1 \input texinfo @c -*-texinfo-*-
3 @setfilename ginac.info
4 @settitle GiNaC, an open framework for symbolic computation within the C++ programming language
11 @c I hate putting "@noindent" in front of every paragraph.
18 @dircategory Mathematics
20 * ginac: (ginac). C++ library for symbolic computation.
24 This is a tutorial that documents GiNaC @value{VERSION}, an open
25 framework for symbolic computation within the C++ programming language.
27 Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
29 Permission is granted to make and distribute verbatim copies of
30 this manual provided the copyright notice and this permission notice
31 are preserved on all copies.
34 Permission is granted to process this file through TeX and print the
35 results, provided the printed document carries copying permission
36 notice identical to this one except for the removal of this paragraph
39 Permission is granted to copy and distribute modified versions of this
40 manual under the conditions for verbatim copying, provided that the entire
41 resulting derived work is distributed under the terms of a permission
42 notice identical to this one.
46 @c finalout prevents ugly black rectangles on overfull hbox lines
48 @title GiNaC @value{VERSION}
49 @subtitle An open framework for symbolic computation within the C++ programming language
50 @subtitle @value{UPDATED}
51 @author @uref{http://www.ginac.de}
54 @vskip 0pt plus 1filll
55 Copyright @copyright{} 1999-2015 Johannes Gutenberg University Mainz, Germany
57 Permission is granted to make and distribute verbatim copies of
58 this manual provided the copyright notice and this permission notice
59 are preserved on all copies.
61 Permission is granted to copy and distribute modified versions of this
62 manual under the conditions for verbatim copying, provided that the entire
63 resulting derived work is distributed under the terms of a permission
64 notice identical to this one.
73 @node Top, Introduction, (dir), (dir)
74 @c node-name, next, previous, up
77 This is a tutorial that documents GiNaC @value{VERSION}, an open
78 framework for symbolic computation within the C++ programming language.
81 * Introduction:: GiNaC's purpose.
82 * A tour of GiNaC:: A quick tour of the library.
83 * Installation:: How to install the package.
84 * Basic concepts:: Description of fundamental classes.
85 * Methods and functions:: Algorithms for symbolic manipulations.
86 * Extending GiNaC:: How to extend the library.
87 * A comparison with other CAS:: Compares GiNaC to traditional CAS.
88 * Internal structures:: Description of some internal structures.
89 * Package tools:: Configuring packages to work with GiNaC.
95 @node Introduction, A tour of GiNaC, Top, Top
96 @c node-name, next, previous, up
98 @cindex history of GiNaC
100 The motivation behind GiNaC derives from the observation that most
101 present day computer algebra systems (CAS) are linguistically and
102 semantically impoverished. Although they are quite powerful tools for
103 learning math and solving particular problems they lack modern
104 linguistic structures that allow for the creation of large-scale
105 projects. GiNaC is an attempt to overcome this situation by extending a
106 well established and standardized computer language (C++) by some
107 fundamental symbolic capabilities, thus allowing for integrated systems
108 that embed symbolic manipulations together with more established areas
109 of computer science (like computation-intense numeric applications,
110 graphical interfaces, etc.) under one roof.
112 The particular problem that led to the writing of the GiNaC framework is
113 still a very active field of research, namely the calculation of higher
114 order corrections to elementary particle interactions. There,
115 theoretical physicists are interested in matching present day theories
116 against experiments taking place at particle accelerators. The
117 computations involved are so complex they call for a combined symbolical
118 and numerical approach. This turned out to be quite difficult to
119 accomplish with the present day CAS we have worked with so far and so we
120 tried to fill the gap by writing GiNaC. But of course its applications
121 are in no way restricted to theoretical physics.
123 This tutorial is intended for the novice user who is new to GiNaC but
124 already has some background in C++ programming. However, since a
125 hand-made documentation like this one is difficult to keep in sync with
126 the development, the actual documentation is inside the sources in the
127 form of comments. That documentation may be parsed by one of the many
128 Javadoc-like documentation systems. If you fail at generating it you
129 may access it from @uref{http://www.ginac.de/reference/, the GiNaC home
130 page}. It is an invaluable resource not only for the advanced user who
131 wishes to extend the system (or chase bugs) but for everybody who wants
132 to comprehend the inner workings of GiNaC. This little tutorial on the
133 other hand only covers the basic things that are unlikely to change in
137 The GiNaC framework for symbolic computation within the C++ programming
138 language is Copyright @copyright{} 1999-2015 Johannes Gutenberg
139 University Mainz, Germany.
141 This program is free software; you can redistribute it and/or
142 modify it under the terms of the GNU General Public License as
143 published by the Free Software Foundation; either version 2 of the
144 License, or (at your option) any later version.
146 This program is distributed in the hope that it will be useful, but
147 WITHOUT ANY WARRANTY; without even the implied warranty of
148 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
149 General Public License for more details.
151 You should have received a copy of the GNU General Public License
152 along with this program; see the file COPYING. If not, write to the
153 Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
157 @node A tour of GiNaC, How to use it from within C++, Introduction, Top
158 @c node-name, next, previous, up
159 @chapter A Tour of GiNaC
161 This quick tour of GiNaC wants to arise your interest in the
162 subsequent chapters by showing off a bit. Please excuse us if it
163 leaves many open questions.
166 * How to use it from within C++:: Two simple examples.
167 * What it can do for you:: A Tour of GiNaC's features.
171 @node How to use it from within C++, What it can do for you, A tour of GiNaC, A tour of GiNaC
172 @c node-name, next, previous, up
173 @section How to use it from within C++
175 The GiNaC open framework for symbolic computation within the C++ programming
176 language does not try to define a language of its own as conventional
177 CAS do. Instead, it extends the capabilities of C++ by symbolic
178 manipulations. Here is how to generate and print a simple (and rather
179 pointless) bivariate polynomial with some large coefficients:
183 #include <ginac/ginac.h>
185 using namespace GiNaC;
189 symbol x("x"), y("y");
192 for (int i=0; i<3; ++i)
193 poly += factorial(i+16)*pow(x,i)*pow(y,2-i);
195 cout << poly << endl;
200 Assuming the file is called @file{hello.cc}, on our system we can compile
201 and run it like this:
204 $ c++ hello.cc -o hello -lcln -lginac
206 355687428096000*x*y+20922789888000*y^2+6402373705728000*x^2
209 (@xref{Package tools}, for tools that help you when creating a software
210 package that uses GiNaC.)
212 @cindex Hermite polynomial
213 Next, there is a more meaningful C++ program that calls a function which
214 generates Hermite polynomials in a specified free variable.
218 #include <ginac/ginac.h>
220 using namespace GiNaC;
222 ex HermitePoly(const symbol & x, int n)
224 ex HKer=exp(-pow(x, 2));
225 // uses the identity H_n(x) == (-1)^n exp(x^2) (d/dx)^n exp(-x^2)
226 return normal(pow(-1, n) * diff(HKer, x, n) / HKer);
233 for (int i=0; i<6; ++i)
234 cout << "H_" << i << "(z) == " << HermitePoly(z,i) << endl;
240 When run, this will type out
246 H_3(z) == -12*z+8*z^3
247 H_4(z) == -48*z^2+16*z^4+12
248 H_5(z) == 120*z-160*z^3+32*z^5
251 This method of generating the coefficients is of course far from optimal
252 for production purposes.
254 In order to show some more examples of what GiNaC can do we will now use
255 the @command{ginsh}, a simple GiNaC interactive shell that provides a
256 convenient window into GiNaC's capabilities.
259 @node What it can do for you, Installation, How to use it from within C++, A tour of GiNaC
260 @c node-name, next, previous, up
261 @section What it can do for you
263 @cindex @command{ginsh}
264 After invoking @command{ginsh} one can test and experiment with GiNaC's
265 features much like in other Computer Algebra Systems except that it does
266 not provide programming constructs like loops or conditionals. For a
267 concise description of the @command{ginsh} syntax we refer to its
268 accompanied man page. Suffice to say that assignments and comparisons in
269 @command{ginsh} are written as they are in C, i.e. @code{=} assigns and
272 It can manipulate arbitrary precision integers in a very fast way.
273 Rational numbers are automatically converted to fractions of coprime
278 369988485035126972924700782451696644186473100389722973815184405301748249
280 123329495011708990974900260817232214728824366796574324605061468433916083
287 Exact numbers are always retained as exact numbers and only evaluated as
288 floating point numbers if requested. For instance, with numeric
289 radicals is dealt pretty much as with symbols. Products of sums of them
293 > expand((1+a^(1/5)-a^(2/5))^3);
294 1+3*a+3*a^(1/5)-5*a^(3/5)-a^(6/5)
295 > expand((1+3^(1/5)-3^(2/5))^3);
297 > evalf((1+3^(1/5)-3^(2/5))^3);
298 0.33408977534118624228
301 The function @code{evalf} that was used above converts any number in
302 GiNaC's expressions into floating point numbers. This can be done to
303 arbitrary predefined accuracy:
307 0.14285714285714285714
311 0.1428571428571428571428571428571428571428571428571428571428571428571428
312 5714285714285714285714285714285714285
315 Exact numbers other than rationals that can be manipulated in GiNaC
316 include predefined constants like Archimedes' @code{Pi}. They can both
317 be used in symbolic manipulations (as an exact number) as well as in
318 numeric expressions (as an inexact number):
324 9.869604401089358619+x
328 11.869604401089358619
331 Built-in functions evaluate immediately to exact numbers if
332 this is possible. Conversions that can be safely performed are done
333 immediately; conversions that are not generally valid are not done:
344 (Note that converting the last input to @code{x} would allow one to
345 conclude that @code{42*Pi} is equal to @code{0}.)
347 Linear equation systems can be solved along with basic linear
348 algebra manipulations over symbolic expressions. In C++ GiNaC offers
349 a matrix class for this purpose but we can see what it can do using
350 @command{ginsh}'s bracket notation to type them in:
353 > lsolve(a+x*y==z,x);
355 > lsolve(@{3*x+5*y == 7, -2*x+10*y == -5@}, @{x, y@});
357 > M = [ [1, 3], [-3, 2] ];
361 > charpoly(M,lambda);
363 > A = [ [1, 1], [2, -1] ];
366 [[1,1],[2,-1]]+2*[[1,3],[-3,2]]
369 > B = [ [0, 0, a], [b, 1, -b], [-1/a, 0, 0] ];
370 > evalm(B^(2^12345));
371 [[1,0,0],[0,1,0],[0,0,1]]
374 Multivariate polynomials and rational functions may be expanded,
375 collected and normalized (i.e. converted to a ratio of two coprime
379 > a = x^4 + 2*x^2*y^2 + 4*x^3*y + 12*x*y^3 - 3*y^4;
380 12*x*y^3+2*x^2*y^2+4*x^3*y-3*y^4+x^4
381 > b = x^2 + 4*x*y - y^2;
384 8*x^5*y+17*x^4*y^2+43*x^2*y^4-24*x*y^5+16*x^3*y^3+3*y^6+x^6
386 4*x^3*y-y^2-3*y^4+(12*y^3+4*y)*x+x^4+x^2*(1+2*y^2)
388 12*x*y^3-3*y^4+(-1+2*x^2)*y^2+(4*x+4*x^3)*y+x^2+x^4
393 You can differentiate functions and expand them as Taylor or Laurent
394 series in a very natural syntax (the second argument of @code{series} is
395 a relation defining the evaluation point, the third specifies the
398 @cindex Zeta function
402 > series(sin(x),x==0,4);
404 > series(1/tan(x),x==0,4);
405 x^(-1)-1/3*x+Order(x^2)
406 > series(tgamma(x),x==0,3);
407 x^(-1)-Euler+(1/12*Pi^2+1/2*Euler^2)*x+
408 (-1/3*zeta(3)-1/12*Pi^2*Euler-1/6*Euler^3)*x^2+Order(x^3)
410 x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x
411 -(0.90747907608088628905)*x^2+Order(x^3)
412 > series(tgamma(2*sin(x)-2),x==Pi/2,6);
413 -(x-1/2*Pi)^(-2)+(-1/12*Pi^2-1/2*Euler^2-1/240)*(x-1/2*Pi)^2
414 -Euler-1/12+Order((x-1/2*Pi)^3)
417 Here we have made use of the @command{ginsh}-command @code{%} to pop the
418 previously evaluated element from @command{ginsh}'s internal stack.
420 Often, functions don't have roots in closed form. Nevertheless, it's
421 quite easy to compute a solution numerically, to arbitrary precision:
426 > fsolve(cos(x)==x,x,0,2);
427 0.7390851332151606416553120876738734040134117589007574649658
429 > X=fsolve(f,x,-10,10);
430 2.2191071489137460325957851882042901681753665565320678854155
432 -6.372367644529809108115521591070847222364418220770475144296E-58
435 Notice how the final result above differs slightly from zero by about
436 @math{6*10^(-58)}. This is because with 50 decimal digits precision the
437 root cannot be represented more accurately than @code{X}. Such
438 inaccuracies are to be expected when computing with finite floating
441 If you ever wanted to convert units in C or C++ and found this is
442 cumbersome, here is the solution. Symbolic types can always be used as
443 tags for different types of objects. Converting from wrong units to the
444 metric system is now easy:
452 140613.91592783185568*kg*m^(-2)
456 @node Installation, Prerequisites, What it can do for you, Top
457 @c node-name, next, previous, up
458 @chapter Installation
461 GiNaC's installation follows the spirit of most GNU software. It is
462 easily installed on your system by three steps: configuration, build,
466 * Prerequisites:: Packages upon which GiNaC depends.
467 * Configuration:: How to configure GiNaC.
468 * Building GiNaC:: How to compile GiNaC.
469 * Installing GiNaC:: How to install GiNaC on your system.
473 @node Prerequisites, Configuration, Installation, Installation
474 @c node-name, next, previous, up
475 @section Prerequisites
477 In order to install GiNaC on your system, some prerequisites need to be
478 met. First of all, you need to have a C++-compiler adhering to the
479 ISO standard @cite{ISO/IEC 14882:2011(E)}. We used GCC for development
480 so if you have a different compiler you are on your own. For the
481 configuration to succeed you need a Posix compliant shell installed in
482 @file{/bin/sh}, GNU @command{bash} is fine. The pkg-config utility is
483 required for the configuration, it can be downloaded from
484 @uref{http://pkg-config.freedesktop.org}.
485 Last but not least, the CLN library
486 is used extensively and needs to be installed on your system.
487 Please get it from @uref{ftp://ftpthep.physik.uni-mainz.de/pub/gnu/}
488 (it is covered by GPL) and install it prior to trying to install
489 GiNaC. The configure script checks if it can find it and if it cannot
490 it will refuse to continue.
493 @node Configuration, Building GiNaC, Prerequisites, Installation
494 @c node-name, next, previous, up
495 @section Configuration
496 @cindex configuration
499 To configure GiNaC means to prepare the source distribution for
500 building. It is done via a shell script called @command{configure} that
501 is shipped with the sources and was originally generated by GNU
502 Autoconf. Since a configure script generated by GNU Autoconf never
503 prompts, all customization must be done either via command line
504 parameters or environment variables. It accepts a list of parameters,
505 the complete set of which can be listed by calling it with the
506 @option{--help} option. The most important ones will be shortly
507 described in what follows:
512 @option{--disable-shared}: When given, this option switches off the
513 build of a shared library, i.e. a @file{.so} file. This may be convenient
514 when developing because it considerably speeds up compilation.
517 @option{--prefix=@var{PREFIX}}: The directory where the compiled library
518 and headers are installed. It defaults to @file{/usr/local} which means
519 that the library is installed in the directory @file{/usr/local/lib},
520 the header files in @file{/usr/local/include/ginac} and the documentation
521 (like this one) into @file{/usr/local/share/doc/GiNaC}.
524 @option{--libdir=@var{LIBDIR}}: Use this option in case you want to have
525 the library installed in some other directory than
526 @file{@var{PREFIX}/lib/}.
529 @option{--includedir=@var{INCLUDEDIR}}: Use this option in case you want
530 to have the header files installed in some other directory than
531 @file{@var{PREFIX}/include/ginac/}. For instance, if you specify
532 @option{--includedir=/usr/include} you will end up with the header files
533 sitting in the directory @file{/usr/include/ginac/}. Note that the
534 subdirectory @file{ginac} is enforced by this process in order to
535 keep the header files separated from others. This avoids some
536 clashes and allows for an easier deinstallation of GiNaC. This ought
537 to be considered A Good Thing (tm).
540 @option{--datadir=@var{DATADIR}}: This option may be given in case you
541 want to have the documentation installed in some other directory than
542 @file{@var{PREFIX}/share/doc/GiNaC/}.
546 In addition, you may specify some environment variables. @env{CXX}
547 holds the path and the name of the C++ compiler in case you want to
548 override the default in your path. (The @command{configure} script
549 searches your path for @command{c++}, @command{g++}, @command{gcc},
550 @command{CC}, @command{cxx} and @command{cc++} in that order.) It may
551 be very useful to define some compiler flags with the @env{CXXFLAGS}
552 environment variable, like optimization, debugging information and
553 warning levels. If omitted, it defaults to @option{-g
554 -O2}.@footnote{The @command{configure} script is itself generated from
555 the file @file{configure.ac}. It is only distributed in packaged
556 releases of GiNaC. If you got the naked sources, e.g. from git, you
557 must generate @command{configure} along with the various
558 @file{Makefile.in} by using the @command{autoreconf} utility. This will
559 require a fair amount of support from your local toolchain, though.}
561 The whole process is illustrated in the following two
562 examples. (Substitute @command{setenv @var{VARIABLE} @var{value}} for
563 @command{export @var{VARIABLE}=@var{value}} if the Berkeley C shell is
566 Here is a simple configuration for a site-wide GiNaC library assuming
567 everything is in default paths:
570 $ export CXXFLAGS="-Wall -O2"
574 And here is a configuration for a private static GiNaC library with
575 several components sitting in custom places (site-wide GCC and private
576 CLN). The compiler is persuaded to be picky and full assertions and
577 debugging information are switched on:
580 $ export CXX=/usr/local/gnu/bin/c++
581 $ export CPPFLAGS="$(CPPFLAGS) -I$(HOME)/include"
582 $ export CXXFLAGS="$(CXXFLAGS) -DDO_GINAC_ASSERT -ggdb -Wall -pedantic"
583 $ export LDFLAGS="$(LDFLAGS) -L$(HOME)/lib"
584 $ ./configure --disable-shared --prefix=$(HOME)
588 @node Building GiNaC, Installing GiNaC, Configuration, Installation
589 @c node-name, next, previous, up
590 @section Building GiNaC
591 @cindex building GiNaC
593 After proper configuration you should just build the whole
598 at the command prompt and go for a cup of coffee. The exact time it
599 takes to compile GiNaC depends not only on the speed of your machines
600 but also on other parameters, for instance what value for @env{CXXFLAGS}
601 you entered. Optimization may be very time-consuming.
