]> www.ginac.de Git - ginac.git/blob - doc/tutorial/ginac.texi
- expairseq::to_rational(): Fixed thinko.
[ginac.git] / doc / tutorial / ginac.texi
1 \input texinfo  @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename ginac.info
4 @settitle GiNaC, an open framework for symbolic computation within the C++ programming language
5 @setchapternewpage on
6 @afourpaper
7 @c For `info' only.
8 @paragraphindent 0
9 @c For TeX only.
10 @iftex
11 @c I hate putting "@noindent" in front of every paragraph.
12 @parindent=0pt
13 @end iftex
14 @c %**end of header
15
16 @include version.texi
17
18 @direntry
19 * ginac: (ginac).                   C++ library for symbolic computation.
20 @end direntry
21
22 @ifinfo
23 This is a tutorial that documents GiNaC @value{VERSION}, an open
24 framework for symbolic computation within the C++ programming language.
25
26 Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
27
28 Permission is granted to make and distribute verbatim copies of
29 this manual provided the copyright notice and this permission notice
30 are preserved on all copies.
31
32 @ignore
33 Permission is granted to process this file through TeX and print the
34 results, provided the printed document carries copying permission
35 notice identical to this one except for the removal of this paragraph
36
37 @end ignore
38 Permission is granted to copy and distribute modified versions of this
39 manual under the conditions for verbatim copying, provided that the entire
40 resulting derived work is distributed under the terms of a permission
41 notice identical to this one.
42 @end ifinfo
43
44 @finalout
45 @c finalout prevents ugly black rectangles on overfull hbox lines
46 @titlepage
47 @title GiNaC @value{VERSION}
48 @subtitle An open framework for symbolic computation within the C++ programming language
49 @subtitle @value{UPDATED}
50 @author The GiNaC Group:
51 @author Christian Bauer, Alexander Frink, Richard Kreckel
52
53 @page
54 @vskip 0pt plus 1filll
55 Copyright @copyright{} 1999-2000 Johannes Gutenberg University Mainz, Germany
56 @sp 2
57 Permission is granted to make and distribute verbatim copies of
58 this manual provided the copyright notice and this permission notice
59 are preserved on all copies.
60
61 Permission is granted to copy and distribute modified versions of this
62 manual under the conditions for verbatim copying, provided that the entire
63 resulting derived work is distributed under the terms of a permission
64 notice identical to this one.
65 @end titlepage
66
67 @page
68 @contents
69
70 @page
71
72
73 @node Top, Introduction, (dir), (dir)
74 @c    node-name, next, previous, up
75 @top GiNaC
76
77 This is a tutorial that documents GiNaC @value{VERSION}, an open
78 framework for symbolic computation within the C++ programming language.
79
80 @menu
81 * Introduction::                 GiNaC's purpose.
82 * A Tour of GiNaC::              A quick tour of the library.
83 * Installation::                 How to install the package.
84 * Basic Concepts::               Description of fundamental classes.
85 * Methods and Functions::        Algorithms for symbolic manipulations.
86 * Extending GiNaC::              How to extend the library.
87 * A Comparison With Other CAS::  Compares GiNaC to traditional CAS.
88 * Internal Structures::          Description of some internal structures.
89 * Package Tools::                Configuring packages to work with GiNaC.
90 * Bibliography::
91 * Concept Index::
92 @end menu
93
94
95 @node Introduction, A Tour of GiNaC, Top, Top
96 @c    node-name, next, previous, up
97 @chapter Introduction
98 @cindex history of GiNaC
99
100 The motivation behind GiNaC derives from the observation that most
101 present day computer algebra systems (CAS) are linguistically and
102 semantically impoverished.  Although they are quite powerful tools for
103 learning math and solving particular problems they lack modern
104 linguistical structures that allow for the creation of large-scale
105 projects.  GiNaC is an attempt to overcome this situation by extending a
106 well established and standardized computer language (C++) by some
107 fundamental symbolic capabilities, thus allowing for integrated systems
108 that embed symbolic manipulations together with more established areas
109 of computer science (like computation-intense numeric applications,
110 graphical interfaces, etc.) under one roof.
111
112 The particular problem that led to the writing of the GiNaC framework is
113 still a very active field of research, namely the calculation of higher
114 order corrections to elementary particle interactions.  There,
115 theoretical physicists are interested in matching present day theories
116 against experiments taking place at particle accelerators.  The
117 computations involved are so complex they call for a combined symbolical
118 and numerical approach.  This turned out to be quite difficult to
119 accomplish with the present day CAS we have worked with so far and so we
120 tried to fill the gap by writing GiNaC.  But of course its applications
121 are in no way restricted to theoretical physics.
122
123 This tutorial is intended for the novice user who is new to GiNaC but
124 already has some background in C++ programming.  However, since a
125 hand-made documentation like this one is difficult to keep in sync with
126 the development, the actual documentation is inside the sources in the
127 form of comments.  That documentation may be parsed by one of the many
128 Javadoc-like documentation systems.  If you fail at generating it you
129 may access it from @uref{http://www.ginac.de/reference/, the GiNaC home
130 page}.  It is an invaluable resource not only for the advanced user who
131 wishes to extend the system (or chase bugs) but for everybody who wants
132 to comprehend the inner workings of GiNaC.  This little tutorial on the
133 other hand only covers the basic things that are unlikely to change in
134 the near future.
135
136 @section License
137 The GiNaC framework for symbolic computation within the C++ programming
138 language is Copyright @copyright{} 1999-2000 Johannes Gutenberg
139 University Mainz, Germany.
140
141 This program is free software; you can redistribute it and/or
142 modify it under the terms of the GNU General Public License as
143 published by the Free Software Foundation; either version 2 of the
144 License, or (at your option) any later version.
145
146 This program is distributed in the hope that it will be useful, but
147 WITHOUT ANY WARRANTY; without even the implied warranty of
148 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
149 General Public License for more details.
150
151 You should have received a copy of the GNU General Public License
152 along with this program; see the file COPYING.  If not, write to the
153 Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
154 MA 02111-1307, USA.
155
156
157 @node A Tour of GiNaC, How to use it from within C++, Introduction, Top
158 @c    node-name, next, previous, up
159 @chapter A Tour of GiNaC
160
161 This quick tour of GiNaC wants to arise your interest in the
162 subsequent chapters by showing off a bit.  Please excuse us if it
163 leaves many open questions.
164
165 @menu
166 * How to use it from within C++::  Two simple examples.
167 * What it can do for you::         A Tour of GiNaC's features.
168 @end menu
169
170
171 @node How to use it from within C++, What it can do for you, A Tour of GiNaC, A Tour of GiNaC
172 @c    node-name, next, previous, up
173 @section How to use it from within C++
174
175 The GiNaC open framework for symbolic computation within the C++ programming
176 language does not try to define a language of its own as conventional
177 CAS do.  Instead, it extends the capabilities of C++ by symbolic
178 manipulations.  Here is how to generate and print a simple (and rather
179 pointless) bivariate polynomial with some large coefficients:
180
181 @example
182 #include <ginac/ginac.h>
183 using namespace GiNaC;
184
185 int main()
186 @{
187     symbol x("x"), y("y");
188     ex poly;
189
190     for (int i=0; i<3; ++i)
191         poly += factorial(i+16)*pow(x,i)*pow(y,2-i);
192
193     cout << poly << endl;
194     return 0;
195 @}
196 @end example
197
198 Assuming the file is called @file{hello.cc}, on our system we can compile
199 and run it like this:
200
201 @example
202 $ c++ hello.cc -o hello -lcln -lginac
203 $ ./hello
204 355687428096000*x*y+20922789888000*y^2+6402373705728000*x^2
205 @end example
206
207 (@xref{Package Tools}, for tools that help you when creating a software
208 package that uses GiNaC.)
209
210 @cindex Hermite polynomial
211 Next, there is a more meaningful C++ program that calls a function which
212 generates Hermite polynomials in a specified free variable.
213
214 @example
215 #include <ginac/ginac.h>
216 using namespace GiNaC;
217
218 ex HermitePoly(const symbol & x, int n)
219 @{
220     ex HKer=exp(-pow(x, 2));
221     // uses the identity H_n(x) == (-1)^n exp(x^2) (d/dx)^n exp(-x^2)
222     return normal(pow(-1, n) * diff(HKer, x, n) / HKer);
223 @}
224
225 int main()
226 @{
227     symbol z("z");
228
229     for (int i=0; i<6; ++i)
230         cout << "H_" << i << "(z) == " << HermitePoly(z,i) << endl;
231
232     return 0;
233 @}
234 @end example
235
236 When run, this will type out
237
238 @example
239 H_0(z) == 1
240 H_1(z) == 2*z
241 H_2(z) == 4*z^2-2
242 H_3(z) == -12*z+8*z^3
243 H_4(z) == -48*z^2+16*z^4+12
244 H_5(z) == 120*z-160*z^3+32*z^5
245 @end example
246
247 This method of generating the coefficients is of course far from optimal
248 for production purposes.
249
250 In order to show some more examples of what GiNaC can do we will now use
251 the @command{ginsh}, a simple GiNaC interactive shell that provides a
252 convenient window into GiNaC's capabilities.
253
254
255 @node What it can do for you, Installation, How to use it from within C++, A Tour of GiNaC
256 @c    node-name, next, previous, up
257 @section What it can do for you
258
259 @cindex @command{ginsh}
260 After invoking @command{ginsh} one can test and experiment with GiNaC's
261 features much like in other Computer Algebra Systems except that it does
262 not provide programming constructs like loops or conditionals.  For a
263 concise description of the @command{ginsh} syntax we refer to its
264 accompanied man page. Suffice to say that assignments and comparisons in
265 @command{ginsh} are written as they are in C, i.e. @code{=} assigns and
266 @code{==} compares.
267
268 It can manipulate arbitrary precision integers in a very fast way.
269 Rational numbers are automatically converted to fractions of coprime
270 integers:
271
272 @example
273 > x=3^150;
274 369988485035126972924700782451696644186473100389722973815184405301748249
275 > y=3^149;
276 123329495011708990974900260817232214728824366796574324605061468433916083
277 > x/y;
278 3
279 > y/x;
280 1/3
281 @end example
282
283 Exact numbers are always retained as exact numbers and only evaluated as
284 floating point numbers if requested.  For instance, with numeric
285 radicals is dealt pretty much as with symbols.  Products of sums of them
286 can be expanded:
287
288 @example
289 > expand((1+a^(1/5)-a^(2/5))^3);
290 1+3*a+3*a^(1/5)-5*a^(3/5)-a^(6/5)
291 > expand((1+3^(1/5)-3^(2/5))^3);
292 10-5*3^(3/5)
293 > evalf((1+3^(1/5)-3^(2/5))^3);
294 0.33408977534118624228
295 @end example
296
297 The function @code{evalf} that was used above converts any number in
298 GiNaC's expressions into floating point numbers.  This can be done to
299 arbitrary predefined accuracy:
300
301 @example
302 > evalf(1/7);
303 0.14285714285714285714
304 > Digits=150;
305 150
306 > evalf(1/7);
307 0.1428571428571428571428571428571428571428571428571428571428571428571428
308 5714285714285714285714285714285714285
309 @end example
310
311 Exact numbers other than rationals that can be manipulated in GiNaC
312 include predefined constants like Archimedes' @code{Pi}.  They can both
313 be used in symbolic manipulations (as an exact number) as well as in
314 numeric expressions (as an inexact number):
315
316 @example
317 > a=Pi^2+x;
318 x+Pi^2
319 > evalf(a);
320 9.869604401089358619+x
321 > x=2;
322 2
323 > evalf(a);
324 11.869604401089358619
325 @end example
326
327 Built-in functions evaluate immediately to exact numbers if
328 this is possible.  Conversions that can be safely performed are done
329 immediately; conversions that are not generally valid are not done:
330
331 @example
332 > cos(42*Pi);
333 1
334 > cos(acos(x));
335 x
336 > acos(cos(x));
337 acos(cos(x))
338 @end example
339
340 (Note that converting the last input to @code{x} would allow one to
341 conclude that @code{42*Pi} is equal to @code{0}.)
342
343 Linear equation systems can be solved along with basic linear
344 algebra manipulations over symbolic expressions.  In C++ GiNaC offers
345 a matrix class for this purpose but we can see what it can do using
346 @command{ginsh}'s notation of double brackets to type them in:
347
348 @example
349 > lsolve(a+x*y==z,x);
350 y^(-1)*(z-a);
351 > lsolve([3*x+5*y == 7, -2*x+10*y == -5], [x, y]);
352 [x==19/8,y==-1/40]
353 > M = [[ [[1, 3]], [[-3, 2]] ]];
354 [[ [[1,3]], [[-3,2]] ]]
355 > determinant(M);
356 11
357 > charpoly(M,lambda);
358 lambda^2-3*lambda+11
359 @end example
360
361 Multivariate polynomials and rational functions may be expanded,
362 collected and normalized (i.e. converted to a ratio of two coprime 
363 polynomials):
364
365 @example
366 > a = x^4 + 2*x^2*y^2 + 4*x^3*y + 12*x*y^3 - 3*y^4;
367 -3*y^4+x^4+12*x*y^3+2*x^2*y^2+4*x^3*y
368 > b = x^2 + 4*x*y - y^2;
369 -y^2+x^2+4*x*y
370 > expand(a*b);
371 3*y^6+x^6-24*x*y^5+43*x^2*y^4+16*x^3*y^3+17*x^4*y^2+8*x^5*y
372 > collect(a*b,x);
373 3*y^6+48*x*y^4+2*x^2*y^2+x^4*(-y^2+x^2+4*x*y)+4*x^3*y*(-y^2+x^2+4*x*y)
374 > normal(a/b);
375 3*y^2+x^2
376 @end example
377
378 You can differentiate functions and expand them as Taylor or Laurent
379 series in a very natural syntax (the second argument of @code{series} is
380 a relation defining the evaluation point, the third specifies the
381 order):
382
383 @cindex Zeta function
384 @example
385 > diff(tan(x),x);
386 tan(x)^2+1
387 > series(sin(x),x==0,4);
388 x-1/6*x^3+Order(x^4)
389 > series(1/tan(x),x==0,4);
390 x^(-1)-1/3*x+Order(x^2)
391 > series(tgamma(x),x==0,3);
392 x^(-1)-Euler+(1/12*Pi^2+1/2*Euler^2)*x+
393 (-1/3*zeta(3)-1/12*Pi^2*Euler-1/6*Euler^3)*x^2+Order(x^3)
394 > evalf(");
395 x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x
396 -(0.90747907608088628905)*x^2+Order(x^3)
397 > series(tgamma(2*sin(x)-2),x==Pi/2,6);
398 -(x-1/2*Pi)^(-2)+(-1/12*Pi^2-1/2*Euler^2-1/240)*(x-1/2*Pi)^2
399 -Euler-1/12+Order((x-1/2*Pi)^3)
400 @end example
401
402 Here we have made use of the @command{ginsh}-command @code{"} to pop the
403 previously evaluated element from @command{ginsh}'s internal stack.
