex @code{sub_matrix()}
2030 @cindex @code{reduced_matrix()}
2031 @example
2032 ex sub_matrix(const matrix&m, unsigned r, unsigned nr, unsigned c, unsigned nc);
2033 ex reduced_matrix(const matrix& m, unsigned r, unsigned c);
2034 @end example
2035
2036 The function @code{sub_matrix()} takes a row offset @code{r} and a
2037 column offset @code{c} and takes a block of @code{nr} rows and @code{nc}
2038 columns. The function @code{reduced_matrix()} has two integer arguments
2039 that specify which row and column to remove:
2040
2041 @example
2042 @{
2043     matrix m = @{@{11, 12, 13@},
2044                 @{21, 22, 23@},
2045                 @{31, 32, 33@}@};
2046     cout << reduced_matrix(m, 1, 1) << endl;
2047     // -> [[11,13],[31,33]]
2048     cout << sub_matrix(m, 1, 2, 1, 2) << endl;
2049     // -> [[22,23],[32,33]]
2050 @}
2051 @end example
2052
2053 Matrix elements can be accessed and set using the parenthesis (function call)
2054 operator:
2055
2056 @example
2057 const ex & matrix::operator()(unsigned r, unsigned c) const;
2058 ex & matrix::operator()(unsigned r, unsigned c);
2059 @end example
2060
2061 It is also possible to access the matrix elements in a linear fashion with
2062 the @code{op()} method. But C++-style subscripting with square brackets
2063 @samp{[]} is not available.
2064
2065 Here are a couple of examples for constructing matrices:
2066
2067 @example
2068 @{
2069     symbol a("a"), b("b");
2070
2071     matrix M = @{@{a, 0@},
2072                 @{0, b@}@};
2073     cout << M << endl;
2074      // -> [[a,0],[0,b]]
2075
2076     matrix M2(2, 2);
2077     M2(0, 0) = a;
2078     M2(1, 1) = b;
2079     cout << M2 << endl;
2080      // -> [[a,0],[0,b]]
2081
2082     cout << matrix(2, 2, lst@{a, 0, 0, b@}) << endl;
2083      // -> [[a,0],[0,b]]
2084
2085     cout << lst_to_matrix(lst@{lst@{a, 0@}, lst@{0, b@}@}) << endl;
2086      // -> [[a,0],[0,b]]
2087
2088     cout << diag_matrix(lst@{a, b@}) << endl;
2089      // -> [[a,0],[0,b]]
2090
2091     cout << unit_matrix(3) << endl;
2092      // -> [[1,0,0],[0,1,0],[0,0,1]]
2093
2094     cout << symbolic_matrix(2, 3, "x") << endl;
2095      // -> [[x00,x01,x02],[x10,x11,x12]]
2096 @}
2097 @end example
2098
2099 @cindex @code{is_zero_matrix()} 
2100 The method @code{matrix::is_zero_matrix()} returns @code{true} only if
2101 all entries of the matrix are zeros. There is also method
2102 @code{ex::is_zero_matrix()} which returns @code{true} only if the
2103 expression is zero or a zero matrix.
2104
2105 @cindex @code{transpose()}
2106 There are three ways to do arithmetic with matrices. The first (and most
2107 direct one) is to use the methods provided by the @code{matrix} class:
2108
2109 @example
2110 matrix matrix::add(const matrix & other) const;
2111 matrix matrix::sub(const matrix & other) const;
2112 matrix matrix::mul(const matrix & other) const;
2113 matrix matrix::mul_scalar(const ex & other) const;
2114 matrix matrix::pow(const ex & expn) const;
2115 matrix matrix::transpose() const;
2116 @end example
2117
2118 All of these methods return the result as a new matrix object. Here is an
2119 example that calculates @math{A*B-2*C} for three matrices @math{A}, @math{B}
2120 and @math{C}:
2121
2122 @example
2123 @{
2124     matrix A = @{@{ 1, 2@},
2125                 @{ 3, 4@}@};
2126     matrix B = @{@{-1, 0@},
2127                 @{ 2, 1@}@};
2128     matrix C = @{@{ 8, 4@},
2129                 @{ 2, 1@}@};
2130
2131     matrix result = A.mul(B).sub(C.mul_scalar(2));
2132     cout << result << endl;
2133      // -> [[-13,-6],[1,2]]
2134     ...
2135 @}
2136 @end example
2137
2138 @cindex @code{evalm()}
2139 The second (and probably the most natural) way is to construct an expression
2140 containing matrices with the usual arithmetic operators and @code{pow()}.
2141 For efficiency reasons, expressions with sums, products and powers of
2142 matrices are not automatically evaluated in GiNaC. You have to call the
2143 method
2144
2145 @example
2146 ex ex::evalm() const;
2147 @end example
2148
2149 to obtain the result:
2150
2151 @example
2152 @{
2153     ...
2154     ex e = A*B - 2*C;
2155     cout << e << endl;
2156      // -> [[1,2],[3,4]]*[[-1,0],[2,1]]-2*[[8,4],[2,1]]
2157     cout << e.evalm() << endl;
2158      // -> [[-13,-6],[1,2]]
2159     ...
2160 @}
2161 @end example
2162
2163 The non-commutativity of the product @code{A*B} in this example is
2164 automatically recognized by GiNaC. There is no need to use a special
2165 operator here. @xref{Non-commutative objects}, for more information about
2166 dealing with non-commutative expressions.
2167
2168 Finally, you can work with indexed matrices and call @code{simplify_indexed()}
2169 to perform the arithmetic:
2170
2171 @example
2172 @{
2173     ...
2174     idx i(symbol("i"), 2), j(symbol("j"), 2), k(symbol("k"), 2);
2175     e = indexed(A, i, k) * indexed(B, k, j) - 2 * indexed(C, i, j);
2176     cout << e << endl;
2177      // -> -2*[[8,4],[2,1]].i.j+[[-1,0],[2,1]].k.j*[[1,2],[3,4]].i.k
2178     cout << e.simplify_indexed() << endl;
2179      // -> [[-13,-6],[1,2]].i.j
2180 @}
2181 @end example
2182
2183 Using indices is most useful when working with rectangular matrices and
2184 one-dimensional vectors because you don't have to worry about having to
2185 transpose matrices before multiplying them. @xref{Indexed objects}, for
2186 more information about using matrices with indices, and about indices in
2187 general.
2188
2189 The @code{matrix} class provides a couple of additional methods for
2190 computing determinants, traces, characteristic polynomials and ranks:
2191
2192 @cindex @code{determinant()}
2193 @cindex @code{trace()}
2194 @cindex @code{charpoly()}
2195 @cindex @code{rank()}
2196 @example
2197 ex matrix::determinant(unsigned algo=determinant_algo::automatic) const;
2198 ex matrix::trace() const;
2199 ex matrix::charpoly(const ex & lambda) const;
2200 unsigned matrix::rank(unsigned algo=solve_algo::automatic) const;
2201 @end example
2202
2203 The optional @samp{algo} argument of @code{determinant()} and @code{rank()}
2204 functions allows to select between different algorithms for calculating the
2205 determinant and rank respectively. The asymptotic speed (as parametrized
2206 by the matrix size) can greatly differ between those algorithms, depending
2207 on the nature of the matrix' entries. The possible values are defined in
2208 the @file{flags.h} header file. By default, GiNaC uses a heuristic to
2209 automatically select an algorithm that is likely (but not guaranteed)
2210 to give the result most quickly.
2211
2212 @cindex @code{solve()}
2213 Linear systems can be solved with:
2214
2215 @example
2216 matrix matrix::solve(const matrix & vars, const matrix & rhs,
2217                      unsigned algo=solve_algo::automatic) const;
2218 @end example
2219
2220 Assuming the matrix object this method is applied on is an @code{m}
2221 times @code{n} matrix, then @code{vars} must be a @code{n} times
2222 @code{p} matrix of symbolic indeterminates and @code{rhs} a @code{m}
2223 times @code{p} matrix.  The returned matrix then has dimension @code{n}
2224 times @code{p} and in the case of an underdetermined system will still
2225 contain some of the indeterminates from @code{vars}.  If the system is
2226 overdetermined, an exception is thrown.
2227
2228 @cindex @code{inverse()} (matrix)
2229 To invert a matrix, use the method:
2230
2231 @example
2232 matrix matrix::inverse(unsigned algo=solve_algo::automatic) const;
2233 @end example
2234
2235 The @samp{algo} argument is optional.  If given, it must be one of
2236 @code{solve_algo} defined in @file{flags.h}.
2237
2238 @node Indexed objects, Non-commutative objects, Matrices, Basic concepts
2239 @c    node-name, next, previous, up
2240 @section Indexed objects
2241
2242 GiNaC allows you to handle expressions containing general indexed objects in
2243 arbitrary spaces. It is also able to canonicalize and simplify such
2244 expressions and perform symbolic dummy index summations. There are a number
2245 of predefined indexed objects provided, like delta and metric tensors.
2246
2247 There are few restrictions placed on indexed objects and their indices and
2248 it is easy to construct nonsense expressions, but our intention is to
2249 provide a general framework that allows you to implement algorithms with
2250 indexed quantities, getting in the way as little as possible.
2251
2252 @cindex @code{idx} (class)
2253 @cindex @code{indexed} (class)
2254 @subsection Indexed quantities and their indices
2255
2256 Indexed expressions in GiNaC are constructed of two special types of objects,
2257 @dfn{index objects} and @dfn{indexed objects}.
2258
2259 @itemize @bullet
2260
2261 @cindex contravariant
2262 @cindex covariant
2263 @cindex variance
2264 @item Index objects are of class @code{idx} or a subclass. Every index has
2265 a @dfn{value} and a @dfn{dimension} (which is the dimension of the space
2266 the index lives in) which can both be arbitrary expressions but are usually
2267 a number or a simple symbol. In addition, indices of class @code{varidx} have
2268 a @dfn{variance} (they can be co- or contravariant), and indices of class
2269 @code{spinidx} have a variance and can be @dfn{dotted} or @dfn{undotted}.
2270
2271 @item Indexed objects are of class @code{indexed} or a subclass. They
2272 contain a @dfn{base expression} (which is the expression being indexed), and
2273 one or more indices.
2274
2275 @end itemize
2276
2277 @strong{Please notice:} when printing expressions, covariant indices and indices
2278 without variance are denoted @samp{.i} while contravariant indices are
2279 denoted @samp{~i}. Dotted indices have a @samp{*} in front of the index
2280 value. In the following, we are going to use that notation in the text so
2281 instead of @math{A^i_jk} we will write @samp{A~i.j.k}. Index dimensions are
2282 not visible in the output.
2283
2284 A simple example shall illustrate the concepts:
2285
2286 @example
2287 #include <iostream>
2288 #include <ginac/ginac.h>
2289 using namespace std;
2290 using namespace GiNaC;
2291
2292 int main()
2293 @{
2294     symbol i_sym("i"), j_sym("j");
2295     idx i(i_sym, 3), j(j_sym, 3);
2296
2297     symbol A("A");
2298     cout << indexed(A, i, j) << endl;
2299      // -> A.i.j
2300     cout << index_dimensions << indexed(A, i, j) << endl;
2301      // -> A.i[3].j[3]
2302     cout << dflt; // reset cout to default output format (dimensions hidden)
2303     ...
2304 @end example
2305
2306 The @code{idx} constructor takes two arguments, the index value and the
2307 index dimension. First we define two index objects, @code{i} and @code{j},
2308 both with the numeric dimension 3. The value of the index @code{i} is the
2309 symbol @code{i_sym} (which prints as @samp{i}) and the value of the index
2310 @code{j} is the symbol @code{j_sym} (which prints as @samp{j}). Next we
2311 construct an expression containing one indexed object, @samp{A.i.j}. It has
2312 the symbol @code{A} as its base expression and the two indices @code{i} and
2313 @code{j}.