603 Just to make sure GiNaC works properly you may run a collection of
604 regression tests by typing
610 This will compile some sample programs, run them and check the output
611 for correctness. The regression tests fall in three categories. First,
612 the so called @emph{exams} are performed, simple tests where some
613 predefined input is evaluated (like a pupils' exam). Second, the
614 @emph{checks} test the coherence of results among each other with
615 possible random input. Third, some @emph{timings} are performed, which
616 benchmark some predefined problems with different sizes and display the
617 CPU time used in seconds. Each individual test should return a message
618 @samp{passed}. This is mostly intended to be a QA-check if something
619 was broken during development, not a sanity check of your system. Some
620 of the tests in sections @emph{checks} and @emph{timings} may require
621 insane amounts of memory and CPU time. Feel free to kill them if your
622 machine catches fire. Another quite important intent is to allow people
623 to fiddle around with optimization.
625 By default, the only documentation that will be built is this tutorial
626 in @file{.info} format. To build the GiNaC tutorial and reference manual
627 in HTML, DVI, PostScript, or PDF formats, use one of
636 Generally, the top-level Makefile runs recursively to the
637 subdirectories. It is therefore safe to go into any subdirectory
638 (@code{doc/}, @code{ginsh/}, @dots{}) and simply type @code{make}
639 @var{target} there in case something went wrong.
642 @node Installing GiNaC, Basic concepts, Building GiNaC, Installation
643 @c node-name, next, previous, up
644 @section Installing GiNaC
647 To install GiNaC on your system, simply type
653 As described in the section about configuration the files will be
654 installed in the following directories (the directories will be created
655 if they don't already exist):
660 @file{libginac.a} will go into @file{@var{PREFIX}/lib/} (or
661 @file{@var{LIBDIR}}) which defaults to @file{/usr/local/lib/}.
662 So will @file{libginac.so} unless the configure script was
663 given the option @option{--disable-shared}. The proper symlinks
664 will be established as well.
667 All the header files will be installed into @file{@var{PREFIX}/include/ginac/}
668 (or @file{@var{INCLUDEDIR}/ginac/}, if specified).
671 All documentation (info) will be stuffed into
672 @file{@var{PREFIX}/share/doc/GiNaC/} (or
673 @file{@var{DATADIR}/doc/GiNaC/}, if @var{DATADIR} was specified).
677 For the sake of completeness we will list some other useful make
678 targets: @command{make clean} deletes all files generated by
679 @command{make}, i.e. all the object files. In addition @command{make
680 distclean} removes all files generated by the configuration and
681 @command{make maintainer-clean} goes one step further and deletes files
682 that may require special tools to rebuild (like the @command{libtool}
683 for instance). Finally @command{make uninstall} removes the installed
684 library, header files and documentation@footnote{Uninstallation does not
685 work after you have called @command{make distclean} since the
686 @file{Makefile} is itself generated by the configuration from
687 @file{Makefile.in} and hence deleted by @command{make distclean}. There
688 are two obvious ways out of this dilemma. First, you can run the
689 configuration again with the same @var{PREFIX} thus creating a
690 @file{Makefile} with a working @samp{uninstall} target. Second, you can
691 do it by hand since you now know where all the files went during
695 @node Basic concepts, Expressions, Installing GiNaC, Top
696 @c node-name, next, previous, up
697 @chapter Basic concepts
699 This chapter will describe the different fundamental objects that can be
700 handled by GiNaC. But before doing so, it is worthwhile introducing you
701 to the more commonly used class of expressions, representing a flexible
702 meta-class for storing all mathematical objects.
705 * Expressions:: The fundamental GiNaC class.
706 * Automatic evaluation:: Evaluation and canonicalization.
707 * Error handling:: How the library reports errors.
708 * The class hierarchy:: Overview of GiNaC's classes.
709 * Symbols:: Symbolic objects.
710 * Numbers:: Numerical objects.
711 * Constants:: Pre-defined constants.
712 * Fundamental containers:: Sums, products and powers.
713 * Lists:: Lists of expressions.
714 * Mathematical functions:: Mathematical functions.
715 * Relations:: Equality, Inequality and all that.
716 * Integrals:: Symbolic integrals.
717 * Matrices:: Matrices.
718 * Indexed objects:: Handling indexed quantities.
719 * Non-commutative objects:: Algebras with non-commutative products.
720 * Hash maps:: A faster alternative to std::map<>.
724 @node Expressions, Automatic evaluation, Basic concepts, Basic concepts
725 @c node-name, next, previous, up
727 @cindex expression (class @code{ex})
730 The most common class of objects a user deals with is the expression
731 @code{ex}, representing a mathematical object like a variable, number,
732 function, sum, product, etc@dots{} Expressions may be put together to form
733 new expressions, passed as arguments to functions, and so on. Here is a
734 little collection of valid expressions:
737 ex MyEx1 = 5; // simple number
738 ex MyEx2 = x + 2*y; // polynomial in x and y
739 ex MyEx3 = (x + 1)/(x - 1); // rational expression
740 ex MyEx4 = sin(x + 2*y) + 3*z + 41; // containing a function
741 ex MyEx5 = MyEx4 + 1; // similar to above
744 Expressions are handles to other more fundamental objects, that often
745 contain other expressions thus creating a tree of expressions
746 (@xref{Internal structures}, for particular examples). Most methods on
747 @code{ex} therefore run top-down through such an expression tree. For
748 example, the method @code{has()} scans recursively for occurrences of
749 something inside an expression. Thus, if you have declared @code{MyEx4}
750 as in the example above @code{MyEx4.has(y)} will find @code{y} inside
751 the argument of @code{sin} and hence return @code{true}.
753 The next sections will outline the general picture of GiNaC's class
754 hierarchy and describe the classes of objects that are handled by
757 @subsection Note: Expressions and STL containers
759 GiNaC expressions (@code{ex} objects) have value semantics (they can be
760 assigned, reassigned and copied like integral types) but the operator
761 @code{<} doesn't provide a well-defined ordering on them. In STL-speak,
762 expressions are @samp{Assignable} but not @samp{LessThanComparable}.
764 This implies that in order to use expressions in sorted containers such as
765 @code{std::map<>} and @code{std::set<>} you have to supply a suitable
766 comparison predicate. GiNaC provides such a predicate, called
767 @code{ex_is_less}. For example, a set of expressions should be defined
768 as @code{std::set<ex, ex_is_less>}.
770 Unsorted containers such as @code{std::vector<>} and @code{std::list<>}
771 don't pose a problem. A @code{std::vector<ex>} works as expected.
773 @xref{Information about expressions}, for more about comparing and ordering
777 @node Automatic evaluation, Error handling, Expressions, Basic concepts
778 @c node-name, next, previous, up
779 @section Automatic evaluation and canonicalization of expressions
782 GiNaC performs some automatic transformations on expressions, to simplify
783 them and put them into a canonical form. Some examples:
786 ex MyEx1 = 2*x - 1 + x; // 3*x-1
787 ex MyEx2 = x - x; // 0
788 ex MyEx3 = cos(2*Pi); // 1
789 ex MyEx4 = x*y/x; // y
792 This behavior is usually referred to as @dfn{automatic} or @dfn{anonymous
793 evaluation}. GiNaC only performs transformations that are
797 at most of complexity
805 algebraically correct, possibly except for a set of measure zero (e.g.
806 @math{x/x} is transformed to @math{1} although this is incorrect for @math{x=0})
809 There are two types of automatic transformations in GiNaC that may not
810 behave in an entirely obvious way at first glance:
814 The terms of sums and products (and some other things like the arguments of
815 symmetric functions, the indices of symmetric tensors etc.) are re-ordered
816 into a canonical form that is deterministic, but not lexicographical or in
817 any other way easy to guess (it almost always depends on the number and
818 order of the symbols you define). However, constructing the same expression
819 twice, either implicitly or explicitly, will always result in the same
822 Expressions of the form 'number times sum' are automatically expanded (this
823 has to do with GiNaC's internal representation of sums and products). For
826 ex MyEx5 = 2*(x + y); // 2*x+2*y
827 ex MyEx6 = z*(x + y); // z*(x+y)
831 The general rule is that when you construct expressions, GiNaC automatically
832 creates them in canonical form, which might differ from the form you typed in
833 your program. This may create some awkward looking output (@samp{-y+x} instead
834 of @samp{x-y}) but allows for more efficient operation and usually yields
835 some immediate simplifications.
837 @cindex @code{eval()}
838 Internally, the anonymous evaluator in GiNaC is implemented by the methods
842 ex basic::eval() const;
845 but unless you are extending GiNaC with your own classes or functions, there
846 should never be any reason to call them explicitly. All GiNaC methods that
847 transform expressions, like @code{subs()} or @code{normal()}, automatically
848 re-evaluate their results.
851 @node Error handling, The class hierarchy, Automatic evaluation, Basic concepts
852 @c node-name, next, previous, up
853 @section Error handling
855 @cindex @code{pole_error} (class)
857 GiNaC reports run-time errors by throwing C++ exceptions. All exceptions
858 generated by GiNaC are subclassed from the standard @code{exception} class
859 defined in the @file{<stdexcept>} header. In addition to the predefined
860 @code{logic_error}, @code{domain_error}, @code{out_of_range},
861 @code{invalid_argument}, @code{runtime_error}, @code{range_error} and
862 @code{overflow_error} types, GiNaC also defines a @code{pole_error}
863 exception that gets thrown when trying to evaluate a mathematical function
866 The @code{pole_error} class has a member function
869 int pole_error::degree() const;
872 that returns the order of the singularity (or 0 when the pole is
873 logarithmic or the order is undefined).
875 When using GiNaC it is useful to arrange for exceptions to be caught in
876 the main program even if you don't want to do any special error handling.
877 Otherwise whenever an error occurs in GiNaC, it will be delegated to the
878 default exception handler of your C++ compiler's run-time system which
879 usually only aborts the program without giving any information what went
882 Here is an example for a @code{main()} function that catches and prints
883 exceptions generated by GiNaC:
888 #include <ginac/ginac.h>
890 using namespace GiNaC;
898 @} catch (exception &p) @{
899 cerr << p.what() << endl;
907 @node The class hierarchy, Symbols, Error handling, Basic concepts
908 @c node-name, next, previous, up
909 @section The class hierarchy
911 GiNaC's class hierarchy consists of several classes representing
912 mathematical objects, all of which (except for @code{ex} and some
913 helpers) are internally derived from one abstract base class called
914 @code{basic}. You do not have to deal with objects of class
915 @code{basic}, instead you'll be dealing with symbols, numbers,
916 containers of expressions and so on.
920 To get an idea about what kinds of symbolic composites may be built we
921 have a look at the most important classes in the class hierarchy and
922 some of the relations among the classes:
925 @image{classhierarchy}
931 The abstract classes shown here (the ones without drop-shadow) are of no
932 interest for the user. They are used internally in order to avoid code
933 duplication if two or more classes derived from them share certain
934 features. An example is @code{expairseq}, a container for a sequence of
935 pairs each consisting of one expression and a number (@code{numeric}).
936 What @emph{is} visible to the user are the derived classes @code{add}
937 and @code{mul}, representing sums and products. @xref{Internal
938 structures}, where these two classes are described in more detail. The
939 following table shortly summarizes what kinds of mathematical objects
940 are stored in the different classes:
943 @multitable @columnfractions .22 .78
944 @item @code{symbol} @tab Algebraic symbols @math{a}, @math{x}, @math{y}@dots{}
945 @item @code{constant} @tab Constants like
952 @item @code{numeric} @tab All kinds of numbers, @math{42}, @math{7/3*I}, @math{3.14159}@dots{}
953 @item @code{add} @tab Sums like @math{x+y} or @math{a-(2*b)+3}
954 @item @code{mul} @tab Products like @math{x*y} or @math{2*a^2*(x+y+z)/b}
955 @item @code{ncmul} @tab Products of non-commutative objects
956 @item @code{power} @tab Exponentials such as @math{x^2}, @math{a^b},
961 @code{sqrt(}@math{2}@code{)}
964 @item @code{pseries} @tab Power Series, e.g. @math{x-1/6*x^3+1/120*x^5+O(x^7)}
965 @item @code{function} @tab A symbolic function like
972 @item @code{lst} @tab Lists of expressions @{@math{x}, @math{2*y}, @math{3+z}@}
973 @item @code{matrix} @tab @math{m}x@math{n} matrices of expressions
974 @item @code{relational} @tab A relation like the identity @math{x}@code{==}@math{y}
975 @item @code{indexed} @tab Indexed object like @math{A_ij}
976 @item @code{tensor} @tab Special tensor like the delta and metric tensors
977 @item @code{idx} @tab Index of an indexed object
978 @item @code{varidx} @tab Index with variance
979 @item @code{spinidx} @tab Index with variance and dot (used in Weyl-van-der-Waerden spinor formalism)
980 @item @code{wildcard} @tab Wildcard for pattern matching
981 @item @code{structure} @tab Template for user-defined classes
986 @node Symbols, Numbers, The class hierarchy, Basic concepts
987 @c node-name, next, previous, up
989 @cindex @code{symbol} (class)
990 @cindex hierarchy of classes
993 Symbolic indeterminates, or @dfn{symbols} for short, are for symbolic
994 manipulation what atoms are for chemistry.
996 A typical symbol definition looks like this:
1001 This definition actually contains three very different things:
1003 @item a C++ variable named @code{x}
1004 @item a @code{symbol} object stored in this C++ variable; this object
1005 represents the symbol in a GiNaC expression
1006 @item the string @code{"x"} which is the name of the symbol, used (almost)
1007 exclusively for printing expressions holding the symbol
1010 Symbols have an explicit name, supplied as a string during construction,
1011 because in C++, variable names can't be used as values, and the C++ compiler
1012 throws them away during compilation.
1014 It is possible to omit the symbol name in the definition:
1019 In this case, GiNaC will assign the symbol an internal, unique name of the
1020 form @code{symbolNNN}. This won't affect the usability of the symbol but
1021 the output of your calculations will become more readable if you give your
1022 symbols sensible names (for intermediate expressions that are only used
1023 internally such anonymous symbols can be quite useful, however).
1025 Now, here is one important property of GiNaC that differentiates it from
1026 other computer algebra programs you may have used: GiNaC does @emph{not} use
1027 the names of symbols to tell them apart, but a (hidden) serial number that
1028 is unique for each newly created @code{symbol} object. If you want to use
1029 one and the same symbol in different places in your program, you must only
1030 create one @code{symbol} object and pass that around. If you create another
1031 symbol, even if it has the same name, GiNaC will treat it as a different
1048 // prints "x^6" which looks right, but...
1050 cout << e.degree(x) << endl;
1051 // ...this doesn't work. The symbol "x" here is different from the one
1052 // in f() and in the expression returned by f(). Consequently, it
1057 One possibility to ensure that @code{f()} and @code{main()} use the same
1058 symbol is to pass the symbol as an argument to @code{f()}:
1060 ex f(int n, const ex & x)
1069 // Now, f() uses the same symbol.
1072 cout << e.degree(x) << endl;
1073 // prints "6", as expected
1077 Another possibility would be to define a global symbol @code{x} that is used
1078 by both @code{f()} and @code{main()}. If you are using global symbols and
1079 multiple compilation units you must take special care, however. Suppose
1080 that you have a header file @file{globals.h} in your program that defines
1081 a @code{symbol x("x");}. In this case, every unit that includes
1082 @file{globals.h} would also get its own definition of @code{x} (because
1083 header files are just inlined into the source code by the C++ preprocessor),
1084 and hence you would again end up with multiple equally-named, but different,
1085 symbols. Instead, the @file{globals.h} header should only contain a
1086 @emph{declaration} like @code{extern symbol x;}, with the definition of
1087 @code{x} moved into a C++ source file such as @file{globals.cpp}.
1089 A different approach to ensuring that symbols used in different parts of
1090 your program are identical is to create them with a @emph{factory} function
1093 const symbol & get_symbol(const string & s)
1095 static map<string, symbol> directory;
1096 map<string, symbol>::iterator i = directory.find(s);
1097 if (i != directory.end())
1100 return directory.insert(make_pair(s, symbol(s))).first->second;
1104 This function returns one newly constructed symbol for each name that is
1105 passed in, and it returns the same symbol when called multiple times with
1106 the same name. Using this symbol factory, we can rewrite our example like
1111 return pow(get_symbol("x"), n);
1118 // Both calls of get_symbol("x") yield the same symbol.
1119 cout << e.degree(get_symbol("x")) << endl;
1124 Instead of creating symbols from strings we could also have
1125 @code{get_symbol()} take, for example, an integer number as its argument.
1126 In this case, we would probably want to give the generated symbols names
1127 that include this number, which can be accomplished with the help of an
1128 @code{ostringstream}.
1130 In general, if you're getting weird results from GiNaC such as an expression
1131 @samp{x-x} that is not simplified to zero, you should check your symbol
1134 As we said, the names of symbols primarily serve for purposes of expression
1135 output. But there are actually two instances where GiNaC uses the names for
1136 identifying symbols: When constructing an expression from a string, and when
1137 recreating an expression from an archive (@pxref{Input/output}).
1139 In addition to its name, a symbol may contain a special string that is used
1142 symbol x("x", "\\Box");
1145 This creates a symbol that is printed as "@code{x}" in normal output, but
1146 as "@code{\Box}" in LaTeX code (@xref{Input/output}, for more
1147 information about the different output formats of expressions in GiNaC).
1148 GiNaC automatically creates proper LaTeX code for symbols having names of
1149 greek letters (@samp{alpha}, @samp{mu}, etc.).
1151 @cindex @code{subs()}
1152 Symbols in GiNaC can't be assigned values. If you need to store results of
1153 calculations and give them a name, use C++ variables of type @code{ex}.
1154 If you want to replace a symbol in an expression with something else, you
1155 can invoke the expression's @code{.subs()} method
1156 (@pxref{Substituting expressions}).
1158 @cindex @code{realsymbol()}
1159 By default, symbols are expected to stand in for complex values, i.e. they live
1160 in the complex domain. As a consequence, operations like complex conjugation,
1161 for example (@pxref{Complex expressions}), do @emph{not} evaluate if applied
1162 to such symbols. Likewise @code{log(exp(x))} does not evaluate to @code{x},
1163 because of the unknown imaginary part of @code{x}.
1164 On the other hand, if you are sure that your symbols will hold only real
1165 values, you would like to have such functions evaluated. Therefore GiNaC
1166 allows you to specify
1167 the domain of the symbol. Instead of @code{symbol x("x");} you can write
1168 @code{realsymbol x("x");} to tell GiNaC that @code{x} stands in for real values.