404
405 If you ever wanted to convert units in C or C++ and found this is
406 cumbersome, here is the solution.  Symbolic types can always be used as
407 tags for different types of objects.  Converting from wrong units to the
408 metric system is now easy:
409
410 @example
411 > in=.0254*m;
412 0.0254*m
413 > lb=.45359237*kg;
414 0.45359237*kg
415 > 200*lb/in^2;
416 140613.91592783185568*kg*m^(-2)
417 @end example
418
419
420 @node Installation, Prerequisites, What it can do for you, Top
421 @c    node-name, next, previous, up
422 @chapter Installation
423
424 @cindex CLN
425 GiNaC's installation follows the spirit of most GNU software. It is
426 easily installed on your system by three steps: configuration, build,
427 installation.
428
429 @menu
430 * Prerequisites::                Packages upon which GiNaC depends.
431 * Configuration::                How to configure GiNaC.
432 * Building GiNaC::               How to compile GiNaC.
433 * Installing GiNaC::             How to install GiNaC on your system.
434 @end menu
435
436
437 @node Prerequisites, Configuration, Installation, Installation
438 @c    node-name, next, previous, up
439 @section Prerequisites
440
441 In order to install GiNaC on your system, some prerequisites need to be
442 met.  First of all, you need to have a C++-compiler adhering to the
443 ANSI-standard @cite{ISO/IEC 14882:1998(E)}.  We used @acronym{GCC} for
444 development so if you have a different compiler you are on your own.
445 For the configuration to succeed you need a Posix compliant shell
446 installed in @file{/bin/sh}, GNU @command{bash} is fine.  Perl is needed
447 by the built process as well, since some of the source files are
448 automatically generated by Perl scripts.  Last but not least, Bruno
449 Haible's library @acronym{CLN} is extensively used and needs to be
450 installed on your system.  Please get it either from
451 @uref{ftp://ftp.santafe.edu/pub/gnu/}, from
452 @uref{ftp://ftpthep.physik.uni-mainz.de/pub/gnu/, GiNaC's FTP site} or
453 from @uref{ftp://ftp.ilog.fr/pub/Users/haible/gnu/, Bruno Haible's FTP
454 site} (it is covered by GPL) and install it prior to trying to install
455 GiNaC.  The configure script checks if it can find it and if it cannot
456 it will refuse to continue.
457
458
459 @node Configuration, Building GiNaC, Prerequisites, Installation
460 @c    node-name, next, previous, up
461 @section Configuration
462 @cindex configuration
463 @cindex Autoconf
464
465 To configure GiNaC means to prepare the source distribution for
466 building.  It is done via a shell script called @command{configure} that
467 is shipped with the sources and was originally generated by GNU
468 Autoconf.  Since a configure script generated by GNU Autoconf never
469 prompts, all customization must be done either via command line
470 parameters or environment variables.  It accepts a list of parameters,
471 the complete set of which can be listed by calling it with the
472 @option{--help} option.  The most important ones will be shortly
473 described in what follows:
474
475 @itemize @bullet
476
477 @item
478 @option{--disable-shared}: When given, this option switches off the
479 build of a shared library, i.e. a @file{.so} file.  This may be convenient
480 when developing because it considerably speeds up compilation.
481
482 @item
483 @option{--prefix=@var{PREFIX}}: The directory where the compiled library
484 and headers are installed. It defaults to @file{/usr/local} which means
485 that the library is installed in the directory @file{/usr/local/lib},
486 the header files in @file{/usr/local/include/ginac} and the documentation
487 (like this one) into @file{/usr/local/share/doc/GiNaC}.
488
489 @item
490 @option{--libdir=@var{LIBDIR}}: Use this option in case you want to have
491 the library installed in some other directory than
492 @file{@var{PREFIX}/lib/}.
493
494 @item
495 @option{--includedir=@var{INCLUDEDIR}}: Use this option in case you want
496 to have the header files installed in some other directory than
497 @file{@var{PREFIX}/include/ginac/}. For instance, if you specify
498 @option{--includedir=/usr/include} you will end up with the header files
499 sitting in the directory @file{/usr/include/ginac/}. Note that the
500 subdirectory @file{ginac} is enforced by this process in order to
501 keep the header files separated from others.  This avoids some
502 clashes and allows for an easier deinstallation of GiNaC. This ought
503 to be considered A Good Thing (tm).
504
505 @item
506 @option{--datadir=@var{DATADIR}}: This option may be given in case you
507 want to have the documentation installed in some other directory than
508 @file{@var{PREFIX}/share/doc/GiNaC/}.
509
510 @end itemize
511
512 In addition, you may specify some environment variables.
513 @env{CXX} holds the path and the name of the C++ compiler
514 in case you want to override the default in your path.  (The
515 @command{configure} script searches your path for @command{c++},
516 @command{g++}, @command{gcc}, @command{CC}, @command{cxx}
517 and @command{cc++} in that order.)  It may be very useful to
518 define some compiler flags with the @env{CXXFLAGS} environment
519 variable, like optimization, debugging information and warning
520 levels.  If omitted, it defaults to @option{-g -O2}.
521
522 The whole process is illustrated in the following two
523 examples. (Substitute @command{setenv @var{VARIABLE} @var{value}} for
524 @command{export @var{VARIABLE}=@var{value}} if the Berkeley C shell is
525 your login shell.)
526
527 Here is a simple configuration for a site-wide GiNaC library assuming
528 everything is in default paths:
529
530 @example
531 $ export CXXFLAGS="-Wall -O2"
532 $ ./configure
533 @end example
534
535 And here is a configuration for a private static GiNaC library with
536 several components sitting in custom places (site-wide @acronym{GCC} and
537 private @acronym{CLN}).  The compiler is pursuaded to be picky and full
538 assertions and debugging information are switched on:
539
540 @example
541 $ export CXX=/usr/local/gnu/bin/c++
542 $ export CPPFLAGS="$(CPPFLAGS) -I$(HOME)/include"
543 $ export CXXFLAGS="$(CXXFLAGS) -DDO_GINAC_ASSERT -ggdb -Wall -ansi -pedantic"
544 $ export LDFLAGS="$(LDFLAGS) -L$(HOME)/lib"
545 $ ./configure --disable-shared --prefix=$(HOME)
546 @end example
547
548
549 @node Building GiNaC, Installing GiNaC, Configuration, Installation
550 @c    node-name, next, previous, up
551 @section Building GiNaC
552 @cindex building GiNaC
553
554 After proper configuration you should just build the whole
555 library by typing
556 @example
557 $ make
558 @end example
559 at the command prompt and go for a cup of coffee.  The exact time it
560 takes to compile GiNaC depends not only on the speed of your machines
561 but also on other parameters, for instance what value for @env{CXXFLAGS}
562 you entered.  Optimization may be very time-consuming.
563
564 Just to make sure GiNaC works properly you may run a collection of
565 regression tests by typing
566
567 @example
568 $ make check
569 @end example
570
571 This will compile some sample programs, run them and check the output
572 for correctness.  The regression tests fall in three categories.  First,
573 the so called @emph{exams} are performed, simple tests where some
574 predefined input is evaluated (like a pupils' exam).  Second, the
575 @emph{checks} test the coherence of results among each other with
576 possible random input.  Third, some @emph{timings} are performed, which
577 benchmark some predefined problems with different sizes and display the
578 CPU time used in seconds.  Each individual test should return a message
579 @samp{passed}.  This is mostly intended to be a QA-check if something
580 was broken during development, not a sanity check of your system.  Some
581 of the tests in sections @emph{checks} and @emph{timings} may require
582 insane amounts of memory and CPU time.  Feel free to kill them if your
583 machine catches fire.  Another quite important intent is to allow people
584 to fiddle around with optimization.
585
586 Generally, the top-level Makefile runs recursively to the
587 subdirectories.  It is therfore safe to go into any subdirectory
588 (@code{doc/}, @code{ginsh/}, ...) and simply type @code{make}
589 @var{target} there in case something went wrong.
590
591
592 @node Installing GiNaC, Basic Concepts, Building GiNaC, Installation
593 @c    node-name, next, previous, up
594 @section Installing GiNaC
595 @cindex installation
596
597 To install GiNaC on your system, simply type
598
599 @example
600 $ make install
601 @end example
602
603 As described in the section about configuration the files will be
604 installed in the following directories (the directories will be created
605 if they don't already exist):
606
607 @itemize @bullet
608
609 @item
610 @file{libginac.a} will go into @file{@var{PREFIX}/lib/} (or
611 @file{@var{LIBDIR}}) which defaults to @file{/usr/local/lib/}.
612 So will @file{libginac.so} unless the configure script was
613 given the option @option{--disable-shared}.  The proper symlinks
614 will be established as well.
615
616 @item
617 All the header files will be installed into @file{@var{PREFIX}/include/ginac/}
618 (or @file{@var{INCLUDEDIR}/ginac/}, if specified).
619
620 @item
621 All documentation (HTML and Postscript) will be stuffed into
622 @file{@var{PREFIX}/share/doc/GiNaC/} (or
623 @file{@var{DATADIR}/doc/GiNaC/}, if @var{DATADIR} was specified).
624
625 @end itemize
626
627 For the sake of completeness we will list some other useful make
628 targets: @command{make clean} deletes all files generated by
629 @command{make}, i.e. all the object files.  In addition @command{make
630 distclean} removes all files generated by the configuration and
631 @command{make maintainer-clean} goes one step further and deletes files
632 that may require special tools to rebuild (like the @command{libtool}
633 for instance).  Finally @command{make uninstall} removes the installed
634 library, header files and documentation@footnote{Uninstallation does not
635 work after you have called @command{make distclean} since the
636 @file{Makefile} is itself generated by the configuration from
637 @file{Makefile.in} and hence deleted by @command{make distclean}.  There
638 are two obvious ways out of this dilemma.  First, you can run the
639 configuration again with the same @var{PREFIX} thus creating a
640 @file{Makefile} with a working @samp{uninstall} target.  Second, you can
641 do it by hand since you now know where all the files went during
642 installation.}.
643
644
645 @node Basic Concepts, Expressions, Installing GiNaC, Top
646 @c    node-name, next, previous, up
647 @chapter Basic Concepts
648
649 This chapter will describe the different fundamental objects that can be
650 handled by GiNaC.  But before doing so, it is worthwhile introducing you
651 to the more commonly used class of expressions, representing a flexible
652 meta-class for storing all mathematical objects.
653
654 @menu
655 * Expressions::                  The fundamental GiNaC class.
656 * The Class Hierarchy::          Overview of GiNaC's classes.
657 * Symbols::                      Symbolic objects.
658 * Numbers::                      Numerical objects.
659 * Constants::                    Pre-defined constants.
660 * Fundamental containers::       The power, add and mul classes.
661 * Lists::                        Lists of expressions.
662 * Mathematical functions::       Mathematical functions.
663 * Relations::                    Equality, Inequality and all that.
664 @end menu
665
666
667 @node Expressions, The Class Hierarchy, Basic Concepts, Basic Concepts
668 @c    node-name, next, previous, up
669 @section Expressions
670 @cindex expression (class @code{ex})
671 @cindex @code{has()}
672
673 The most common class of objects a user deals with is the expression
674 @code{ex}, representing a mathematical object like a variable, number,
675 function, sum, product, etc...  Expressions may be put together to form
676 new expressions, passed as arguments to functions, and so on.  Here is a
677 little collection of valid expressions:
678
679 @example
680 ex MyEx1 = 5;                       // simple number
681 ex MyEx2 = x + 2*y;                 // polynomial in x and y
682 ex MyEx3 = (x + 1)/(x - 1);         // rational expression
683 ex MyEx4 = sin(x + 2*y) + 3*z + 41; // containing a function
684 ex MyEx5 = MyEx4 + 1;               // similar to above
685 @end example
686
687 Expressions are handles to other more fundamental objects, that often
688 contain other expressions thus creating a tree of expressions
689 (@xref{Internal Structures}, for particular examples).  Most methods on
690 @code{ex} therefore run top-down through such an expression tree.  For
691 example, the method @code{has()} scans recursively for occurrences of
692 something inside an expression.  Thus, if you have declared @code{MyEx4}
693 as in the example above @code{MyEx4.has(y)} will find @code{y} inside
694 the argument of @code{sin} and hence return @code{true}.
695
696 The next sections will outline the general picture of GiNaC's class
697 hierarchy and describe the classes of objects that are handled by
698 @code{ex}.
699
700
701 @node The Class Hierarchy, Symbols, Expressions, Basic Concepts
702 @c    node-name, next, previous, up
703 @section The Class Hierarchy
704
705 GiNaC's class hierarchy consists of several classes representing
706 mathematical objects, all of which (except for @code{ex} and some
707 helpers) are internally derived from one abstract base class called
708 @code{basic}.  You do not have to deal with objects of class
709 @code{basic}, instead you'll be dealing with symbols, numbers,
710 containers of expressions and so on.
711
712 @cindex container
713 @cindex atom
714 To get an idea about what kinds of symbolic composits may be built we
715 have a look at the most important classes in the class hierarchy and
716 some of the relations among the classes:
717
718 @image{classhierarchy}
719
720 The abstract classes shown here (the ones without drop-shadow) are of no
721 interest for the user.  They are used internally in order to avoid code
722 duplication if two or more classes derived from them share certain
723 features.  An example is @code{expairseq}, a container for a sequence of
724 pairs each consisting of one expression and a number (@code{numeric}).
725 What @emph{is} visible to the user are the derived classes @code{add}
726 and @code{mul}, representing sums and products.  @xref{Internal
727 Structures}, where these two classes are described in more detail.  The
728 following table shortly summarizes what kinds of mathematical objects
729 are stored in the different classes:
730
731 @cartouche
732 @multitable @columnfractions .22 .78
733 @item @code{symbol} @tab Algebraic symbols @math{a}, @math{x}, @math{y}@dots{}
734 @item @code{constant} @tab Constants like 
735 @tex
736 $\pi$
737 @end tex
738 @ifnottex
739 @math{Pi}
740 @end ifnottex
741 @item @code{numeric} @tab All kinds of numbers, @math{42}, @math{7/3*I}, @math{3.14159}@dots{}
742 @item @code{add} @tab Sums like @math{x+y} or @math{a-(2*b)+3}
743 @item @code{mul} @tab Products like @math{x*y} or @math{2*a^2*(x+y+z)/b}
744 @item @code{power} @tab Exponentials such as @math{x^2}, @math{a^b}, 
745 @tex
746 $\sqrt{2}$
747 @end tex
748 @ifnottex
749 @code{sqrt(}@math{2}@code{)}
750 @end ifnottex
751 @dots{}
752 @item @code{pseries} @tab Power Series, e.g. @math{x-1/6*x^3+1/120*x^5+O(x^7)}
753 @item @code{function} @tab A symbolic function like @math{sin(2*x)}
754 @item @code{lst} @tab Lists of expressions [@math{x}, @math{2*y}, @math{3+z}]
755 @item @code{matrix} @tab @math{n}x@math{m} matrices of expressions
756 @item @code{relational} @tab A relation like the identity @math{x}@code{==}@math{y}
757 @item @code{color}, @code{coloridx} @tab Element and index of the @math{SU(3)} Lie-algebra
758 @item @code{isospin} @tab Element of the @math{SU(2)} Lie-algebra
759 @item @code{idx} @tab Index of a general tensor object
760 @end multitable
761 @end cartouche
762
763 @node Symbols, Numbers, The Class Hierarchy, Basic Concepts
764 @c    node-name, next, previous, up
765 @section Symbols
766 @cindex @code{symbol} (class)
767 @cindex hierarchy of classes
768
769 @cindex atom
770 Symbols are for symbolic manipulation what atoms are for chemistry.  You
771 can declare objects of class @code{symbol} as any other object simply by
772 saying @code{symbol x,y;}.  There is, however, a catch in here having to
773 do with the fact that C++ is a compiled language.  The information about
774 the symbol's name is thrown away by the compiler but at a later stage
775 you may want to print expressions holding your symbols.  In order to
776 avoid confusion GiNaC's symbols are able to know their own name.  This
777 is accomplished by declaring its name for output at construction time in
778 the fashion @code{symbol x("x");}.  If you declare a symbol using the
779 default constructor (i.e. without string argument) the system will deal
780 out a unique name.  That name may not be suitable for printing but for
781 internal routines when no output is desired it is often enough.  We'll
782 come across examples of such symbols later in this tutorial.