2314
2315 The dimensions of indices are normally not visible in the output, but one
2316 can request them to be printed with the @code{index_dimensions} manipulator,
2317 as shown above.
2318
2319 Note the difference between the indices @code{i} and @code{j} which are of
2320 class @code{idx}, and the index values which are the symbols @code{i_sym}
2321 and @code{j_sym}. The indices of indexed objects cannot directly be symbols
2322 or numbers but must be index objects. For example, the following is not
2323 correct and will raise an exception:
2324
2325 @example
2326 symbol i("i"), j("j");
2327 e = indexed(A, i, j); // ERROR: indices must be of type idx
2328 @end example
2329
2330 You can have multiple indexed objects in an expression, index values can
2331 be numeric, and index dimensions symbolic:
2332
2333 @example
2334     ...
2335     symbol B("B"), dim("dim");
2336     cout << 4 * indexed(A, i)
2337           + indexed(B, idx(j_sym, 4), idx(2, 3), idx(i_sym, dim)) << endl;
2338      // -> B.j.2.i+4*A.i
2339     ...
2340 @end example
2341
2342 @code{B} has a 4-dimensional symbolic index @samp{k}, a 3-dimensional numeric
2343 index of value 2, and a symbolic index @samp{i} with the symbolic dimension
2344 @samp{dim}. Note that GiNaC doesn't automatically notify you that the free
2345 indices of @samp{A} and @samp{B} in the sum don't match (you have to call
2346 @code{simplify_indexed()} for that, see below).
2347
2348 In fact, base expressions, index values and index dimensions can be
2349 arbitrary expressions:
2350
2351 @example
2352     ...
2353     cout << indexed(A+B, idx(2*i_sym+1, dim/2)) << endl;
2354      // -> (B+A).(1+2*i)
2355     ...
2356 @end example
2357
2358 It's also possible to construct nonsense like @samp{Pi.sin(x)}. You will not
2359 get an error message from this but you will probably not be able to do
2360 anything useful with it.
2361
2362 @cindex @code{get_value()}
2363 @cindex @code{get_dim()}
2364 The methods
2365
2366 @example
2367 ex idx::get_value();
2368 ex idx::get_dim();
2369 @end example
2370
2371 return the value and dimension of an @code{idx} object. If you have an index
2372 in an expression, such as returned by calling @code{.op()} on an indexed
2373 object, you can get a reference to the @code{idx} object with the function
2374 @code{ex_to<idx>()} on the expression.
2375
2376 There are also the methods
2377
2378 @example
2379 bool idx::is_numeric();
2380 bool idx::is_symbolic();
2381 bool idx::is_dim_numeric();
2382 bool idx::is_dim_symbolic();
2383 @end example
2384
2385 for checking whether the value and dimension are numeric or symbolic
2386 (non-numeric). Using the @code{info()} method of an index (see @ref{Information
2387 about expressions}) returns information about the index value.
2388
2389 @cindex @code{varidx} (class)
2390 If you need co- and contravariant indices, use the @code{varidx} class:
2391
2392 @example
2393     ...
2394     symbol mu_sym("mu"), nu_sym("nu");
2395     varidx mu(mu_sym, 4), nu(nu_sym, 4); // default is contravariant ~mu, ~nu
2396     varidx mu_co(mu_sym, 4, true);       // covariant index .mu
2397
2398     cout << indexed(A, mu, nu) << endl;
2399      // -> A~mu~nu
2400     cout << indexed(A, mu_co, nu) << endl;
2401      // -> A.mu~nu
2402     cout << indexed(A, mu.toggle_variance(), nu) << endl;
2403      // -> A.mu~nu
2404     ...
2405 @end example
2406
2407 A @code{varidx} is an @code{idx} with an additional flag that marks it as
2408 co- or contravariant. The default is a contravariant (upper) index, but
2409 this can be overridden by supplying a third argument to the @code{varidx}
2410 constructor. The two methods
2411
2412 @example
2413 bool varidx::is_covariant();
2414 bool varidx::is_contravariant();
2415 @end example
2416
2417 allow you to check the variance of a @code{varidx} object (use @code{ex_to<varidx>()}
2418 to get the object reference from an expression). There's also the very useful
2419 method
2420
2421 @example
2422 ex varidx::toggle_variance();
2423 @end example
2424
2425 which makes a new index with the same value and dimension but the opposite
2426 variance. By using it you only have to define the index once.
2427
2428 @cindex @code{spinidx} (class)
2429 The @code{spinidx} class provides dotted and undotted variant indices, as
2430 used in the Weyl-van-der-Waerden spinor formalism:
2431
2432 @example
2433     ...
2434     symbol K("K"), C_sym("C"), D_sym("D");
2435     spinidx C(C_sym, 2), D(D_sym);          // default is 2-dimensional,
2436                                             // contravariant, undotted
2437     spinidx C_co(C_sym, 2, true);           // covariant index
2438     spinidx D_dot(D_sym, 2, false, true);   // contravariant, dotted
2439     spinidx D_co_dot(D_sym, 2, true, true); // covariant, dotted
2440
2441     cout << indexed(K, C, D) << endl;
2442      // -> K~C~D
2443     cout << indexed(K, C_co, D_dot) << endl;
2444      // -> K.C~*D
2445     cout << indexed(K, D_co_dot, D) << endl;
2446      // -> K.*D~D
2447     ...
2448 @end example
2449
2450 A @code{spinidx} is a @code{varidx} with an additional flag that marks it as
2451 dotted or undotted. The default is undotted but this can be overridden by
2452 supplying a fourth argument to the @code{spinidx} constructor. The two
2453 methods
2454
2455 @example
2456 bool spinidx::is_dotted();
2457 bool spinidx::is_undotted();
2458 @end example
2459
2460 allow you to check whether or not a @code{spinidx} object is dotted (use
2461 @code{ex_to<spinidx>()} to get the object reference from an expression).
2462 Finally, the two methods
2463
2464 @example
2465 ex spinidx::toggle_dot();
2466 ex spinidx::toggle_variance_dot();
2467 @end example
2468
2469 create a new index with the same value and dimension but opposite dottedness
2470 and the same or opposite variance.
2471
2472 @subsection Substituting indices
2473
2474 @cindex @code{subs()}
2475 Sometimes you will want to substitute one symbolic index with another
2476 symbolic or numeric index, for example when calculating one specific element
2477 of a tensor expression. This is done with the @code{.subs()} method, as it
2478 is done for symbols (see @ref{Substituting expressions}).
2479
2480 You have two possibilities here. You can either substitute the whole index
2481 by another index or expression:
2482
2483 @example
2484     ...
2485     ex e = indexed(A, mu_co);
2486     cout << e << " becomes " << e.subs(mu_co == nu) << endl;
2487      // -> A.mu becomes A~nu
2488     cout << e << " becomes " << e.subs(mu_co == varidx(0, 4)) << endl;
2489      // -> A.mu becomes A~0
2490     cout << e << " becomes " << e.subs(mu_co == 0) << endl;
2491      // -> A.mu becomes A.0
2492     ...
2493 @end example
2494
2495 The third example shows that trying to replace an index with something that
2496 is not an index will substitute the index value instead.
2497
2498 Alternatively, you can substitute the @emph{symbol} of a symbolic index by
2499 another expression:
2500
2501 @example
2502     ...
2503     ex e = indexed(A, mu_co);
2504     cout << e << " becomes " << e.subs(mu_sym == nu_sym) << endl;
2505      // -> A.mu becomes A.nu
2506     cout << e << " becomes " << e.subs(mu_sym == 0) << endl;
2507      // -> A.mu becomes A.0
2508     ...
2509 @end example
2510
2511 As you see, with the second method only the value of the index will get
2512 substituted. Its other properties, including its dimension, remain unchanged.
2513 If you want to change the dimension of an index you have to substitute the
2514 whole index by another one with the new dimension.
2515
2516 Finally, substituting the base expression of an indexed object works as
2517 expected:
2518
2519 @example
2520     ...
2521     ex e = indexed(A, mu_co);
2522     cout << e << " becomes " << e.subs(A == A+B) << endl;
2523      // -> A.mu becomes (B+A).mu
2524     ...
2525 @end example
2526
2527 @subsection Symmetries
2528 @cindex @code{symmetry} (class)
2529 @cindex @code{sy_none()}
2530 @cindex @code{sy_symm()}
2531 @cindex @code{sy_anti()}
2532 @cindex @code{sy_cycl()}
2533
2534 Indexed objects can have certain symmetry properties with respect to their
2535 indices. Symmetries are specified as a tree of objects of class @code{symmetry}
2536 that is constructed with the helper functions
2537
2538 @example
2539 symmetry sy_none(...);
2540 symmetry sy_symm(...);
2541 symmetry sy_anti(...);
2542 symmetry sy_cycl(...);
2543 @end example
2544
2545 @code{sy_none()} stands for no symmetry, @code{sy_symm()} and @code{sy_anti()}
2546 specify fully symmetric or antisymmetric, respectively, and @code{sy_cycl()}
2547 represents a cyclic symmetry. Each of these functions accepts up to four
2548 arguments which can be either symmetry objects themselves or unsigned integer
2549 numbers that represent an index position (counting from 0). A symmetry
2550 specification that consists of only a single @code{sy_symm()}, @code{sy_anti()}
2551 or @code{sy_cycl()} with no arguments specifies the respective symmetry for
2552 all indices.
2553
2554 Here are some examples of symmetry definitions:
2555
2556 @example
2557     ...
2558     // No symmetry:
2559     e = indexed(A, i, j);
2560     e = indexed(A, sy_none(), i, j);     // equivalent
2561     e = indexed(A, sy_none(0, 1), i, j); // equivalent
2562
2563     // Symmetric in all three indices:
2564     e = indexed(A, sy_symm(), i, j, k);
2565     e = indexed(A, sy_symm(0, 1, 2), i, j, k); // equivalent
2566     e = indexed(A, sy_symm(2, 0, 1), i, j, k); // same symmetry, but yields a
2567                                                // different canonical order
2568
2569     // Symmetric in the first two indices only:
2570     e = indexed(A, sy_symm(0, 1), i, j, k);
2571     e = indexed(A, sy_none(sy_symm(0, 1), 2), i, j, k); // equivalent
2572
2573     // Antisymmetric in the first and last index only (index ranges need not
2574     // be contiguous):
2575     e = indexed(A, sy_anti(0, 2), i, j, k);
2576     e = indexed(A, sy_none(sy_anti(0, 2), 1), i, j, k); // equivalent
2577
2578     // An example of a mixed symmetry: antisymmetric in the first two and
2579     // last two indices, symmetric when swapping the first and last index
2580     // pairs (like the Riemann curvature tensor):
2581     e = indexed(A, sy_symm(sy_anti(0, 1), sy_anti(2, 3)), i, j, k, l);
2582
2583     // Cyclic symmetry in all three indices:
2584     e = indexed(A, sy_cycl(), i, j, k);
2585     e = indexed(A, sy_cycl(0, 1, 2), i, j, k); // equivalent
2586
2587     // The following examples are invalid constructions that will throw
2588     // an exception at run time.
2589
2590     // An index may not appear multiple times:
2591     e = indexed(A, sy_symm(0, 0, 1), i, j, k); // ERROR
2592     e = indexed(A, sy_none(sy_symm(0, 1), sy_anti(0, 2)), i, j, k); // ERROR
2593
2594     // Every child of sy_symm(), sy_anti() and sy_cycl() must refer to the
2595     // same number of indices:
2596     e = indexed(A, sy_symm(sy_anti(0, 1), 2), i, j, k); // ERROR
2597
2598     // And of course, you cannot specify indices which are not there:
2599     e = indexed(A, sy_symm(0, 1, 2, 3), i, j, k); // ERROR
2600     ...