1170 @cindex @code{possymbol()}
1171 Furthermore, it is also possible to declare a symbol as positive. This will,
1172 for instance, enable the automatic simplification of @code{abs(x)} into
1173 @code{x}. This is done by declaring the symbol as @code{possymbol x("x");}.
1176 @node Numbers, Constants, Symbols, Basic concepts
1177 @c node-name, next, previous, up
1179 @cindex @code{numeric} (class)
1185 For storing numerical things, GiNaC uses Bruno Haible's library CLN.
1186 The classes therein serve as foundation classes for GiNaC. CLN stands
1187 for Class Library for Numbers or alternatively for Common Lisp Numbers.
1188 In order to find out more about CLN's internals, the reader is referred to
1189 the documentation of that library. @inforef{Introduction, , cln}, for
1190 more information. Suffice to say that it is by itself build on top of
1191 another library, the GNU Multiple Precision library GMP, which is an
1192 extremely fast library for arbitrary long integers and rationals as well
1193 as arbitrary precision floating point numbers. It is very commonly used
1194 by several popular cryptographic applications. CLN extends GMP by
1195 several useful things: First, it introduces the complex number field
1196 over either reals (i.e. floating point numbers with arbitrary precision)
1197 or rationals. Second, it automatically converts rationals to integers
1198 if the denominator is unity and complex numbers to real numbers if the
1199 imaginary part vanishes and also correctly treats algebraic functions.
1200 Third it provides good implementations of state-of-the-art algorithms
1201 for all trigonometric and hyperbolic functions as well as for
1202 calculation of some useful constants.
1204 The user can construct an object of class @code{numeric} in several
1205 ways. The following example shows the four most important constructors.
1206 It uses construction from C-integer, construction of fractions from two
1207 integers, construction from C-float and construction from a string:
1211 #include <ginac/ginac.h>
1212 using namespace GiNaC;
1216 numeric two = 2; // exact integer 2
1217 numeric r(2,3); // exact fraction 2/3
1218 numeric e(2.71828); // floating point number
1219 numeric p = "3.14159265358979323846"; // constructor from string
1220 // Trott's constant in scientific notation:
1221 numeric trott("1.0841015122311136151E-2");
1223 std::cout << two*p << std::endl; // floating point 6.283...
1228 @cindex complex numbers
1229 The imaginary unit in GiNaC is a predefined @code{numeric} object with the
1234 numeric z1 = 2-3*I; // exact complex number 2-3i
1235 numeric z2 = 5.9+1.6*I; // complex floating point number
1239 It may be tempting to construct fractions by writing @code{numeric r(3/2)}.
1240 This would, however, call C's built-in operator @code{/} for integers
1241 first and result in a numeric holding a plain integer 1. @strong{Never
1242 use the operator @code{/} on integers} unless you know exactly what you
1243 are doing! Use the constructor from two integers instead, as shown in
1244 the example above. Writing @code{numeric(1)/2} may look funny but works
1247 @cindex @code{Digits}
1249 We have seen now the distinction between exact numbers and floating
1250 point numbers. Clearly, the user should never have to worry about
1251 dynamically created exact numbers, since their `exactness' always
1252 determines how they ought to be handled, i.e. how `long' they are. The
1253 situation is different for floating point numbers. Their accuracy is
1254 controlled by one @emph{global} variable, called @code{Digits}. (For
1255 those readers who know about Maple: it behaves very much like Maple's
1256 @code{Digits}). All objects of class numeric that are constructed from
1257 then on will be stored with a precision matching that number of decimal
1262 #include <ginac/ginac.h>
1263 using namespace std;
1264 using namespace GiNaC;
1268 numeric three(3.0), one(1.0);
1269 numeric x = one/three;
1271 cout << "in " << Digits << " digits:" << endl;
1273 cout << Pi.evalf() << endl;
1285 The above example prints the following output to screen:
1289 0.33333333333333333334
1290 3.1415926535897932385
1292 0.33333333333333333333333333333333333333333333333333333333333333333334
1293 3.1415926535897932384626433832795028841971693993751058209749445923078
1297 Note that the last number is not necessarily rounded as you would
1298 naively expect it to be rounded in the decimal system. But note also,
1299 that in both cases you got a couple of extra digits. This is because
1300 numbers are internally stored by CLN as chunks of binary digits in order
1301 to match your machine's word size and to not waste precision. Thus, on
1302 architectures with different word size, the above output might even
1303 differ with regard to actually computed digits.
1305 It should be clear that objects of class @code{numeric} should be used
1306 for constructing numbers or for doing arithmetic with them. The objects
1307 one deals with most of the time are the polymorphic expressions @code{ex}.
1309 @subsection Tests on numbers
1311 Once you have declared some numbers, assigned them to expressions and
1312 done some arithmetic with them it is frequently desired to retrieve some
1313 kind of information from them like asking whether that number is
1314 integer, rational, real or complex. For those cases GiNaC provides
1315 several useful methods. (Internally, they fall back to invocations of
1316 certain CLN functions.)
1318 As an example, let's construct some rational number, multiply it with
1319 some multiple of its denominator and test what comes out:
1323 #include <ginac/ginac.h>
1324 using namespace std;
1325 using namespace GiNaC;
1327 // some very important constants:
1328 const numeric twentyone(21);
1329 const numeric ten(10);
1330 const numeric five(5);
1334 numeric answer = twentyone;
1337 cout << answer.is_integer() << endl; // false, it's 21/5
1339 cout << answer.is_integer() << endl; // true, it's 42 now!
1343 Note that the variable @code{answer} is constructed here as an integer
1344 by @code{numeric}'s copy constructor, but in an intermediate step it
1345 holds a rational number represented as integer numerator and integer
1346 denominator. When multiplied by 10, the denominator becomes unity and
1347 the result is automatically converted to a pure integer again.
1348 Internally, the underlying CLN is responsible for this behavior and we
1349 refer the reader to CLN's documentation. Suffice to say that
1350 the same behavior applies to complex numbers as well as return values of
1351 certain functions. Complex numbers are automatically converted to real
1352 numbers if the imaginary part becomes zero. The full set of tests that
1353 can be applied is listed in the following table.
1356 @multitable @columnfractions .30 .70
1357 @item @strong{Method} @tab @strong{Returns true if the object is@dots{}}
1358 @item @code{.is_zero()}
1359 @tab @dots{}equal to zero
1360 @item @code{.is_positive()}
1361 @tab @dots{}not complex and greater than 0
1362 @item @code{.is_negative()}
1363 @tab @dots{}not complex and smaller than 0
1364 @item @code{.is_integer()}
1365 @tab @dots{}a (non-complex) integer
1366 @item @code{.is_pos_integer()}
1367 @tab @dots{}an integer and greater than 0
1368 @item @code{.is_nonneg_integer()}
1369 @tab @dots{}an integer and greater equal 0
1370 @item @code{.is_even()}
1371 @tab @dots{}an even integer
1372 @item @code{.is_odd()}
1373 @tab @dots{}an odd integer
1374 @item @code{.is_prime()}
1375 @tab @dots{}a prime integer (probabilistic primality test)
1376 @item @code{.is_rational()}
1377 @tab @dots{}an exact rational number (integers are rational, too)
1378 @item @code{.is_real()}
1379 @tab @dots{}a real integer, rational or float (i.e. is not complex)
1380 @item @code{.is_cinteger()}
1381 @tab @dots{}a (complex) integer (such as @math{2-3*I})
1382 @item @code{.is_crational()}
1383 @tab @dots{}an exact (complex) rational number (such as @math{2/3+7/2*I})
1389 @subsection Numeric functions
1391 The following functions can be applied to @code{numeric} objects and will be
1392 evaluated immediately:
1395 @multitable @columnfractions .30 .70
1396 @item @strong{Name} @tab @strong{Function}
1397 @item @code{inverse(z)}
1398 @tab returns @math{1/z}
1399 @cindex @code{inverse()} (numeric)
1400 @item @code{pow(a, b)}
1401 @tab exponentiation @math{a^b}
1404 @item @code{real(z)}
1406 @cindex @code{real()}
1407 @item @code{imag(z)}
1409 @cindex @code{imag()}
1410 @item @code{csgn(z)}
1411 @tab complex sign (returns an @code{int})
1412 @item @code{step(x)}
1413 @tab step function (returns an @code{numeric})
1414 @item @code{numer(z)}
1415 @tab numerator of rational or complex rational number
1416 @item @code{denom(z)}
1417 @tab denominator of rational or complex rational number
1418 @item @code{sqrt(z)}
1420 @item @code{isqrt(n)}
1421 @tab integer square root
1422 @cindex @code{isqrt()}
1429 @item @code{asin(z)}
1431 @item @code{acos(z)}
1433 @item @code{atan(z)}
1434 @tab inverse tangent
1435 @item @code{atan(y, x)}
1436 @tab inverse tangent with two arguments
1437 @item @code{sinh(z)}
1438 @tab hyperbolic sine
1439 @item @code{cosh(z)}
1440 @tab hyperbolic cosine
1441 @item @code{tanh(z)}
1442 @tab hyperbolic tangent
1443 @item @code{asinh(z)}
1444 @tab inverse hyperbolic sine
1445 @item @code{acosh(z)}
1446 @tab inverse hyperbolic cosine
1447 @item @code{atanh(z)}
1448 @tab inverse hyperbolic tangent
1450 @tab exponential function
1452 @tab natural logarithm
1455 @item @code{zeta(z)}
1456 @tab Riemann's zeta function
1457 @item @code{tgamma(z)}
1459 @item @code{lgamma(z)}
1460 @tab logarithm of gamma function
1462 @tab psi (digamma) function
1463 @item @code{psi(n, z)}
1464 @tab derivatives of psi function (polygamma functions)
1465 @item @code{factorial(n)}
1466 @tab factorial function @math{n!}
1467 @item @code{doublefactorial(n)}
1468 @tab double factorial function @math{n!!}
1469 @cindex @code{doublefactorial()}
1470 @item @code{binomial(n, k)}
1471 @tab binomial coefficients
1472 @item @code{bernoulli(n)}
1473 @tab Bernoulli numbers
1474 @cindex @code{bernoulli()}
1475 @item @code{fibonacci(n)}
1476 @tab Fibonacci numbers
1477 @cindex @code{fibonacci()}
1478 @item @code{mod(a, b)}
1479 @tab modulus in positive representation (in the range @code{[0, abs(b)-1]} with the sign of b, or zero)
1480 @cindex @code{mod()}
1481 @item @code{smod(a, b)}
1482 @tab modulus in symmetric representation (in the range @code{[-iquo(abs(b), 2), iquo(abs(b), 2)]})
1483 @cindex @code{smod()}
1484 @item @code{irem(a, b)}
1485 @tab integer remainder (has the sign of @math{a}, or is zero)
1486 @cindex @code{irem()}
1487 @item @code{irem(a, b, q)}
1488 @tab integer remainder and quotient, @code{irem(a, b, q) == a-q*b}
1489 @item @code{iquo(a, b)}
1490 @tab integer quotient
1491 @cindex @code{iquo()}
1492 @item @code{iquo(a, b, r)}
1493 @tab integer quotient and remainder, @code{r == a-iquo(a, b)*b}
1494 @item @code{gcd(a, b)}
1495 @tab greatest common divisor
1496 @item @code{lcm(a, b)}
1497 @tab least common multiple
1501 Most of these functions are also available as symbolic functions that can be
1502 used in expressions (@pxref{Mathematical functions}) or, like @code{gcd()},
1503 as polynomial algorithms.
1505 @subsection Converting numbers
1507 Sometimes it is desirable to convert a @code{numeric} object back to a
1508 built-in arithmetic type (@code{int}, @code{double}, etc.). The @code{numeric}
1509 class provides a couple of methods for this purpose:
1511 @cindex @code{to_int()}
1512 @cindex @code{to_long()}
1513 @cindex @code{to_double()}
1514 @cindex @code{to_cl_N()}
1516 int numeric::to_int() const;
1517 long numeric::to_long() const;
1518 double numeric::to_double() const;
1519 cln::cl_N numeric::to_cl_N() const;
1522 @code{to_int()} and @code{to_long()} only work when the number they are
1523 applied on is an exact integer. Otherwise the program will halt with a
1524 message like @samp{Not a 32-bit integer}. @code{to_double()} applied on a
1525 rational number will return a floating-point approximation. Both
1526 @code{to_int()/to_long()} and @code{to_double()} discard the imaginary
1527 part of complex numbers.
1530 @node Constants, Fundamental containers, Numbers, Basic concepts
1531 @c node-name, next, previous, up
1533 @cindex @code{constant} (class)
1536 @cindex @code{Catalan}
1537 @cindex @code{Euler}
1538 @cindex @code{evalf()}
1539 Constants behave pretty much like symbols except that they return some
1540 specific number when the method @code{.evalf()} is called.
1542 The predefined known constants are:
1545 @multitable @columnfractions .14 .32 .54
1546 @item @strong{Name} @tab @strong{Common Name} @tab @strong{Numerical Value (to 35 digits)}
1548 @tab Archimedes' constant
1549 @tab 3.14159265358979323846264338327950288
1550 @item @code{Catalan}
1551 @tab Catalan's constant
1552 @tab 0.91596559417721901505460351493238411
1554 @tab Euler's (or Euler-Mascheroni) constant
1555 @tab 0.57721566490153286060651209008240243
1560 @node Fundamental containers, Lists, Constants, Basic concepts
1561 @c node-name, next, previous, up
1562 @section Sums, products and powers
1566 @cindex @code{power}
1568 Simple rational expressions are written down in GiNaC pretty much like
1569 in other CAS or like expressions involving numerical variables in C.
1570 The necessary operators @code{+}, @code{-}, @code{*} and @code{/} have
1571 been overloaded to achieve this goal. When you run the following
1572 code snippet, the constructor for an object of type @code{mul} is
1573 automatically called to hold the product of @code{a} and @code{b} and
1574 then the constructor for an object of type @code{add} is called to hold
1575 the sum of that @code{mul} object and the number one:
1579 symbol a("a"), b("b");
1584 @cindex @code{pow()}
1585 For exponentiation, you have already seen the somewhat clumsy (though C-ish)
1586 statement @code{pow(x,2);} to represent @code{x} squared. This direct
1587 construction is necessary since we cannot safely overload the constructor
1588 @code{^} in C++ to construct a @code{power} object. If we did, it would
1589 have several counterintuitive and undesired effects:
1593 Due to C's operator precedence, @code{2*x^2} would be parsed as @code{(2*x)^2}.
1595 Due to the binding of the operator @code{^}, @code{x^a^b} would result in
1596 @code{(x^a)^b}. This would be confusing since most (though not all) other CAS
1597 interpret this as @code{x^(a^b)}.
1599 Also, expressions involving integer exponents are very frequently used,
1600 which makes it even more dangerous to overload @code{^} since it is then
1601 hard to distinguish between the semantics as exponentiation and the one
1602 for exclusive or. (It would be embarrassing to return @code{1} where one
1603 has requested @code{2^3}.)
1606 @cindex @command{ginsh}
1607 All effects are contrary to mathematical notation and differ from the
1608 way most other CAS handle exponentiation, therefore overloading @code{^}
1609 is ruled out for GiNaC's C++ part. The situation is different in
1610 @command{ginsh}, there the exponentiation-@code{^} exists. (Also note
1611 that the other frequently used exponentiation operator @code{**} does
1612 not exist at all in C++).
1614 To be somewhat more precise, objects of the three classes described
1615 here, are all containers for other expressions. An object of class
1616 @code{power} is best viewed as a container with two slots, one for the
1617 basis, one for the exponent. All valid GiNaC expressions can be
1618 inserted. However, basic transformations like simplifying
1619 @code{pow(pow(x,2),3)} to @code{x^6} automatically are only performed
1620 when this is mathematically possible. If we replace the outer exponent
1621 three in the example by some symbols @code{a}, the simplification is not
1622 safe and will not be performed, since @code{a} might be @code{1/2} and
1625 Objects of type @code{add} and @code{mul} are containers with an
1626 arbitrary number of slots for expressions to be inserted. Again, simple
1627 and safe simplifications are carried out like transforming
1628 @code{3*x+4-x} to @code{2*x+4}.
1631 @node Lists, Mathematical functions, Fundamental containers, Basic concepts
1632 @c node-name, next, previous, up
1633 @section Lists of expressions
1634 @cindex @code{lst} (class)
1636 @cindex @code{nops()}
1638 @cindex @code{append()}
1639 @cindex @code{prepend()}
1640 @cindex @code{remove_first()}
1641 @cindex @code{remove_last()}
1642 @cindex @code{remove_all()}
1644 The GiNaC class @code{lst} serves for holding a @dfn{list} of arbitrary
1645 expressions. They are not as ubiquitous as in many other computer algebra
1646 packages, but are sometimes used to supply a variable number of arguments of
1647 the same type to GiNaC methods such as @code{subs()} and some @code{matrix}
1648 constructors, so you should have a basic understanding of them.