783
784 This implies that the strings passed to symbols at construction time may
785 not be used for comparing two of them.  It is perfectly legitimate to
786 write @code{symbol x("x"),y("x");} but it is likely to lead into
787 trouble.  Here, @code{x} and @code{y} are different symbols and
788 statements like @code{x-y} will not be simplified to zero although the
789 output @code{x-x} looks funny.  Such output may also occur when there
790 are two different symbols in two scopes, for instance when you call a
791 function that declares a symbol with a name already existent in a symbol
792 in the calling function.  Again, comparing them (using @code{operator==}
793 for instance) will always reveal their difference.  Watch out, please.
794
795 @cindex @code{subs()}
796 Although symbols can be assigned expressions for internal reasons, you
797 should not do it (and we are not going to tell you how it is done).  If
798 you want to replace a symbol with something else in an expression, you
799 can use the expression's @code{.subs()} method (@xref{Substituting Symbols},
800 for more information).
801
802
803 @node Numbers, Constants, Symbols, Basic Concepts
804 @c    node-name, next, previous, up
805 @section Numbers
806 @cindex @code{numeric} (class)
807
808 @cindex GMP
809 @cindex CLN
810 @cindex rational
811 @cindex fraction
812 For storing numerical things, GiNaC uses Bruno Haible's library
813 @acronym{CLN}.  The classes therein serve as foundation classes for
814 GiNaC.  @acronym{CLN} stands for Class Library for Numbers or
815 alternatively for Common Lisp Numbers.  In order to find out more about
816 @acronym{CLN}'s internals the reader is refered to the documentation of
817 that library.  @inforef{Introduction, , cln}, for more
818 information. Suffice to say that it is by itself build on top of another
819 library, the GNU Multiple Precision library @acronym{GMP}, which is an
820 extremely fast library for arbitrary long integers and rationals as well
821 as arbitrary precision floating point numbers.  It is very commonly used
822 by several popular cryptographic applications.  @acronym{CLN} extends
823 @acronym{GMP} by several useful things: First, it introduces the complex
824 number field over either reals (i.e. floating point numbers with
825 arbitrary precision) or rationals.  Second, it automatically converts
826 rationals to integers if the denominator is unity and complex numbers to
827 real numbers if the imaginary part vanishes and also correctly treats
828 algebraic functions.  Third it provides good implementations of
829 state-of-the-art algorithms for all trigonometric and hyperbolic
830 functions as well as for calculation of some useful constants.
831
832 The user can construct an object of class @code{numeric} in several
833 ways.  The following example shows the four most important constructors.
834 It uses construction from C-integer, construction of fractions from two
835 integers, construction from C-float and construction from a string:
836
837 @example
838 #include <ginac/ginac.h>
839 using namespace GiNaC;
840
841 int main()
842 @{
843     numeric two(2);                       // exact integer 2
844     numeric r(2,3);                       // exact fraction 2/3
845     numeric e(2.71828);                   // floating point number
846     numeric p("3.1415926535897932385");   // floating point number
847     // Trott's constant in scientific notation:
848     numeric trott("1.0841015122311136151E-2");
849     
850     cout << two*p << endl;  // floating point 6.283...
851 @}
852 @end example
853
854 Note that all those constructors are @emph{explicit} which means you are
855 not allowed to write @code{numeric two=2;}.  This is because the basic
856 objects to be handled by GiNaC are the expressions @code{ex} and we want
857 to keep things simple and wish objects like @code{pow(x,2)} to be
858 handled the same way as @code{pow(x,a)}, which means that we need to
859 allow a general @code{ex} as base and exponent.  Therefore there is an
860 implicit constructor from C-integers directly to expressions handling
861 numerics at work in most of our examples.  This design really becomes
862 convenient when one declares own functions having more than one
863 parameter but it forbids using implicit constructors because that would
864 lead to compile-time ambiguities.
865
866 It may be tempting to construct numbers writing @code{numeric r(3/2)}.
867 This would, however, call C's built-in operator @code{/} for integers
868 first and result in a numeric holding a plain integer 1.  @strong{Never
869 use the operator @code{/} on integers} unless you know exactly what you
870 are doing!  Use the constructor from two integers instead, as shown in
871 the example above.  Writing @code{numeric(1)/2} may look funny but works
872 also.
873
874 @cindex @code{Digits}
875 @cindex accuracy
876 We have seen now the distinction between exact numbers and floating
877 point numbers.  Clearly, the user should never have to worry about
878 dynamically created exact numbers, since their `exactness' always
879 determines how they ought to be handled, i.e. how `long' they are.  The
880 situation is different for floating point numbers.  Their accuracy is
881 controlled by one @emph{global} variable, called @code{Digits}.  (For
882 those readers who know about Maple: it behaves very much like Maple's
883 @code{Digits}).  All objects of class numeric that are constructed from
884 then on will be stored with a precision matching that number of decimal
885 digits:
886
887 @example
888 #include <ginac/ginac.h>
889 using namespace GiNaC;
890
891 void foo()
892 @{
893     numeric three(3.0), one(1.0);
894     numeric x = one/three;
895
896     cout << "in " << Digits << " digits:" << endl;
897     cout << x << endl;
898     cout << Pi.evalf() << endl;
899 @}
900
901 int main()
902 @{
903     foo();
904     Digits = 60;
905     foo();
906     return 0;
907 @}
908 @end example
909
910 The above example prints the following output to screen:
911
912 @example
913 in 17 digits:
914 0.333333333333333333
915 3.14159265358979324
916 in 60 digits:
917 0.333333333333333333333333333333333333333333333333333333333333333333
918 3.14159265358979323846264338327950288419716939937510582097494459231
919 @end example
920
921 It should be clear that objects of class @code{numeric} should be used
922 for constructing numbers or for doing arithmetic with them.  The objects
923 one deals with most of the time are the polymorphic expressions @code{ex}.
924
925 @subsection Tests on numbers
926
927 Once you have declared some numbers, assigned them to expressions and
928 done some arithmetic with them it is frequently desired to retrieve some
929 kind of information from them like asking whether that number is
930 integer, rational, real or complex.  For those cases GiNaC provides
931 several useful methods.  (Internally, they fall back to invocations of
932 certain CLN functions.)
933
934 As an example, let's construct some rational number, multiply it with
935 some multiple of its denominator and test what comes out:
936
937 @example
938 #include <ginac/ginac.h>
939 using namespace GiNaC;
940
941 // some very important constants:
942 const numeric twentyone(21);
943 const numeric ten(10);
944 const numeric five(5);
945
946 int main()
947 @{
948     numeric answer = twentyone;
949
950     answer /= five;
951     cout << answer.is_integer() << endl;  // false, it's 21/5
952     answer *= ten;
953     cout << answer.is_integer() << endl;  // true, it's 42 now!
954 @}
955 @end example
956
957 Note that the variable @code{answer} is constructed here as an integer
958 by @code{numeric}'s copy constructor but in an intermediate step it
959 holds a rational number represented as integer numerator and integer
960 denominator.  When multiplied by 10, the denominator becomes unity and
961 the result is automatically converted to a pure integer again.
962 Internally, the underlying @acronym{CLN} is responsible for this
963 behaviour and we refer the reader to @acronym{CLN}'s documentation.
964 Suffice to say that the same behaviour applies to complex numbers as
965 well as return values of certain functions.  Complex numbers are
966 automatically converted to real numbers if the imaginary part becomes
967 zero.  The full set of tests that can be applied is listed in the
968 following table.
969
970 @cartouche
971 @multitable @columnfractions .30 .70
972 @item @strong{Method} @tab @strong{Returns true if the object is@dots{}}
973 @item @code{.is_zero()}
974 @tab @dots{}equal to zero
975 @item @code{.is_positive()}
976 @tab @dots{}not complex and greater than 0
977 @item @code{.is_integer()}
978 @tab @dots{}a (non-complex) integer
979 @item @code{.is_pos_integer()}
980 @tab @dots{}an integer and greater than 0
981 @item @code{.is_nonneg_integer()}
982 @tab @dots{}an integer and greater equal 0
983 @item @code{.is_even()}
984 @tab @dots{}an even integer
985 @item @code{.is_odd()}
986 @tab @dots{}an odd integer
987 @item @code{.is_prime()}
988 @tab @dots{}a prime integer (probabilistic primality test)
989 @item @code{.is_rational()}
990 @tab @dots{}an exact rational number (integers are rational, too)
991 @item @code{.is_real()}
992 @tab @dots{}a real integer, rational or float (i.e. is not complex)
993 @item @code{.is_cinteger()}
994 @tab @dots{}a (complex) integer (such as @math{2-3*I})
995 @item @code{.is_crational()}
996 @tab @dots{}an exact (complex) rational number (such as @math{2/3+7/2*I})
997 @end multitable
998 @end cartouche
999
1000
1001 @node Constants, Fundamental containers, Numbers, Basic Concepts
1002 @c    node-name, next, previous, up
1003 @section Constants
1004 @cindex @code{constant} (class)
1005
1006 @cindex @code{Pi}
1007 @cindex @code{Catalan}
1008 @cindex @code{Euler}
1009 @cindex @code{evalf()}
1010 Constants behave pretty much like symbols except that they return some
1011 specific number when the method @code{.evalf()} is called.
1012
1013 The predefined known constants are:
1014
1015 @cartouche
1016 @multitable @columnfractions .14 .30 .56
1017 @item @strong{Name} @tab @strong{Common Name} @tab @strong{Numerical Value (to 35 digits)}
1018 @item @code{Pi}
1019 @tab Archimedes' constant
1020 @tab 3.14159265358979323846264338327950288
1021 @item @code{Catalan}
1022 @tab Catalan's constant
1023 @tab 0.91596559417721901505460351493238411
1024 @item @code{Euler}
1025 @tab Euler's (or Euler-Mascheroni) constant
1026 @tab 0.57721566490153286060651209008240243
1027 @end multitable
1028 @end cartouche
1029
1030
1031 @node Fundamental containers, Lists, Constants, Basic Concepts
1032 @c    node-name, next, previous, up
1033 @section Fundamental containers: the @code{power}, @code{add} and @code{mul} classes
1034 @cindex polynomial
1035 @cindex @code{add}
1036 @cindex @code{mul}
1037 @cindex @code{power}
1038
1039 Simple polynomial expressions are written down in GiNaC pretty much like
1040 in other CAS or like expressions involving numerical variables in C.
1041 The necessary operators @code{+}, @code{-}, @code{*} and @code{/} have
1042 been overloaded to achieve this goal.  When you run the following
1043 program, the constructor for an object of type @code{mul} is
1044 automatically called to hold the product of @code{a} and @code{b} and
1045 then the constructor for an object of type @code{add} is called to hold
1046 the sum of that @code{mul} object and the number one:
1047
1048 @example
1049 #include <ginac/ginac.h>
1050 using namespace GiNaC;
1051
1052 int main()
1053 @{
1054     symbol a("a"), b("b");
1055     ex MyTerm = 1+a*b;
1056     // ...
1057 @}
1058 @end example
1059
1060 @cindex @code{pow()}
1061 For exponentiation, you have already seen the somewhat clumsy (though C-ish)
1062 statement @code{pow(x,2);} to represent @code{x} squared.  This direct
1063 construction is necessary since we cannot safely overload the constructor
1064 @code{^} in C++ to construct a @code{power} object.  If we did, it would
1065 have several counterintuitive effects:
1066
1067 @itemize @bullet
1068 @item
1069 Due to C's operator precedence, @code{2*x^2} would be parsed as @code{(2*x)^2}.
1070 @item
1071 Due to the binding of the operator @code{^}, @code{x^a^b} would result in
1072 @code{(x^a)^b}. This would be confusing since most (though not all) other CAS
1073 interpret this as @code{x^(a^b)}.
1074 @item
1075 Also, expressions involving integer exponents are very frequently used,
1076 which makes it even more dangerous to overload @code{^} since it is then
1077 hard to distinguish between the semantics as exponentiation and the one
1078 for exclusive or.  (It would be embarassing to return @code{1} where one
1079 has requested @code{2^3}.)
1080 @end itemize
1081
1082 @cindex @command{ginsh}
1083 All effects are contrary to mathematical notation and differ from the
1084 way most other CAS handle exponentiation, therefore overloading @code{^}
1085 is ruled out for GiNaC's C++ part.  The situation is different in
1086 @command{ginsh}, there the exponentiation-@code{^} exists.  (Also note
1087 that the other frequently used exponentiation operator @code{**} does
1088 not exist at all in C++).
1089
1090 To be somewhat more precise, objects of the three classes described
1091 here, are all containers for other expressions.  An object of class
1092 @code{power} is best viewed as a container with two slots, one for the
1093 basis, one for the exponent.  All valid GiNaC expressions can be
1094 inserted.  However, basic transformations like simplifying
1095 @code{pow(pow(x,2),3)} to @code{x^6} automatically are only performed
1096 when this is mathematically possible.  If we replace the outer exponent
1097 three in the example by some symbols @code{a}, the simplification is not
1098 safe and will not be performed, since @code{a} might be @code{1/2} and
1099 @code{x} negative.
1100
1101 Objects of type @code{add} and @code{mul} are containers with an
1102 arbitrary number of slots for expressions to be inserted.  Again, simple
1103 and safe simplifications are carried out like transforming
1104 @code{3*x+4-x} to @code{2*x+4}.
1105
1106 The general rule is that when you construct such objects, GiNaC
1107 automatically creates them in canonical form, which might differ from
1108 the form you typed in your program.  This allows for rapid comparison of
1109 expressions, since after all @code{a-a} is simply zero.  Note, that the
1110 canonical form is not necessarily lexicographical ordering or in any way
1111 easily guessable.  It is only guaranteed that constructing the same
1112 expression twice, either implicitly or explicitly, results in the same
1113 canonical form.
1114
1115
1116 @node Lists, Mathematical functions, Fundamental containers, Basic Concepts
1117 @c    node-name, next, previous, up
1118 @section Lists of expressions
1119 @cindex @code{lst} (class)
1120 @cindex lists
1121 @cindex @code{nops()}
1122 @cindex @code{op()}
1123 @cindex @code{append()}
1124 @cindex @code{prepend()}
1125
1126 The GiNaC class @code{lst} serves for holding a list of arbitrary expressions.
1127 These are sometimes used to supply a variable number of arguments of the same
1128 type to GiNaC methods such as @code{subs()} and @code{to_rational()}, so you
1129 should have a basic understanding about them.
1130
1131 Lists of up to 15 expressions can be directly constructed from single
1132 expressions:
1133
1134 @example
1135 @{
1136     symbol x("x"), y("y");
1137     lst l(x, 2, y, x+y);
1138     // now, l is a list holding the expressions 'x', '2', 'y', and 'x+y'
1139     // ...