2601 @end example
2602
2603 If you need to specify more than four indices, you have to use the
2604 @code{.add()} method of the @code{symmetry} class. For example, to specify
2605 full symmetry in the first six indices you would write
2606 @code{sy_symm(0, 1, 2, 3).add(4).add(5)}.
2607
2608 If an indexed object has a symmetry, GiNaC will automatically bring the
2609 indices into a canonical order which allows for some immediate simplifications:
2610
2611 @example
2612     ...
2613     cout << indexed(A, sy_symm(), i, j)
2614           + indexed(A, sy_symm(), j, i) << endl;
2615      // -> 2*A.j.i
2616     cout << indexed(B, sy_anti(), i, j)
2617           + indexed(B, sy_anti(), j, i) << endl;
2618      // -> 0
2619     cout << indexed(B, sy_anti(), i, j, k)
2620           - indexed(B, sy_anti(), j, k, i) << endl;
2621      // -> 0
2622     ...
2623 @end example
2624
2625 @cindex @code{get_free_indices()}
2626 @cindex dummy index
2627 @subsection Dummy indices
2628
2629 GiNaC treats certain symbolic index pairs as @dfn{dummy indices} meaning
2630 that a summation over the index range is implied. Symbolic indices which are
2631 not dummy indices are called @dfn{free indices}. Numeric indices are neither
2632 dummy nor free indices.
2633
2634 To be recognized as a dummy index pair, the two indices must be of the same
2635 class and their value must be the same single symbol (an index like
2636 @samp{2*n+1} is never a dummy index). If the indices are of class
2637 @code{varidx} they must also be of opposite variance; if they are of class
2638 @code{spinidx} they must be both dotted or both undotted.
2639
2640 The method @code{.get_free_indices()} returns a vector containing the free
2641 indices of an expression. It also checks that the free indices of the terms
2642 of a sum are consistent:
2643
2644 @example
2645 @{
2646     symbol A("A"), B("B"), C("C");
2647
2648     symbol i_sym("i"), j_sym("j"), k_sym("k"), l_sym("l");
2649     idx i(i_sym, 3), j(j_sym, 3), k(k_sym, 3), l(l_sym, 3);
2650
2651     ex e = indexed(A, i, j) * indexed(B, j, k) + indexed(C, k, l, i, l);
2652     cout << exprseq(e.get_free_indices()) << endl;
2653      // -> (.i,.k)
2654      // 'j' and 'l' are dummy indices
2655
2656     symbol mu_sym("mu"), nu_sym("nu"), rho_sym("rho"), sigma_sym("sigma");
2657     varidx mu(mu_sym, 4), nu(nu_sym, 4), rho(rho_sym, 4), sigma(sigma_sym, 4);
2658
2659     e = indexed(A, mu, nu) * indexed(B, nu.toggle_variance(), rho)
2660       + indexed(C, mu, sigma, rho, sigma.toggle_variance());
2661     cout << exprseq(e.get_free_indices()) << endl;
2662      // -> (~mu,~rho)
2663      // 'nu' is a dummy index, but 'sigma' is not
2664
2665     e = indexed(A, mu, mu);
2666     cout << exprseq(e.get_free_indices()) << endl;
2667      // -> (~mu)
2668      // 'mu' is not a dummy index because it appears twice with the same
2669      // variance
2670
2671     e = indexed(A, mu, nu) + 42;
2672     cout << exprseq(e.get_free_indices()) << endl; // ERROR
2673      // this will throw an exception:
2674      // "add::get_free_indices: inconsistent indices in sum"
2675 @}
2676 @end example
2677
2678 @cindex @code{expand_dummy_sum()}
2679 A dummy index summation like 
2680 @tex
2681 $ a_i b^i$
2682 @end tex
2683 @ifnottex
2684 a.i b~i
2685 @end ifnottex
2686 can be expanded for indices with numeric
2687 dimensions (e.g. 3)  into the explicit sum like
2688 @tex
2689 $a_1b^1+a_2b^2+a_3b^3 $.
2690 @end tex
2691 @ifnottex
2692 a.1 b~1 + a.2 b~2 + a.3 b~3.
2693 @end ifnottex
2694 This is performed by the function
2695
2696 @example
2697     ex expand_dummy_sum(const ex & e, bool subs_idx = false);
2698 @end example
2699
2700 which takes an expression @code{e} and returns the expanded sum for all
2701 dummy indices with numeric dimensions. If the parameter @code{subs_idx}
2702 is set to @code{true} then all substitutions are made by @code{idx} class
2703 indices, i.e. without variance. In this case the above sum 
2704 @tex
2705 $ a_i b^i$
2706 @end tex
2707 @ifnottex
2708 a.i b~i
2709 @end ifnottex
2710 will be expanded to
2711 @tex
2712 $a_1b_1+a_2b_2+a_3b_3 $.
2713 @end tex
2714 @ifnottex
2715 a.1 b.1 + a.2 b.2 + a.3 b.3.
2716 @end ifnottex
2717
2718
2719 @cindex @code{simplify_indexed()}
2720 @subsection Simplifying indexed expressions
2721
2722 In addition to the few automatic simplifications that GiNaC performs on
2723 indexed expressions (such as re-ordering the indices of symmetric tensors
2724 and calculating traces and convolutions of matrices and predefined tensors)
2725 there is the method
2726
2727 @example
2728 ex ex::simplify_indexed();
2729 ex ex::simplify_indexed(const scalar_products & sp);
2730 @end example
2731
2732 that performs some more expensive operations:
2733
2734 @itemize @bullet
2735 @item it checks the consistency of free indices in sums in the same way
2736   @code{get_free_indices()} does
2737 @item it tries to give dummy indices that appear in different terms of a sum
2738   the same name to allow simplifications like @math{a_i*b_i-a_j*b_j=0}
2739 @item it (symbolically) calculates all possible dummy index summations/contractions
2740   with the predefined tensors (this will be explained in more detail in the
2741   next section)
2742 @item it detects contractions that vanish for symmetry reasons, for example
2743   the contraction of a symmetric and a totally antisymmetric tensor
2744 @item as a special case of dummy index summation, it can replace scalar products
2745   of two tensors with a user-defined value
2746 @end itemize
2747
2748 The last point is done with the help of the @code{scalar_products} class
2749 which is used to store scalar products with known values (this is not an
2750 arithmetic class, you just pass it to @code{simplify_indexed()}):
2751
2752 @example
2753 @{
2754     symbol A("A"), B("B"), C("C"), i_sym("i");
2755     idx i(i_sym, 3);
2756
2757     scalar_products sp;
2758     sp.add(A, B, 0); // A and B are orthogonal
2759     sp.add(A, C, 0); // A and C are orthogonal
2760     sp.add(A, A, 4); // A^2 = 4 (A has length 2)
2761
2762     e = indexed(A + B, i) * indexed(A + C, i);
2763     cout << e << endl;
2764      // -> (B+A).i*(A+C).i
2765
2766     cout << e.expand(expand_options::expand_indexed).simplify_indexed(sp)
2767          << endl;
2768      // -> 4+C.i*B.i
2769 @}
2770 @end example
2771
2772 The @code{scalar_products} object @code{sp} acts as a storage for the
2773 scalar products added to it with the @code{.add()} method. This method
2774 takes three arguments: the two expressions of which the scalar product is
2775 taken, and the expression to replace it with.
2776
2777 @cindex @code{expand()}
2778 The example above also illustrates a feature of the @code{expand()} method:
2779 if passed the @code{expand_indexed} option it will distribute indices
2780 over sums, so @samp{(A+B).i} becomes @samp{A.i+B.i}.
2781
2782 @cindex @code{tensor} (class)
2783 @subsection Predefined tensors
2784
2785 Some frequently used special tensors such as the delta, epsilon and metric
2786 tensors are predefined in GiNaC. They have special properties when
2787 contracted with other tensor expressions and some of them have constant
2788 matrix representations (they will evaluate to a number when numeric
2789 indices are specified).
2790
2791 @cindex @code{delta_tensor()}
2792 @subsubsection Delta tensor
2793
2794 The delta tensor takes two indices, is symmetric and has the matrix
2795 representation @code{diag(1, 1, 1, ...)}. It is constructed by the function
2796 @code{delta_tensor()}:
2797
2798 @example
2799 @{
2800     symbol A("A"), B("B");
2801
2802     idx i(symbol("i"), 3), j(symbol("j"), 3),
2803         k(symbol("k"), 3), l(symbol("l"), 3);
2804
2805     ex e = indexed(A, i, j) * indexed(B, k, l)
2806          * delta_tensor(i, k) * delta_tensor(j, l);
2807     cout << e.simplify_indexed() << endl;
2808      // -> B.i.j*A.i.j
2809
2810     cout << delta_tensor(i, i) << endl;
2811      // -> 3
2812 @}
2813 @end example
2814
2815 @cindex @code{metric_tensor()}
2816 @subsubsection General metric tensor
2817
2818 The function @code{metric_tensor()} creates a general symmetric metric
2819 tensor with two indices that can be used to raise/lower tensor indices. The
2820 metric tensor is denoted as @samp{g} in the output and if its indices are of
2821 mixed variance it is automatically replaced by a delta tensor:
2822
2823 @example
2824 @{
2825     symbol A("A");
2826
2827     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4);
2828
2829     ex e = metric_tensor(mu, nu) * indexed(A, nu.toggle_variance(), rho);
2830     cout << e.simplify_indexed() << endl;
2831      // -> A~mu~rho
2832
2833     e = delta_tensor(mu, nu.toggle_variance()) * metric_tensor(nu, rho);
2834     cout << e.simplify_indexed() << endl;
2835      // -> g~mu~rho
2836
2837     e = metric_tensor(mu.toggle_variance(), nu.toggle_variance())
2838       * metric_tensor(nu, rho);
2839     cout << e.simplify_indexed() << endl;
2840      // -> delta.mu~rho
2841
2842     e = metric_tensor(nu.toggle_variance(), rho.toggle_variance())
2843       * metric_tensor(mu, nu) * (delta_tensor(mu.toggle_variance(), rho)
2844         + indexed(A, mu.toggle_variance(), rho));
2845     cout << e.simplify_indexed() << endl;
2846      // -> 4+A.rho~rho
2847 @}
2848 @end example
2849
2850 @cindex @code{lorentz_g()}
2851 @subsubsection Minkowski metric tensor
2852
2853 The Minkowski metric tensor is a special metric tensor with a constant
2854 matrix representation which is either @code{diag(1, -1, -1, ...)} (negative
2855 signature, the default) or @code{diag(-1, 1, 1, ...)} (positive signature).
2856 It is created with the function @code{lorentz_g()} (although it is output as
2857 @samp{eta}):
2858
2859 @example
2860 @{
2861     varidx mu(symbol("mu"), 4);
2862
2863     e = delta_tensor(varidx(0, 4), mu.toggle_variance())
2864       * lorentz_g(mu, varidx(0, 4));       // negative signature
2865     cout << e.simplify_indexed() << endl;
2866      // -> 1
2867
2868     e = delta_tensor(varidx(0, 4), mu.toggle_variance())
2869       * lorentz_g(mu, varidx(0, 4), true); // positive signature
2870     cout << e.simplify_indexed() << endl;
2871      // -> -1
2872 @}
2873 @end example
2874
2875 @cindex @code{spinor_metric()}
2876 @subsubsection Spinor metric tensor
2877
2878 The function @code{spinor_metric()} creates an antisymmetric tensor with
2879 two indices that is used to raise/lower indices of 2-component spinors.