1650 Lists can be constructed from an initializer list of expressions:
1654 symbol x("x"), y("y");
1656 l = @{x, 2, y, x+y@};
1657 // now, l is a list holding the expressions 'x', '2', 'y', and 'x+y',
1662 Use the @code{nops()} method to determine the size (number of expressions) of
1663 a list and the @code{op()} method or the @code{[]} operator to access
1664 individual elements:
1668 cout << l.nops() << endl; // prints '4'
1669 cout << l.op(2) << " " << l[0] << endl; // prints 'y x'
1673 As with the standard @code{list<T>} container, accessing random elements of a
1674 @code{lst} is generally an operation of order @math{O(N)}. Faster read-only
1675 sequential access to the elements of a list is possible with the
1676 iterator types provided by the @code{lst} class:
1679 typedef ... lst::const_iterator;
1680 typedef ... lst::const_reverse_iterator;
1681 lst::const_iterator lst::begin() const;
1682 lst::const_iterator lst::end() const;
1683 lst::const_reverse_iterator lst::rbegin() const;
1684 lst::const_reverse_iterator lst::rend() const;
1687 For example, to print the elements of a list individually you can use:
1692 for (lst::const_iterator i = l.begin(); i != l.end(); ++i)
1697 which is one order faster than
1702 for (size_t i = 0; i < l.nops(); ++i)
1703 cout << l.op(i) << endl;
1707 These iterators also allow you to use some of the algorithms provided by
1708 the C++ standard library:
1712 // print the elements of the list (requires #include <iterator>)
1713 std::copy(l.begin(), l.end(), ostream_iterator<ex>(cout, "\n"));
1715 // sum up the elements of the list (requires #include <numeric>)
1716 ex sum = std::accumulate(l.begin(), l.end(), ex(0));
1717 cout << sum << endl; // prints '2+2*x+2*y'
1721 @code{lst} is one of the few GiNaC classes that allow in-place modifications
1722 (the only other one is @code{matrix}). You can modify single elements:
1726 l[1] = 42; // l is now @{x, 42, y, x+y@}
1727 l.let_op(1) = 7; // l is now @{x, 7, y, x+y@}
1731 You can append or prepend an expression to a list with the @code{append()}
1732 and @code{prepend()} methods:
1736 l.append(4*x); // l is now @{x, 7, y, x+y, 4*x@}
1737 l.prepend(0); // l is now @{0, x, 7, y, x+y, 4*x@}
1741 You can remove the first or last element of a list with @code{remove_first()}
1742 and @code{remove_last()}:
1746 l.remove_first(); // l is now @{x, 7, y, x+y, 4*x@}
1747 l.remove_last(); // l is now @{x, 7, y, x+y@}
1751 You can remove all the elements of a list with @code{remove_all()}:
1755 l.remove_all(); // l is now empty
1759 You can bring the elements of a list into a canonical order with @code{sort()}:
1768 // l1 and l2 are now equal
1772 Finally, you can remove all but the first element of consecutive groups of
1773 elements with @code{unique()}:
1778 l3 = x, 2, 2, 2, y, x+y, y+x;
1779 l3.unique(); // l3 is now @{x, 2, y, x+y@}
1784 @node Mathematical functions, Relations, Lists, Basic concepts
1785 @c node-name, next, previous, up
1786 @section Mathematical functions
1787 @cindex @code{function} (class)
1788 @cindex trigonometric function
1789 @cindex hyperbolic function
1791 There are quite a number of useful functions hard-wired into GiNaC. For
1792 instance, all trigonometric and hyperbolic functions are implemented
1793 (@xref{Built-in functions}, for a complete list).
1795 These functions (better called @emph{pseudofunctions}) are all objects
1796 of class @code{function}. They accept one or more expressions as
1797 arguments and return one expression. If the arguments are not
1798 numerical, the evaluation of the function may be halted, as it does in
1799 the next example, showing how a function returns itself twice and
1800 finally an expression that may be really useful:
1802 @cindex Gamma function
1803 @cindex @code{subs()}
1806 symbol x("x"), y("y");
1808 cout << tgamma(foo) << endl;
1809 // -> tgamma(x+(1/2)*y)
1810 ex bar = foo.subs(y==1);
1811 cout << tgamma(bar) << endl;
1813 ex foobar = bar.subs(x==7);
1814 cout << tgamma(foobar) << endl;
1815 // -> (135135/128)*Pi^(1/2)
1819 Besides evaluation most of these functions allow differentiation, series
1820 expansion and so on. Read the next chapter in order to learn more about
1823 It must be noted that these pseudofunctions are created by inline
1824 functions, where the argument list is templated. This means that
1825 whenever you call @code{GiNaC::sin(1)} it is equivalent to
1826 @code{sin(ex(1))} and will therefore not result in a floating point
1827 number. Unless of course the function prototype is explicitly
1828 overridden -- which is the case for arguments of type @code{numeric}
1829 (not wrapped inside an @code{ex}). Hence, in order to obtain a floating
1830 point number of class @code{numeric} you should call
1831 @code{sin(numeric(1))}. This is almost the same as calling
1832 @code{sin(1).evalf()} except that the latter will return a numeric
1833 wrapped inside an @code{ex}.
1836 @node Relations, Integrals, Mathematical functions, Basic concepts
1837 @c node-name, next, previous, up
1839 @cindex @code{relational} (class)
1841 Sometimes, a relation holding between two expressions must be stored
1842 somehow. The class @code{relational} is a convenient container for such
1843 purposes. A relation is by definition a container for two @code{ex} and
1844 a relation between them that signals equality, inequality and so on.
1845 They are created by simply using the C++ operators @code{==}, @code{!=},
1846 @code{<}, @code{<=}, @code{>} and @code{>=} between two expressions.
1848 @xref{Mathematical functions}, for examples where various applications
1849 of the @code{.subs()} method show how objects of class relational are
1850 used as arguments. There they provide an intuitive syntax for
1851 substitutions. They are also used as arguments to the @code{ex::series}
1852 method, where the left hand side of the relation specifies the variable
1853 to expand in and the right hand side the expansion point. They can also
1854 be used for creating systems of equations that are to be solved for
1855 unknown variables. But the most common usage of objects of this class
1856 is rather inconspicuous in statements of the form @code{if
1857 (expand(pow(a+b,2))==a*a+2*a*b+b*b) @{...@}}. Here, an implicit
1858 conversion from @code{relational} to @code{bool} takes place. Note,
1859 however, that @code{==} here does not perform any simplifications, hence
1860 @code{expand()} must be called explicitly.
1862 @node Integrals, Matrices, Relations, Basic concepts
1863 @c node-name, next, previous, up
1865 @cindex @code{integral} (class)
1867 An object of class @dfn{integral} can be used to hold a symbolic integral.
1868 If you want to symbolically represent the integral of @code{x*x} from 0 to
1869 1, you would write this as
1871 integral(x, 0, 1, x*x)
1873 The first argument is the integration variable. It should be noted that
1874 GiNaC is not very good (yet?) at symbolically evaluating integrals. In
1875 fact, it can only integrate polynomials. An expression containing integrals
1876 can be evaluated symbolically by calling the
1880 method on it. Numerical evaluation is available by calling the
1884 method on an expression containing the integral. This will only evaluate
1885 integrals into a number if @code{subs}ing the integration variable by a
1886 number in the fourth argument of an integral and then @code{evalf}ing the
1887 result always results in a number. Of course, also the boundaries of the
1888 integration domain must @code{evalf} into numbers. It should be noted that
1889 trying to @code{evalf} a function with discontinuities in the integration
1890 domain is not recommended. The accuracy of the numeric evaluation of
1891 integrals is determined by the static member variable
1893 ex integral::relative_integration_error
1895 of the class @code{integral}. The default value of this is 10^-8.
1896 The integration works by halving the interval of integration, until numeric
1897 stability of the answer indicates that the requested accuracy has been
1898 reached. The maximum depth of the halving can be set via the static member
1901 int integral::max_integration_level
1903 The default value is 15. If this depth is exceeded, @code{evalf} will simply
1904 return the integral unevaluated. The function that performs the numerical
1905 evaluation, is also available as
1907 ex adaptivesimpson(const ex & x, const ex & a, const ex & b, const ex & f,
1910 This function will throw an exception if the maximum depth is exceeded. The
1911 last parameter of the function is optional and defaults to the
1912 @code{relative_integration_error}. To make sure that we do not do too
1913 much work if an expression contains the same integral multiple times,
1914 a lookup table is used.
1916 If you know that an expression holds an integral, you can get the
1917 integration variable, the left boundary, right boundary and integrand by
1918 respectively calling @code{.op(0)}, @code{.op(1)}, @code{.op(2)}, and
1919 @code{.op(3)}. Differentiating integrals with respect to variables works
1920 as expected. Note that it makes no sense to differentiate an integral
1921 with respect to the integration variable.
1923 @node Matrices, Indexed objects, Integrals, Basic concepts
1924 @c node-name, next, previous, up
1926 @cindex @code{matrix} (class)
1928 A @dfn{matrix} is a two-dimensional array of expressions. The elements of a
1929 matrix with @math{m} rows and @math{n} columns are accessed with two
1930 @code{unsigned} indices, the first one in the range 0@dots{}@math{m-1}, the
1931 second one in the range 0@dots{}@math{n-1}.
1933 There are a couple of ways to construct matrices, with or without preset
1934 elements. The constructor
1937 matrix::matrix(unsigned r, unsigned c);
1940 creates a matrix with @samp{r} rows and @samp{c} columns with all elements
1943 The easiest way to create a matrix is using an initializer list of
1944 initializer lists, all of the same size:
1948 matrix m = @{@{1, -a@},
1953 You can also specify the elements as a (flat) list with
1956 matrix::matrix(unsigned r, unsigned c, const lst & l);
1961 @cindex @code{lst_to_matrix()}
1963 ex lst_to_matrix(const lst & l);
1966 constructs a matrix from a list of lists, each list representing a matrix row.
1968 There is also a set of functions for creating some special types of
1971 @cindex @code{diag_matrix()}
1972 @cindex @code{unit_matrix()}
1973 @cindex @code{symbolic_matrix()}
1975 ex diag_matrix(const lst & l);
1976 ex diag_matrix(initializer_list<ex> l);
1977 ex unit_matrix(unsigned x);
1978 ex unit_matrix(unsigned r, unsigned c);
1979 ex symbolic_matrix(unsigned r, unsigned c, const string & base_name);
1980 ex symbolic_matrix(unsigned r, unsigned c, const string & base_name,
1981 const string & tex_base_name);
1984 @code{diag_matrix()} constructs a square diagonal matrix given the diagonal
1985 elements. @code{unit_matrix()} creates an @samp{x} by @samp{x} (or @samp{r}
1986 by @samp{c}) unit matrix. And finally, @code{symbolic_matrix} constructs a
1987 matrix filled with newly generated symbols made of the specified base name
1988 and the position of each element in the matrix.
1990 Matrices often arise by omitting elements of another matrix. For
1991 instance, the submatrix @code{S} of a matrix @code{M} takes a
1992 rectangular block from @code{M}. The reduced matrix @code{R} is defined
1993 by removing one row and one column from a matrix @code{M}. (The
1994 determinant of a reduced matrix is called a @emph{Minor} of @code{M} and
1995 can be used for computing the inverse using Cramer's rule.)
1997 @cindex @code{sub_matrix()}
1998 @cindex @code{reduced_matrix()}
2000 ex sub_matrix(const matrix&m, unsigned r, unsigned nr, unsigned c, unsigned nc);
2001 ex reduced_matrix(const matrix& m, unsigned r, unsigned c);
2004 The function @code{sub_matrix()} takes a row offset @code{r} and a
2005 column offset @code{c} and takes a block of @code{nr} rows and @code{nc}
2006 columns. The function @code{reduced_matrix()} has two integer arguments
2007 that specify which row and column to remove:
2011 matrix m = @{@{11, 12, 13@},
2014 cout << reduced_matrix(m, 1, 1) << endl;
2015 // -> [[11,13],[31,33]]
2016 cout << sub_matrix(m, 1, 2, 1, 2) << endl;
2017 // -> [[22,23],[32,33]]
2021 Matrix elements can be accessed and set using the parenthesis (function call)
2025 const ex & matrix::operator()(unsigned r, unsigned c) const;
2026 ex & matrix::operator()(unsigned r, unsigned c);
2029 It is also possible to access the matrix elements in a linear fashion with
2030 the @code{op()} method. But C++-style subscripting with square brackets
2031 @samp{[]} is not available.
2033 Here are a couple of examples for constructing matrices:
2037 symbol a("a"), b("b");
2039 matrix M = @{@{a, 0@},
2050 cout << matrix(2, 2, lst@{a, 0, 0, b@}) << endl;
2053 cout << lst_to_matrix(lst@{lst@{a, 0@}, lst@{0, b@}@}) << endl;
2056 cout << diag_matrix(lst@{a, b@}) << endl;
2059 cout << unit_matrix(3) << endl;
2060 // -> [[1,0,0],[0,1,0],[0,0,1]]
2062 cout << symbolic_matrix(2, 3, "x") << endl;
2063 // -> [[x00,x01,x02],[x10,x11,x12]]
2067 @cindex @code{is_zero_matrix()}
2068 The method @code{matrix::is_zero_matrix()} returns @code{true} only if
2069 all entries of the matrix are zeros. There is also method
2070 @code{ex::is_zero_matrix()} which returns @code{true} only if the
2071 expression is zero or a zero matrix.
2073 @cindex @code{transpose()}
2074 There are three ways to do arithmetic with matrices. The first (and most
2075 direct one) is to use the methods provided by the @code{matrix} class:
2078 matrix matrix::add(const matrix & other) const;
2079 matrix matrix::sub(const matrix & other) const;
2080 matrix matrix::mul(const matrix & other) const;
2081 matrix matrix::mul_scalar(const ex & other) const;
2082 matrix matrix::pow(const ex & expn) const;
2083 matrix matrix::transpose() const;
2086 All of these methods return the result as a new matrix object. Here is an
2087 example that calculates @math{A*B-2*C} for three matrices @math{A}, @math{B}
2092 matrix A = @{@{ 1, 2@},
2094 matrix B = @{@{-1, 0@},
2096 matrix C = @{@{ 8, 4@},
2099 matrix result = A.mul(B).sub(C.mul_scalar(2));
2100 cout << result << endl;
2101 // -> [[-13,-6],[1,2]]
2106 @cindex @code{evalm()}
2107 The second (and probably the most natural) way is to construct an expression
2108 containing matrices with the usual arithmetic operators and @code{pow()}.
2109 For efficiency reasons, expressions with sums, products and powers of
2110 matrices are not automatically evaluated in GiNaC. You have to call the
2114 ex ex::evalm() const;
2117 to obtain the result:
2124 // -> [[1,2],[3,4]]*[[-1,0],[2,1]]-2*[[8,4],[2,1]]
2125 cout << e.evalm() << endl;
2126 // -> [[-13,-6],[1,2]]
2131 The non-commutativity of the product @code{A*B} in this example is
2132 automatically recognized by GiNaC. There is no need to use a special
2133 operator here. @xref{Non-commutative objects}, for more information about
2134 dealing with non-commutative expressions.
2136 Finally, you can work with indexed matrices and call @code{simplify_indexed()}
2137 to perform the arithmetic:
2142 idx i(symbol("i"), 2), j(symbol("j"), 2), k(symbol("k"), 2);
2143 e = indexed(A, i, k) * indexed(B, k, j) - 2 * indexed(C, i, j);
2145 // -> -2*[[8,4],[2,1]].i.j+[[-1,0],[2,1]].k.j*[[1,2],[3,4]].i.k
2146 cout << e.simplify_indexed() << endl;
2147 // -> [[-13,-6],[1,2]].i.j
2151 Using indices is most useful when working with rectangular matrices and
2152 one-dimensional vectors because you don't have to worry about having to
2153 transpose matrices before multiplying them. @xref{Indexed objects}, for
2154 more information about using matrices with indices, and about indices in
2157 The @code{matrix} class provides a couple of additional methods for
2158 computing determinants, traces, characteristic polynomials and ranks:
2160 @cindex @code{determinant()}
2161 @cindex @code{trace()}
2162 @cindex @code{charpoly()}
2163 @cindex @code{rank()}
2165 ex matrix::determinant(unsigned algo=determinant_algo::automatic) const;
2166 ex matrix::trace() const;
2167 ex matrix::charpoly(const ex & lambda) const;
2168 unsigned matrix::rank() const;
2171 The @samp{algo} argument of @code{determinant()} allows to select
2172 between different algorithms for calculating the determinant. The
2173 asymptotic speed (as parametrized by the matrix size) can greatly differ
2174 between those algorithms, depending on the nature of the matrix'
2175 entries. The possible values are defined in the @file{flags.h} header
2176 file. By default, GiNaC uses a heuristic to automatically select an
2177 algorithm that is likely (but not guaranteed) to give the result most
2180 @cindex @code{inverse()} (matrix)
2181 @cindex @code{solve()}
2182 Matrices may also be inverted using the @code{ex matrix::inverse()}
2183 method and linear systems may be solved with:
2186 matrix matrix::solve(const matrix & vars, const matrix & rhs,
2187 unsigned algo=solve_algo::automatic) const;
2190 Assuming the matrix object this method is applied on is an @code{m}
2191 times @code{n} matrix, then @code{vars} must be a @code{n} times
2192 @code{p} matrix of symbolic indeterminates and @code{rhs} a @code{m}
2193 times @code{p} matrix. The returned matrix then has dimension @code{n}
2194 times @code{p} and in the case of an underdetermined system will still
2195 contain some of the indeterminates from @code{vars}. If the system is
2196 overdetermined, an exception is thrown.
2199 @node Indexed objects, Non-commutative objects, Matrices, Basic concepts
2200 @c node-name, next, previous, up
2201 @section Indexed objects
2203 GiNaC allows you to handle expressions containing general indexed objects in
2204 arbitrary spaces. It is also able to canonicalize and simplify such
2205 expressions and perform symbolic dummy index summations. There are a number
2206 of predefined indexed objects provided, like delta and metric tensors.
2208 There are few restrictions placed on indexed objects and their indices and
2209 it is easy to construct nonsense expressions, but our intention is to
2210 provide a general framework that allows you to implement algorithms with
2211 indexed quantities, getting in the way as little as possible.
2213 @cindex @code{idx} (class)
2214 @cindex @code{indexed} (class)
2215 @subsection Indexed quantities and their indices
2217 Indexed expressions in GiNaC are constructed of two special types of objects,
2218 @dfn{index objects} and @dfn{indexed objects}.
2222 @cindex contravariant
2225 @item Index objects are of class @code{idx} or a subclass. Every index has
2226 a @dfn{value} and a @dfn{dimension} (which is the dimension of the space
2227 the index lives in) which can both be arbitrary expressions but are usually
2228 a number or a simple symbol. In addition, indices of class @code{varidx} have
2229 a @dfn{variance} (they can be co- or contravariant), and indices of class
2230 @code{spinidx} have a variance and can be @dfn{dotted} or @dfn{undotted}.
2232 @item Indexed objects are of class @code{indexed} or a subclass. They
2233 contain a @dfn{base expression} (which is the expression being indexed), and
2234 one or more indices.
2238 @strong{Please notice:} when printing expressions, covariant indices and indices
2239 without variance are denoted @samp{.i} while contravariant indices are
2240 denoted @samp{~i}. Dotted indices have a @samp{*} in front of the index
2241 value. In the following, we are going to use that notation in the text so
2242 instead of @math{A^i_jk} we will write @samp{A~i.j.k}. Index dimensions are
2243 not visible in the output.