1140 @end example
1141
1142 Use the @code{nops()} method to determine the size (number of expressions) of
1143 a list and the @code{op()} method to access individual elements:
1144
1145 @example
1146     // ...
1147     cout << l.nops() << endl;                   // prints '4'
1148     cout << l.op(2) << " " << l.op(0) << endl;  // prints 'y x'
1149     // ...
1150 @end example
1151
1152 Finally you can append or prepend an expression to a list with the
1153 @code{append()} and @code{prepend()} methods:
1154
1155 @example
1156     // ...
1157     l.append(4*x);   // l is now [x, 2, y, x+y, 4*x]
1158     l.prepend(0);    // l is now [0, x, 2, y, x+y, 4*x]
1159 @}
1160 @end example
1161
1162
1163 @node Mathematical functions, Relations, Lists, Basic Concepts
1164 @c    node-name, next, previous, up
1165 @section Mathematical functions
1166 @cindex @code{function} (class)
1167 @cindex trigonometric function
1168 @cindex hyperbolic function
1169
1170 There are quite a number of useful functions hard-wired into GiNaC.  For
1171 instance, all trigonometric and hyperbolic functions are implemented
1172 (@xref{Built-in Functions}, for a complete list).
1173
1174 These functions are all objects of class @code{function}.  They accept one
1175 or more expressions as arguments and return one expression.  If the arguments
1176 are not numerical, the evaluation of the function may be halted, as it
1177 does in the next example:
1178
1179 @cindex Gamma function
1180 @cindex @code{subs()}
1181 @example
1182 #include <ginac/ginac.h>
1183 using namespace GiNaC;
1184
1185 int main()
1186 @{
1187     symbol x("x"), y("y");
1188     
1189     ex foo = x+y/2;
1190     cout << "tgamma(" << foo << ") -> " << tgamma(foo) << endl;
1191     ex bar = foo.subs(y==1);
1192     cout << "tgamma(" << bar << ") -> " << tgamma(bar) << endl;
1193     ex foobar = bar.subs(x==7);
1194     cout << "tgamma(" << foobar << ") -> " << tgamma(foobar) << endl;
1195 @}
1196 @end example
1197
1198 This program shows how the function returns itself twice and finally an
1199 expression that may be really useful:
1200
1201 @example
1202 tgamma(x+(1/2)*y) -> tgamma(x+(1/2)*y)
1203 tgamma(x+1/2) -> tgamma(x+1/2)
1204 tgamma(15/2) -> (135135/128)*Pi^(1/2)
1205 @end example
1206
1207 Besides evaluation most of these functions allow differentiation, series
1208 expansion and so on.  Read the next chapter in order to learn more about
1209 this.
1210
1211
1212 @node Relations, Methods and Functions, Mathematical functions, Basic Concepts
1213 @c    node-name, next, previous, up
1214 @section Relations
1215 @cindex @code{relational} (class)
1216
1217 Sometimes, a relation holding between two expressions must be stored
1218 somehow.  The class @code{relational} is a convenient container for such
1219 purposes.  A relation is by definition a container for two @code{ex} and
1220 a relation between them that signals equality, inequality and so on.
1221 They are created by simply using the C++ operators @code{==}, @code{!=},
1222 @code{<}, @code{<=}, @code{>} and @code{>=} between two expressions.
1223
1224 @xref{Mathematical functions}, for examples where various applications
1225 of the @code{.subs()} method show how objects of class relational are
1226 used as arguments.  There they provide an intuitive syntax for
1227 substitutions.  They are also used as arguments to the @code{ex::series}
1228 method, where the left hand side of the relation specifies the variable
1229 to expand in and the right hand side the expansion point.  They can also
1230 be used for creating systems of equations that are to be solved for
1231 unknown variables.  But the most common usage of objects of this class
1232 is rather inconspicuous in statements of the form @code{if
1233 (expand(pow(a+b,2))==a*a+2*a*b+b*b) @{...@}}.  Here, an implicit
1234 conversion from @code{relational} to @code{bool} takes place.  Note,
1235 however, that @code{==} here does not perform any simplifications, hence
1236 @code{expand()} must be called explicitly.
1237
1238
1239 @node Methods and Functions, Information About Expressions, Relations, Top
1240 @c    node-name, next, previous, up
1241 @chapter Methods and Functions
1242 @cindex polynomial
1243
1244 In this chapter the most important algorithms provided by GiNaC will be
1245 described.  Some of them are implemented as functions on expressions,
1246 others are implemented as methods provided by expression objects.  If
1247 they are methods, there exists a wrapper function around it, so you can
1248 alternatively call it in a functional way as shown in the simple
1249 example:
1250
1251 @example
1252 #include <ginac/ginac.h>
1253 using namespace GiNaC;
1254
1255 int main()
1256 @{
1257     ex x = numeric(1.0);
1258     
1259     cout << "As method:   " << sin(x).evalf() << endl;
1260     cout << "As function: " << evalf(sin(x)) << endl;
1261 @}
1262 @end example
1263
1264 @cindex @code{subs()}
1265 The general rule is that wherever methods accept one or more parameters
1266 (@var{arg1}, @var{arg2}, @dots{}) the order of arguments the function
1267 wrapper accepts is the same but preceded by the object to act on
1268 (@var{object}, @var{arg1}, @var{arg2}, @dots{}).  This approach is the
1269 most natural one in an OO model but it may lead to confusion for MapleV
1270 users because where they would type @code{A:=x+1; subs(x=2,A);} GiNaC
1271 would require @code{A=x+1; subs(A,x==2);} (after proper declaration of
1272 @code{A} and @code{x}).  On the other hand, since MapleV returns 3 on
1273 @code{A:=x^2+3; coeff(A,x,0);} (GiNaC: @code{A=pow(x,2)+3;
1274 coeff(A,x,0);}) it is clear that MapleV is not trying to be consistent
1275 here.  Also, users of MuPAD will in most cases feel more comfortable
1276 with GiNaC's convention.  All function wrappers are implemented
1277 as simple inline functions which just call the corresponding method and
1278 are only provided for users uncomfortable with OO who are dead set to
1279 avoid method invocations.  Generally, nested function wrappers are much
1280 harder to read than a sequence of methods and should therefore be
1281 avoided if possible.  On the other hand, not everything in GiNaC is a
1282 method on class @code{ex} and sometimes calling a function cannot be
1283 avoided.
1284
1285 @menu
1286 * Information About Expressions::
1287 * Substituting Symbols::
1288 * Polynomial Arithmetic::           Working with polynomials.
1289 * Rational Expressions::            Working with rational functions.
1290 * Symbolic Differentiation::
1291 * Series Expansion::                Taylor and Laurent expansion.
1292 * Built-in Functions::              List of predefined mathematical functions.
1293 * Input/Output::                    Input and output of expressions.
1294 @end menu
1295
1296
1297 @node Information About Expressions, Substituting Symbols, Methods and Functions, Methods and Functions
1298 @c    node-name, next, previous, up
1299 @section Getting information about expressions
1300
1301 @subsection Checking expression types
1302 @cindex @code{is_ex_of_type()}
1303 @cindex @code{info()}
1304
1305 Sometimes it's useful to check whether a given expression is a plain number,
1306 a sum, a polynomial with integer coefficients, or of some other specific type.
1307 GiNaC provides two functions for this (the first one is actually a macro):
1308
1309 @example
1310 bool is_ex_of_type(const ex & e, TYPENAME t);
1311 bool ex::info(unsigned flag);
1312 @end example
1313
1314 @code{is_ex_of_type()} allows you to check whether the top-level object of
1315 an expression @samp{e} is an instance of the GiNaC class @samp{t}
1316 (@xref{The Class Hierarchy}, for a list of all classes). This is most useful,
1317 e.g., for checking whether an expression is a number, a sum, or a product:
1318
1319 @example
1320 @{
1321     symbol x("x");
1322     ex e1 = 42;
1323     ex e2 = 4*x - 3;
1324     is_ex_of_type(e1, numeric);  // true
1325     is_ex_of_type(e2, numeric);  // false
1326     is_ex_of_type(e1, add);      // false
1327     is_ex_of_type(e2, add);      // true
1328     is_ex_of_type(e1, mul);      // false
1329     is_ex_of_type(e2, mul);      // false
1330 @}
1331 @end example
1332
1333 The @code{info()} method is used for checking certain attributes of
1334 expressions. The possible values for the @code{flag} argument are defined
1335 in @file{ginac/flags.h}, the most important being explained in the following
1336 table:
1337
1338 @cartouche
1339 @multitable @columnfractions .30 .70
1340 @item @strong{Flag} @tab @strong{Returns true if the object is@dots{}}
1341 @item @code{numeric}
1342 @tab @dots{}a number (same as @code{is_ex_of_type(..., numeric)})
1343 @item @code{real}
1344 @tab @dots{}a real integer, rational or float (i.e. is not complex)
1345 @item @code{rational}
1346 @tab @dots{}an exact rational number (integers are rational, too)
1347 @item @code{integer}
1348 @tab @dots{}a (non-complex) integer
1349 @item @code{crational}
1350 @tab @dots{}an exact (complex) rational number (such as @math{2/3+7/2*I})
1351 @item @code{cinteger}
1352 @tab @dots{}a (complex) integer (such as @math{2-3*I})
1353 @item @code{positive}
1354 @tab @dots{}not complex and greater than 0
1355 @item @code{negative}
1356 @tab @dots{}not complex and less than 0
1357 @item @code{nonnegative}
1358 @tab @dots{}not complex and greater than or equal to 0
1359 @item @code{posint}
1360 @tab @dots{}an integer greater than 0
1361 @item @code{negint}
1362 @tab @dots{}an integer less than 0
1363 @item @code{nonnegint}
1364 @tab @dots{}an integer greater than or equal to 0
1365 @item @code{even}
1366 @tab @dots{}an even integer
1367 @item @code{odd}
1368 @tab @dots{}an odd integer
1369 @item @code{prime}
1370 @tab @dots{}a prime integer (probabilistic primality test)
1371 @item @code{relation}
1372 @tab @dots{}a relation (same as @code{is_ex_of_type(..., relational)})
1373 @item @code{relation_equal}
1374 @tab @dots{}a @code{==} relation
1375 @item @code{relation_not_equal}
1376 @tab @dots{}a @code{!=} relation
1377 @item @code{relation_less}
1378 @tab @dots{}a @code{<} relation
1379 @item @code{relation_less_or_equal}
1380 @tab @dots{}a @code{<=} relation
1381 @item @code{relation_greater}
1382 @tab @dots{}a @code{>} relation
1383 @item @code{relation_greater_or_equal}
1384 @tab @dots{}a @code{>=} relation
1385 @item @code{symbol}
1386 @tab @dots{}a symbol (same as @code{is_ex_of_type(..., symbol)})
1387 @item @code{list}
1388 @tab @dots{}a list (same as @code{is_ex_of_type(..., lst)})
1389 @item @code{polynomial}
1390 @tab @dots{}a polynomial (i.e. only consists of sums and products of numbers and symbols with positive integer powers)
1391 @item @code{integer_polynomial}
1392 @tab @dots{}a polynomial with (non-complex) integer coefficients
1393 @item @code{cinteger_polynomial}
1394 @tab @dots{}a polynomial with (possibly complex) integer coefficients (such as @math{2-3*I})
1395 @item @code{rational_polynomial}
1396 @tab @dots{}a polynomial with (non-complex) rational coefficients
1397 @item @code{crational_polynomial}
1398 @tab @dots{}a polynomial with (possibly complex) rational coefficients (such as @math{2/3+7/2*I})
1399 @item @code{rational_function}
1400 @tab @dots{}a rational function
1401 @end multitable
1402 @end cartouche
1403
1404
1405 @subsection Accessing subexpressions
1406 @cindex @code{nops()}
1407 @cindex @code{op()}
1408 @cindex @code{has()}
1409 @cindex container
1410 @cindex @code{relational} (class)
1411
1412 GiNaC provides the two methods
1413
1414 @example
1415 unsigned ex::nops();
1416 ex ex::op(unsigned i);
1417 @end example
1418
1419 for accessing the subexpressions in the container-like GiNaC classes like
1420 @code{add}, @code{mul}, @code{lst}, and @code{function}. @code{nops()}
1421 determines the number of subexpressions (@samp{operands}) contained, while
1422 @code{op()} returns the @code{i}-th (0..@code{nops()-1}) subexpression.
1423 In the case of a @code{power} object, @code{op(0)} will return the basis
1424 and @code{op(1)} the exponent.
1425
1426 The left-hand and right-hand side expressions of objects of class
1427 @code{relational} (and only of these) can also be accessed with the methods
1428
1429 @example
1430 ex ex::lhs();
1431 ex ex::rhs();
1432 @end example
1433
1434 Finally, the method
1435
1436 @example
1437 bool ex::has(const ex & other);
1438 @end example
1439
1440 checks whether an expression contains the given subexpression @code{other}.
1441 This only works reliably if @code{other} is of an atomic class such as a
1442 @code{numeric} or a @code{symbol}. It is, e.g., not possible to verify that
1443 @code{a+b+c} contains @code{a+c} (or @code{a+b}) as a subexpression.
1444
1445
1446 @subsection Comparing expressions
1447 @cindex @code{is_equal()}
1448 @cindex @code{is_zero()}
1449
1450 Expressions can be compared with the usual C++ relational operators like
1451 @code{==}, @code{>}, and @code{<} but if the expressions contain symbols,
1452 the result is usually not determinable and the result will be @code{false},
1453 except in the case of the @code{!=} operator. You should also be aware that
1454 GiNaC will only do the most trivial test for equality (subtracting both
1455 expressions), so something like @code{(pow(x,2)+x)/x==x+1} will return
1456 @code{false}.
1457
1458 Actually, if you construct an expression like @code{a == b}, this will be
1459 represented by an object of the @code{relational} class (@xref{Relations}.)
1460 which is not evaluated until (explicitly or implicitely) cast to a @code{bool}.
1461
1462 There are also two methods
1463
1464 @example
1465 bool ex::is_equal(const ex & other);
1466 bool ex::is_zero();
1467 @end example
1468
1469 for checking whether one expression is equal to another, or equal to zero,
1470 respectively.
1471
1472 @strong{Warning:} You will also find an @code{ex::compare()} method in the
1473 GiNaC header files. This method is however only to be used internally by
1474 GiNaC to establish a canonical sort order for terms, and using it to compare
1475 expressions will give very surprising results.
1476
1477
1478 @node Substituting Symbols, Polynomial Arithmetic, Information About Expressions, Methods and Functions
1479 @c    node-name, next, previous, up
1480 @section Substituting symbols
1481 @cindex @code{subs()}
1482
1483 Symbols can be replaced with expressions via the @code{.subs()} method:
1484
1485 @example
1486 ex ex::subs(const ex & e);
1487 ex ex::subs(const lst & syms, const lst & repls);
1488 @end example
1489
1490 In the first form, @code{subs()} accepts a relational of the form
1491 @samp{symbol == expression} or a @code{lst} of such relationals. E.g.
1492
1493 @example
1494 @{
1495     symbol x("x"), y("y");
1496     ex e1 = 2*x^2-4*x+3;
1497     cout << "e1(7) = " << e1.subs(x == 7) << endl;
1498     ex e2 = x*y + x;
1499     cout << "e2(-2, 4) = " << e2.subs(lst(x == -2, y == 4)) << endl;
1500 @}
1501 @end example
1502
1503 will print @samp{73} and @samp{-10}, respectively.