2880 It is output as @samp{eps}:
2881
2882 @example
2883 @{
2884     symbol psi("psi");
2885
2886     spinidx A(symbol("A")), B(symbol("B")), C(symbol("C"));
2887     ex A_co = A.toggle_variance(), B_co = B.toggle_variance();
2888
2889     e = spinor_metric(A, B) * indexed(psi, B_co);
2890     cout << e.simplify_indexed() << endl;
2891      // -> psi~A
2892
2893     e = spinor_metric(A, B) * indexed(psi, A_co);
2894     cout << e.simplify_indexed() << endl;
2895      // -> -psi~B
2896
2897     e = spinor_metric(A_co, B_co) * indexed(psi, B);
2898     cout << e.simplify_indexed() << endl;
2899      // -> -psi.A
2900
2901     e = spinor_metric(A_co, B_co) * indexed(psi, A);
2902     cout << e.simplify_indexed() << endl;
2903      // -> psi.B
2904
2905     e = spinor_metric(A_co, B_co) * spinor_metric(A, B);
2906     cout << e.simplify_indexed() << endl;
2907      // -> 2
2908
2909     e = spinor_metric(A_co, B_co) * spinor_metric(B, C);
2910     cout << e.simplify_indexed() << endl;
2911      // -> -delta.A~C
2912 @}
2913 @end example
2914
2915 The matrix representation of the spinor metric is @code{[[0, 1], [-1, 0]]}.
2916
2917 @cindex @code{epsilon_tensor()}
2918 @cindex @code{lorentz_eps()}
2919 @subsubsection Epsilon tensor
2920
2921 The epsilon tensor is totally antisymmetric, its number of indices is equal
2922 to the dimension of the index space (the indices must all be of the same
2923 numeric dimension), and @samp{eps.1.2.3...} (resp. @samp{eps~0~1~2...}) is
2924 defined to be 1. Its behavior with indices that have a variance also
2925 depends on the signature of the metric. Epsilon tensors are output as
2926 @samp{eps}.
2927
2928 There are three functions defined to create epsilon tensors in 2, 3 and 4
2929 dimensions:
2930
2931 @example
2932 ex epsilon_tensor(const ex & i1, const ex & i2);
2933 ex epsilon_tensor(const ex & i1, const ex & i2, const ex & i3);
2934 ex lorentz_eps(const ex & i1, const ex & i2, const ex & i3, const ex & i4,
2935                bool pos_sig = false);
2936 @end example
2937
2938 The first two functions create an epsilon tensor in 2 or 3 Euclidean
2939 dimensions, the last function creates an epsilon tensor in a 4-dimensional
2940 Minkowski space (the last @code{bool} argument specifies whether the metric
2941 has negative or positive signature, as in the case of the Minkowski metric
2942 tensor):
2943
2944 @example
2945 @{
2946     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4),
2947            sig(symbol("sig"), 4), lam(symbol("lam"), 4), bet(symbol("bet"), 4);
2948     e = lorentz_eps(mu, nu, rho, sig) *
2949         lorentz_eps(mu.toggle_variance(), nu.toggle_variance(), lam, bet);
2950     cout << simplify_indexed(e) << endl;
2951      // -> 2*eta~bet~rho*eta~sig~lam-2*eta~sig~bet*eta~rho~lam
2952
2953     idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3);
2954     symbol A("A"), B("B");
2955     e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(B, k);
2956     cout << simplify_indexed(e) << endl;
2957      // -> -B.k*A.j*eps.i.k.j
2958     e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(A, k);
2959     cout << simplify_indexed(e) << endl;
2960      // -> 0
2961 @}
2962 @end example
2963
2964 @subsection Linear algebra
2965
2966 The @code{matrix} class can be used with indices to do some simple linear
2967 algebra (linear combinations and products of vectors and matrices, traces
2968 and scalar products):
2969
2970 @example
2971 @{
2972     idx i(symbol("i"), 2), j(symbol("j"), 2);
2973     symbol x("x"), y("y");
2974
2975     // A is a 2x2 matrix, X is a 2x1 vector
2976     matrix A = @{@{1, 2@},
2977                 @{3, 4@}@};
2978     matrix X = @{@{x, y@}@};
2979
2980     cout << indexed(A, i, i) << endl;
2981      // -> 5
2982
2983     ex e = indexed(A, i, j) * indexed(X, j);
2984     cout << e.simplify_indexed() << endl;
2985      // -> [[2*y+x],[4*y+3*x]].i
2986
2987     e = indexed(A, i, j) * indexed(X, i) + indexed(X, j) * 2;
2988     cout << e.simplify_indexed() << endl;
2989      // -> [[3*y+3*x,6*y+2*x]].j
2990 @}
2991 @end example
2992
2993 You can of course obtain the same results with the @code{matrix::add()},
2994 @code{matrix::mul()} and @code{matrix::trace()} methods (@pxref{Matrices})
2995 but with indices you don't have to worry about transposing matrices.
2996
2997 Matrix indices always start at 0 and their dimension must match the number
2998 of rows/columns of the matrix. Matrices with one row or one column are
2999 vectors and can have one or two indices (it doesn't matter whether it's a
3000 row or a column vector). Other matrices must have two indices.
3001
3002 You should be careful when using indices with variance on matrices. GiNaC
3003 doesn't look at the variance and doesn't know that @samp{F~mu~nu} and
3004 @samp{F.mu.nu} are different matrices. In this case you should use only
3005 one form for @samp{F} and explicitly multiply it with a matrix representation
3006 of the metric tensor.
3007
3008
3009 @node Non-commutative objects, Methods and functions, Indexed objects, Basic concepts
3010 @c    node-name, next, previous, up
3011 @section Non-commutative objects
3012
3013 GiNaC is equipped to handle certain non-commutative algebras. Three classes of
3014 non-commutative objects are built-in which are mostly of use in high energy
3015 physics:
3016
3017 @itemize
3018 @item Clifford (Dirac) algebra (class @code{clifford})
3019 @item su(3) Lie algebra (class @code{color})
3020 @item Matrices (unindexed) (class @code{matrix})
3021 @end itemize
3022
3023 The @code{clifford} and @code{color} classes are subclasses of
3024 @code{indexed} because the elements of these algebras usually carry
3025 indices. The @code{matrix} class is described in more detail in
3026 @ref{Matrices}.
3027
3028 Unlike most computer algebra systems, GiNaC does not primarily provide an
3029 operator (often denoted @samp{&*}) for representing inert products of
3030 arbitrary objects. Rather, non-commutativity in GiNaC is a property of the
3031 classes of objects involved, and non-commutative products are formed with
3032 the usual @samp{*} operator, as are ordinary products. GiNaC is capable of
3033 figuring out by itself which objects commutate and will group the factors
3034 by their class. Consider this example:
3035
3036 @example
3037     ...
3038     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);
3039     idx a(symbol("a"), 8), b(symbol("b"), 8);
3040     ex e = -dirac_gamma(mu) * (2*color_T(a)) * 8 * color_T(b) * dirac_gamma(nu);
3041     cout << e << endl;
3042      // -> -16*(gamma~mu*gamma~nu)*(T.a*T.b)
3043     ...
3044 @end example
3045
3046 As can be seen, GiNaC pulls out the overall commutative factor @samp{-16} and
3047 groups the non-commutative factors (the gammas and the su(3) generators)
3048 together while preserving the order of factors within each class (because
3049 Clifford objects commutate with color objects). The resulting expression is a
3050 @emph{commutative} product with two factors that are themselves non-commutative
3051 products (@samp{gamma~mu*gamma~nu} and @samp{T.a*T.b}). For clarification,
3052 parentheses are placed around the non-commutative products in the output.
3053
3054 @cindex @code{ncmul} (class)
3055 Non-commutative products are internally represented by objects of the class
3056 @code{ncmul}, as opposed to commutative products which are handled by the
3057 @code{mul} class. You will normally not have to worry about this distinction,
3058 though.
3059
3060 The advantage of this approach is that you never have to worry about using
3061 (or forgetting to use) a special operator when constructing non-commutative
3062 expressions. Also, non-commutative products in GiNaC are more intelligent
3063 than in other computer algebra systems; they can, for example, automatically
3064 canonicalize themselves according to rules specified in the implementation
3065 of the non-commutative classes. The drawback is that to work with other than
3066 the built-in algebras you have to implement new classes yourself. Both
3067 symbols and user-defined functions can be specified as being non-commutative.
3068 For symbols, this is done by subclassing class symbol; for functions,
3069 by explicitly setting the return type (@pxref{Symbolic functions}).
3070
3071 @cindex @code{return_type()}
3072 @cindex @code{return_type_tinfo()}
3073 Information about the commutativity of an object or expression can be
3074 obtained with the two member functions
3075
3076 @example
3077 unsigned      ex::return_type() const;
3078 return_type_t ex::return_type_tinfo() const;
3079 @end example
3080
3081 The @code{return_type()} function returns one of three values (defined in
3082 the header file @file{flags.h}), corresponding to three categories of
3083 expressions in GiNaC:
3084
3085 @itemize @bullet
3086 @item @code{return_types::commutative}: Commutates with everything. Most GiNaC
3087   classes are of this kind.
3088 @item @code{return_types::noncommutative}: Non-commutative, belonging to a
3089   certain class of non-commutative objects which can be determined with the
3090   @code{return_type_tinfo()} method. Expressions of this category commutate
3091   with everything except @code{noncommutative} expressions of the same
3092   class.
3093 @item @code{return_types::noncommutative_composite}: Non-commutative, composed
3094   of non-commutative objects of different classes. Expressions of this
3095   category don't commutate with any other @code{noncommutative} or
3096   @code{noncommutative_composite} expressions.
3097 @end itemize
3098
3099 The @code{return_type_tinfo()} method returns an object of type
3100 @code{return_type_t} that contains information about the type of the expression
3101 and, if given, its representation label (see section on dirac gamma matrices for
3102 more details).  The objects of type @code{return_type_t} can be tested for
3103 equality to test whether two expressions belong to the same category and
3104 therefore may not commute.
3105
3106 Here are a couple of examples:
3107
3108 @cartouche
3109 @multitable @columnfractions .6 .4
3110 @item @strong{Expression} @tab @strong{@code{return_type()}}
3111 @item @code{42} @tab @code{commutative}
3112 @item @code{2*x-y} @tab @code{commutative}
3113 @item @code{dirac_ONE()} @tab @code{noncommutative}
3114 @item @code{dirac_gamma(mu)*dirac_gamma(nu)} @tab @code{noncommutative}
3115 @item @code{2*color_T(a)} @tab @code{noncommutative}
3116 @item @code{dirac_ONE()*color_T(a)} @tab @code{noncommutative_composite}
3117 @end multitable
3118 @end cartouche
3119
3120 A last note: With the exception of matrices, positive integer powers of
3121 non-commutative objects are automatically expanded in GiNaC. For example,
3122 @code{pow(a*b, 2)} becomes @samp{a*b*a*b} if @samp{a} and @samp{b} are
3123 non-commutative expressions).
3124
3125
3126 @cindex @code{clifford} (class)
3127 @subsection Clifford algebra
3128
3129
3130 Clifford algebras are supported in two flavours: Dirac gamma
3131 matrices (more physical) and generic Clifford algebras (more
3132 mathematical). 
3133
3134 @cindex @code{dirac_gamma()}
3135 @subsubsection Dirac gamma matrices
3136 Dirac gamma matrices (note that GiNaC doesn't treat them
3137 as matrices) are designated as @samp{gamma~mu} and satisfy
3138 @samp{gamma~mu*gamma~nu + gamma~nu*gamma~mu = 2*eta~mu~nu} where
3139 @samp{eta~mu~nu} is the Minkowski metric tensor. Dirac gammas are
3140 constructed by the function
3141
3142 @example
3143 ex dirac_gamma(const ex & mu, unsigned char rl = 0);
3144 @end example
3145
3146 which takes two arguments: the index and a @dfn{representation label} in the
3147 range 0 to 255 which is used to distinguish elements of different Clifford
3148 algebras (this is also called a @dfn{spin line index}). Gammas with different
3149 labels commutate with each other. The dimension of the index can be 4 or (in
3150 the framework of dimensional regularization) any symbolic value. Spinor
3151 indices on Dirac gammas are not supported in GiNaC.