2245 A simple example shall illustrate the concepts:
2249 #include <ginac/ginac.h>
2250 using namespace std;
2251 using namespace GiNaC;
2255 symbol i_sym("i"), j_sym("j");
2256 idx i(i_sym, 3), j(j_sym, 3);
2259 cout << indexed(A, i, j) << endl;
2261 cout << index_dimensions << indexed(A, i, j) << endl;
2263 cout << dflt; // reset cout to default output format (dimensions hidden)
2267 The @code{idx} constructor takes two arguments, the index value and the
2268 index dimension. First we define two index objects, @code{i} and @code{j},
2269 both with the numeric dimension 3. The value of the index @code{i} is the
2270 symbol @code{i_sym} (which prints as @samp{i}) and the value of the index
2271 @code{j} is the symbol @code{j_sym} (which prints as @samp{j}). Next we
2272 construct an expression containing one indexed object, @samp{A.i.j}. It has
2273 the symbol @code{A} as its base expression and the two indices @code{i} and
2276 The dimensions of indices are normally not visible in the output, but one
2277 can request them to be printed with the @code{index_dimensions} manipulator,
2280 Note the difference between the indices @code{i} and @code{j} which are of
2281 class @code{idx}, and the index values which are the symbols @code{i_sym}
2282 and @code{j_sym}. The indices of indexed objects cannot directly be symbols
2283 or numbers but must be index objects. For example, the following is not
2284 correct and will raise an exception:
2287 symbol i("i"), j("j");
2288 e = indexed(A, i, j); // ERROR: indices must be of type idx
2291 You can have multiple indexed objects in an expression, index values can
2292 be numeric, and index dimensions symbolic:
2296 symbol B("B"), dim("dim");
2297 cout << 4 * indexed(A, i)
2298 + indexed(B, idx(j_sym, 4), idx(2, 3), idx(i_sym, dim)) << endl;
2303 @code{B} has a 4-dimensional symbolic index @samp{k}, a 3-dimensional numeric
2304 index of value 2, and a symbolic index @samp{i} with the symbolic dimension
2305 @samp{dim}. Note that GiNaC doesn't automatically notify you that the free
2306 indices of @samp{A} and @samp{B} in the sum don't match (you have to call
2307 @code{simplify_indexed()} for that, see below).
2309 In fact, base expressions, index values and index dimensions can be
2310 arbitrary expressions:
2314 cout << indexed(A+B, idx(2*i_sym+1, dim/2)) << endl;
2319 It's also possible to construct nonsense like @samp{Pi.sin(x)}. You will not
2320 get an error message from this but you will probably not be able to do
2321 anything useful with it.
2323 @cindex @code{get_value()}
2324 @cindex @code{get_dim()}
2328 ex idx::get_value();
2332 return the value and dimension of an @code{idx} object. If you have an index
2333 in an expression, such as returned by calling @code{.op()} on an indexed
2334 object, you can get a reference to the @code{idx} object with the function
2335 @code{ex_to<idx>()} on the expression.
2337 There are also the methods
2340 bool idx::is_numeric();
2341 bool idx::is_symbolic();
2342 bool idx::is_dim_numeric();
2343 bool idx::is_dim_symbolic();
2346 for checking whether the value and dimension are numeric or symbolic
2347 (non-numeric). Using the @code{info()} method of an index (see @ref{Information
2348 about expressions}) returns information about the index value.
2350 @cindex @code{varidx} (class)
2351 If you need co- and contravariant indices, use the @code{varidx} class:
2355 symbol mu_sym("mu"), nu_sym("nu");
2356 varidx mu(mu_sym, 4), nu(nu_sym, 4); // default is contravariant ~mu, ~nu
2357 varidx mu_co(mu_sym, 4, true); // covariant index .mu
2359 cout << indexed(A, mu, nu) << endl;
2361 cout << indexed(A, mu_co, nu) << endl;
2363 cout << indexed(A, mu.toggle_variance(), nu) << endl;
2368 A @code{varidx} is an @code{idx} with an additional flag that marks it as
2369 co- or contravariant. The default is a contravariant (upper) index, but
2370 this can be overridden by supplying a third argument to the @code{varidx}
2371 constructor. The two methods
2374 bool varidx::is_covariant();
2375 bool varidx::is_contravariant();
2378 allow you to check the variance of a @code{varidx} object (use @code{ex_to<varidx>()}
2379 to get the object reference from an expression). There's also the very useful
2383 ex varidx::toggle_variance();
2386 which makes a new index with the same value and dimension but the opposite
2387 variance. By using it you only have to define the index once.
2389 @cindex @code{spinidx} (class)
2390 The @code{spinidx} class provides dotted and undotted variant indices, as
2391 used in the Weyl-van-der-Waerden spinor formalism:
2395 symbol K("K"), C_sym("C"), D_sym("D");
2396 spinidx C(C_sym, 2), D(D_sym); // default is 2-dimensional,
2397 // contravariant, undotted
2398 spinidx C_co(C_sym, 2, true); // covariant index
2399 spinidx D_dot(D_sym, 2, false, true); // contravariant, dotted
2400 spinidx D_co_dot(D_sym, 2, true, true); // covariant, dotted
2402 cout << indexed(K, C, D) << endl;
2404 cout << indexed(K, C_co, D_dot) << endl;
2406 cout << indexed(K, D_co_dot, D) << endl;
2411 A @code{spinidx} is a @code{varidx} with an additional flag that marks it as
2412 dotted or undotted. The default is undotted but this can be overridden by
2413 supplying a fourth argument to the @code{spinidx} constructor. The two
2417 bool spinidx::is_dotted();
2418 bool spinidx::is_undotted();
2421 allow you to check whether or not a @code{spinidx} object is dotted (use
2422 @code{ex_to<spinidx>()} to get the object reference from an expression).
2423 Finally, the two methods
2426 ex spinidx::toggle_dot();
2427 ex spinidx::toggle_variance_dot();
2430 create a new index with the same value and dimension but opposite dottedness
2431 and the same or opposite variance.
2433 @subsection Substituting indices
2435 @cindex @code{subs()}
2436 Sometimes you will want to substitute one symbolic index with another
2437 symbolic or numeric index, for example when calculating one specific element
2438 of a tensor expression. This is done with the @code{.subs()} method, as it
2439 is done for symbols (see @ref{Substituting expressions}).
2441 You have two possibilities here. You can either substitute the whole index
2442 by another index or expression:
2446 ex e = indexed(A, mu_co);
2447 cout << e << " becomes " << e.subs(mu_co == nu) << endl;
2448 // -> A.mu becomes A~nu
2449 cout << e << " becomes " << e.subs(mu_co == varidx(0, 4)) << endl;
2450 // -> A.mu becomes A~0
2451 cout << e << " becomes " << e.subs(mu_co == 0) << endl;
2452 // -> A.mu becomes A.0
2456 The third example shows that trying to replace an index with something that
2457 is not an index will substitute the index value instead.
2459 Alternatively, you can substitute the @emph{symbol} of a symbolic index by
2464 ex e = indexed(A, mu_co);
2465 cout << e << " becomes " << e.subs(mu_sym == nu_sym) << endl;
2466 // -> A.mu becomes A.nu
2467 cout << e << " becomes " << e.subs(mu_sym == 0) << endl;
2468 // -> A.mu becomes A.0
2472 As you see, with the second method only the value of the index will get
2473 substituted. Its other properties, including its dimension, remain unchanged.
2474 If you want to change the dimension of an index you have to substitute the
2475 whole index by another one with the new dimension.
2477 Finally, substituting the base expression of an indexed object works as
2482 ex e = indexed(A, mu_co);
2483 cout << e << " becomes " << e.subs(A == A+B) << endl;
2484 // -> A.mu becomes (B+A).mu
2488 @subsection Symmetries
2489 @cindex @code{symmetry} (class)
2490 @cindex @code{sy_none()}
2491 @cindex @code{sy_symm()}
2492 @cindex @code{sy_anti()}
2493 @cindex @code{sy_cycl()}
2495 Indexed objects can have certain symmetry properties with respect to their
2496 indices. Symmetries are specified as a tree of objects of class @code{symmetry}
2497 that is constructed with the helper functions
2500 symmetry sy_none(...);
2501 symmetry sy_symm(...);
2502 symmetry sy_anti(...);
2503 symmetry sy_cycl(...);
2506 @code{sy_none()} stands for no symmetry, @code{sy_symm()} and @code{sy_anti()}
2507 specify fully symmetric or antisymmetric, respectively, and @code{sy_cycl()}
2508 represents a cyclic symmetry. Each of these functions accepts up to four
2509 arguments which can be either symmetry objects themselves or unsigned integer
2510 numbers that represent an index position (counting from 0). A symmetry
2511 specification that consists of only a single @code{sy_symm()}, @code{sy_anti()}
2512 or @code{sy_cycl()} with no arguments specifies the respective symmetry for
2515 Here are some examples of symmetry definitions:
2520 e = indexed(A, i, j);
2521 e = indexed(A, sy_none(), i, j); // equivalent
2522 e = indexed(A, sy_none(0, 1), i, j); // equivalent
2524 // Symmetric in all three indices:
2525 e = indexed(A, sy_symm(), i, j, k);
2526 e = indexed(A, sy_symm(0, 1, 2), i, j, k); // equivalent
2527 e = indexed(A, sy_symm(2, 0, 1), i, j, k); // same symmetry, but yields a
2528 // different canonical order
2530 // Symmetric in the first two indices only:
2531 e = indexed(A, sy_symm(0, 1), i, j, k);
2532 e = indexed(A, sy_none(sy_symm(0, 1), 2), i, j, k); // equivalent
2534 // Antisymmetric in the first and last index only (index ranges need not
2536 e = indexed(A, sy_anti(0, 2), i, j, k);
2537 e = indexed(A, sy_none(sy_anti(0, 2), 1), i, j, k); // equivalent
2539 // An example of a mixed symmetry: antisymmetric in the first two and
2540 // last two indices, symmetric when swapping the first and last index
2541 // pairs (like the Riemann curvature tensor):
2542 e = indexed(A, sy_symm(sy_anti(0, 1), sy_anti(2, 3)), i, j, k, l);
2544 // Cyclic symmetry in all three indices:
2545 e = indexed(A, sy_cycl(), i, j, k);
2546 e = indexed(A, sy_cycl(0, 1, 2), i, j, k); // equivalent
2548 // The following examples are invalid constructions that will throw
2549 // an exception at run time.
2551 // An index may not appear multiple times:
2552 e = indexed(A, sy_symm(0, 0, 1), i, j, k); // ERROR
2553 e = indexed(A, sy_none(sy_symm(0, 1), sy_anti(0, 2)), i, j, k); // ERROR
2555 // Every child of sy_symm(), sy_anti() and sy_cycl() must refer to the
2556 // same number of indices:
2557 e = indexed(A, sy_symm(sy_anti(0, 1), 2), i, j, k); // ERROR
2559 // And of course, you cannot specify indices which are not there:
2560 e = indexed(A, sy_symm(0, 1, 2, 3), i, j, k); // ERROR
2564 If you need to specify more than four indices, you have to use the
2565 @code{.add()} method of the @code{symmetry} class. For example, to specify
2566 full symmetry in the first six indices you would write
2567 @code{sy_symm(0, 1, 2, 3).add(4).add(5)}.
2569 If an indexed object has a symmetry, GiNaC will automatically bring the
2570 indices into a canonical order which allows for some immediate simplifications:
2574 cout << indexed(A, sy_symm(), i, j)
2575 + indexed(A, sy_symm(), j, i) << endl;
2577 cout << indexed(B, sy_anti(), i, j)
2578 + indexed(B, sy_anti(), j, i) << endl;
2580 cout << indexed(B, sy_anti(), i, j, k)
2581 - indexed(B, sy_anti(), j, k, i) << endl;
2586 @cindex @code{get_free_indices()}
2588 @subsection Dummy indices
2590 GiNaC treats certain symbolic index pairs as @dfn{dummy indices} meaning
2591 that a summation over the index range is implied. Symbolic indices which are
2592 not dummy indices are called @dfn{free indices}. Numeric indices are neither
2593 dummy nor free indices.
2595 To be recognized as a dummy index pair, the two indices must be of the same
2596 class and their value must be the same single symbol (an index like
2597 @samp{2*n+1} is never a dummy index). If the indices are of class
2598 @code{varidx} they must also be of opposite variance; if they are of class
2599 @code{spinidx} they must be both dotted or both undotted.
2601 The method @code{.get_free_indices()} returns a vector containing the free
2602 indices of an expression. It also checks that the free indices of the terms
2603 of a sum are consistent:
2607 symbol A("A"), B("B"), C("C");
2609 symbol i_sym("i"), j_sym("j"), k_sym("k"), l_sym("l");
2610 idx i(i_sym, 3), j(j_sym, 3), k(k_sym, 3), l(l_sym, 3);
2612 ex e = indexed(A, i, j) * indexed(B, j, k) + indexed(C, k, l, i, l);
2613 cout << exprseq(e.get_free_indices()) << endl;
2615 // 'j' and 'l' are dummy indices
2617 symbol mu_sym("mu"), nu_sym("nu"), rho_sym("rho"), sigma_sym("sigma");
2618 varidx mu(mu_sym, 4), nu(nu_sym, 4), rho(rho_sym, 4), sigma(sigma_sym, 4);
2620 e = indexed(A, mu, nu) * indexed(B, nu.toggle_variance(), rho)
2621 + indexed(C, mu, sigma, rho, sigma.toggle_variance());
2622 cout << exprseq(e.get_free_indices()) << endl;
2624 // 'nu' is a dummy index, but 'sigma' is not
2626 e = indexed(A, mu, mu);
2627 cout << exprseq(e.get_free_indices()) << endl;
2629 // 'mu' is not a dummy index because it appears twice with the same
2632 e = indexed(A, mu, nu) + 42;
2633 cout << exprseq(e.get_free_indices()) << endl; // ERROR
2634 // this will throw an exception:
2635 // "add::get_free_indices: inconsistent indices in sum"
2639 @cindex @code{expand_dummy_sum()}
2640 A dummy index summation like
2647 can be expanded for indices with numeric
2648 dimensions (e.g. 3) into the explicit sum like
2650 $a_1b^1+a_2b^2+a_3b^3 $.
2653 a.1 b~1 + a.2 b~2 + a.3 b~3.
2655 This is performed by the function
2658 ex expand_dummy_sum(const ex & e, bool subs_idx = false);
2661 which takes an expression @code{e} and returns the expanded sum for all
2662 dummy indices with numeric dimensions. If the parameter @code{subs_idx}
2663 is set to @code{true} then all substitutions are made by @code{idx} class
2664 indices, i.e. without variance. In this case the above sum
2673 $a_1b_1+a_2b_2+a_3b_3 $.
2676 a.1 b.1 + a.2 b.2 + a.3 b.3.
2680 @cindex @code{simplify_indexed()}
2681 @subsection Simplifying indexed expressions
2683 In addition to the few automatic simplifications that GiNaC performs on
2684 indexed expressions (such as re-ordering the indices of symmetric tensors
2685 and calculating traces and convolutions of matrices and predefined tensors)
2689 ex ex::simplify_indexed();
2690 ex ex::simplify_indexed(const scalar_products & sp);
2693 that performs some more expensive operations:
2696 @item it checks the consistency of free indices in sums in the same way
2697 @code{get_free_indices()} does
2698 @item it tries to give dummy indices that appear in different terms of a sum
2699 the same name to allow simplifications like @math{a_i*b_i-a_j*b_j=0}
2700 @item it (symbolically) calculates all possible dummy index summations/contractions
2701 with the predefined tensors (this will be explained in more detail in the
2703 @item it detects contractions that vanish for symmetry reasons, for example
2704 the contraction of a symmetric and a totally antisymmetric tensor
2705 @item as a special case of dummy index summation, it can replace scalar products
2706 of two tensors with a user-defined value
2709 The last point is done with the help of the @code{scalar_products} class
2710 which is used to store scalar products with known values (this is not an
2711 arithmetic class, you just pass it to @code{simplify_indexed()}):
2715 symbol A("A"), B("B"), C("C"), i_sym("i");
2719 sp.add(A, B, 0); // A and B are orthogonal
2720 sp.add(A, C, 0); // A and C are orthogonal
2721 sp.add(A, A, 4); // A^2 = 4 (A has length 2)
2723 e = indexed(A + B, i) * indexed(A + C, i);
2725 // -> (B+A).i*(A+C).i
2727 cout << e.expand(expand_options::expand_indexed).simplify_indexed(sp)
2733 The @code{scalar_products} object @code{sp} acts as a storage for the
2734 scalar products added to it with the @code{.add()} method. This method
2735 takes three arguments: the two expressions of which the scalar product is
2736 taken, and the expression to replace it with.
2738 @cindex @code{expand()}
2739 The example above also illustrates a feature of the @code{expand()} method:
2740 if passed the @code{expand_indexed} option it will distribute indices
2741 over sums, so @samp{(A+B).i} becomes @samp{A.i+B.i}.
2743 @cindex @code{tensor} (class)
2744 @subsection Predefined tensors
2746 Some frequently used special tensors such as the delta, epsilon and metric
2747 tensors are predefined in GiNaC. They have special properties when
2748 contracted with other tensor expressions and some of them have constant
2749 matrix representations (they will evaluate to a number when numeric
2750 indices are specified).
2752 @cindex @code{delta_tensor()}
2753 @subsubsection Delta tensor
2755 The delta tensor takes two indices, is symmetric and has the matrix
2756 representation @code{diag(1, 1, 1, ...)}. It is constructed by the function
2757 @code{delta_tensor()}:
2761 symbol A("A"), B("B");
2763 idx i(symbol("i"), 3), j(symbol("j"), 3),
2764 k(symbol("k"), 3), l(symbol("l"), 3);
2766 ex e = indexed(A, i, j) * indexed(B, k, l)
2767 * delta_tensor(i, k) * delta_tensor(j, l);
2768 cout << e.simplify_indexed() << endl;
2771 cout << delta_tensor(i, i) << endl;
2776 @cindex @code{metric_tensor()}
2777 @subsubsection General metric tensor
2779 The function @code{metric_tensor()} creates a general symmetric metric
2780 tensor with two indices that can be used to raise/lower tensor indices. The
2781 metric tensor is denoted as @samp{g} in the output and if its indices are of
2782 mixed variance it is automatically replaced by a delta tensor:
2788 varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4);
2790 ex e = metric_tensor(mu, nu) * indexed(A, nu.toggle_variance(), rho);
2791 cout << e.simplify_indexed() << endl;
2794 e = delta_tensor(mu, nu.toggle_variance()) * metric_tensor(nu, rho);
2795 cout << e.simplify_indexed() << endl;
2798 e = metric_tensor(mu.toggle_variance(), nu.toggle_variance())
2799 * metric_tensor(nu, rho);
2800 cout << e.simplify_indexed() << endl;
2803 e = metric_tensor(nu.toggle_variance(), rho.toggle_variance())
2804 * metric_tensor(mu, nu) * (delta_tensor(mu.toggle_variance(), rho)
2805 + indexed(A, mu.toggle_variance(), rho));
2806 cout << e.simplify_indexed() << endl;
2811 @cindex @code{lorentz_g()}
2812 @subsubsection Minkowski metric tensor
2814 The Minkowski metric tensor is a special metric tensor with a constant
2815 matrix representation which is either @code{diag(1, -1, -1, ...)} (negative
2816 signature, the default) or @code{diag(-1, 1, 1, ...)} (positive signature).