1504
1505 If you specify multiple substitutions, they are performed in parallel, so e.g.
1506 @code{subs(lst(x == y, y == x))} exchanges @samp{x} and @samp{y}.
1507
1508 The second form of @code{subs()} takes two lists, one for the symbols and
1509 one for the expressions to be substituted (both lists must contain the same
1510 number of elements). Using this form, you would write @code{subs(lst(x, y), lst(y, x))}
1511 to exchange @samp{x} and @samp{y}.
1512
1513
1514 @node Polynomial Arithmetic, Rational Expressions, Substituting Symbols, Methods and Functions
1515 @c    node-name, next, previous, up
1516 @section Polynomial arithmetic
1517
1518 @subsection Expanding and collecting
1519 @cindex @code{expand()}
1520 @cindex @code{collect()}
1521
1522 A polynomial in one or more variables has many equivalent
1523 representations.  Some useful ones serve a specific purpose.  Consider
1524 for example the trivariate polynomial @math{4*x*y + x*z + 20*y^2 +
1525 21*y*z + 4*z^2} (written down here in output-style).  It is equivalent
1526 to the factorized polynomial @math{(x + 5*y + 4*z)*(4*y + z)}.  Other
1527 representations are the recursive ones where one collects for exponents
1528 in one of the three variable.  Since the factors are themselves
1529 polynomials in the remaining two variables the procedure can be
1530 repeated.  In our expample, two possibilities would be @math{(4*y + z)*x
1531 + 20*y^2 + 21*y*z + 4*z^2} and @math{20*y^2 + (21*z + 4*x)*y + 4*z^2 +
1532 x*z}.
1533
1534 To bring an expression into expanded form, its method
1535
1536 @example
1537 ex ex::expand();
1538 @end example
1539
1540 may be called.  In our example above, this corresponds to @math{4*x*y +
1541 x*z + 20*y^2 + 21*y*z + 4*z^2}.  Again, since the canonical form in
1542 GiNaC is not easily guessable you should be prepared to see different
1543 orderings of terms in such sums!
1544
1545 Another useful representation of multivariate polynomials is as a
1546 univariate polynomial in one of the variables with the coefficients
1547 being polynomials in the remaining variables.  The method
1548 @code{collect()} accomplishes this task:
1549
1550 @example
1551 ex ex::collect(const symbol & s);
1552 @end example
1553
1554 Note that the original polynomial needs to be in expanded form in order
1555 to be able to find the coefficients properly.
1556
1557 @subsection Degree and coefficients
1558 @cindex @code{degree()}
1559 @cindex @code{ldegree()}
1560 @cindex @code{coeff()}
1561
1562 The degree and low degree of a polynomial can be obtained using the two
1563 methods
1564
1565 @example
1566 int ex::degree(const symbol & s);
1567 int ex::ldegree(const symbol & s);
1568 @end example
1569
1570 which also work reliably on non-expanded input polynomials (they even work
1571 on rational functions, returning the asymptotic degree). To extract
1572 a coefficient with a certain power from an expanded polynomial you use
1573
1574 @example
1575 ex ex::coeff(const symbol & s, int n);
1576 @end example
1577
1578 You can also obtain the leading and trailing coefficients with the methods
1579
1580 @example
1581 ex ex::lcoeff(const symbol & s);
1582 ex ex::tcoeff(const symbol & s);
1583 @end example
1584
1585 which are equivalent to @code{coeff(s, degree(s))} and @code{coeff(s, ldegree(s))},
1586 respectively.
1587
1588 An application is illustrated in the next example, where a multivariate
1589 polynomial is analyzed:
1590
1591 @example
1592 #include <ginac/ginac.h>
1593 using namespace GiNaC;
1594
1595 int main()
1596 @{
1597     symbol x("x"), y("y");
1598     ex PolyInp = 4*pow(x,3)*y + 5*x*pow(y,2) + 3*y
1599                  - pow(x+y,2) + 2*pow(y+2,2) - 8;
1600     ex Poly = PolyInp.expand();
1601     
1602     for (int i=Poly.ldegree(x); i<=Poly.degree(x); ++i) @{
1603         cout << "The x^" << i << "-coefficient is "
1604              << Poly.coeff(x,i) << endl;
1605     @}
1606     cout << "As polynomial in y: " 
1607          << Poly.collect(y) << endl;
1608 @}
1609 @end example
1610
1611 When run, it returns an output in the following fashion:
1612
1613 @example
1614 The x^0-coefficient is y^2+11*y
1615 The x^1-coefficient is 5*y^2-2*y
1616 The x^2-coefficient is -1
1617 The x^3-coefficient is 4*y
1618 As polynomial in y: -x^2+(5*x+1)*y^2+(-2*x+4*x^3+11)*y
1619 @end example
1620
1621 As always, the exact output may vary between different versions of GiNaC
1622 or even from run to run since the internal canonical ordering is not
1623 within the user's sphere of influence.
1624
1625
1626 @subsection Polynomial division
1627 @cindex polynomial division
1628 @cindex quotient
1629 @cindex remainder
1630 @cindex pseudo-remainder
1631 @cindex @code{quo()}
1632 @cindex @code{rem()}
1633 @cindex @code{prem()}
1634 @cindex @code{divide()}
1635
1636 The two functions
1637
1638 @example
1639 ex quo(const ex & a, const ex & b, const symbol & x);
1640 ex rem(const ex & a, const ex & b, const symbol & x);
1641 @end example
1642
1643 compute the quotient and remainder of univariate polynomials in the variable
1644 @samp{x}. The results satisfy @math{a = b*quo(a, b, x) + rem(a, b, x)}.
1645
1646 The additional function
1647
1648 @example
1649 ex prem(const ex & a, const ex & b, const symbol & x);
1650 @end example
1651
1652 computes the pseudo-remainder of @samp{a} and @samp{b} which satisfies
1653 @math{c*a = b*q + prem(a, b, x)}, where @math{c = b.lcoeff(x) ^ (a.degree(x) - b.degree(x) + 1)}.
1654
1655 Exact division of multivariate polynomials is performed by the function
1656
1657 @example
1658 bool divide(const ex & a, const ex & b, ex & q);
1659 @end example
1660
1661 If @samp{b} divides @samp{a} over the rationals, this function returns @code{true}
1662 and returns the quotient in the variable @code{q}. Otherwise it returns @code{false}
1663 in which case the value of @code{q} is undefined.
1664
1665
1666 @subsection Unit, content and primitive part
1667 @cindex @code{unit()}
1668 @cindex @code{content()}
1669 @cindex @code{primpart()}
1670
1671 The methods
1672
1673 @example
1674 ex ex::unit(const symbol & x);
1675 ex ex::content(const symbol & x);
1676 ex ex::primpart(const symbol & x);
1677 @end example
1678
1679 return the unit part, content part, and primitive polynomial of a multivariate
1680 polynomial with respect to the variable @samp{x} (the unit part being the sign
1681 of the leading coefficient, the content part being the GCD of the coefficients,
1682 and the primitive polynomial being the input polynomial divided by the unit and
1683 content parts). The product of unit, content, and primitive part is the
1684 original polynomial.
1685
1686
1687 @subsection GCD and LCM
1688 @cindex GCD
1689 @cindex LCM
1690 @cindex @code{gcd()}
1691 @cindex @code{lcm()}
1692
1693 The functions for polynomial greatest common divisor and least common
1694 multiple have the synopsis
1695
1696 @example
1697 ex gcd(const ex & a, const ex & b);
1698 ex lcm(const ex & a, const ex & b);
1699 @end example
1700
1701 The functions @code{gcd()} and @code{lcm()} accept two expressions
1702 @code{a} and @code{b} as arguments and return a new expression, their
1703 greatest common divisor or least common multiple, respectively.  If the
1704 polynomials @code{a} and @code{b} are coprime @code{gcd(a,b)} returns 1
1705 and @code{lcm(a,b)} returns the product of @code{a} and @code{b}.
1706
1707 @example
1708 #include <ginac/ginac.h>
1709 using namespace GiNaC;
1710
1711 int main()
1712 @{
1713     symbol x("x"), y("y"), z("z");
1714     ex P_a = 4*x*y + x*z + 20*pow(y, 2) + 21*y*z + 4*pow(z, 2);
1715     ex P_b = x*y + 3*x*z + 5*pow(y, 2) + 19*y*z + 12*pow(z, 2);
1716
1717     ex P_gcd = gcd(P_a, P_b);
1718     // x + 5*y + 4*z
1719     ex P_lcm = lcm(P_a, P_b);
1720     // 4*x*y^2 + 13*y*x*z + 20*y^3 + 81*y^2*z + 67*y*z^2 + 3*x*z^2 + 12*z^3
1721 @}
1722 @end example
1723
1724
1725 @node Rational Expressions, Symbolic Differentiation, Polynomial Arithmetic, Methods and Functions
1726 @c    node-name, next, previous, up
1727 @section Rational expressions
1728
1729 @subsection The @code{normal} method
1730 @cindex @code{normal()}
1731 @cindex simplification
1732 @cindex temporary replacement
1733
1734 Some basic from of simplification of expressions is called for frequently.
1735 GiNaC provides the method @code{.normal()}, which converts a rational function
1736 into an equivalent rational function of the form @samp{numerator/denominator}
1737 where numerator and denominator are coprime.  If the input expression is already
1738 a fraction, it just finds the GCD of numerator and denominator and cancels it,
1739 otherwise it performs fraction addition and multiplication.
1740
1741 @code{.normal()} can also be used on expressions which are not rational functions
1742 as it will replace all non-rational objects (like functions or non-integer
1743 powers) by temporary symbols to bring the expression to the domain of rational
1744 functions before performing the normalization, and re-substituting these
1745 symbols afterwards. This algorithm is also available as a separate method
1746 @code{.to_rational()}, described below.
1747
1748 This means that both expressions @code{t1} and @code{t2} are indeed
1749 simplified in this little program:
1750
1751 @example
1752 #include <ginac/ginac.h>
1753 using namespace GiNaC;
1754
1755 int main()
1756 @{
1757     symbol x("x");
1758     ex t1 = (pow(x,2) + 2*x + 1)/(x + 1);
1759     ex t2 = (pow(sin(x),2) + 2*sin(x) + 1)/(sin(x) + 1);
1760     cout << "t1 is " << t1.normal() << endl;
1761     cout << "t2 is " << t2.normal() << endl;
1762 @}
1763 @end example
1764
1765 Of course this works for multivariate polynomials too, so the ratio of
1766 the sample-polynomials from the section about GCD and LCM above would be
1767 normalized to @code{P_a/P_b} = @code{(4*y+z)/(y+3*z)}.
1768
1769
1770 @subsection Numerator and denominator
1771 @cindex numerator
1772 @cindex denominator
1773 @cindex @code{numer()}
1774 @cindex @code{denom()}
1775
1776 The numerator and denominator of an expression can be obtained with
1777
1778 @example
1779 ex ex::numer();
1780 ex ex::denom();
1781 @end example
1782
1783 These functions will first normalize the expression as described above and
1784 then return the numerator or denominator, respectively.
1785
1786
1787 @subsection Converting to a rational expression
1788 @cindex @code{to_rational()}
1789
1790 Some of the methods described so far only work on polynomials or rational
1791 functions. GiNaC provides a way to extend the domain of these functions to
1792 general expressions by using the temporary replacement algorithm described
1793 above. You do this by calling
1794
1795 @example
1796 ex ex::to_rational(lst &l);
1797 @end example
1798
1799 on the expression to be converted. The supplied @code{lst} will be filled
1800 with the generated temporary symbols and their replacement expressions in
1801 a format that can be used directly for the @code{subs()} method. It can also
1802 already contain a list of replacements from an earlier application of
1803 @code{.to_rational()}, so it's possible to use it on multiple expressions
1804 and get consistent results.
1805
1806 For example,
1807
1808 @example
1809 @{
1810     symbol x("x");
1811     ex a = pow(sin(x), 2) - pow(cos(x), 2);
1812     ex b = sin(x) + cos(x);
1813     ex q;
1814     lst l;
1815     divide(a.to_rational(l), b.to_rational(l), q);
1816     cout << q.subs(l) << endl;
1817 @}
1818 @end example
1819
1820 will print @samp{sin(x)-cos(x)}.
1821
1822
1823 @node Symbolic Differentiation, Series Expansion, Rational Expressions, Methods and Functions
1824 @c    node-name, next, previous, up
1825 @section Symbolic differentiation
1826 @cindex differentiation
1827 @cindex @code{diff()}
1828 @cindex chain rule
1829 @cindex product rule
1830
1831 GiNaC's objects know how to differentiate themselves.  Thus, a
1832 polynomial (class @code{add}) knows that its derivative is the sum of
1833 the derivatives of all the monomials:
1834
1835 @example
1836 #include <ginac/ginac.h>
1837 using namespace GiNaC;
1838
1839 int main()
1840 @{
1841     symbol x("x"), y("y"), z("z");
1842     ex P = pow(x, 5) + pow(x, 2) + y;
1843
1844     cout << P.diff(x,2) << endl;  // 20*x^3 + 2
1845     cout << P.diff(y) << endl;    // 1
1846     cout << P.diff(z) << endl;    // 0
1847 @}
1848 @end example
1849
1850 If a second integer parameter @var{n} is given, the @code{diff} method
1851 returns the @var{n}th derivative.
1852
1853 If @emph{every} object and every function is told what its derivative
1854 is, all derivatives of composed objects can be calculated using the
1855 chain rule and the product rule.  Consider, for instance the expression
1856 @code{1/cosh(x)}.  Since the derivative of @code{cosh(x)} is
1857 @code{sinh(x)} and the derivative of @code{pow(x,-1)} is
1858 @code{-pow(x,-2)}, GiNaC can readily compute the composition.  It turns
1859 out that the composition is the generating function for Euler Numbers,
1860 i.e. the so called @var{n}th Euler number is the coefficient of
1861 @code{x^n/n!} in the expansion of @code{1/cosh(x)}.  We may use this
1862 identity to code a function that generates Euler numbers in just three
1863 lines:
1864
1865 @cindex Euler numbers
1866 @example
1867 #include <ginac/ginac.h>
1868 using namespace GiNaC;
1869
1870 ex EulerNumber(unsigned n)
1871 @{
1872     symbol x;
1873     const ex generator = pow(cosh(x),-1);
1874     return generator.diff(x,n).subs(x==0);
1875 @}
1876
1877 int main()
1878 @{
1879     for (unsigned i=0; i<11; i+=2)
1880         cout << EulerNumber(i) << endl;
1881     return 0;
1882 @}
1883 @end example
1884
1885 When you run it, it produces the sequence @code{1}, @code{-1}, @code{5},
1886 @code{-61}, @code{1385}, @code{-50521}.  We increment the loop variable
1887 @code{i} by two since all odd Euler numbers vanish anyways.
1888
1889
1890 @node Series Expansion, Built-in Functions, Symbolic Differentiation, Methods and Functions
1891 @c    node-name, next, previous, up
1892 @section Series expansion
1893 @cindex @code{series()}
1894 @cindex Taylor expansion
1895 @cindex Laurent expansion
1896 @cindex @code{pseries} (class)
1897
1898 Expressions know how to expand themselves as a Taylor series or (more
1899 generally) a Laurent series.  As in most conventional Computer Algebra
1900 Systems, no distinction is made between those two.  There is a class of
1901 its own for storing such series (@code{class pseries}) and a built-in
1902 function (called @code{Order}) for storing the order term of the series.