3152
3153 @cindex @code{dirac_ONE()}
3154 The unity element of a Clifford algebra is constructed by
3155
3156 @example
3157 ex dirac_ONE(unsigned char rl = 0);
3158 @end example
3159
3160 @strong{Please notice:} You must always use @code{dirac_ONE()} when referring to
3161 multiples of the unity element, even though it's customary to omit it.
3162 E.g. instead of @code{dirac_gamma(mu)*(dirac_slash(q,4)+m)} you have to
3163 write @code{dirac_gamma(mu)*(dirac_slash(q,4)+m*dirac_ONE())}. Otherwise,
3164 GiNaC will complain and/or produce incorrect results.
3165
3166 @cindex @code{dirac_gamma5()}
3167 There is a special element @samp{gamma5} that commutates with all other
3168 gammas, has a unit square, and in 4 dimensions equals
3169 @samp{gamma~0 gamma~1 gamma~2 gamma~3}, provided by
3170
3171 @example
3172 ex dirac_gamma5(unsigned char rl = 0);
3173 @end example
3174
3175 @cindex @code{dirac_gammaL()}
3176 @cindex @code{dirac_gammaR()}
3177 The chiral projectors @samp{(1+/-gamma5)/2} are also available as proper
3178 objects, constructed by
3179
3180 @example
3181 ex dirac_gammaL(unsigned char rl = 0);
3182 ex dirac_gammaR(unsigned char rl = 0);
3183 @end example
3184
3185 They observe the relations @samp{gammaL^2 = gammaL}, @samp{gammaR^2 = gammaR},
3186 and @samp{gammaL gammaR = gammaR gammaL = 0}.
3187
3188 @cindex @code{dirac_slash()}
3189 Finally, the function
3190
3191 @example
3192 ex dirac_slash(const ex & e, const ex & dim, unsigned char rl = 0);
3193 @end example
3194
3195 creates a term that represents a contraction of @samp{e} with the Dirac
3196 Lorentz vector (it behaves like a term of the form @samp{e.mu gamma~mu}
3197 with a unique index whose dimension is given by the @code{dim} argument).
3198 Such slashed expressions are printed with a trailing backslash, e.g. @samp{e\}.
3199
3200 In products of dirac gammas, superfluous unity elements are automatically
3201 removed, squares are replaced by their values, and @samp{gamma5}, @samp{gammaL}
3202 and @samp{gammaR} are moved to the front.
3203
3204 The @code{simplify_indexed()} function performs contractions in gamma strings,
3205 for example
3206
3207 @example
3208 @{
3209     ...
3210     symbol a("a"), b("b"), D("D");
3211     varidx mu(symbol("mu"), D);
3212     ex e = dirac_gamma(mu) * dirac_slash(a, D)
3213          * dirac_gamma(mu.toggle_variance());
3214     cout << e << endl;
3215      // -> gamma~mu*a\*gamma.mu
3216     e = e.simplify_indexed();
3217     cout << e << endl;
3218      // -> -D*a\+2*a\
3219     cout << e.subs(D == 4) << endl;
3220      // -> -2*a\
3221     ...
3222 @}
3223 @end example
3224
3225 @cindex @code{dirac_trace()}
3226 To calculate the trace of an expression containing strings of Dirac gammas
3227 you use one of the functions
3228
3229 @example
3230 ex dirac_trace(const ex & e, const std::set<unsigned char> & rls,
3231                const ex & trONE = 4);
3232 ex dirac_trace(const ex & e, const lst & rll, const ex & trONE = 4);
3233 ex dirac_trace(const ex & e, unsigned char rl = 0, const ex & trONE = 4);
3234 @end example
3235
3236 These functions take the trace over all gammas in the specified set @code{rls}
3237 or list @code{rll} of representation labels, or the single label @code{rl};
3238 gammas with other labels are left standing. The last argument to
3239 @code{dirac_trace()} is the value to be returned for the trace of the unity
3240 element, which defaults to 4.
3241
3242 The @code{dirac_trace()} function is a linear functional that is equal to the
3243 ordinary matrix trace only in @math{D = 4} dimensions. In particular, the
3244 functional is not cyclic in
3245 @tex $D \ne 4$
3246 @end tex
3247 @ifnottex
3248 @math{D != 4}
3249 @end ifnottex
3250 dimensions when acting on
3251 expressions containing @samp{gamma5}, so it's not a proper trace. This
3252 @samp{gamma5} scheme is described in greater detail in the article
3253 @cite{The Role of gamma5 in Dimensional Regularization} (@ref{Bibliography}).
3254
3255 The value of the trace itself is also usually different in 4 and in
3256 @tex $D \ne 4$
3257 @end tex
3258 @ifnottex
3259 @math{D != 4}
3260 @end ifnottex
3261 dimensions:
3262
3263 @example
3264 @{
3265     // 4 dimensions
3266     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4);
3267     ex e = dirac_gamma(mu) * dirac_gamma(nu) *
3268            dirac_gamma(mu.toggle_variance()) * dirac_gamma(rho);
3269     cout << dirac_trace(e).simplify_indexed() << endl;
3270      // -> -8*eta~rho~nu
3271 @}
3272 ...
3273 @{
3274     // D dimensions
3275     symbol D("D");
3276     varidx mu(symbol("mu"), D), nu(symbol("nu"), D), rho(symbol("rho"), D);
3277     ex e = dirac_gamma(mu) * dirac_gamma(nu) *
3278            dirac_gamma(mu.toggle_variance()) * dirac_gamma(rho);
3279     cout << dirac_trace(e).simplify_indexed() << endl;
3280      // -> 8*eta~rho~nu-4*eta~rho~nu*D
3281 @}
3282 @end example
3283
3284 Here is an example for using @code{dirac_trace()} to compute a value that
3285 appears in the calculation of the one-loop vacuum polarization amplitude in
3286 QED:
3287
3288 @example
3289 @{
3290     symbol q("q"), l("l"), m("m"), ldotq("ldotq"), D("D");
3291     varidx mu(symbol("mu"), D), nu(symbol("nu"), D);
3292
3293     scalar_products sp;
3294     sp.add(l, l, pow(l, 2));
3295     sp.add(l, q, ldotq);
3296
3297     ex e = dirac_gamma(mu) *
3298            (dirac_slash(l, D) + dirac_slash(q, D) + m * dirac_ONE()) *    
3299            dirac_gamma(mu.toggle_variance()) *
3300            (dirac_slash(l, D) + m * dirac_ONE());   
3301     e = dirac_trace(e).simplify_indexed(sp);
3302     e = e.collect(lst@{l, ldotq, m@});
3303     cout << e << endl;
3304      // -> (8-4*D)*l^2+(8-4*D)*ldotq+4*D*m^2
3305 @}
3306 @end example
3307
3308 The @code{canonicalize_clifford()} function reorders all gamma products that
3309 appear in an expression to a canonical (but not necessarily simple) form.
3310 You can use this to compare two expressions or for further simplifications:
3311
3312 @example
3313 @{
3314     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);
3315     ex e = dirac_gamma(mu) * dirac_gamma(nu) + dirac_gamma(nu) * dirac_gamma(mu);
3316     cout << e << endl;
3317      // -> gamma~mu*gamma~nu+gamma~nu*gamma~mu
3318
3319     e = canonicalize_clifford(e);
3320     cout << e << endl;
3321      // -> 2*ONE*eta~mu~nu
3322 @}
3323 @end example
3324
3325 @cindex @code{clifford_unit()}
3326 @subsubsection A generic Clifford algebra
3327
3328 A generic Clifford algebra, i.e. a
3329 @tex $2^n$
3330 @end tex
3331 @ifnottex
3332 2^n
3333 @end ifnottex
3334 dimensional algebra with
3335 generators 
3336 @tex $e_k$
3337 @end tex 
3338 @ifnottex
3339 e_k
3340 @end ifnottex
3341 satisfying the identities 
3342 @tex
3343 $e_i e_j + e_j e_i = M(i, j) + M(j, i)$
3344 @end tex
3345 @ifnottex
3346 e~i e~j + e~j e~i = M(i, j) + M(j, i) 
3347 @end ifnottex
3348 for some bilinear form (@code{metric})
3349 @math{M(i, j)}, which may be non-symmetric (see arXiv:math.QA/9911180) 
3350 and contain symbolic entries. Such generators are created by the
3351 function 
3352
3353 @example
3354     ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl = 0);    
3355 @end example
3356
3357 where @code{mu} should be a @code{idx} (or descendant) class object
3358 indexing the generators.
3359 Parameter @code{metr} defines the metric @math{M(i, j)} and can be
3360 represented by a square @code{matrix}, @code{tensormetric} or @code{indexed} class
3361 object. In fact, any expression either with two free indices or without
3362 indices at all is admitted as @code{metr}. In the later case an @code{indexed}
3363 object with two newly created indices with @code{metr} as its
3364 @code{op(0)} will be used.
3365 Optional parameter @code{rl} allows to distinguish different
3366 Clifford algebras, which will commute with each other. 
3367
3368 Note that the call @code{clifford_unit(mu, minkmetric())} creates
3369 something very close to @code{dirac_gamma(mu)}, although
3370 @code{dirac_gamma} have more efficient simplification mechanism. 
3371 @cindex @code{get_metric()}
3372 Also, the object created by @code{clifford_unit(mu, minkmetric())} is
3373 not aware about the symmetry of its metric, see the start of the previous
3374 paragraph. A more accurate analog of 'dirac_gamma(mu)' should be
3375 specifies as follows:
3376
3377 @example
3378     clifford_unit(mu, indexed(minkmetric(),sy_symm(),varidx(symbol("i"),4),varidx(symbol("j"),4)));
3379 @end example
3380
3381 The method @code{clifford::get_metric()} returns a metric defining this
3382 Clifford number.
3383
3384 If the matrix @math{M(i, j)} is in fact symmetric you may prefer to create
3385 the Clifford algebra units with a call like that
3386
3387 @example
3388     ex e = clifford_unit(mu, indexed(M, sy_symm(), i, j));
3389 @end example
3390
3391 since this may yield some further automatic simplifications. Again, for a
3392 metric defined through a @code{matrix} such a symmetry is detected
3393 automatically. 
3394
3395 Individual generators of a Clifford algebra can be accessed in several
3396 ways. For example 
3397
3398 @example
3399 @{
3400     ... 
3401     idx i(symbol("i"), 4);
3402     realsymbol s("s");
3403     ex M = diag_matrix(lst@{1, -1, 0, s@});
3404     ex e = clifford_unit(i, M);
3405     ex e0 = e.subs(i == 0);
3406     ex e1 = e.subs(i == 1);
3407     ex e2 = e.subs(i == 2);
3408     ex e3 = e.subs(i == 3);
3409     ...
3410 @}
3411 @end example
3412
3413 will produce four anti-commuting generators of a Clifford algebra with properties
3414 @tex
3415 $e_0^2=1 $, $e_1^2=-1$,  $e_2^2=0$ and $e_3^2=s$.
3416 @end tex
3417 @ifnottex
3418 @code{pow(e0, 2) = 1}, @code{pow(e1, 2) = -1}, @code{pow(e2, 2) = 0} and
3419 @code{pow(e3, 2) = s}.