2817 It is created with the function @code{lorentz_g()} (although it is output as
2822 varidx mu(symbol("mu"), 4);
2824 e = delta_tensor(varidx(0, 4), mu.toggle_variance())
2825 * lorentz_g(mu, varidx(0, 4)); // negative signature
2826 cout << e.simplify_indexed() << endl;
2829 e = delta_tensor(varidx(0, 4), mu.toggle_variance())
2830 * lorentz_g(mu, varidx(0, 4), true); // positive signature
2831 cout << e.simplify_indexed() << endl;
2836 @cindex @code{spinor_metric()}
2837 @subsubsection Spinor metric tensor
2839 The function @code{spinor_metric()} creates an antisymmetric tensor with
2840 two indices that is used to raise/lower indices of 2-component spinors.
2841 It is output as @samp{eps}:
2847 spinidx A(symbol("A")), B(symbol("B")), C(symbol("C"));
2848 ex A_co = A.toggle_variance(), B_co = B.toggle_variance();
2850 e = spinor_metric(A, B) * indexed(psi, B_co);
2851 cout << e.simplify_indexed() << endl;
2854 e = spinor_metric(A, B) * indexed(psi, A_co);
2855 cout << e.simplify_indexed() << endl;
2858 e = spinor_metric(A_co, B_co) * indexed(psi, B);
2859 cout << e.simplify_indexed() << endl;
2862 e = spinor_metric(A_co, B_co) * indexed(psi, A);
2863 cout << e.simplify_indexed() << endl;
2866 e = spinor_metric(A_co, B_co) * spinor_metric(A, B);
2867 cout << e.simplify_indexed() << endl;
2870 e = spinor_metric(A_co, B_co) * spinor_metric(B, C);
2871 cout << e.simplify_indexed() << endl;
2876 The matrix representation of the spinor metric is @code{[[0, 1], [-1, 0]]}.
2878 @cindex @code{epsilon_tensor()}
2879 @cindex @code{lorentz_eps()}
2880 @subsubsection Epsilon tensor
2882 The epsilon tensor is totally antisymmetric, its number of indices is equal
2883 to the dimension of the index space (the indices must all be of the same
2884 numeric dimension), and @samp{eps.1.2.3...} (resp. @samp{eps~0~1~2...}) is
2885 defined to be 1. Its behavior with indices that have a variance also
2886 depends on the signature of the metric. Epsilon tensors are output as
2889 There are three functions defined to create epsilon tensors in 2, 3 and 4
2893 ex epsilon_tensor(const ex & i1, const ex & i2);
2894 ex epsilon_tensor(const ex & i1, const ex & i2, const ex & i3);
2895 ex lorentz_eps(const ex & i1, const ex & i2, const ex & i3, const ex & i4,
2896 bool pos_sig = false);
2899 The first two functions create an epsilon tensor in 2 or 3 Euclidean
2900 dimensions, the last function creates an epsilon tensor in a 4-dimensional
2901 Minkowski space (the last @code{bool} argument specifies whether the metric
2902 has negative or positive signature, as in the case of the Minkowski metric
2907 varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4),
2908 sig(symbol("sig"), 4), lam(symbol("lam"), 4), bet(symbol("bet"), 4);
2909 e = lorentz_eps(mu, nu, rho, sig) *
2910 lorentz_eps(mu.toggle_variance(), nu.toggle_variance(), lam, bet);
2911 cout << simplify_indexed(e) << endl;
2912 // -> 2*eta~bet~rho*eta~sig~lam-2*eta~sig~bet*eta~rho~lam
2914 idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3);
2915 symbol A("A"), B("B");
2916 e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(B, k);
2917 cout << simplify_indexed(e) << endl;
2918 // -> -B.k*A.j*eps.i.k.j
2919 e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(A, k);
2920 cout << simplify_indexed(e) << endl;
2925 @subsection Linear algebra
2927 The @code{matrix} class can be used with indices to do some simple linear
2928 algebra (linear combinations and products of vectors and matrices, traces
2929 and scalar products):
2933 idx i(symbol("i"), 2), j(symbol("j"), 2);
2934 symbol x("x"), y("y");
2936 // A is a 2x2 matrix, X is a 2x1 vector
2937 matrix A = @{@{1, 2@},
2939 matrix X = @{@{x, y@}@};
2941 cout << indexed(A, i, i) << endl;
2944 ex e = indexed(A, i, j) * indexed(X, j);
2945 cout << e.simplify_indexed() << endl;
2946 // -> [[2*y+x],[4*y+3*x]].i
2948 e = indexed(A, i, j) * indexed(X, i) + indexed(X, j) * 2;
2949 cout << e.simplify_indexed() << endl;
2950 // -> [[3*y+3*x,6*y+2*x]].j
2954 You can of course obtain the same results with the @code{matrix::add()},
2955 @code{matrix::mul()} and @code{matrix::trace()} methods (@pxref{Matrices})
2956 but with indices you don't have to worry about transposing matrices.
2958 Matrix indices always start at 0 and their dimension must match the number
2959 of rows/columns of the matrix. Matrices with one row or one column are
2960 vectors and can have one or two indices (it doesn't matter whether it's a
2961 row or a column vector). Other matrices must have two indices.
2963 You should be careful when using indices with variance on matrices. GiNaC
2964 doesn't look at the variance and doesn't know that @samp{F~mu~nu} and
2965 @samp{F.mu.nu} are different matrices. In this case you should use only
2966 one form for @samp{F} and explicitly multiply it with a matrix representation
2967 of the metric tensor.
2970 @node Non-commutative objects, Hash maps, Indexed objects, Basic concepts
2971 @c node-name, next, previous, up
2972 @section Non-commutative objects
2974 GiNaC is equipped to handle certain non-commutative algebras. Three classes of
2975 non-commutative objects are built-in which are mostly of use in high energy
2979 @item Clifford (Dirac) algebra (class @code{clifford})
2980 @item su(3) Lie algebra (class @code{color})
2981 @item Matrices (unindexed) (class @code{matrix})
2984 The @code{clifford} and @code{color} classes are subclasses of
2985 @code{indexed} because the elements of these algebras usually carry
2986 indices. The @code{matrix} class is described in more detail in
2989 Unlike most computer algebra systems, GiNaC does not primarily provide an
2990 operator (often denoted @samp{&*}) for representing inert products of
2991 arbitrary objects. Rather, non-commutativity in GiNaC is a property of the
2992 classes of objects involved, and non-commutative products are formed with
2993 the usual @samp{*} operator, as are ordinary products. GiNaC is capable of
2994 figuring out by itself which objects commutate and will group the factors
2995 by their class. Consider this example:
2999 varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);
3000 idx a(symbol("a"), 8), b(symbol("b"), 8);
3001 ex e = -dirac_gamma(mu) * (2*color_T(a)) * 8 * color_T(b) * dirac_gamma(nu);
3003 // -> -16*(gamma~mu*gamma~nu)*(T.a*T.b)
3007 As can be seen, GiNaC pulls out the overall commutative factor @samp{-16} and
3008 groups the non-commutative factors (the gammas and the su(3) generators)
3009 together while preserving the order of factors within each class (because
3010 Clifford objects commutate with color objects). The resulting expression is a
3011 @emph{commutative} product with two factors that are themselves non-commutative
3012 products (@samp{gamma~mu*gamma~nu} and @samp{T.a*T.b}). For clarification,
3013 parentheses are placed around the non-commutative products in the output.
3015 @cindex @code{ncmul} (class)
3016 Non-commutative products are internally represented by objects of the class
3017 @code{ncmul}, as opposed to commutative products which are handled by the
3018 @code{mul} class. You will normally not have to worry about this distinction,
3021 The advantage of this approach is that you never have to worry about using
3022 (or forgetting to use) a special operator when constructing non-commutative
3023 expressions. Also, non-commutative products in GiNaC are more intelligent
3024 than in other computer algebra systems; they can, for example, automatically
3025 canonicalize themselves according to rules specified in the implementation
3026 of the non-commutative classes. The drawback is that to work with other than
3027 the built-in algebras you have to implement new classes yourself. Both
3028 symbols and user-defined functions can be specified as being non-commutative.
3029 For symbols, this is done by subclassing class symbol; for functions,
3030 by explicitly setting the return type (@pxref{Symbolic functions}).
3032 @cindex @code{return_type()}
3033 @cindex @code{return_type_tinfo()}
3034 Information about the commutativity of an object or expression can be
3035 obtained with the two member functions
3038 unsigned ex::return_type() const;
3039 return_type_t ex::return_type_tinfo() const;
3042 The @code{return_type()} function returns one of three values (defined in
3043 the header file @file{flags.h}), corresponding to three categories of
3044 expressions in GiNaC:
3047 @item @code{return_types::commutative}: Commutates with everything. Most GiNaC
3048 classes are of this kind.
3049 @item @code{return_types::noncommutative}: Non-commutative, belonging to a
3050 certain class of non-commutative objects which can be determined with the
3051 @code{return_type_tinfo()} method. Expressions of this category commutate
3052 with everything except @code{noncommutative} expressions of the same
3054 @item @code{return_types::noncommutative_composite}: Non-commutative, composed
3055 of non-commutative objects of different classes. Expressions of this
3056 category don't commutate with any other @code{noncommutative} or
3057 @code{noncommutative_composite} expressions.
3060 The @code{return_type_tinfo()} method returns an object of type
3061 @code{return_type_t} that contains information about the type of the expression
3062 and, if given, its representation label (see section on dirac gamma matrices for
3063 more details). The objects of type @code{return_type_t} can be tested for
3064 equality to test whether two expressions belong to the same category and
3065 therefore may not commute.
3067 Here are a couple of examples:
3070 @multitable @columnfractions .6 .4
3071 @item @strong{Expression} @tab @strong{@code{return_type()}}
3072 @item @code{42} @tab @code{commutative}
3073 @item @code{2*x-y} @tab @code{commutative}
3074 @item @code{dirac_ONE()} @tab @code{noncommutative}
3075 @item @code{dirac_gamma(mu)*dirac_gamma(nu)} @tab @code{noncommutative}
3076 @item @code{2*color_T(a)} @tab @code{noncommutative}
3077 @item @code{dirac_ONE()*color_T(a)} @tab @code{noncommutative_composite}
3081 A last note: With the exception of matrices, positive integer powers of
3082 non-commutative objects are automatically expanded in GiNaC. For example,
3083 @code{pow(a*b, 2)} becomes @samp{a*b*a*b} if @samp{a} and @samp{b} are
3084 non-commutative expressions).
3087 @cindex @code{clifford} (class)
3088 @subsection Clifford algebra
3091 Clifford algebras are supported in two flavours: Dirac gamma
3092 matrices (more physical) and generic Clifford algebras (more
3095 @cindex @code{dirac_gamma()}
3096 @subsubsection Dirac gamma matrices
3097 Dirac gamma matrices (note that GiNaC doesn't treat them
3098 as matrices) are designated as @samp{gamma~mu} and satisfy
3099 @samp{gamma~mu*gamma~nu + gamma~nu*gamma~mu = 2*eta~mu~nu} where
3100 @samp{eta~mu~nu} is the Minkowski metric tensor. Dirac gammas are
3101 constructed by the function
3104 ex dirac_gamma(const ex & mu, unsigned char rl = 0);
3107 which takes two arguments: the index and a @dfn{representation label} in the
3108 range 0 to 255 which is used to distinguish elements of different Clifford
3109 algebras (this is also called a @dfn{spin line index}). Gammas with different
3110 labels commutate with each other. The dimension of the index can be 4 or (in
3111 the framework of dimensional regularization) any symbolic value. Spinor
3112 indices on Dirac gammas are not supported in GiNaC.
3114 @cindex @code{dirac_ONE()}
3115 The unity element of a Clifford algebra is constructed by
3118 ex dirac_ONE(unsigned char rl = 0);
3121 @strong{Please notice:} You must always use @code{dirac_ONE()} when referring to
3122 multiples of the unity element, even though it's customary to omit it.
3123 E.g. instead of @code{dirac_gamma(mu)*(dirac_slash(q,4)+m)} you have to
3124 write @code{dirac_gamma(mu)*(dirac_slash(q,4)+m*dirac_ONE())}. Otherwise,
3125 GiNaC will complain and/or produce incorrect results.
3127 @cindex @code{dirac_gamma5()}
3128 There is a special element @samp{gamma5} that commutates with all other
3129 gammas, has a unit square, and in 4 dimensions equals
3130 @samp{gamma~0 gamma~1 gamma~2 gamma~3}, provided by
3133 ex dirac_gamma5(unsigned char rl = 0);
3136 @cindex @code{dirac_gammaL()}
3137 @cindex @code{dirac_gammaR()}
3138 The chiral projectors @samp{(1+/-gamma5)/2} are also available as proper
3139 objects, constructed by
3142 ex dirac_gammaL(unsigned char rl = 0);
3143 ex dirac_gammaR(unsigned char rl = 0);
3146 They observe the relations @samp{gammaL^2 = gammaL}, @samp{gammaR^2 = gammaR},
3147 and @samp{gammaL gammaR = gammaR gammaL = 0}.
3149 @cindex @code{dirac_slash()}
3150 Finally, the function
3153 ex dirac_slash(const ex & e, const ex & dim, unsigned char rl = 0);
3156 creates a term that represents a contraction of @samp{e} with the Dirac
3157 Lorentz vector (it behaves like a term of the form @samp{e.mu gamma~mu}
3158 with a unique index whose dimension is given by the @code{dim} argument).
3159 Such slashed expressions are printed with a trailing backslash, e.g. @samp{e\}.
3161 In products of dirac gammas, superfluous unity elements are automatically
3162 removed, squares are replaced by their values, and @samp{gamma5}, @samp{gammaL}
3163 and @samp{gammaR} are moved to the front.
3165 The @code{simplify_indexed()} function performs contractions in gamma strings,
3171 symbol a("a"), b("b"), D("D");
3172 varidx mu(symbol("mu"), D);
3173 ex e = dirac_gamma(mu) * dirac_slash(a, D)
3174 * dirac_gamma(mu.toggle_variance());
3176 // -> gamma~mu*a\*gamma.mu
3177 e = e.simplify_indexed();
3180 cout << e.subs(D == 4) << endl;
3186 @cindex @code{dirac_trace()}
3187 To calculate the trace of an expression containing strings of Dirac gammas
3188 you use one of the functions
3191 ex dirac_trace(const ex & e, const std::set<unsigned char> & rls,
3192 const ex & trONE = 4);
3193 ex dirac_trace(const ex & e, const lst & rll, const ex & trONE = 4);
3194 ex dirac_trace(const ex & e, unsigned char rl = 0, const ex & trONE = 4);
3197 These functions take the trace over all gammas in the specified set @code{rls}
3198 or list @code{rll} of representation labels, or the single label @code{rl};
3199 gammas with other labels are left standing. The last argument to
3200 @code{dirac_trace()} is the value to be returned for the trace of the unity
3201 element, which defaults to 4.
3203 The @code{dirac_trace()} function is a linear functional that is equal to the
3204 ordinary matrix trace only in @math{D = 4} dimensions. In particular, the
3205 functional is not cyclic in
3211 dimensions when acting on
3212 expressions containing @samp{gamma5}, so it's not a proper trace. This
3213 @samp{gamma5} scheme is described in greater detail in the article
3214 @cite{The Role of gamma5 in Dimensional Regularization} (@ref{Bibliography}).
3216 The value of the trace itself is also usually different in 4 and in
3227 varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4);
3228 ex e = dirac_gamma(mu) * dirac_gamma(nu) *
3229 dirac_gamma(mu.toggle_variance()) * dirac_gamma(rho);
3230 cout << dirac_trace(e).simplify_indexed() << endl;
3237 varidx mu(symbol("mu"), D), nu(symbol("nu"), D), rho(symbol("rho"), D);
3238 ex e = dirac_gamma(mu) * dirac_gamma(nu) *
3239 dirac_gamma(mu.toggle_variance()) * dirac_gamma(rho);
3240 cout << dirac_trace(e).simplify_indexed() << endl;
3241 // -> 8*eta~rho~nu-4*eta~rho~nu*D
3245 Here is an example for using @code{dirac_trace()} to compute a value that
3246 appears in the calculation of the one-loop vacuum polarization amplitude in
3251 symbol q("q"), l("l"), m("m"), ldotq("ldotq"), D("D");
3252 varidx mu(symbol("mu"), D), nu(symbol("nu"), D);
3255 sp.add(l, l, pow(l, 2));
3256 sp.add(l, q, ldotq);
3258 ex e = dirac_gamma(mu) *
3259 (dirac_slash(l, D) + dirac_slash(q, D) + m * dirac_ONE()) *
3260 dirac_gamma(mu.toggle_variance()) *
3261 (dirac_slash(l, D) + m * dirac_ONE());
3262 e = dirac_trace(e).simplify_indexed(sp);
3263 e = e.collect(lst@{l, ldotq, m@});
3265 // -> (8-4*D)*l^2+(8-4*D)*ldotq+4*D*m^2
3269 The @code{canonicalize_clifford()} function reorders all gamma products that
3270 appear in an expression to a canonical (but not necessarily simple) form.
3271 You can use this to compare two expressions or for further simplifications:
3275 varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);
3276 ex e = dirac_gamma(mu) * dirac_gamma(nu) + dirac_gamma(nu) * dirac_gamma(mu);
3278 // -> gamma~mu*gamma~nu+gamma~nu*gamma~mu
3280 e = canonicalize_clifford(e);
3282 // -> 2*ONE*eta~mu~nu
3286 @cindex @code{clifford_unit()}
3287 @subsubsection A generic Clifford algebra
3289 A generic Clifford algebra, i.e. a
3295 dimensional algebra with
3302 satisfying the identities
3304 $e_i e_j + e_j e_i = M(i, j) + M(j, i)$
3307 e~i e~j + e~j e~i = M(i, j) + M(j, i)
3309 for some bilinear form (@code{metric})
3310 @math{M(i, j)}, which may be non-symmetric (see arXiv:math.QA/9911180)
3311 and contain symbolic entries. Such generators are created by the
3315 ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl = 0);
3318 where @code{mu} should be a @code{idx} (or descendant) class object
3319 indexing the generators.
3320 Parameter @code{metr} defines the metric @math{M(i, j)} and can be
3321 represented by a square @code{matrix}, @code{tensormetric} or @code{indexed} class
3322 object. In fact, any expression either with two free indices or without
3323 indices at all is admitted as @code{metr}. In the later case an @code{indexed}
3324 object with two newly created indices with @code{metr} as its
3325 @code{op(0)} will be used.
3326 Optional parameter @code{rl} allows to distinguish different
3327 Clifford algebras, which will commute with each other.
3329 Note that the call @code{clifford_unit(mu, minkmetric())} creates
3330 something very close to @code{dirac_gamma(mu)}, although
3331 @code{dirac_gamma} have more efficient simplification mechanism.