1903 As a consequence, if you want to work with series, i.e. multiply two
1904 series, you need to call the method @code{ex::series} again to convert
1905 it to a series object with the usual structure (expansion plus order
1906 term).  A sample application from special relativity could read:
1907
1908 @example
1909 #include <ginac/ginac.h>
1910 using namespace GiNaC;
1911
1912 int main()
1913 @{
1914     symbol v("v"), c("c");
1915     
1916     ex gamma = 1/sqrt(1 - pow(v/c,2));
1917     ex mass_nonrel = gamma.series(v==0, 10);
1918     
1919     cout << "the relativistic mass increase with v is " << endl
1920          << mass_nonrel << endl;
1921     
1922     cout << "the inverse square of this series is " << endl
1923          << pow(mass_nonrel,-2).series(v==0, 10) << endl;
1924 @}
1925 @end example
1926
1927 Only calling the series method makes the last output simplify to
1928 @math{1-v^2/c^2+O(v^10)}, without that call we would just have a long
1929 series raised to the power @math{-2}.
1930
1931 @cindex M@'echain's formula
1932 As another instructive application, let us calculate the numerical 
1933 value of Archimedes' constant
1934 @tex
1935 $\pi$
1936 @end tex
1937 (for which there already exists the built-in constant @code{Pi}) 
1938 using M@'echain's amazing formula
1939 @tex
1940 $\pi=16$~atan~$\!\left(1 \over 5 \right)-4$~atan~$\!\left(1 \over 239 \right)$.
1941 @end tex
1942 @ifnottex
1943 @math{Pi==16*atan(1/5)-4*atan(1/239)}.
1944 @end ifnottex
1945 We may expand the arcus tangent around @code{0} and insert the fractions
1946 @code{1/5} and @code{1/239}.  But, as we have seen, a series in GiNaC
1947 carries an order term with it and the question arises what the system is
1948 supposed to do when the fractions are plugged into that order term.  The
1949 solution is to use the function @code{series_to_poly()} to simply strip
1950 the order term off:
1951
1952 @example
1953 #include <ginac/ginac.h>
1954 using namespace GiNaC;
1955
1956 ex mechain_pi(int degr)
1957 @{
1958     symbol x;
1959     ex pi_expansion = series_to_poly(atan(x).series(x,degr));
1960     ex pi_approx = 16*pi_expansion.subs(x==numeric(1,5))
1961                    -4*pi_expansion.subs(x==numeric(1,239));
1962     return pi_approx;
1963 @}
1964
1965 int main()
1966 @{
1967     ex pi_frac;
1968     for (int i=2; i<12; i+=2) @{
1969         pi_frac = mechain_pi(i);
1970         cout << i << ":\t" << pi_frac << endl
1971              << "\t" << pi_frac.evalf() << endl;
1972     @}
1973     return 0;
1974 @}
1975 @end example
1976
1977 Note how we just called @code{.series(x,degr)} instead of
1978 @code{.series(x==0,degr)}.  This is a simple shortcut for @code{ex}'s
1979 method @code{series()}: if the first argument is a symbol the expression
1980 is expanded in that symbol around point @code{0}.  When you run this
1981 program, it will type out:
1982
1983 @example
1984 2:      3804/1195
1985         3.1832635983263598326
1986 4:      5359397032/1706489875
1987         3.1405970293260603143
1988 6:      38279241713339684/12184551018734375
1989         3.141621029325034425
1990 8:      76528487109180192540976/24359780855939418203125
1991         3.141591772182177295
1992 10:     327853873402258685803048818236/104359128170408663038552734375
1993         3.1415926824043995174
1994 @end example
1995
1996
1997 @node Built-in Functions, Input/Output, Series Expansion, Methods and Functions
1998 @c    node-name, next, previous, up
1999 @section Predefined mathematical functions
2000
2001 GiNaC contains the following predefined mathematical functions:
2002
2003 @cartouche
2004 @multitable @columnfractions .30 .70
2005 @item @strong{Name} @tab @strong{Function}
2006 @item @code{abs(x)}
2007 @tab absolute value
2008 @item @code{csgn(x)}
2009 @tab complex sign
2010 @item @code{sqrt(x)}
2011 @tab square root (not a GiNaC function proper but equivalent to @code{pow(x, numeric(1, 2)})
2012 @item @code{sin(x)}
2013 @tab sine
2014 @item @code{cos(x)}
2015 @tab cosine
2016 @item @code{tan(x)}
2017 @tab tangent
2018 @item @code{asin(x)}
2019 @tab inverse sine
2020 @item @code{acos(x)}
2021 @tab inverse cosine
2022 @item @code{atan(x)}
2023 @tab inverse tangent
2024 @item @code{atan2(y, x)}
2025 @tab inverse tangent with two arguments
2026 @item @code{sinh(x)}
2027 @tab hyperbolic sine
2028 @item @code{cosh(x)}
2029 @tab hyperbolic cosine
2030 @item @code{tanh(x)}
2031 @tab hyperbolic tangent
2032 @item @code{asinh(x)}
2033 @tab inverse hyperbolic sine
2034 @item @code{acosh(x)}
2035 @tab inverse hyperbolic cosine
2036 @item @code{atanh(x)}
2037 @tab inverse hyperbolic tangent
2038 @item @code{exp(x)}
2039 @tab exponential function
2040 @item @code{log(x)}
2041 @tab natural logarithm
2042 @item @code{zeta(x)}
2043 @tab Riemann's zeta function
2044 @item @code{zeta(n, x)}
2045 @tab derivatives of Riemann's zeta function
2046 @item @code{tgamma(x)}
2047 @tab Gamma function
2048 @item @code{lgamma(x)}
2049 @tab logarithm of Gamma function
2050 @item @code{beta(x, y)}
2051 @tab Beta function (@code{tgamma(x)*tgamma(y)/tgamma(x+y)})
2052 @item @code{psi(x)}
2053 @tab psi (digamma) function
2054 @item @code{psi(n, x)}
2055 @tab derivatives of psi function (polygamma functions)
2056 @item @code{factorial(n)}
2057 @tab factorial function
2058 @item @code{binomial(n, m)}
2059 @tab binomial coefficients
2060 @item @code{Order(x)}
2061 @tab order term function in truncated power series
2062 @item @code{Derivative(x, l)}
2063 @tab inert partial differentiation operator (used internally)
2064 @end multitable
2065 @end cartouche
2066
2067 @cindex branch cut
2068 For functions that have a branch cut in the complex plane GiNaC follows
2069 the conventions for C++ as defined in the ANSI standard.  In particular:
2070 the natural logarithm (@code{log}) and the square root (@code{sqrt})
2071 both have their branch cuts running along the negative real axis where
2072 the points on the axis itself belong to the upper part.
2073
2074
2075 @node Input/Output, Extending GiNaC, Built-in Functions, Methods and Functions
2076 @c    node-name, next, previous, up
2077 @section Input and output of expressions
2078 @cindex I/O
2079
2080 @subsection Expression output
2081 @cindex printing
2082 @cindex output of expressions
2083
2084 The easiest way to print an expression is to write it to a stream:
2085
2086 @example
2087 @{
2088     symbol x("x");
2089     ex e = 4.5+pow(x,2)*3/2;
2090     cout << e << endl;    // prints '4.5+3/2*x^2'
2091     // ...
2092 @end example
2093
2094 The output format is identical to the @command{ginsh} input syntax and
2095 to that used by most computer algebra systems, but not directly pastable
2096 into a GiNaC C++ program (note that in the above example, @code{pow(x,2)}
2097 is printed as @samp{x^2}).
2098
2099 To print an expression in a way that can be directly used in a C or C++
2100 program, you use the method
2101
2102 @example
2103 void ex::printcsrc(ostream & os, unsigned type, const char *name);
2104 @end example
2105
2106 This outputs a line in the form of a variable definition @code{<type> <name> = <expression>}.
2107 The possible types are defined in @file{ginac/flags.h} (@code{csrc_types})
2108 and mostly affect the way in which floating point numbers are written:
2109
2110 @example
2111     // ...
2112     e.printcsrc(cout, csrc_types::ctype_float, "f");
2113     e.printcsrc(cout, csrc_types::ctype_double, "d");
2114     e.printcsrc(cout, csrc_types::ctype_cl_N, "n");
2115     // ...
2116 @end example
2117
2118 The above example will produce (note the @code{x^2} being converted to @code{x*x}):
2119
2120 @example
2121 float f = (3.000000e+00/2.000000e+00)*(x*x)+4.500000e+00;
2122 double d = (3.000000e+00/2.000000e+00)*(x*x)+4.500000e+00;
2123 cl_N n = (cl_F("3.0")/cl_F("2.0"))*(x*x)+cl_F("4.5");
2124 @end example
2125
2126 Finally, there are the two methods @code{printraw()} and @code{printtree()} intended for GiNaC
2127 developers, that provide a dump of the internal structure of an expression for
2128 debugging purposes:
2129
2130 @example
2131     // ...
2132     e.printraw(cout); cout << endl << endl;
2133     e.printtree(cout);
2134 @}
2135 @end example
2136
2137 produces
2138
2139 @example
2140 ex(+((power(ex(symbol(name=x,serial=1,hash=150875740,flags=11)),ex(numeric(2)),hash=2,flags=3),numeric(3/2)),,hash=0,flags=3))
2141
2142 type=Q25GiNaC3add, hash=0 (0x0), flags=3, nops=2
2143     power: hash=2 (0x2), flags=3
2144         x (symbol): serial=1, hash=150875740 (0x8fe2e5c), flags=11
2145         2 (numeric): hash=2147483714 (0x80000042), flags=11
2146     3/2 (numeric): hash=2147483745 (0x80000061), flags=11
2147     -----
2148     overall_coeff
2149     4.5L0 (numeric): hash=2147483723 (0x8000004b), flags=11
2150     =====
2151 @end example
2152
2153 The @code{printtree()} method is also available in @command{ginsh} as the
2154 @code{print()} function.
2155
2156
2157 @subsection Expression input
2158 @cindex input of expressions
2159
2160 GiNaC provides no way to directly read an expression from a stream because
2161 you will usually want the user to be able to enter something like @samp{2*x+sin(y)}
2162 and have the @samp{x} and @samp{y} correspond to the symbols @code{x} and
2163 @code{y} you defined in your program and there is no way to specify the
2164 desired symbols to the @code{>>} stream input operator.
2165
2166 Instead, GiNaC lets you construct an expression from a string, specifying the
2167 list of symbols to be used:
2168
2169 @example
2170 @{
2171     symbol x("x"), y("y");
2172     ex e("2*x+sin(y)", lst(x, y));
2173 @}
2174 @end example
2175
2176 The input syntax is the same as that used by @command{ginsh} and the stream
2177 output operator @code{<<}. The symbols in the string are matched by name to
2178 the symbols in the list and if GiNaC encounters a symbol not specified in
2179 the list it will throw an exception.
2180
2181 With this constructor, it's also easy to implement interactive GiNaC programs:
2182
2183 @example
2184 #include <iostream>
2185 #include <string>
2186 #include <stdexcept>
2187 #include <ginac/ginac.h>
2188 using namespace GiNaC;
2189
2190 int main()
2191 @{
2192      symbol x("x");
2193      string s;
2194
2195      cout << "Enter an expression containing 'x': ";
2196      getline(cin, s);
2197
2198      try @{
2199          ex e(s, lst(x));
2200          cout << "The derivative of " << e << " with respect to x is ";
2201          cout << e.diff(x) << ".\n";
2202      @} catch (exception &p) @{
2203          cerr << p.what() << endl;
2204      @}
2205 @}
2206 @end example
2207
2208
2209 @subsection Archiving
2210 @cindex @code{archive} (class)
2211 @cindex archiving
2212
2213 GiNaC allows creating @dfn{archives} of expressions which can be stored
2214 to or retrieved from files. To create an archive, you declare an object
2215 of class @code{archive} and archive expressions in it, giving each
2216 expression a unique name:
2217
2218 @example
2219 #include <ginac/ginac.h>
2220 #include <fstream>
2221 using namespace GiNaC;
2222
2223 int main()
2224 @{
2225     symbol x("x"), y("y"), z("z");
2226
2227     ex foo = sin(x + 2*y) + 3*z + 41;
2228     ex bar = foo + 1;
2229
2230     archive a;
2231     a.archive_ex(foo, "foo");
2232     a.archive_ex(bar, "the second one");
2233     // ...
2234 @end example
2235
2236 The archive can then be written to a file:
2237
2238 @example
2239     // ...
2240     ofstream out("foobar.gar");
2241     out << a;
2242     out.close();
2243     // ...
2244 @end example
2245
2246 The file @file{foobar.gar} contains all information that is needed to
2247 reconstruct the expressions @code{foo} and @code{bar}.
2248
2249 @cindex @command{viewgar}
2250 The tool @command{viewgar} that comes with GiNaC can be used to view
2251 the contents of GiNaC archive files:
2252
2253 @example
2254 $ viewgar foobar.gar
2255 foo = 41+sin(x+2*y)+3*z
2256 the second one = 42+sin(x+2*y)+3*z
2257 @end example
2258
2259 The point of writing archive files is of course that they can later be
2260 read in again:
2261
2262 @example
2263     // ...
2264     archive a2;
2265     ifstream in("foobar.gar");
2266     in >> a2;
2267     // ...
2268 @end example
2269
2270 And the stored expressions can be retrieved by their name:
2271
2272 @example
2273     // ...
2274     lst syms(x, y);
2275
2276     ex ex1 = a2.unarchive_ex(syms, "foo");
2277     ex ex2 = a2.unarchive_ex(syms, "the second one");
2278
2279     cout << ex1 << endl;              // prints "41+sin(x+2*y)+3*z"
2280     cout << ex2 << endl;              // prints "42+sin(x+2*y)+3*z"
2281     cout << ex1.subs(x == 2) << endl; // prints "41+sin(2+2*y)+3*z"
2282 @}
2283 @end example
2284
2285 Note that you have to supply a list of the symbols which are to be inserted
2286 in the expressions. Symbols in archives are stored by their name only and
2287 if you don't specify which symbols you have, unarchiving the expression will
2288 create new symbols with that name. E.g. if you hadn't included @code{x} in
2289 the @code{syms} list above, the @code{ex1.subs(x == 2)} statement would
2290 have had no effect because the @code{x} in @code{ex1} would have been a
2291 different symbol than the @code{x} which was defined at the beginning of
2292 the program, altough both would appear as @samp{x} when printed.
2293
2294
2295
2296 @node Extending GiNaC, What does not belong into GiNaC, Input/Output, Top
2297 @c    node-name, next, previous, up
2298 @chapter Extending GiNaC
2299
2300 By reading so far you should have gotten a fairly good understanding of
2301 GiNaC's design-patterns.  From here on you should start reading the
2302 sources.  All we can do now is issue some recommendations how to tackle
2303 GiNaC's many loose ends in order to fulfill everybody's dreams.  If you
2304 develop some useful extension please don't hesitate to contact the GiNaC
2305 authors---they will happily incorporate them into future versions.
2306
2307 @menu
2308 * What does not belong into GiNaC::  What to avoid.