3420 @end ifnottex
3421
3422 @cindex @code{lst_to_clifford()}
3423 A similar effect can be achieved from the function
3424
3425 @example
3426     ex lst_to_clifford(const ex & v, const ex & mu,  const ex & metr,
3427                        unsigned char rl = 0);
3428     ex lst_to_clifford(const ex & v, const ex & e);
3429 @end example
3430
3431 which converts a list or vector 
3432 @tex
3433 $v = (v^0, v^1, ..., v^n)$
3434 @end tex
3435 @ifnottex
3436 @samp{v = (v~0, v~1, ..., v~n)} 
3437 @end ifnottex
3438 into the
3439 Clifford number 
3440 @tex
3441 $v^0 e_0 + v^1 e_1 + ... + v^n e_n$
3442 @end tex
3443 @ifnottex
3444 @samp{v~0 e.0 + v~1 e.1 + ... + v~n e.n}
3445 @end ifnottex
3446 with @samp{e.k}
3447 directly supplied in the second form of the procedure. In the first form
3448 the Clifford unit @samp{e.k} is generated by the call of
3449 @code{clifford_unit(mu, metr, rl)}. 
3450 @cindex pseudo-vector
3451 If the number of components supplied
3452 by @code{v} exceeds the dimensionality of the Clifford unit @code{e} by
3453 1 then function @code{lst_to_clifford()} uses the following
3454 pseudo-vector representation: 
3455 @tex
3456 $v^0 {\bf 1} + v^1 e_0 + v^2 e_1 + ... + v^{n+1} e_n$
3457 @end tex
3458 @ifnottex
3459 @samp{v~0 ONE + v~1 e.0 + v~2 e.1 + ... + v~[n+1] e.n}
3460 @end ifnottex
3461
3462 The previous code may be rewritten with the help of @code{lst_to_clifford()} as follows
3463
3464 @example
3465 @{
3466     ...
3467     idx i(symbol("i"), 4);
3468     realsymbol s("s");
3469     ex M = diag_matrix(@{1, -1, 0, s@});
3470     ex e0 = lst_to_clifford(lst@{1, 0, 0, 0@}, i, M);
3471     ex e1 = lst_to_clifford(lst@{0, 1, 0, 0@}, i, M);
3472     ex e2 = lst_to_clifford(lst@{0, 0, 1, 0@}, i, M);
3473     ex e3 = lst_to_clifford(lst@{0, 0, 0, 1@}, i, M);
3474   ...
3475 @}
3476 @end example
3477
3478 @cindex @code{clifford_to_lst()}
3479 There is the inverse function 
3480
3481 @example
3482     lst clifford_to_lst(const ex & e, const ex & c, bool algebraic = true);
3483 @end example
3484
3485 which takes an expression @code{e} and tries to find a list
3486 @tex
3487 $v = (v^0, v^1, ..., v^n)$
3488 @end tex
3489 @ifnottex
3490 @samp{v = (v~0, v~1, ..., v~n)} 
3491 @end ifnottex
3492 such that the expression is either vector 
3493 @tex
3494 $e = v^0 c_0 + v^1 c_1 + ... + v^n c_n$
3495 @end tex
3496 @ifnottex
3497 @samp{e = v~0 c.0 + v~1 c.1 + ... + v~n c.n}
3498 @end ifnottex
3499 or pseudo-vector 
3500 @tex
3501 $v^0 {\bf 1} + v^1 e_0 + v^2 e_1 + ... + v^{n+1} e_n$
3502 @end tex
3503 @ifnottex
3504 @samp{v~0 ONE + v~1 e.0 + v~2 e.1 + ... + v~[n+1] e.n}
3505 @end ifnottex
3506 with respect to the given Clifford units @code{c}. Here none of the
3507 @samp{v~k} should contain Clifford units @code{c} (of course, this
3508 may be impossible). This function can use an @code{algebraic} method
3509 (default) or a symbolic one. With the @code{algebraic} method the
3510 @samp{v~k} are calculated as 
3511 @tex
3512 $(e c_k + c_k e)/c_k^2$. If $c_k^2$
3513 @end tex
3514 @ifnottex
3515 @samp{(e c.k + c.k e)/pow(c.k, 2)}.   If @samp{pow(c.k, 2)} 
3516 @end ifnottex
3517 is zero or is not @code{numeric} for some @samp{k}
3518 then the method will be automatically changed to symbolic. The same effect
3519 is obtained by the assignment (@code{algebraic = false}) in the procedure call.
3520
3521 @cindex @code{clifford_prime()}
3522 @cindex @code{clifford_star()}
3523 @cindex @code{clifford_bar()}
3524 There are several functions for (anti-)automorphisms of Clifford algebras:
3525
3526 @example
3527     ex clifford_prime(const ex & e)
3528     inline ex clifford_star(const ex & e)
3529     inline ex clifford_bar(const ex & e)
3530 @end example
3531
3532 The automorphism of a Clifford algebra @code{clifford_prime()} simply
3533 changes signs of all Clifford units in the expression. The reversion
3534 of a Clifford algebra @code{clifford_star()} reverses the order of Clifford
3535 units in any product. Finally the main anti-automorphism
3536 of a Clifford algebra @code{clifford_bar()} is the composition of the
3537 previous two, i.e. it makes the reversion and changes signs of all Clifford units
3538 in a product. These functions correspond to the notations
3539 @math{e'},
3540 @tex
3541 $e^*$
3542 @end tex
3543 @ifnottex
3544 e*
3545 @end ifnottex
3546 and
3547 @tex
3548 $\overline{e}$
3549 @end tex
3550 @ifnottex
3551 @code{\bar@{e@}}
3552 @end ifnottex
3553 used in Clifford algebra textbooks.
3554
3555 @cindex @code{clifford_norm()}
3556 The function
3557
3558 @example
3559     ex clifford_norm(const ex & e);
3560 @end example
3561
3562 @cindex @code{clifford_inverse()}
3563 calculates the norm of a Clifford number from the expression
3564 @tex
3565 $||e||^2 = e\overline{e}$.
3566 @end tex
3567 @ifnottex
3568 @code{||e||^2 = e \bar@{e@}}
3569 @end ifnottex
3570  The inverse of a Clifford expression is returned by the function
3571
3572 @example
3573     ex clifford_inverse(const ex & e);
3574 @end example
3575
3576 which calculates it as 
3577 @tex
3578 $e^{-1} = \overline{e}/||e||^2$.
3579 @end tex
3580 @ifnottex
3581 @math{e^@{-1@} = \bar@{e@}/||e||^2}
3582 @end ifnottex
3583  If
3584 @tex
3585 $||e|| = 0$
3586 @end tex
3587 @ifnottex
3588 @math{||e||=0}
3589 @end ifnottex
3590 then an exception is raised.
3591
3592 @cindex @code{remove_dirac_ONE()}
3593 If a Clifford number happens to be a factor of
3594 @code{dirac_ONE()} then we can convert it to a ``real'' (non-Clifford)
3595 expression by the function
3596
3597 @example
3598     ex remove_dirac_ONE(const ex & e);
3599 @end example
3600
3601 @cindex @code{canonicalize_clifford()}
3602 The function @code{canonicalize_clifford()} works for a
3603 generic Clifford algebra in a similar way as for Dirac gammas.
3604
3605 The next provided function is
3606
3607 @cindex @code{clifford_moebius_map()}
3608 @example
3609     ex clifford_moebius_map(const ex & a, const ex & b, const ex & c,
3610                             const ex & d, const ex & v, const ex & G,
3611                             unsigned char rl = 0);
3612     ex clifford_moebius_map(const ex & M, const ex & v, const ex & G,
3613                             unsigned char rl = 0);
3614 @end example 
3615
3616 It takes a list or vector @code{v} and makes the Moebius (conformal or
3617 linear-fractional) transformation @samp{v -> (av+b)/(cv+d)} defined by
3618 the matrix @samp{M = [[a, b], [c, d]]}. The parameter @code{G} defines
3619 the metric of the surrounding (pseudo-)Euclidean space. This can be an
3620 indexed object, tensormetric, matrix or a Clifford unit, in the later
3621 case the optional parameter @code{rl} is ignored even if supplied.
3622 Depending from the type of @code{v} the returned value of this function
3623 is either a vector or a list holding vector's components.
3624
3625 @cindex @code{clifford_max_label()}
3626 Finally the function
3627
3628 @example
3629 char clifford_max_label(const ex & e, bool ignore_ONE = false);
3630 @end example
3631
3632 can detect a presence of Clifford objects in the expression @code{e}: if
3633 such objects are found it returns the maximal
3634 @code{representation_label} of them, otherwise @code{-1}. The optional
3635 parameter @code{ignore_ONE} indicates if @code{dirac_ONE} objects should
3636 be ignored during the search.
3637  
3638 LaTeX output for Clifford units looks like
3639 @code{\clifford[1]@{e@}^@{@{\nu@}@}}, where @code{1} is the
3640 @code{representation_label} and @code{\nu} is the index of the
3641 corresponding unit. This provides a flexible typesetting with a suitable
3642 definition of the @code{\clifford} command. For example, the definition
3643 @example
3644     \newcommand@{\clifford@}[1][]@{@}
3645 @end example
3646 typesets all Clifford units identically, while the alternative definition
3647 @example
3648     \newcommand@{\clifford@}[2][]@{\ifcase #1 #2\or \tilde@{#2@} \or \breve@{#2@} \fi@}
3649 @end example
3650 prints units with @code{representation_label=0} as 
3651 @tex
3652 $e$,
3653 @end tex
3654 @ifnottex
3655 @code{e},
3656 @end ifnottex
3657 with @code{representation_label=1} as 
3658 @tex
3659 $\tilde{e}$
3660 @end tex
3661 @ifnottex
3662 @code{\tilde@{e@}}
3663 @end ifnottex
3664  and with @code{representation_label=2} as 
3665 @tex
3666 $\breve{e}$.
3667 @end tex
3668 @ifnottex
3669 @code{\breve@{e@}}.
3670 @end ifnottex
3671
3672 @cindex @code{color} (class)
3673 @subsection Color algebra
3674
3675 @cindex @code{color_T()}
3676 For computations in quantum chromodynamics, GiNaC implements the base elements
3677 and structure constants of the su(3) Lie algebra (color algebra). The base
3678 elements @math{T_a} are constructed by the function
3679
3680 @example
3681 ex color_T(const ex & a, unsigned char rl = 0);
3682 @end example
3683
3684 which takes two arguments: the index and a @dfn{representation label} in the
3685 range 0 to 255 which is used to distinguish elements of different color
3686 algebras. Objects with different labels commutate with each other. The
3687 dimension of the index must be exactly 8 and it should be of class @code{idx},
3688 not @code{varidx}.
3689
3690 @cindex @code{color_ONE()}
3691 The unity element of a color algebra is constructed by
3692
3693 @example
3694 ex color_ONE(unsigned char rl = 0);
3695 @end example
3696
3697 @strong{Please notice:} You must always use @code{color_ONE()} when referring to
3698 multiples of the unity element, even though it's customary to omit it.
3699 E.g. instead of @code{color_T(a)*(color_T(b)*indexed(X,b)+1)} you have to
3700 write @code{color_T(a)*(color_T(b)*indexed(X,b)+color_ONE())}. Otherwise,
3701 GiNaC may produce incorrect results.
3702
3703 @cindex @code{color_d()}
3704 @cindex @code{color_f()}
3705 The functions
3706
3707 @example
3708 ex color_d(const ex & a, const ex & b, const ex & c);
3709 ex color_f(const ex & a, const ex & b, const ex & c);
3710 @end example
3711
3712 create the symmetric and antisymmetric structure constants @math{d_abc} and
3713 @math{f_abc} which satisfy @math{@{T_a, T_b@} = 1/3 delta_ab + d_abc T_c}
3714 and @math{[T_a, T_b] = i f_abc T_c}.
3715
3716 These functions evaluate to their numerical values,
3717 if you supply numeric indices to them. The index values should be in
3718 the range from 1 to 8, not from 0 to 7. This departure from usual conventions
3719 goes along better with the notations used in physical literature.
3720
3721 @cindex @code{color_h()}
3722 There's an additional function
3723
3724 @example
3725 ex color_h(const ex & a, const ex & b, const ex & c);
3726 @end example
3727
3728 which returns the linear combination @samp{color_d(a, b, c)+I*color_f(a, b, c)}.