3332 @cindex @code{get_metric()}
3333 The method @code{clifford::get_metric()} returns a metric defining this
3336 If the matrix @math{M(i, j)} is in fact symmetric you may prefer to create
3337 the Clifford algebra units with a call like that
3340 ex e = clifford_unit(mu, indexed(M, sy_symm(), i, j));
3343 since this may yield some further automatic simplifications. Again, for a
3344 metric defined through a @code{matrix} such a symmetry is detected
3347 Individual generators of a Clifford algebra can be accessed in several
3353 idx i(symbol("i"), 4);
3355 ex M = diag_matrix(lst@{1, -1, 0, s@});
3356 ex e = clifford_unit(i, M);
3357 ex e0 = e.subs(i == 0);
3358 ex e1 = e.subs(i == 1);
3359 ex e2 = e.subs(i == 2);
3360 ex e3 = e.subs(i == 3);
3365 will produce four anti-commuting generators of a Clifford algebra with properties
3367 $e_0^2=1 $, $e_1^2=-1$, $e_2^2=0$ and $e_3^2=s$.
3370 @code{pow(e0, 2) = 1}, @code{pow(e1, 2) = -1}, @code{pow(e2, 2) = 0} and
3371 @code{pow(e3, 2) = s}.
3374 @cindex @code{lst_to_clifford()}
3375 A similar effect can be achieved from the function
3378 ex lst_to_clifford(const ex & v, const ex & mu, const ex & metr,
3379 unsigned char rl = 0);
3380 ex lst_to_clifford(const ex & v, const ex & e);
3383 which converts a list or vector
3385 $v = (v^0, v^1, ..., v^n)$
3388 @samp{v = (v~0, v~1, ..., v~n)}
3393 $v^0 e_0 + v^1 e_1 + ... + v^n e_n$
3396 @samp{v~0 e.0 + v~1 e.1 + ... + v~n e.n}
3399 directly supplied in the second form of the procedure. In the first form
3400 the Clifford unit @samp{e.k} is generated by the call of
3401 @code{clifford_unit(mu, metr, rl)}.
3402 @cindex pseudo-vector
3403 If the number of components supplied
3404 by @code{v} exceeds the dimensionality of the Clifford unit @code{e} by
3405 1 then function @code{lst_to_clifford()} uses the following
3406 pseudo-vector representation:
3408 $v^0 {\bf 1} + v^1 e_0 + v^2 e_1 + ... + v^{n+1} e_n$
3411 @samp{v~0 ONE + v~1 e.0 + v~2 e.1 + ... + v~[n+1] e.n}
3414 The previous code may be rewritten with the help of @code{lst_to_clifford()} as follows
3419 idx i(symbol("i"), 4);
3421 ex M = diag_matrix(@{1, -1, 0, s@});
3422 ex e0 = lst_to_clifford(lst@{1, 0, 0, 0@}, i, M);
3423 ex e1 = lst_to_clifford(lst@{0, 1, 0, 0@}, i, M);
3424 ex e2 = lst_to_clifford(lst@{0, 0, 1, 0@}, i, M);
3425 ex e3 = lst_to_clifford(lst@{0, 0, 0, 1@}, i, M);
3430 @cindex @code{clifford_to_lst()}
3431 There is the inverse function
3434 lst clifford_to_lst(const ex & e, const ex & c, bool algebraic = true);
3437 which takes an expression @code{e} and tries to find a list
3439 $v = (v^0, v^1, ..., v^n)$
3442 @samp{v = (v~0, v~1, ..., v~n)}
3444 such that the expression is either vector
3446 $e = v^0 c_0 + v^1 c_1 + ... + v^n c_n$
3449 @samp{e = v~0 c.0 + v~1 c.1 + ... + v~n c.n}
3453 $v^0 {\bf 1} + v^1 e_0 + v^2 e_1 + ... + v^{n+1} e_n$
3456 @samp{v~0 ONE + v~1 e.0 + v~2 e.1 + ... + v~[n+1] e.n}
3458 with respect to the given Clifford units @code{c}. Here none of the
3459 @samp{v~k} should contain Clifford units @code{c} (of course, this
3460 may be impossible). This function can use an @code{algebraic} method
3461 (default) or a symbolic one. With the @code{algebraic} method the
3462 @samp{v~k} are calculated as
3464 $(e c_k + c_k e)/c_k^2$. If $c_k^2$
3467 @samp{(e c.k + c.k e)/pow(c.k, 2)}. If @samp{pow(c.k, 2)}
3469 is zero or is not @code{numeric} for some @samp{k}
3470 then the method will be automatically changed to symbolic. The same effect
3471 is obtained by the assignment (@code{algebraic = false}) in the procedure call.
3473 @cindex @code{clifford_prime()}
3474 @cindex @code{clifford_star()}
3475 @cindex @code{clifford_bar()}
3476 There are several functions for (anti-)automorphisms of Clifford algebras:
3479 ex clifford_prime(const ex & e)
3480 inline ex clifford_star(const ex & e) @{ return e.conjugate(); @}
3481 inline ex clifford_bar(const ex & e) @{ return clifford_prime(e.conjugate()); @}
3484 The automorphism of a Clifford algebra @code{clifford_prime()} simply
3485 changes signs of all Clifford units in the expression. The reversion
3486 of a Clifford algebra @code{clifford_star()} coincides with the
3487 @code{conjugate()} method and effectively reverses the order of Clifford
3488 units in any product. Finally the main anti-automorphism
3489 of a Clifford algebra @code{clifford_bar()} is the composition of the
3490 previous two, i.e. it makes the reversion and changes signs of all Clifford units
3491 in a product. These functions correspond to the notations
3506 used in Clifford algebra textbooks.
3508 @cindex @code{clifford_norm()}
3512 ex clifford_norm(const ex & e);
3515 @cindex @code{clifford_inverse()}
3516 calculates the norm of a Clifford number from the expression
3518 $||e||^2 = e\overline{e}$.
3521 @code{||e||^2 = e \bar@{e@}}
3523 The inverse of a Clifford expression is returned by the function
3526 ex clifford_inverse(const ex & e);
3529 which calculates it as
3531 $e^{-1} = \overline{e}/||e||^2$.
3534 @math{e^@{-1@} = \bar@{e@}/||e||^2}
3543 then an exception is raised.
3545 @cindex @code{remove_dirac_ONE()}
3546 If a Clifford number happens to be a factor of
3547 @code{dirac_ONE()} then we can convert it to a ``real'' (non-Clifford)
3548 expression by the function
3551 ex remove_dirac_ONE(const ex & e);
3554 @cindex @code{canonicalize_clifford()}
3555 The function @code{canonicalize_clifford()} works for a
3556 generic Clifford algebra in a similar way as for Dirac gammas.
3558 The next provided function is
3560 @cindex @code{clifford_moebius_map()}
3562 ex clifford_moebius_map(const ex & a, const ex & b, const ex & c,
3563 const ex & d, const ex & v, const ex & G,
3564 unsigned char rl = 0);
3565 ex clifford_moebius_map(const ex & M, const ex & v, const ex & G,
3566 unsigned char rl = 0);
3569 It takes a list or vector @code{v} and makes the Moebius (conformal or
3570 linear-fractional) transformation @samp{v -> (av+b)/(cv+d)} defined by
3571 the matrix @samp{M = [[a, b], [c, d]]}. The parameter @code{G} defines
3572 the metric of the surrounding (pseudo-)Euclidean space. This can be an
3573 indexed object, tensormetric, matrix or a Clifford unit, in the later
3574 case the optional parameter @code{rl} is ignored even if supplied.
3575 Depending from the type of @code{v} the returned value of this function
3576 is either a vector or a list holding vector's components.
3578 @cindex @code{clifford_max_label()}
3579 Finally the function
3582 char clifford_max_label(const ex & e, bool ignore_ONE = false);
3585 can detect a presence of Clifford objects in the expression @code{e}: if
3586 such objects are found it returns the maximal
3587 @code{representation_label} of them, otherwise @code{-1}. The optional
3588 parameter @code{ignore_ONE} indicates if @code{dirac_ONE} objects should
3589 be ignored during the search.
3591 LaTeX output for Clifford units looks like
3592 @code{\clifford[1]@{e@}^@{@{\nu@}@}}, where @code{1} is the
3593 @code{representation_label} and @code{\nu} is the index of the
3594 corresponding unit. This provides a flexible typesetting with a suitable
3595 definition of the @code{\clifford} command. For example, the definition
3597 \newcommand@{\clifford@}[1][]@{@}
3599 typesets all Clifford units identically, while the alternative definition
3601 \newcommand@{\clifford@}[2][]@{\ifcase #1 #2\or \tilde@{#2@} \or \breve@{#2@} \fi@}
3603 prints units with @code{representation_label=0} as
3610 with @code{representation_label=1} as
3617 and with @code{representation_label=2} as
3625 @cindex @code{color} (class)
3626 @subsection Color algebra
3628 @cindex @code{color_T()}
3629 For computations in quantum chromodynamics, GiNaC implements the base elements
3630 and structure constants of the su(3) Lie algebra (color algebra). The base
3631 elements @math{T_a} are constructed by the function
3634 ex color_T(const ex & a, unsigned char rl = 0);
3637 which takes two arguments: the index and a @dfn{representation label} in the
3638 range 0 to 255 which is used to distinguish elements of different color
3639 algebras. Objects with different labels commutate with each other. The
3640 dimension of the index must be exactly 8 and it should be of class @code{idx},
3643 @cindex @code{color_ONE()}
3644 The unity element of a color algebra is constructed by
3647 ex color_ONE(unsigned char rl = 0);
3650 @strong{Please notice:} You must always use @code{color_ONE()} when referring to
3651 multiples of the unity element, even though it's customary to omit it.
3652 E.g. instead of @code{color_T(a)*(color_T(b)*indexed(X,b)+1)} you have to
3653 write @code{color_T(a)*(color_T(b)*indexed(X,b)+color_ONE())}. Otherwise,
3654 GiNaC may produce incorrect results.
3656 @cindex @code{color_d()}
3657 @cindex @code{color_f()}
3661 ex color_d(const ex & a, const ex & b, const ex & c);
3662 ex color_f(const ex & a, const ex & b, const ex & c);
3665 create the symmetric and antisymmetric structure constants @math{d_abc} and
3666 @math{f_abc} which satisfy @math{@{T_a, T_b@} = 1/3 delta_ab + d_abc T_c}
3667 and @math{[T_a, T_b] = i f_abc T_c}.
3669 These functions evaluate to their numerical values,
3670 if you supply numeric indices to them. The index values should be in
3671 the range from 1 to 8, not from 0 to 7. This departure from usual conventions
3672 goes along better with the notations used in physical literature.
3674 @cindex @code{color_h()}
3675 There's an additional function
3678 ex color_h(const ex & a, const ex & b, const ex & c);
3681 which returns the linear combination @samp{color_d(a, b, c)+I*color_f(a, b, c)}.
3683 The function @code{simplify_indexed()} performs some simplifications on
3684 expressions containing color objects:
3689 idx a(symbol("a"), 8), b(symbol("b"), 8), c(symbol("c"), 8),
3690 k(symbol("k"), 8), l(symbol("l"), 8);
3692 e = color_d(a, b, l) * color_f(a, b, k);
3693 cout << e.simplify_indexed() << endl;
3696 e = color_d(a, b, l) * color_d(a, b, k);
3697 cout << e.simplify_indexed() << endl;
3700 e = color_f(l, a, b) * color_f(a, b, k);
3701 cout << e.simplify_indexed() << endl;
3704 e = color_h(a, b, c) * color_h(a, b, c);
3705 cout << e.simplify_indexed() << endl;
3708 e = color_h(a, b, c) * color_T(b) * color_T(c);
3709 cout << e.simplify_indexed() << endl;
3712 e = color_h(a, b, c) * color_T(a) * color_T(b) * color_T(c);
3713 cout << e.simplify_indexed() << endl;
3716 e = color_T(k) * color_T(a) * color_T(b) * color_T(k);
3717 cout << e.simplify_indexed() << endl;
3718 // -> 1/4*delta.b.a*ONE-1/6*T.a*T.b
3722 @cindex @code{color_trace()}
3723 To calculate the trace of an expression containing color objects you use one
3727 ex color_trace(const ex & e, const std::set<unsigned char> & rls);
3728 ex color_trace(const ex & e, const lst & rll);
3729 ex color_trace(const ex & e, unsigned char rl = 0);
3732 These functions take the trace over all color @samp{T} objects in the
3733 specified set @code{rls} or list @code{rll} of representation labels, or the
3734 single label @code{rl}; @samp{T}s with other labels are left standing. For
3739 e = color_trace(4 * color_T(a) * color_T(b) * color_T(c));
3741 // -> -I*f.a.c.b+d.a.c.b
3746 @node Hash maps, Methods and functions, Non-commutative objects, Basic concepts
3747 @c node-name, next, previous, up
3750 @cindex @code{exhashmap} (class)
3752 For your convenience, GiNaC offers the container template @code{exhashmap<T>}
3753 that can be used as a drop-in replacement for the STL
3754 @code{std::map<ex, T, ex_is_less>}, using hash tables to provide faster,
3755 typically constant-time, element look-up than @code{map<>}.
3757 @code{exhashmap<>} supports all @code{map<>} members and operations, with the
3758 following differences:
3762 no @code{lower_bound()} and @code{upper_bound()} methods
3764 no reverse iterators, no @code{rbegin()}/@code{rend()}
3766 no @code{operator<(exhashmap, exhashmap)}
3768 the comparison function object @code{key_compare} is hardcoded to
3771 the constructor @code{exhashmap(size_t n)} allows specifying the minimum
3772 initial hash table size (the actual table size after construction may be
3773 larger than the specified value)
3775 the method @code{size_t bucket_count()} returns the current size of the hash
3778 @code{insert()} and @code{erase()} operations invalidate all iterators
3782 @node Methods and functions, Information about expressions, Hash maps, Top
3783 @c node-name, next, previous, up
3784 @chapter Methods and functions
3787 In this chapter the most important algorithms provided by GiNaC will be
3788 described. Some of them are implemented as functions on expressions,
3789 others are implemented as methods provided by expression objects. If
3790 they are methods, there exists a wrapper function around it, so you can
3791 alternatively call it in a functional way as shown in the simple
3796 cout << "As method: " << sin(1).evalf() << endl;
3797 cout << "As function: " << evalf(sin(1)) << endl;
3801 @cindex @code{subs()}
3802 The general rule is that wherever methods accept one or more parameters
3803 (@var{arg1}, @var{arg2}, @dots{}) the order of arguments the function
3804 wrapper accepts is the same but preceded by the object to act on
3805 (@var{object}, @var{arg1}, @var{arg2}, @dots{}). This approach is the
3806 most natural one in an OO model but it may lead to confusion for MapleV
3807 users because where they would type @code{A:=x+1; subs(x=2,A);} GiNaC
3808 would require @code{A=x+1; subs(A,x==2);} (after proper declaration of
3809 @code{A} and @code{x}). On the other hand, since MapleV returns 3 on
3810 @code{A:=x^2+3; coeff(A,x,0);} (GiNaC: @code{A=pow(x,2)+3;
3811 coeff(A,x,0);}) it is clear that MapleV is not trying to be consistent
3812 here. Also, users of MuPAD will in most cases feel more comfortable
3813 with GiNaC's convention. All function wrappers are implemented
3814 as simple inline functions which just call the corresponding method and
3815 are only provided for users uncomfortable with OO who are dead set to
3816 avoid method invocations. Generally, nested function wrappers are much
3817 harder to read than a sequence of methods and should therefore be
3818 avoided if possible. On the other hand, not everything in GiNaC is a
3819 method on class @code{ex} and sometimes calling a function cannot be
3823 * Information about expressions::
3824 * Numerical evaluation::
3825 * Substituting expressions::
3826 * Pattern matching and advanced substitutions::
3827 * Applying a function on subexpressions::
3828 * Visitors and tree traversal::
3829 * Polynomial arithmetic:: Working with polynomials.
3830 * Rational expressions:: Working with rational functions.
3831 * Symbolic differentiation::
3832 * Series expansion:: Taylor and Laurent expansion.
3834 * Built-in functions:: List of predefined mathematical functions.
3835 * Multiple polylogarithms::
3836 * Complex expressions::
3837 * Solving linear systems of equations::
3838 * Input/output:: Input and output of expressions.
3842 @node Information about expressions, Numerical evaluation, Methods and functions, Methods and functions
3843 @c node-name, next, previous, up
3844 @section Getting information about expressions
3846 @subsection Checking expression types
3847 @cindex @code{is_a<@dots{}>()}
3848 @cindex @code{is_exactly_a<@dots{}>()}
3849 @cindex @code{ex_to<@dots{}>()}
3850 @cindex Converting @code{ex} to other classes
3851 @cindex @code{info()}
3852 @cindex @code{return_type()}
3853 @cindex @code{return_type_tinfo()}
3855 Sometimes it's useful to check whether a given expression is a plain number,
3856 a sum, a polynomial with integer coefficients, or of some other specific type.
3857 GiNaC provides a couple of functions for this:
3860 bool is_a<T>(const ex & e);
3861 bool is_exactly_a<T>(const ex & e);
3862 bool ex::info(unsigned flag);
3863 unsigned ex::return_type() const;
3864 return_type_t ex::return_type_tinfo() const;
3867 When the test made by @code{is_a<T>()} returns true, it is safe to call
3868 one of the functions @code{ex_to<T>()}, where @code{T} is one of the
3869 class names (@xref{The class hierarchy}, for a list of all classes). For
3870 example, assuming @code{e} is an @code{ex}:
3875 if (is_a<numeric>(e))
3876 numeric n = ex_to<numeric>(e);
3881 @code{is_a<T>(e)} allows you to check whether the top-level object of
3882 an expression @samp{e} is an instance of the GiNaC class @samp{T}
3883 (@xref{The class hierarchy}, for a list of all classes). This is most useful,
3884 e.g., for checking whether an expression is a number, a sum, or a product:
3891 is_a<numeric>(e1); // true
3892 is_a<numeric>(e2); // false
3893 is_a<add>(e1); // false
3894 is_a<add>(e2); // true
3895 is_a<mul>(e1); // false
3896 is_a<mul>(e2); // false
3900 In contrast, @code{is_exactly_a<T>(e)} allows you to check whether the
3901 top-level object of an expression @samp{e} is an instance of the GiNaC
3902 class @samp{T}, not including parent classes.