2309 * Symbolic functions::               Implementing symbolic functions.
2310 @end menu
2311
2312
2313 @node What does not belong into GiNaC, Symbolic functions, Extending GiNaC, Extending GiNaC
2314 @c    node-name, next, previous, up
2315 @section What doesn't belong into GiNaC
2316
2317 @cindex @command{ginsh}
2318 First of all, GiNaC's name must be read literally.  It is designed to be
2319 a library for use within C++.  The tiny @command{ginsh} accompanying
2320 GiNaC makes this even more clear: it doesn't even attempt to provide a
2321 language.  There are no loops or conditional expressions in
2322 @command{ginsh}, it is merely a window into the library for the
2323 programmer to test stuff (or to show off).  Still, the design of a
2324 complete CAS with a language of its own, graphical capabilites and all
2325 this on top of GiNaC is possible and is without doubt a nice project for
2326 the future.
2327
2328 There are many built-in functions in GiNaC that do not know how to
2329 evaluate themselves numerically to a precision declared at runtime
2330 (using @code{Digits}).  Some may be evaluated at certain points, but not
2331 generally.  This ought to be fixed.  However, doing numerical
2332 computations with GiNaC's quite abstract classes is doomed to be
2333 inefficient.  For this purpose, the underlying foundation classes
2334 provided by @acronym{CLN} are much better suited.
2335
2336
2337 @node Symbolic functions, A Comparison With Other CAS, What does not belong into GiNaC, Extending GiNaC
2338 @c    node-name, next, previous, up
2339 @section Symbolic functions
2340
2341 The easiest and most instructive way to start with is probably to
2342 implement your own function.  GiNaC's functions are objects of class
2343 @code{function}.  The preprocessor is then used to convert the function
2344 names to objects with a corresponding serial number that is used
2345 internally to identify them.  You usually need not worry about this
2346 number.  New functions may be inserted into the system via a kind of
2347 `registry'.  It is your responsibility to care for some functions that
2348 are called when the user invokes certain methods.  These are usual
2349 C++-functions accepting a number of @code{ex} as arguments and returning
2350 one @code{ex}.  As an example, if we have a look at a simplified
2351 implementation of the cosine trigonometric function, we first need a
2352 function that is called when one wishes to @code{eval} it.  It could
2353 look something like this:
2354
2355 @example
2356 static ex cos_eval_method(const ex & x)
2357 @{
2358     // if (!x%(2*Pi)) return 1
2359     // if (!x%Pi) return -1
2360     // if (!x%Pi/2) return 0
2361     // care for other cases...
2362     return cos(x).hold();
2363 @}
2364 @end example
2365
2366 @cindex @code{hold()}
2367 @cindex evaluation
2368 The last line returns @code{cos(x)} if we don't know what else to do and
2369 stops a potential recursive evaluation by saying @code{.hold()}, which
2370 sets a flag to the expression signaling that it has been evaluated.  We
2371 should also implement a method for numerical evaluation and since we are
2372 lazy we sweep the problem under the rug by calling someone else's
2373 function that does so, in this case the one in class @code{numeric}:
2374
2375 @example
2376 static ex cos_evalf(const ex & x)
2377 @{
2378     return cos(ex_to_numeric(x));
2379 @}
2380 @end example
2381
2382 Differentiation will surely turn up and so we need to tell @code{cos}
2383 what the first derivative is (higher derivatives (@code{.diff(x,3)} for
2384 instance are then handled automatically by @code{basic::diff} and
2385 @code{ex::diff}):
2386
2387 @example
2388 static ex cos_deriv(const ex & x, unsigned diff_param)
2389 @{
2390     return -sin(x);
2391 @}
2392 @end example
2393
2394 @cindex product rule
2395 The second parameter is obligatory but uninteresting at this point.  It
2396 specifies which parameter to differentiate in a partial derivative in
2397 case the function has more than one parameter and its main application
2398 is for correct handling of the chain rule.  For Taylor expansion, it is
2399 enough to know how to differentiate.  But if the function you want to
2400 implement does have a pole somewhere in the complex plane, you need to
2401 write another method for Laurent expansion around that point.
2402
2403 Now that all the ingrediences for @code{cos} have been set up, we need
2404 to tell the system about it.  This is done by a macro and we are not
2405 going to descibe how it expands, please consult your preprocessor if you
2406 are curious:
2407
2408 @example
2409 REGISTER_FUNCTION(cos, eval_func(cos_eval).
2410                        evalf_func(cos_evalf).
2411                        derivative_func(cos_deriv));
2412 @end example
2413
2414 The first argument is the function's name used for calling it and for
2415 output.  The second binds the corresponding methods as options to this
2416 object.  Options are separated by a dot and can be given in an arbitrary
2417 order.  GiNaC functions understand several more options which are always
2418 specified as @code{.option(params)}, for example a method for series
2419 expansion @code{.series_func(cos_series)}.  Again, if no series
2420 expansion method is given, GiNaC defaults to simple Taylor expansion,
2421 which is correct if there are no poles involved as is the case for the
2422 @code{cos} function.  The way GiNaC handles poles in case there are any
2423 is best understood by studying one of the examples, like the Gamma
2424 (@code{tgamma}) function for instance.  (In essence the function first
2425 checks if there is a pole at the evaluation point and falls back to
2426 Taylor expansion if there isn't.  Then, the pole is regularized by some
2427 suitable transformation.)  Also, the new function needs to be declared
2428 somewhere.  This may also be done by a convenient preprocessor macro:
2429
2430 @example
2431 DECLARE_FUNCTION_1P(cos)
2432 @end example
2433
2434 The suffix @code{_1P} stands for @emph{one parameter}.  Of course, this
2435 implementation of @code{cos} is very incomplete and lacks several safety
2436 mechanisms.  Please, have a look at the real implementation in GiNaC.
2437 (By the way: in case you are worrying about all the macros above we can
2438 assure you that functions are GiNaC's most macro-intense classes.  We
2439 have done our best to avoid macros where we can.)
2440
2441 That's it. May the source be with you!
2442
2443
2444 @node A Comparison With Other CAS, Advantages, Symbolic functions, Top
2445 @c    node-name, next, previous, up
2446 @chapter A Comparison With Other CAS
2447 @cindex advocacy
2448
2449 This chapter will give you some information on how GiNaC compares to
2450 other, traditional Computer Algebra Systems, like @emph{Maple},
2451 @emph{Mathematica} or @emph{Reduce}, where it has advantages and
2452 disadvantages over these systems.
2453
2454 @menu
2455 * Advantages::                       Stengths of the GiNaC approach.
2456 * Disadvantages::                    Weaknesses of the GiNaC approach.
2457 * Why C++?::                         Attractiveness of C++.
2458 @end menu
2459
2460 @node Advantages, Disadvantages, A Comparison With Other CAS, A Comparison With Other CAS
2461 @c    node-name, next, previous, up
2462 @section Advantages
2463
2464 GiNaC has several advantages over traditional Computer
2465 Algebra Systems, like 
2466
2467 @itemize @bullet
2468
2469 @item
2470 familiar language: all common CAS implement their own proprietary
2471 grammar which you have to learn first (and maybe learn again when your
2472 vendor decides to `enhance' it).  With GiNaC you can write your program
2473 in common C++, which is standardized.
2474
2475 @cindex STL
2476 @item
2477 structured data types: you can build up structured data types using
2478 @code{struct}s or @code{class}es together with STL features instead of
2479 using unnamed lists of lists of lists.
2480
2481 @item
2482 strongly typed: in CAS, you usually have only one kind of variables
2483 which can hold contents of an arbitrary type.  This 4GL like feature is
2484 nice for novice programmers, but dangerous.
2485     
2486 @item
2487 development tools: powerful development tools exist for C++, like fancy
2488 editors (e.g. with automatic indentation and syntax highlighting),
2489 debuggers, visualization tools, documentation generators...
2490
2491 @item
2492 modularization: C++ programs can easily be split into modules by
2493 separating interface and implementation.
2494
2495 @item
2496 price: GiNaC is distributed under the GNU Public License which means
2497 that it is free and available with source code.  And there are excellent
2498 C++-compilers for free, too.
2499     
2500 @item
2501 extendable: you can add your own classes to GiNaC, thus extending it on
2502 a very low level.  Compare this to a traditional CAS that you can
2503 usually only extend on a high level by writing in the language defined
2504 by the parser.  In particular, it turns out to be almost impossible to
2505 fix bugs in a traditional system.
2506
2507 @item
2508 multiple interfaces: Though real GiNaC programs have to be written in
2509 some editor, then be compiled, linked and executed, there are more ways
2510 to work with the GiNaC engine.  Many people want to play with
2511 expressions interactively, as in traditional CASs.  Currently, two such
2512 windows into GiNaC have been implemented and many more are possible: the
2513 tiny @command{ginsh} that is part of the distribution exposes GiNaC's
2514 types to a command line and second, as a more consistent approach, an
2515 interactive interface to the @acronym{Cint} C++ interpreter has been put
2516 together (called @acronym{GiNaC-cint}) that allows an interactive
2517 scripting interface consistent with the C++ language.
2518
2519 @item
2520 seemless integration: it is somewhere between difficult and impossible
2521 to call CAS functions from within a program written in C++ or any other
2522 programming language and vice versa.  With GiNaC, your symbolic routines
2523 are part of your program.  You can easily call third party libraries,
2524 e.g. for numerical evaluation or graphical interaction.  All other
2525 approaches are much more cumbersome: they range from simply ignoring the
2526 problem (i.e. @emph{Maple}) to providing a method for `embedding' the
2527 system (i.e. @emph{Yacas}).
2528
2529 @item
2530 efficiency: often large parts of a program do not need symbolic
2531 calculations at all.  Why use large integers for loop variables or
2532 arbitrary precision arithmetics where @code{int} and @code{double} are
2533 sufficient?  For pure symbolic applications, GiNaC is comparable in
2534 speed with other CAS.
2535
2536 @end itemize
2537
2538
2539 @node Disadvantages, Why C++?, Advantages, A Comparison With Other CAS
2540 @c    node-name, next, previous, up
2541 @section Disadvantages
2542
2543 Of course it also has some disadvantages:
2544
2545 @itemize @bullet
2546
2547 @item
2548 advanced features: GiNaC cannot compete with a program like
2549 @emph{Reduce} which exists for more than 30 years now or @emph{Maple}
2550 which grows since 1981 by the work of dozens of programmers, with
2551 respect to mathematical features.  Integration, factorization,
2552 non-trivial simplifications, limits etc. are missing in GiNaC (and are
2553 not planned for the near future).
2554
2555 @item
2556 portability: While the GiNaC library itself is designed to avoid any
2557 platform dependent features (it should compile on any ANSI compliant C++
2558 compiler), the currently used version of the CLN library (fast large
2559 integer and arbitrary precision arithmetics) can be compiled only on
2560 systems with a recently new C++ compiler from the GNU Compiler
2561 Collection (@acronym{GCC}).@footnote{This is because CLN uses
2562 PROVIDE/REQUIRE like macros to let the compiler gather all static
2563 initializations, which works for GNU C++ only.}  GiNaC uses recent
2564 language features like explicit constructors, mutable members, RTTI,
2565 @code{dynamic_cast}s and STL, so ANSI compliance is meant literally.
2566 Recent @acronym{GCC} versions starting at 2.95, although itself not yet
2567 ANSI compliant, support all needed features.
2568     
2569 @end itemize
2570
2571
2572 @node Why C++?, Internal Structures, Disadvantages, A Comparison With Other CAS
2573 @c    node-name, next, previous, up
2574 @section Why C++?
2575
2576 Why did we choose to implement GiNaC in C++ instead of Java or any other
2577 language?  C++ is not perfect: type checking is not strict (casting is
2578 possible), separation between interface and implementation is not
2579 complete, object oriented design is not enforced.  The main reason is
2580 the often scolded feature of operator overloading in C++.  While it may
2581 be true that operating on classes with a @code{+} operator is rarely
2582 meaningful, it is perfectly suited for algebraic expressions.  Writing
2583 @math{3x+5y} as @code{3*x+5*y} instead of
2584 @code{x.times(3).plus(y.times(5))} looks much more natural.
2585 Furthermore, the main developers are more familiar with C++ than with
2586 any other programming language.
2587
2588
2589 @node Internal Structures, Expressions are reference counted, Why C++? , Top
2590 @c    node-name, next, previous, up
2591 @appendix Internal Structures
2592
2593 @menu
2594 * Expressions are reference counted::
2595 * Internal representation of products and sums::
2596 @end menu
2597
2598 @node Expressions are reference counted, Internal representation of products and sums, Internal Structures, Internal Structures
2599 @c    node-name, next, previous, up
2600 @appendixsection Expressions are reference counted
2601
2602 @cindex reference counting
2603 @cindex copy-on-write
2604 @cindex garbage collection
2605 An expression is extremely light-weight since internally it works like a
2606 handle to the actual representation and really holds nothing more than a
2607 pointer to some other object. What this means in practice is that
2608 whenever you create two @code{ex} and set the second equal to the first
2609 no copying process is involved. Instead, the copying takes place as soon
2610 as you try to change the second.  Consider the simple sequence of code:
2611
2612 @example
2613 #include <ginac/ginac.h>
2614 using namespace GiNaC;
2615
2616 int main()
2617 @{
2618     symbol x("x"), y("y"), z("z");
2619     ex e1, e2;
2620
2621     e1 = sin(x + 2*y) + 3*z + 41;
2622     e2 = e1;                // e2 points to same object as e1
2623     cout << e2 << endl;     // prints sin(x+2*y)+3*z+41
2624     e2 += 1;                // e2 is copied into a new object
2625     cout << e2 << endl;     // prints sin(x+2*y)+3*z+42
2626 @}
2627 @end example
2628
2629 The line @code{e2 = e1;} creates a second expression pointing to the
2630 object held already by @code{e1}.  The time involved for this operation
2631 is therefore constant, no matter how large @code{e1} was.  Actual
2632 copying, however, must take place in the line @code{e2 += 1;} because
2633 @code{e1} and @code{e2} are not handles for the same object any more.
2634 This concept is called @dfn{copy-on-write semantics}.  It increases
2635 performance considerably whenever one object occurs multiple times and
2636 represents a simple garbage collection scheme because when an @code{ex}
2637 runs out of scope its destructor checks whether other expressions handle
2638 the object it points to too and deletes the object from memory if that
2639 turns out not to be the case.  A slightly less trivial example of
2640 differentiation using the chain-rule should make clear how powerful this
2641 can be:
2642
2643 @example
2644 #include <ginac/ginac.h>
2645 using namespace GiNaC;
2646
2647 int main()
2648 @{
2649     symbol x("x"), y("y");
2650
2651     ex e1 = x + 3*y;
2652     ex e2 = pow(e1, 3);
2653     ex e3 = diff(sin(e2), x);   // first derivative of sin(e2) by x
2654     cout << e1 << endl          // prints x+3*y
2655          << e2 << endl          // prints (x+3*y)^3
2656          << e3 << endl;         // prints 3*(x+3*y)^2*cos((x+3*y)^3)
2657 @}
2658 @end example
2659
2660 Here, @code{e1} will actually be referenced three times while @code{e2}
2661 will be referenced two times.  When the power of an expression is built,
2662 that expression needs not be copied.  Likewise, since the derivative of
2663 a power of an expression can be easily expressed in terms of that
2664 expression, no copying of @code{e1} is involved when @code{e3} is
2665 constructed.  So, when @code{e3} is constructed it will print as
2666 @code{3*(x+3*y)^2*cos((x+3*y)^3)} but the argument of @code{cos()} only
2667 holds a reference to @code{e2} and the factor in front is just
2668 @code{3*e1^2}.