3729
3730 The function @code{simplify_indexed()} performs some simplifications on
3731 expressions containing color objects:
3732
3733 @example
3734 @{
3735     ...
3736     idx a(symbol("a"), 8), b(symbol("b"), 8), c(symbol("c"), 8),
3737         k(symbol("k"), 8), l(symbol("l"), 8);
3738
3739     e = color_d(a, b, l) * color_f(a, b, k);
3740     cout << e.simplify_indexed() << endl;
3741      // -> 0
3742
3743     e = color_d(a, b, l) * color_d(a, b, k);
3744     cout << e.simplify_indexed() << endl;
3745      // -> 5/3*delta.k.l
3746
3747     e = color_f(l, a, b) * color_f(a, b, k);
3748     cout << e.simplify_indexed() << endl;
3749      // -> 3*delta.k.l
3750
3751     e = color_h(a, b, c) * color_h(a, b, c);
3752     cout << e.simplify_indexed() << endl;
3753      // -> -32/3
3754
3755     e = color_h(a, b, c) * color_T(b) * color_T(c);
3756     cout << e.simplify_indexed() << endl;
3757      // -> -2/3*T.a
3758
3759     e = color_h(a, b, c) * color_T(a) * color_T(b) * color_T(c);
3760     cout << e.simplify_indexed() << endl;
3761      // -> -8/9*ONE
3762
3763     e = color_T(k) * color_T(a) * color_T(b) * color_T(k);
3764     cout << e.simplify_indexed() << endl;
3765      // -> 1/4*delta.b.a*ONE-1/6*T.a*T.b
3766     ...
3767 @end example
3768
3769 @cindex @code{color_trace()}
3770 To calculate the trace of an expression containing color objects you use one
3771 of the functions
3772
3773 @example
3774 ex color_trace(const ex & e, const std::set<unsigned char> & rls);
3775 ex color_trace(const ex & e, const lst & rll);
3776 ex color_trace(const ex & e, unsigned char rl = 0);
3777 @end example
3778
3779 These functions take the trace over all color @samp{T} objects in the
3780 specified set @code{rls} or list @code{rll} of representation labels, or the
3781 single label @code{rl}; @samp{T}s with other labels are left standing. For
3782 example:
3783
3784 @example
3785     ...
3786     e = color_trace(4 * color_T(a) * color_T(b) * color_T(c));
3787     cout << e << endl;
3788      // -> -I*f.a.c.b+d.a.c.b
3789 @}
3790 @end example
3791
3792
3793 @node Methods and functions, Information about expressions, Non-commutative objects, Top
3794 @c    node-name, next, previous, up
3795 @chapter Methods and functions
3796 @cindex polynomial
3797
3798 In this chapter the most important algorithms provided by GiNaC will be
3799 described.  Some of them are implemented as functions on expressions,
3800 others are implemented as methods provided by expression objects.  If
3801 they are methods, there exists a wrapper function around it, so you can
3802 alternatively call it in a functional way as shown in the simple
3803 example:
3804
3805 @example
3806     ...
3807     cout << "As method:   " << sin(1).evalf() << endl;
3808     cout << "As function: " << evalf(sin(1)) << endl;
3809     ...
3810 @end example
3811
3812 @cindex @code{subs()}
3813 The general rule is that wherever methods accept one or more parameters
3814 (@var{arg1}, @var{arg2}, @dots{}) the order of arguments the function
3815 wrapper accepts is the same but preceded by the object to act on
3816 (@var{object}, @var{arg1}, @var{arg2}, @dots{}).  This approach is the
3817 most natural one in an OO model but it may lead to confusion for MapleV
3818 users because where they would type @code{A:=x+1; subs(x=2,A);} GiNaC
3819 would require @code{A=x+1; subs(A,x==2);} (after proper declaration of
3820 @code{A} and @code{x}).  On the other hand, since MapleV returns 3 on
3821 @code{A:=x^2+3; coeff(A,x,0);} (GiNaC: @code{A=pow(x,2)+3;
3822 coeff(A,x,0);}) it is clear that MapleV is not trying to be consistent
3823 here.  Also, users of MuPAD will in most cases feel more comfortable
3824 with GiNaC's convention.  All function wrappers are implemented
3825 as simple inline functions which just call the corresponding method and
3826 are only provided for users uncomfortable with OO who are dead set to
3827 avoid method invocations.  Generally, nested function wrappers are much
3828 harder to read than a sequence of methods and should therefore be
3829 avoided if possible.  On the other hand, not everything in GiNaC is a
3830 method on class @code{ex} and sometimes calling a function cannot be
3831 avoided.
3832
3833 @menu
3834 * Information about expressions::
3835 * Numerical evaluation::
3836 * Substituting expressions::
3837 * Pattern matching and advanced substitutions::
3838 * Applying a function on subexpressions::
3839 * Visitors and tree traversal::
3840 * Polynomial arithmetic::           Working with polynomials.
3841 * Rational expressions::            Working with rational functions.
3842 * Symbolic differentiation::
3843 * Series expansion::                Taylor and Laurent expansion.
3844 * Symmetrization::
3845 * Built-in functions::              List of predefined mathematical functions.
3846 * Multiple polylogarithms::
3847 * Iterated integrals::
3848 * Complex expressions::
3849 * Solving linear systems of equations::
3850 * Input/output::                    Input and output of expressions.
3851 @end menu
3852
3853
3854 @node Information about expressions, Numerical evaluation, Methods and functions, Methods and functions
3855 @c    node-name, next, previous, up
3856 @section Getting information about expressions
3857
3858 @subsection Checking expression types
3859 @cindex @code{is_a<@dots{}>()}
3860 @cindex @code{is_exactly_a<@dots{}>()}
3861 @cindex @code{ex_to<@dots{}>()}
3862 @cindex Converting @code{ex} to other classes
3863 @cindex @code{info()}
3864 @cindex @code{return_type()}
3865 @cindex @code{return_type_tinfo()}
3866
3867 Sometimes it's useful to check whether a given expression is a plain number,
3868 a sum, a polynomial with integer coefficients, or of some other specific type.
3869 GiNaC provides a couple of functions for this:
3870
3871 @example
3872 bool is_a<T>(const ex & e);
3873 bool is_exactly_a<T>(const ex & e);
3874 bool ex::info(unsigned flag);
3875 unsigned ex::return_type() const;
3876 return_type_t ex::return_type_tinfo() const;
3877 @end example
3878
3879 When the test made by @code{is_a<T>()} returns true, it is safe to call
3880 one of the functions @code{ex_to<T>()}, where @code{T} is one of the
3881 class names (@xref{The class hierarchy}, for a list of all classes). For
3882 example, assuming @code{e} is an @code{ex}:
3883
3884 @example
3885 @{
3886     @dots{}
3887     if (is_a<numeric>(e))
3888         numeric n = ex_to<numeric>(e);
3889     @dots{}
3890 @}
3891 @end example
3892
3893 @code{is_a<T>(e)} allows you to check whether the top-level object of
3894 an expression @samp{e} is an instance of the GiNaC class @samp{T}
3895 (@xref{The class hierarchy}, for a list of all classes). This is most useful,
3896 e.g., for checking whether an expression is a number, a sum, or a product:
3897
3898 @example
3899 @{
3900     symbol x("x");
3901     ex e1 = 42;
3902     ex e2 = 4*x - 3;
3903     is_a<numeric>(e1);  // true
3904     is_a<numeric>(e2);  // false
3905     is_a<add>(e1);      // false
3906     is_a<add>(e2);      // true
3907     is_a<mul>(e1);      // false
3908     is_a<mul>(e2);      // false
3909 @}
3910 @end example
3911
3912 In contrast, @code{is_exactly_a<T>(e)} allows you to check whether the
3913 top-level object of an expression @samp{e} is an instance of the GiNaC
3914 class @samp{T}, not including parent classes.
3915
3916 The @code{info()} method is used for checking certain attributes of
3917 expressions. The possible values for the @code{flag} argument are defined
3918 in @file{ginac/flags.h}, the most important being explained in the following
3919 table:
3920
3921 @cartouche
3922 @multitable @columnfractions .30 .70
3923 @item @strong{Flag} @tab @strong{Returns true if the object is@dots{}}
3924 @item @code{numeric}
3925 @tab @dots{}a number (same as @code{is_a<numeric>(...)})
3926 @item @code{real}
3927 @tab @dots{}a real number, symbol or constant (i.e. is not complex)
3928 @item @code{rational}
3929 @tab @dots{}an exact rational number (integers are rational, too)
3930 @item @code{integer}
3931 @tab @dots{}a (non-complex) integer
3932 @item @code{crational}
3933 @tab @dots{}an exact (complex) rational number (such as @math{2/3+7/2*I})
3934 @item @code{cinteger}
3935 @tab @dots{}a (complex) integer (such as @math{2-3*I})
3936 @item @code{positive}
3937 @tab @dots{}not complex and greater than 0
3938 @item @code{negative}
3939 @tab @dots{}not complex and less than 0
3940 @item @code{nonnegative}
3941 @tab @dots{}not complex and greater than or equal to 0
3942 @item @code{posint}
3943 @tab @dots{}an integer greater than 0
3944 @item @code{negint}
3945 @tab @dots{}an integer less than 0
3946 @item @code{nonnegint}
3947 @tab @dots{}an integer greater than or equal to 0
3948 @item @code{even}
3949 @tab @dots{}an even integer
3950 @item @code{odd}
3951 @tab @dots{}an odd integer
3952 @item @code{prime}
3953 @tab @dots{}a prime integer (probabilistic primality test)
3954 @item @code{relation}
3955 @tab @dots{}a relation (same as @code{is_a<relational>(...)})
3956 @item @code{relation_equal}
3957 @tab @dots{}a @code{==} relation
3958 @item @code{relation_not_equal}
3959 @tab @dots{}a @code{!=} relation
3960 @item @code{relation_less}
3961 @tab @dots{}a @code{<} relation
3962 @item @code{relation_less_or_equal}
3963 @tab @dots{}a @code{<=} relation
3964 @item @code{relation_greater}
3965 @tab @dots{}a @code{>} relation
3966 @item @code{relation_greater_or_equal}
3967 @tab @dots{}a @code{>=} relation
3968 @item @code{symbol}
3969 @tab @dots{}a symbol (same as @code{is_a<symbol>(...)})
3970 @item @code{list}
3971 @tab @dots{}a list (same as @code{is_a<lst>(...)})
3972 @item @code{polynomial}
3973 @tab @dots{}a polynomial (i.e. only consists of sums and products of numbers and symbols with positive integer powers)
3974 @item @code{integer_polynomial}
3975 @tab @dots{}a polynomial with (non-complex) integer coefficients
3976 @item @code{cinteger_polynomial}
3977 @tab @dots{}a polynomial with (possibly complex) integer coefficients (such as @math{2-3*I})
3978 @item @code{rational_polynomial}
3979 @tab @dots{}a polynomial with (non-complex) rational coefficients
3980 @item @code{crational_polynomial}
3981 @tab @dots{}a polynomial with (possibly complex) rational coefficients (such as @math{2/3+7/2*I})
3982 @item @code{rational_function}
3983 @tab @dots{}a rational function (@math{x+y}, @math{z/(x+y)})
3984 @end multitable
3985 @end cartouche
3986
3987 To determine whether an expression is commutative or non-commutative and if
3988 so, with which other expressions it would commutate, you use the methods
3989 @code{return_type()} and @code{return_type_tinfo()}. @xref{Non-commutative objects},
3990 for an explanation of these.
3991
3992
3993 @subsection Accessing subexpressions
3994 @cindex container
3995
3996 Many GiNaC classes, like @code{add}, @code{mul}, @code{lst}, and
3997 @code{function}, act as containers for subexpressions. For example, the
3998 subexpressions of a sum (an @code{add} object) are the individual terms,
3999 and the subexpressions of a @code{function} are the function's arguments.