3904 The @code{info()} method is used for checking certain attributes of
3905 expressions. The possible values for the @code{flag} argument are defined
3906 in @file{ginac/flags.h}, the most important being explained in the following
3910 @multitable @columnfractions .30 .70
3911 @item @strong{Flag} @tab @strong{Returns true if the object is@dots{}}
3912 @item @code{numeric}
3913 @tab @dots{}a number (same as @code{is_a<numeric>(...)})
3915 @tab @dots{}a real number, symbol or constant (i.e. is not complex)
3916 @item @code{rational}
3917 @tab @dots{}an exact rational number (integers are rational, too)
3918 @item @code{integer}
3919 @tab @dots{}a (non-complex) integer
3920 @item @code{crational}
3921 @tab @dots{}an exact (complex) rational number (such as @math{2/3+7/2*I})
3922 @item @code{cinteger}
3923 @tab @dots{}a (complex) integer (such as @math{2-3*I})
3924 @item @code{positive}
3925 @tab @dots{}not complex and greater than 0
3926 @item @code{negative}
3927 @tab @dots{}not complex and less than 0
3928 @item @code{nonnegative}
3929 @tab @dots{}not complex and greater than or equal to 0
3931 @tab @dots{}an integer greater than 0
3933 @tab @dots{}an integer less than 0
3934 @item @code{nonnegint}
3935 @tab @dots{}an integer greater than or equal to 0
3937 @tab @dots{}an even integer
3939 @tab @dots{}an odd integer
3941 @tab @dots{}a prime integer (probabilistic primality test)
3942 @item @code{relation}
3943 @tab @dots{}a relation (same as @code{is_a<relational>(...)})
3944 @item @code{relation_equal}
3945 @tab @dots{}a @code{==} relation
3946 @item @code{relation_not_equal}
3947 @tab @dots{}a @code{!=} relation
3948 @item @code{relation_less}
3949 @tab @dots{}a @code{<} relation
3950 @item @code{relation_less_or_equal}
3951 @tab @dots{}a @code{<=} relation
3952 @item @code{relation_greater}
3953 @tab @dots{}a @code{>} relation
3954 @item @code{relation_greater_or_equal}
3955 @tab @dots{}a @code{>=} relation
3957 @tab @dots{}a symbol (same as @code{is_a<symbol>(...)})
3959 @tab @dots{}a list (same as @code{is_a<lst>(...)})
3960 @item @code{polynomial}
3961 @tab @dots{}a polynomial (i.e. only consists of sums and products of numbers and symbols with positive integer powers)
3962 @item @code{integer_polynomial}
3963 @tab @dots{}a polynomial with (non-complex) integer coefficients
3964 @item @code{cinteger_polynomial}
3965 @tab @dots{}a polynomial with (possibly complex) integer coefficients (such as @math{2-3*I})
3966 @item @code{rational_polynomial}
3967 @tab @dots{}a polynomial with (non-complex) rational coefficients
3968 @item @code{crational_polynomial}
3969 @tab @dots{}a polynomial with (possibly complex) rational coefficients (such as @math{2/3+7/2*I})
3970 @item @code{rational_function}
3971 @tab @dots{}a rational function (@math{x+y}, @math{z/(x+y)})
3975 To determine whether an expression is commutative or non-commutative and if
3976 so, with which other expressions it would commutate, you use the methods
3977 @code{return_type()} and @code{return_type_tinfo()}. @xref{Non-commutative objects},
3978 for an explanation of these.
3981 @subsection Accessing subexpressions
3984 Many GiNaC classes, like @code{add}, @code{mul}, @code{lst}, and
3985 @code{function}, act as containers for subexpressions. For example, the
3986 subexpressions of a sum (an @code{add} object) are the individual terms,
3987 and the subexpressions of a @code{function} are the function's arguments.
3989 @cindex @code{nops()}
3991 GiNaC provides several ways of accessing subexpressions. The first way is to
3996 ex ex::op(size_t i);
3999 @code{nops()} determines the number of subexpressions (operands) contained
4000 in the expression, while @code{op(i)} returns the @code{i}-th
4001 (0..@code{nops()-1}) subexpression. In the case of a @code{power} object,
4002 @code{op(0)} will return the basis and @code{op(1)} the exponent. For
4003 @code{indexed} objects, @code{op(0)} is the base expression and @code{op(i)},
4004 @math{i>0} are the indices.
4007 @cindex @code{const_iterator}
4008 The second way to access subexpressions is via the STL-style random-access
4009 iterator class @code{const_iterator} and the methods
4012 const_iterator ex::begin();
4013 const_iterator ex::end();
4016 @code{begin()} returns an iterator referring to the first subexpression;
4017 @code{end()} returns an iterator which is one-past the last subexpression.
4018 If the expression has no subexpressions, then @code{begin() == end()}. These
4019 iterators can also be used in conjunction with non-modifying STL algorithms.
4021 Here is an example that (non-recursively) prints the subexpressions of a
4022 given expression in three different ways:
4029 for (size_t i = 0; i != e.nops(); ++i)
4030 cout << e.op(i) << endl;
4033 for (const_iterator i = e.begin(); i != e.end(); ++i)
4036 // with iterators and STL copy()
4037 std::copy(e.begin(), e.end(), std::ostream_iterator<ex>(cout, "\n"));
4041 @cindex @code{const_preorder_iterator}
4042 @cindex @code{const_postorder_iterator}
4043 @code{op()}/@code{nops()} and @code{const_iterator} only access an
4044 expression's immediate children. GiNaC provides two additional iterator
4045 classes, @code{const_preorder_iterator} and @code{const_postorder_iterator},
4046 that iterate over all objects in an expression tree, in preorder or postorder,
4047 respectively. They are STL-style forward iterators, and are created with the
4051 const_preorder_iterator ex::preorder_begin();
4052 const_preorder_iterator ex::preorder_end();
4053 const_postorder_iterator ex::postorder_begin();
4054 const_postorder_iterator ex::postorder_end();
4057 The following example illustrates the differences between
4058 @code{const_iterator}, @code{const_preorder_iterator}, and
4059 @code{const_postorder_iterator}:
4063 symbol A("A"), B("B"), C("C");
4064 ex e = lst@{lst@{A, B@}, C@};
4066 std::copy(e.begin(), e.end(),
4067 std::ostream_iterator<ex>(cout, "\n"));
4071 std::copy(e.preorder_begin(), e.preorder_end(),
4072 std::ostream_iterator<ex>(cout, "\n"));
4079 std::copy(e.postorder_begin(), e.postorder_end(),
4080 std::ostream_iterator<ex>(cout, "\n"));
4089 @cindex @code{relational} (class)
4090 Finally, the left-hand side and right-hand side expressions of objects of
4091 class @code{relational} (and only of these) can also be accessed with the
4100 @subsection Comparing expressions
4101 @cindex @code{is_equal()}
4102 @cindex @code{is_zero()}
4104 Expressions can be compared with the usual C++ relational operators like
4105 @code{==}, @code{>}, and @code{<} but if the expressions contain symbols,
4106 the result is usually not determinable and the result will be @code{false},
4107 except in the case of the @code{!=} operator. You should also be aware that
4108 GiNaC will only do the most trivial test for equality (subtracting both
4109 expressions), so something like @code{(pow(x,2)+x)/x==x+1} will return
4112 Actually, if you construct an expression like @code{a == b}, this will be
4113 represented by an object of the @code{relational} class (@pxref{Relations})
4114 which is not evaluated until (explicitly or implicitly) cast to a @code{bool}.
4116 There are also two methods
4119 bool ex::is_equal(const ex & other);
4123 for checking whether one expression is equal to another, or equal to zero,
4124 respectively. See also the method @code{ex::is_zero_matrix()},
4128 @subsection Ordering expressions
4129 @cindex @code{ex_is_less} (class)
4130 @cindex @code{ex_is_equal} (class)
4131 @cindex @code{compare()}
4133 Sometimes it is necessary to establish a mathematically well-defined ordering
4134 on a set of arbitrary expressions, for example to use expressions as keys
4135 in a @code{std::map<>} container, or to bring a vector of expressions into
4136 a canonical order (which is done internally by GiNaC for sums and products).
4138 The operators @code{<}, @code{>} etc. described in the last section cannot
4139 be used for this, as they don't implement an ordering relation in the
4140 mathematical sense. In particular, they are not guaranteed to be
4141 antisymmetric: if @samp{a} and @samp{b} are different expressions, and
4142 @code{a < b} yields @code{false}, then @code{b < a} doesn't necessarily
4145 By default, STL classes and algorithms use the @code{<} and @code{==}
4146 operators to compare objects, which are unsuitable for expressions, but GiNaC
4147 provides two functors that can be supplied as proper binary comparison
4148 predicates to the STL:
4151 class ex_is_less : public std::binary_function<ex, ex, bool> @{
4153 bool operator()(const ex &lh, const ex &rh) const;
4156 class ex_is_equal : public std::binary_function<ex, ex, bool> @{
4158 bool operator()(const ex &lh, const ex &rh) const;
4162 For example, to define a @code{map} that maps expressions to strings you
4166 std::map<ex, std::string, ex_is_less> myMap;
4169 Omitting the @code{ex_is_less} template parameter will introduce spurious
4170 bugs because the map operates improperly.
4172 Other examples for the use of the functors:
4180 std::sort(v.begin(), v.end(), ex_is_less());
4182 // count the number of expressions equal to '1'
4183 unsigned num_ones = std::count_if(v.begin(), v.end(),
4184 std::bind2nd(ex_is_equal(), 1));
4187 The implementation of @code{ex_is_less} uses the member function
4190 int ex::compare(const ex & other) const;
4193 which returns @math{0} if @code{*this} and @code{other} are equal, @math{-1}
4194 if @code{*this} sorts before @code{other}, and @math{1} if @code{*this} sorts
4198 @node Numerical evaluation, Substituting expressions, Information about expressions, Methods and functions
4199 @c node-name, next, previous, up
4200 @section Numerical evaluation
4201 @cindex @code{evalf()}
4203 GiNaC keeps algebraic expressions, numbers and constants in their exact form.
4204 To evaluate them using floating-point arithmetic you need to call
4207 ex ex::evalf(int level = 0) const;
4210 @cindex @code{Digits}
4211 The accuracy of the evaluation is controlled by the global object @code{Digits}
4212 which can be assigned an integer value. The default value of @code{Digits}
4213 is 17. @xref{Numbers}, for more information and examples.
4215 To evaluate an expression to a @code{double} floating-point number you can
4216 call @code{evalf()} followed by @code{numeric::to_double()}, like this:
4220 // Approximate sin(x/Pi)
4222 ex e = series(sin(x/Pi), x == 0, 6);
4224 // Evaluate numerically at x=0.1
4225 ex f = evalf(e.subs(x == 0.1));
4227 // ex_to<numeric> is an unsafe cast, so check the type first
4228 if (is_a<numeric>(f)) @{
4229 double d = ex_to<numeric>(f).to_double();
4238 @node Substituting expressions, Pattern matching and advanced substitutions, Numerical evaluation, Methods and functions
4239 @c node-name, next, previous, up
4240 @section Substituting expressions
4241 @cindex @code{subs()}
4243 Algebraic objects inside expressions can be replaced with arbitrary
4244 expressions via the @code{.subs()} method:
4247 ex ex::subs(const ex & e, unsigned options = 0);
4248 ex ex::subs(const exmap & m, unsigned options = 0);
4249 ex ex::subs(const lst & syms, const lst & repls, unsigned options = 0);
4252 In the first form, @code{subs()} accepts a relational of the form
4253 @samp{object == expression} or a @code{lst} of such relationals:
4257 symbol x("x"), y("y");
4259 ex e1 = 2*x*x-4*x+3;
4260 cout << "e1(7) = " << e1.subs(x == 7) << endl;
4264 cout << "e2(-2, 4) = " << e2.subs(lst@{x == -2, y == 4@}) << endl;
4269 If you specify multiple substitutions, they are performed in parallel, so e.g.
4270 @code{subs(lst@{x == y, y == x@})} exchanges @samp{x} and @samp{y}.
4272 The second form of @code{subs()} takes an @code{exmap} object which is a
4273 pair associative container that maps expressions to expressions (currently
4274 implemented as a @code{std::map}). This is the most efficient one of the
4275 three @code{subs()} forms and should be used when the number of objects to
4276 be substituted is large or unknown.
4278 Using this form, the second example from above would look like this:
4282 symbol x("x"), y("y");
4288 cout << "e2(-2, 4) = " << e2.subs(m) << endl;
4292 The third form of @code{subs()} takes two lists, one for the objects to be
4293 replaced and one for the expressions to be substituted (both lists must
4294 contain the same number of elements). Using this form, you would write
4298 symbol x("x"), y("y");
4301 cout << "e2(-2, 4) = " << e2.subs(lst@{x, y@}, lst@{-2, 4@}) << endl;
4305 The optional last argument to @code{subs()} is a combination of
4306 @code{subs_options} flags. There are three options available:
4307 @code{subs_options::no_pattern} disables pattern matching, which makes
4308 large @code{subs()} operations significantly faster if you are not using
4309 patterns. The second option, @code{subs_options::algebraic} enables
4310 algebraic substitutions in products and powers.
4311 @xref{Pattern matching and advanced substitutions}, for more information
4312 about patterns and algebraic substitutions. The third option,
4313 @code{subs_options::no_index_renaming} disables the feature that dummy
4314 indices are renamed if the substitution could give a result in which a
4315 dummy index occurs more than two times. This is sometimes necessary if
4316 you want to use @code{subs()} to rename your dummy indices.
4318 @code{subs()} performs syntactic substitution of any complete algebraic
4319 object; it does not try to match sub-expressions as is demonstrated by the
4324 symbol x("x"), y("y"), z("z");
4326 ex e1 = pow(x+y, 2);
4327 cout << e1.subs(x+y == 4) << endl;
4330 ex e2 = sin(x)*sin(y)*cos(x);
4331 cout << e2.subs(sin(x) == cos(x)) << endl;
4332 // -> cos(x)^2*sin(y)
4335 cout << e3.subs(x+y == 4) << endl;
4337 // (and not 4+z as one might expect)
4341 A more powerful form of substitution using wildcards is described in the
4345 @node Pattern matching and advanced substitutions, Applying a function on subexpressions, Substituting expressions, Methods and functions
4346 @c node-name, next, previous, up
4347 @section Pattern matching and advanced substitutions
4348 @cindex @code{wildcard} (class)
4349 @cindex Pattern matching
4351 GiNaC allows the use of patterns for checking whether an expression is of a
4352 certain form or contains subexpressions of a certain form, and for
4353 substituting expressions in a more general way.
4355 A @dfn{pattern} is an algebraic expression that optionally contains wildcards.
4356 A @dfn{wildcard} is a special kind of object (of class @code{wildcard}) that
4357 represents an arbitrary expression. Every wildcard has a @dfn{label} which is
4358 an unsigned integer number to allow having multiple different wildcards in a
4359 pattern. Wildcards are printed as @samp{$label} (this is also the way they
4360 are specified in @command{ginsh}). In C++ code, wildcard objects are created
4364 ex wild(unsigned label = 0);
4367 which is simply a wrapper for the @code{wildcard()} constructor with a shorter
4370 Some examples for patterns:
4372 @multitable @columnfractions .5 .5
4373 @item @strong{Constructed as} @tab @strong{Output as}
4374 @item @code{wild()} @tab @samp{$0}
4375 @item @code{pow(x,wild())} @tab @samp{x^$0}
4376 @item @code{atan2(wild(1),wild(2))} @tab @samp{atan2($1,$2)}
4377 @item @code{indexed(A,idx(wild(),3))} @tab @samp{A.$0}
4383 @item Wildcards behave like symbols and are subject to the same algebraic
4384 rules. E.g., @samp{$0+2*$0} is automatically transformed to @samp{3*$0}.
4385 @item As shown in the last example, to use wildcards for indices you have to
4386 use them as the value of an @code{idx} object. This is because indices must
4387 always be of class @code{idx} (or a subclass).
4388 @item Wildcards only represent expressions or subexpressions. It is not
4389 possible to use them as placeholders for other properties like index
4390 dimension or variance, representation labels, symmetry of indexed objects
4392 @item Because wildcards are commutative, it is not possible to use wildcards
4393 as part of noncommutative products.
4394 @item A pattern does not have to contain wildcards. @samp{x} and @samp{x+y}
4395 are also valid patterns.
4398 @subsection Matching expressions
4399 @cindex @code{match()}
4400 The most basic application of patterns is to check whether an expression
4401 matches a given pattern. This is done by the function
4404 bool ex::match(const ex & pattern);
4405 bool ex::match(const ex & pattern, exmap& repls);
4408 This function returns @code{true} when the expression matches the pattern
4409 and @code{false} if it doesn't. If used in the second form, the actual
4410 subexpressions matched by the wildcards get returned in the associative
4411 array @code{repls} with @samp{wildcard} as a key. If @code{match()}
4412 returns false, @code{repls} remains unmodified.
4414 The matching algorithm works as follows:
4417 @item A single wildcard matches any expression. If one wildcard appears
4418 multiple times in a pattern, it must match the same expression in all
4419 places (e.g. @samp{$0} matches anything, and @samp{$0*($0+1)} matches
4420 @samp{x*(x+1)} but not @samp{x*(y+1)}).
4421 @item If the expression is not of the same class as the pattern, the match
4422 fails (i.e. a sum only matches a sum, a function only matches a function,
4424 @item If the pattern is a function, it only matches the same function
4425 (i.e. @samp{sin($0)} matches @samp{sin(x)} but doesn't match @samp{exp(x)}).
4426 @item Except for sums and products, the match fails if the number of
4427 subexpressions (@code{nops()}) is not equal to the number of subexpressions
4429 @item If there are no subexpressions, the expressions and the pattern must
4430 be equal (in the sense of @code{is_equal()}).
4431 @item Except for sums and products, each subexpression (@code{op()}) must
4432 match the corresponding subexpression of the pattern.
4435 Sums (@code{add}) and products (@code{mul}) are treated in a special way to
4436 account for their commutativity and associativity:
4439 @item If the pattern contains a term or factor that is a single wildcard,
4440 this one is used as the @dfn{global wildcard}. If there is more than one
4441 such wildcard, one of them is chosen as the global wildcard in a random
4443 @item Every term/factor of the pattern, except the global wildcard, is
4444 matched against every term of the expression in sequence. If no match is
4445 found, the whole match fails. Terms that did match are not considered in
4447 @item If there are no unmatched terms left, the match succeeds. Otherwise
4448 the match fails unless there is a global wildcard in the pattern, in
4449 which case this wildcard matches the remaining terms.
4452 In general, having more than one single wildcard as a term of a sum or a
4453 factor of a product (such as @samp{a+$0+$1}) will lead to unpredictable or
4456 Here are some examples in @command{ginsh} to demonstrate how it works (the
4457 @code{match()} function in @command{ginsh} returns @samp{FAIL} if the
4458 match fails, and the list of wildcard replacements otherwise):