2669
2670 As a user of GiNaC, you cannot see this mechanism of copy-on-write
2671 semantics.  When you insert an expression into a second expression, the
2672 result behaves exactly as if the contents of the first expression were
2673 inserted.  But it may be useful to remember that this is not what
2674 happens.  Knowing this will enable you to write much more efficient
2675 code.  If you still have an uncertain feeling with copy-on-write
2676 semantics, we recommend you have a look at the
2677 @uref{http://www.cerfnet.com/~mpcline/c++-faq-lite/, C++-FAQ lite} by
2678 Marshall Cline.  Chapter 16 covers this issue and presents an
2679 implementation which is pretty close to the one in GiNaC.
2680
2681
2682 @node Internal representation of products and sums, Package Tools, Expressions are reference counted, Internal Structures
2683 @c    node-name, next, previous, up
2684 @appendixsection Internal representation of products and sums
2685
2686 @cindex representation
2687 @cindex @code{add}
2688 @cindex @code{mul}
2689 @cindex @code{power}
2690 Although it should be completely transparent for the user of
2691 GiNaC a short discussion of this topic helps to understand the sources
2692 and also explain performance to a large degree.  Consider the 
2693 unexpanded symbolic expression 
2694 @tex
2695 $2d^3 \left( 4a + 5b - 3 \right)$
2696 @end tex
2697 @ifnottex
2698 @math{2*d^3*(4*a+5*b-3)}
2699 @end ifnottex
2700 which could naively be represented by a tree of linear containers for
2701 addition and multiplication, one container for exponentiation with base
2702 and exponent and some atomic leaves of symbols and numbers in this
2703 fashion:
2704
2705 @image{repnaive}
2706
2707 @cindex pair-wise representation
2708 However, doing so results in a rather deeply nested tree which will
2709 quickly become inefficient to manipulate.  We can improve on this by
2710 representing the sum as a sequence of terms, each one being a pair of a
2711 purely numeric multiplicative coefficient and its rest.  In the same
2712 spirit we can store the multiplication as a sequence of terms, each
2713 having a numeric exponent and a possibly complicated base, the tree
2714 becomes much more flat:
2715
2716 @image{reppair}
2717
2718 The number @code{3} above the symbol @code{d} shows that @code{mul}
2719 objects are treated similarly where the coefficients are interpreted as
2720 @emph{exponents} now.  Addition of sums of terms or multiplication of
2721 products with numerical exponents can be coded to be very efficient with
2722 such a pair-wise representation.  Internally, this handling is performed
2723 by most CAS in this way.  It typically speeds up manipulations by an
2724 order of magnitude.  The overall multiplicative factor @code{2} and the
2725 additive term @code{-3} look somewhat out of place in this
2726 representation, however, since they are still carrying a trivial
2727 exponent and multiplicative factor @code{1} respectively.  Within GiNaC,
2728 this is avoided by adding a field that carries an overall numeric
2729 coefficient.  This results in the realistic picture of internal
2730 representation for
2731 @tex
2732 $2d^3 \left( 4a + 5b - 3 \right)$:
2733 @end tex
2734 @ifnottex
2735 @math{2*d^3*(4*a+5*b-3)}:
2736 @end ifnottex
2737
2738 @image{repreal}
2739
2740 @cindex radical
2741 This also allows for a better handling of numeric radicals, since
2742 @code{sqrt(2)} can now be carried along calculations.  Now it should be
2743 clear, why both classes @code{add} and @code{mul} are derived from the
2744 same abstract class: the data representation is the same, only the
2745 semantics differs.  In the class hierarchy, methods for polynomial
2746 expansion and the like are reimplemented for @code{add} and @code{mul},
2747 but the data structure is inherited from @code{expairseq}.
2748
2749
2750 @node Package Tools, ginac-config, Internal representation of products and sums, Top
2751 @c    node-name, next, previous, up
2752 @appendix Package Tools
2753
2754 If you are creating a software package that uses the GiNaC library,
2755 setting the correct command line options for the compiler and linker
2756 can be difficult. GiNaC includes two tools to make this process easier.
2757
2758 @menu
2759 * ginac-config::   A shell script to detect compiler and linker flags.
2760 * AM_PATH_GINAC::  Macro for GNU automake.
2761 @end menu
2762
2763
2764 @node ginac-config, AM_PATH_GINAC, Package Tools, Package Tools
2765 @c    node-name, next, previous, up
2766 @section @command{ginac-config}
2767 @cindex ginac-config
2768
2769 @command{ginac-config} is a shell script that you can use to determine
2770 the compiler and linker command line options required to compile and
2771 link a program with the GiNaC library.
2772
2773 @command{ginac-config} takes the following flags:
2774
2775 @table @samp
2776 @item --version
2777 Prints out the version of GiNaC installed.
2778 @item --cppflags
2779 Prints '-I' flags pointing to the installed header files.
2780 @item --libs
2781 Prints out the linker flags necessary to link a program against GiNaC.
2782 @item --prefix[=@var{PREFIX}]
2783 If @var{PREFIX} is specified, overrides the configured value of @env{$prefix}.
2784 (And of exec-prefix, unless @code{--exec-prefix} is also specified)
2785 Otherwise, prints out the configured value of @env{$prefix}.
2786 @item --exec-prefix[=@var{PREFIX}]
2787 If @var{PREFIX} is specified, overrides the configured value of @env{$exec_prefix}.
2788 Otherwise, prints out the configured value of @env{$exec_prefix}.
2789 @end table
2790
2791 Typically, @command{ginac-config} will be used within a configure
2792 script, as described below. It, however, can also be used directly from
2793 the command line using backquotes to compile a simple program. For
2794 example:
2795
2796 @example
2797 c++ -o simple `ginac-config --cppflags` simple.cpp `ginac-config --libs`
2798 @end example
2799
2800 This command line might expand to (for example):
2801
2802 @example
2803 cc -o simple -I/usr/local/include simple.cpp -L/usr/local/lib \
2804   -lginac -lcln -lstdc++
2805 @end example
2806
2807 Not only is the form using @command{ginac-config} easier to type, it will
2808 work on any system, no matter how GiNaC was configured.
2809
2810
2811 @node AM_PATH_GINAC, Configure script options, ginac-config, Package Tools
2812 @c    node-name, next, previous, up
2813 @section @samp{AM_PATH_GINAC}
2814 @cindex AM_PATH_GINAC
2815
2816 For packages configured using GNU automake, GiNaC also provides
2817 a macro to automate the process of checking for GiNaC.
2818
2819 @example
2820 AM_PATH_GINAC([@var{MINIMUM-VERSION}, [@var{ACTION-IF-FOUND} [, @var{ACTION-IF-NOT-FOUND}]]])
2821 @end example
2822
2823 This macro:
2824
2825 @itemize @bullet
2826
2827 @item
2828 Determines the location of GiNaC using @command{ginac-config}, which is
2829 either found in the user's path, or from the environment variable
2830 @env{GINACLIB_CONFIG}.
2831
2832 @item
2833 Tests the installed libraries to make sure that their version
2834 is later than @var{MINIMUM-VERSION}. (A default version will be used
2835 if not specified)
2836
2837 @item
2838 If the required version was found, sets the @env{GINACLIB_CPPFLAGS} variable
2839 to the output of @command{ginac-config --cppflags} and the @env{GINACLIB_LIBS}
2840 variable to the output of @command{ginac-config --libs}, and calls
2841 @samp{AC_SUBST()} for these variables so they can be used in generated
2842 makefiles, and then executes @var{ACTION-IF-FOUND}.
2843
2844 @item
2845 If the required version was not found, sets @env{GINACLIB_CPPFLAGS} and
2846 @env{GINACLIB_LIBS} to empty strings, and executes @var{ACTION-IF-NOT-FOUND}.
2847
2848 @end itemize
2849
2850 This macro is in file @file{ginac.m4} which is installed in
2851 @file{$datadir/aclocal}. Note that if automake was installed with a
2852 different @samp{--prefix} than GiNaC, you will either have to manually
2853 move @file{ginac.m4} to automake's @file{$datadir/aclocal}, or give
2854 aclocal the @samp{-I} option when running it.
2855
2856 @menu
2857 * Configure script options::  Configuring a package that uses AM_PATH_GINAC.
2858 * Example package::           Example of a package using AM_PATH_GINAC.
2859 @end menu
2860
2861
2862 @node Configure script options, Example package, AM_PATH_GINAC, AM_PATH_GINAC
2863 @c    node-name, next, previous, up
2864 @subsection Configuring a package that uses @samp{AM_PATH_GINAC}
2865
2866 Simply make sure that @command{ginac-config} is in your path, and run
2867 the configure script.
2868
2869 Notes:
2870
2871 @itemize @bullet
2872
2873 @item
2874 The directory where the GiNaC libraries are installed needs
2875 to be found by your system's dynamic linker.
2876   
2877 This is generally done by
2878
2879 @display
2880 editing @file{/etc/ld.so.conf} and running @command{ldconfig}
2881 @end display
2882
2883 or by
2884    
2885 @display
2886 setting the environment variable @env{LD_LIBRARY_PATH},
2887 @end display
2888
2889 or, as a last resort, 
2890  
2891 @display
2892 giving a @samp{-R} or @samp{-rpath} flag (depending on your linker) when
2893 running configure, for instance:
2894
2895 @example
2896 LDFLAGS=-R/home/cbauer/lib ./configure
2897 @end example
2898 @end display
2899
2900 @item
2901 You can also specify a @command{ginac-config} not in your path by
2902 setting the @env{GINACLIB_CONFIG} environment variable to the
2903 name of the executable
2904
2905 @item
2906 If you move the GiNaC package from its installed location,
2907 you will either need to modify @command{ginac-config} script
2908 manually to point to the new location or rebuild GiNaC.
2909
2910 @end itemize
2911
2912 Advanced note:
2913
2914 @itemize @bullet
2915 @item
2916 configure flags
2917   
2918 @example
2919 --with-ginac-prefix=@var{PREFIX}
2920 --with-ginac-exec-prefix=@var{PREFIX}
2921 @end example
2922
2923 are provided to override the prefix and exec-prefix that were stored
2924 in the @command{ginac-config} shell script by GiNaC's configure. You are
2925 generally better off configuring GiNaC with the right path to begin with.
2926 @end itemize
2927
2928
2929 @node Example package, Bibliography, Configure script options, AM_PATH_GINAC
2930 @c    node-name, next, previous, up
2931 @subsection Example of a package using @samp{AM_PATH_GINAC}
2932
2933 The following shows how to build a simple package using automake
2934 and the @samp{AM_PATH_GINAC} macro. The program used here is @file{simple.cpp}:
2935
2936 @example
2937 #include <ginac/ginac.h>
2938 using namespace GiNaC;
2939
2940 int main(void)
2941 @{
2942     symbol x("x");
2943     ex a = sin(x); 
2944     cout << "Derivative of " << a << " is " << a.diff(x) << endl;
2945     return 0;
2946 @}
2947 @end example
2948
2949 You should first read the introductory portions of the automake
2950 Manual, if you are not already familiar with it.
2951
2952 Two files are needed, @file{configure.in}, which is used to build the
2953 configure script:
2954
2955 @example
2956 dnl Process this file with autoconf to produce a configure script.
2957 AC_INIT(simple.cpp)
2958 AM_INIT_AUTOMAKE(simple.cpp, 1.0.0)
2959
2960 AC_PROG_CXX
2961 AC_PROG_INSTALL
2962 AC_LANG_CPLUSPLUS
2963
2964 AM_PATH_GINAC(0.4.0, [
2965   LIBS="$LIBS $GINACLIB_LIBS"
2966   CPPFLAGS="$CFLAGS $GINACLIB_CPPFLAGS"  
2967 ], AC_MSG_ERROR([need to have GiNaC installed]))
2968
2969 AC_OUTPUT(Makefile)
2970 @end example
2971
2972 The only command in this which is not standard for automake
2973 is the @samp{AM_PATH_GINAC} macro.
2974
2975 That command does the following:
2976
2977 @display
2978 If a GiNaC version greater than 0.4.0 is found, adds @env{$GINACLIB_LIBS} to 
2979 @env{$LIBS} and @env{$GINACLIB_CPPFLAGS} to @env{$CPPFLAGS}. Otherwise, dies
2980 with the error message `need to have GiNaC installed'
2981 @end display
2982
2983 And the @file{Makefile.am}, which will be used to build the Makefile.
2984
2985 @example
2986 ## Process this file with automake to produce Makefile.in
2987 bin_PROGRAMS = simple
2988 simple_SOURCES = simple.cpp
2989 @end example
2990
2991 This @file{Makefile.am}, says that we are building a single executable,
2992 from a single sourcefile @file{simple.cpp}. Since every program
2993 we are building uses GiNaC we simply added the GiNaC options
2994 to @env{$LIBS} and @env{$CPPFLAGS}, but in other circumstances, we might
2995 want to specify them on a per-program basis: for instance by
2996 adding the lines:
2997
2998 @example
2999 simple_LDADD = $(GINACLIB_LIBS)
3000 INCLUDES = $(GINACLIB_CPPFLAGS)
3001 @end example
3002
3003 to the @file{Makefile.am}.
3004
3005 To try this example out, create a new directory and add the three
3006 files above to it.
3007
3008 Now execute the following commands:
3009
3010 @example
3011 $ automake --add-missing
3012 $ aclocal
3013 $ autoconf
3014 @end example
3015
3016 You now have a package that can be built in the normal fashion
3017
3018 @example
3019 $ ./configure
3020 $ make
3021 $ make install
3022 @end example
3023
3024
3025 @node Bibliography, Concept Index, Example package, Top
3026 @c    node-name, next, previous, up
3027 @appendix Bibliography
3028
3029 @itemize @minus{}
3030
3031 @item
3032 @cite{ISO/IEC 14882:1998: Programming Languages: C++}
3033
3034 @item
3035 @cite{CLN: A Class Library for Numbers}, @email{haible@@ilog.fr, Bruno Haible}
3036
3037 @item
3038 @cite{The C++ Programming Language}, Bjarne Stroustrup, 3rd Edition, ISBN 0-201-88954-4, Addison Wesley
3039
3040 @item
3041 @cite{C++ FAQs}, Marshall Cline, ISBN 0-201-58958-3, 1995, Addison Wesley
3042
3043 @item
3044 @cite{Algorithms for Computer Algebra}, Keith O. Geddes, Stephen R. Czapor,
3045 and George Labahn, ISBN 0-7923-9259-0, 1992, Kluwer Academic Publishers, Norwell, Massachusetts
3046
3047 @item
3048 @cite{Computer Algebra: Systems and Algorithms for Algebraic Computation},
3049 J.H. Davenport, Y. Siret, and E. Tournier, ISBN 0-12-204230-1, 1988, 
3050 Academic Press, London
3051
3052 @end itemize
3053
3054
3055 @node Concept Index, , Bibliography, Top
3056 @c    node-name, next, previous, up
3057 @unnumbered Concept Index
3058
3059 @printindex cp
3060
3061 @bye
3062