4000
4001 @cindex @code{nops()}
4002 @cindex @code{op()}
4003 GiNaC provides several ways of accessing subexpressions. The first way is to
4004 use the two methods
4005
4006 @example
4007 size_t ex::nops();
4008 ex ex::op(size_t i);
4009 @end example
4010
4011 @code{nops()} determines the number of subexpressions (operands) contained
4012 in the expression, while @code{op(i)} returns the @code{i}-th
4013 (0..@code{nops()-1}) subexpression. In the case of a @code{power} object,
4014 @code{op(0)} will return the basis and @code{op(1)} the exponent. For
4015 @code{indexed} objects, @code{op(0)} is the base expression and @code{op(i)},
4016 @math{i>0} are the indices.
4017
4018 @cindex iterators
4019 @cindex @code{const_iterator}
4020 The second way to access subexpressions is via the STL-style random-access
4021 iterator class @code{const_iterator} and the methods
4022
4023 @example
4024 const_iterator ex::begin();
4025 const_iterator ex::end();
4026 @end example
4027
4028 @code{begin()} returns an iterator referring to the first subexpression;
4029 @code{end()} returns an iterator which is one-past the last subexpression.
4030 If the expression has no subexpressions, then @code{begin() == end()}. These
4031 iterators can also be used in conjunction with non-modifying STL algorithms.
4032
4033 Here is an example that (non-recursively) prints the subexpressions of a
4034 given expression in three different ways:
4035
4036 @example
4037 @{
4038     ex e = ...
4039
4040     // with nops()/op()
4041     for (size_t i = 0; i != e.nops(); ++i)
4042         cout << e.op(i) << endl;
4043
4044     // with iterators
4045     for (const_iterator i = e.begin(); i != e.end(); ++i)
4046         cout << *i << endl;
4047
4048     // with iterators and STL copy()
4049     std::copy(e.begin(), e.end(), std::ostream_iterator<ex>(cout, "\n"));
4050 @}
4051 @end example
4052
4053 @cindex @code{const_preorder_iterator}
4054 @cindex @code{const_postorder_iterator}
4055 @code{op()}/@code{nops()} and @code{const_iterator} only access an
4056 expression's immediate children. GiNaC provides two additional iterator
4057 classes, @code{const_preorder_iterator} and @code{const_postorder_iterator},
4058 that iterate over all objects in an expression tree, in preorder or postorder,
4059 respectively. They are STL-style forward iterators, and are created with the
4060 methods
4061
4062 @example
4063 const_preorder_iterator ex::preorder_begin();
4064 const_preorder_iterator ex::preorder_end();
4065 const_postorder_iterator ex::postorder_begin();
4066 const_postorder_iterator ex::postorder_end();
4067 @end example
4068
4069 The following example illustrates the differences between
4070 @code{const_iterator}, @code{const_preorder_iterator}, and
4071 @code{const_postorder_iterator}:
4072
4073 @example
4074 @{
4075     symbol A("A"), B("B"), C("C");
4076     ex e = lst@{lst@{A, B@}, C@};
4077
4078     std::copy(e.begin(), e.end(),
4079               std::ostream_iterator<ex>(cout, "\n"));
4080     // @{A,B@}
4081     // C
4082
4083     std::copy(e.preorder_begin(), e.preorder_end(),
4084               std::ostream_iterator<ex>(cout, "\n"));
4085     // @{@{A,B@},C@}
4086     // @{A,B@}
4087     // A
4088     // B
4089     // C
4090
4091     std::copy(e.postorder_begin(), e.postorder_end(),
4092               std::ostream_iterator<ex>(cout, "\n"));
4093     // A
4094     // B
4095     // @{A,B@}
4096     // C
4097     // @{@{A,B@},C@}
4098 @}
4099 @end example
4100
4101 @cindex @code{relational} (class)
4102 Finally, the left-hand side and right-hand side expressions of objects of
4103 class @code{relational} (and only of these) can also be accessed with the
4104 methods
4105
4106 @example
4107 ex ex::lhs();
4108 ex ex::rhs();
4109 @end example
4110
4111
4112 @subsection Comparing expressions
4113 @cindex @code{is_equal()}
4114 @cindex @code{is_zero()}
4115
4116 Expressions can be compared with the usual C++ relational operators like
4117 @code{==}, @code{>}, and @code{<} but if the expressions contain symbols,
4118 the result is usually not determinable and the result will be @code{false},
4119 except in the case of the @code{!=} operator. You should also be aware that
4120 GiNaC will only do the most trivial test for equality (subtracting both
4121 expressions), so something like @code{(pow(x,2)+x)/x==x+1} will return
4122 @code{false}.
4123
4124 Actually, if you construct an expression like @code{a == b}, this will be
4125 represented by an object of the @code{relational} class (@pxref{Relations})
4126 which is not evaluated until (explicitly or implicitly) cast to a @code{bool}.
4127
4128 There are also two methods
4129
4130 @example
4131 bool ex::is_equal(const ex & other);
4132 bool ex::is_zero();
4133 @end example
4134
4135 for checking whether one expression is equal to another, or equal to zero,
4136 respectively. See also the method @code{ex::is_zero_matrix()}, 
4137 @pxref{Matrices}. 
4138
4139
4140 @subsection Ordering expressions
4141 @cindex @code{ex_is_less} (class)
4142 @cindex @code{ex_is_equal} (class)
4143 @cindex @code{compare()}
4144
4145 Sometimes it is necessary to establish a mathematically well-defined ordering
4146 on a set of arbitrary expressions, for example to use expressions as keys
4147 in a @code{std::map<>} container, or to bring a vector of expressions into
4148 a canonical order (which is done internally by GiNaC for sums and products).
4149
4150 The operators @code{<}, @code{>} etc. described in the last section cannot
4151 be used for this, as they don't implement an ordering relation in the
4152 mathematical sense. In particular, they are not guaranteed to be
4153 antisymmetric: if @samp{a} and @samp{b} are different expressions, and
4154 @code{a < b} yields @code{false}, then @code{b < a} doesn't necessarily
4155 yield @code{true}.
4156
4157 By default, STL classes and algorithms use the @code{<} and @code{==}
4158 operators to compare objects, which are unsuitable for expressions, but GiNaC
4159 provides two functors that can be supplied as proper binary comparison
4160 predicates to the STL:
4161
4162 @example
4163 class ex_is_less @{
4164 public:
4165     bool operator()(const ex &lh, const ex &rh) const;
4166 @};
4167
4168 class ex_is_equal @{
4169 public:
4170     bool operator()(const ex &lh, const ex &rh) const;
4171 @};
4172 @end example
4173
4174 For example, to define a @code{map} that maps expressions to strings you
4175 have to use
4176
4177 @example
4178 std::map<ex, std::string, ex_is_less> myMap;
4179 @end example
4180
4181 Omitting the @code{ex_is_less} template parameter will introduce spurious
4182 bugs because the map operates improperly.
4183
4184 Other examples for the use of the functors:
4185
4186 @example
4187 std::vector<ex> v;
4188 // fill vector
4189 ...
4190
4191 // sort vector
4192 std::sort(v.begin(), v.end(), ex_is_less());
4193
4194 // count the number of expressions equal to '1'
4195 unsigned num_ones = std::count_if(v.begin(), v.end(),
4196                                   [](const ex& e) @{ return ex_is_equal()(e, 1); @});
4197 @end example
4198
4199 The implementation of @code{ex_is_less} uses the member function
4200
4201 @example
4202 int ex::compare(const ex & other) const;
4203 @end example
4204
4205 which returns @math{0} if @code{*this} and @code{other} are equal, @math{-1}
4206 if @code{*this} sorts before @code{other}, and @math{1} if @code{*this} sorts
4207 after @code{other}.
4208
4209
4210 @node Numerical evaluation, Substituting expressions, Information about expressions, Methods and functions
4211 @c    node-name, next, previous, up
4212 @section Numerical evaluation
4213 @cindex @code{evalf()}
4214
4215 GiNaC keeps algebraic expressions, numbers and constants in their exact form.
4216 To evaluate them using floating-point arithmetic you need to call
4217
4218 @example
4219 ex ex::evalf() const;
4220 @end example
4221
4222 @cindex @code{Digits}
4223 The accuracy of the evaluation is controlled by the global object @code{Digits}
4224 which can be assigned an integer value. The default value of @code{Digits}
4225 is 17. @xref{Numbers}, for more information and examples.
4226
4227 To evaluate an expression to a @code{double} floating-point number you can
4228 call @code{evalf()} followed by @code{numeric::to_double()}, like this:
4229
4230 @example
4231 @{
4232     // Approximate sin(x/Pi)
4233     symbol x("x");
4234     ex e = series(sin(x/Pi), x == 0, 6);
4235
4236     // Evaluate numerically at x=0.1
4237     ex f = evalf(e.subs(x == 0.1));
4238
4239     // ex_to<numeric> is an unsafe cast, so check the type first
4240     if (is_a<numeric>(f)) @{
4241         double d = ex_to<numeric>(f).to_double();
4242         cout << d << endl;
4243          // -> 0.0318256
4244     @} else
4245         // error
4246 @}
4247 @end example
4248
4249
4250 @node Substituting expressions, Pattern matching and advanced substitutions, Numerical evaluation, Methods and functions
4251 @c    node-name, next, previous, up
4252 @section Substituting expressions
4253 @cindex @code{subs()}
4254
4255 Algebraic objects inside expressions can be replaced with arbitrary
4256 expressions via the @code{.subs()} method:
4257
4258 @example
4259 ex ex::subs(const ex & e, unsigned options = 0);
4260 ex ex::subs(const exmap & m, unsigned options = 0);
4261 ex ex::subs(const lst & syms, const lst & repls, unsigned options = 0);
4262 @end example
4263
4264 In the first form, @code{subs()} accepts a relational of the form
4265 @samp{object == expression} or a @code{lst} of such relationals:
4266
4267 @example
4268 @{
4269     symbol x("x"), y("y");
4270
4271     ex e1 = 2*x*x-4*x+3;
4272     cout << "e1(7) = " << e1.subs(x == 7) << endl;
4273      // -> 73
4274
4275     ex e2 = x*y + x;
4276     cout << "e2(-2, 4) = " << e2.subs(lst@{x == -2, y == 4@}) << endl;
4277      // -> -10
4278 @}
4279 @end example
4280
4281 If you specify multiple substitutions, they are performed in parallel, so e.g.
4282 @code{subs(lst@{x == y, y == x@})} exchanges @samp{x} and @samp{y}.
4283
4284 The second form of @code{subs()} takes an @code{exmap} object which is a
4285 pair associative container that maps expressions to expressions (currently
4286 implemented as a @code{std::map}). This is the most efficient one of the
4287 three @code{subs()} forms and should be used when the number of objects to
4288 be substituted is large or unknown.
4289
4290 Using this form, the second example from above would look like this:
4291
4292 @example
4293 @{
4294     symbol x("x"), y("y");
4295     ex e2 = x*y + x;
4296
4297     exmap m;
4298     m[x] = -2;
4299     m[y] = 4;
4300     cout << "e2(-2, 4) = " << e2.subs(m) << endl;
4301 @}
4302 @end example
4303
4304 The third form of @code{subs()} takes two lists, one for the objects to be
4305 replaced and one for the expressions to be substituted (both lists must
4306 contain the same number of elements). Using this form, you would write
4307
4308 @example
4309 @{
4310     symbol x("x"), y("y");
4311     ex e2 = x*y + x;
4312
4313     cout << "e2(-2, 4) = " << e2.subs(lst@{x, y@}, lst@{-2, 4@}) << endl;
4314 @}
4315 @end example
4316