- Derivatives are now assembled in a slightly different manner (i.e. they
[ginac.git] / check / exam_pseries.cpp
1 /** @file exam_pseries.cpp
2  *
3  *  Series expansion test (Laurent and Taylor series). */
4
5 /*
6  *  GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include "exams.h"
24
25 static symbol x("x");
26
27 static unsigned check_series(const ex &e, const ex &point, const ex &d, int order = 8)
28 {
29     ex es = e.series(x==point, order);
30     ex ep = ex_to_pseries(es).convert_to_poly();
31     if (!(ep - d).is_zero()) {
32         clog << "series expansion of " << e << " at " << point
33              << " erroneously returned " << ep << " (instead of " << d
34              << ")" << endl;
35         (ep-d).printtree(clog);
36         return 1;
37     }
38     return 0;
39 }
40
41 // Series expansion
42 static unsigned exam_series1(void)
43 {
44     unsigned result = 0;
45     ex e, d;
46     
47     e = sin(x);
48     d = x - pow(x, 3) / 6 + pow(x, 5) / 120 - pow(x, 7) / 5040 + Order(pow(x, 8));
49     result += check_series(e, 0, d);
50     
51     e = cos(x);
52     d = 1 - pow(x, 2) / 2 + pow(x, 4) / 24 - pow(x, 6) / 720 + Order(pow(x, 8));
53     result += check_series(e, 0, d);
54     
55     e = exp(x);
56     d = 1 + x + pow(x, 2) / 2 + pow(x, 3) / 6 + pow(x, 4) / 24 + pow(x, 5) / 120 + pow(x, 6) / 720 + pow(x, 7) / 5040 + Order(pow(x, 8));
57     result += check_series(e, 0, d);
58     
59     e = pow(1 - x, -1);
60     d = 1 + x + pow(x, 2) + pow(x, 3) + pow(x, 4) + pow(x, 5) + pow(x, 6) + pow(x, 7) + Order(pow(x, 8));
61     result += check_series(e, 0, d);
62     
63     e = x + pow(x, -1);
64     d = x + pow(x, -1);
65     result += check_series(e, 0, d);
66     
67     e = x + pow(x, -1);
68     d = 2 + pow(x-1, 2) - pow(x-1, 3) + pow(x-1, 4) - pow(x-1, 5) + pow(x-1, 6) - pow(x-1, 7) + Order(pow(x-1, 8));
69     result += check_series(e, 1, d);
70     
71     e = pow(x + pow(x, 3), -1);
72     d = pow(x, -1) - x + pow(x, 3) - pow(x, 5) + Order(pow(x, 7));
73     result += check_series(e, 0, d);
74     
75     e = pow(pow(x, 2) + pow(x, 4), -1);
76     d = pow(x, -2) - 1 + pow(x, 2) - pow(x, 4) + Order(pow(x, 6));
77     result += check_series(e, 0, d);
78     
79     e = pow(sin(x), -2);
80     d = pow(x, -2) + numeric(1,3) + pow(x, 2) / 15 + pow(x, 4) * 2/189 + Order(pow(x, 5));
81     result += check_series(e, 0, d);
82     
83     e = sin(x) / cos(x);
84     d = x + pow(x, 3) / 3 + pow(x, 5) * 2/15 + pow(x, 7) * 17/315 + Order(pow(x, 8));
85     result += check_series(e, 0, d);
86     
87     e = cos(x) / sin(x);
88     d = pow(x, -1) - x / 3 - pow(x, 3) / 45 - pow(x, 5) * 2/945 + Order(pow(x, 6));
89     result += check_series(e, 0, d);
90     
91     e = pow(numeric(2), x);
92     ex t = log(2) * x;
93     d = 1 + t + pow(t, 2) / 2 + pow(t, 3) / 6 + pow(t, 4) / 24 + pow(t, 5) / 120 + pow(t, 6) / 720 + pow(t, 7) / 5040 + Order(pow(x, 8));
94     result += check_series(e, 0, d.expand());
95     
96     e = pow(Pi, x);
97     t = log(Pi) * x;
98     d = 1 + t + pow(t, 2) / 2 + pow(t, 3) / 6 + pow(t, 4) / 24 + pow(t, 5) / 120 + pow(t, 6) / 720 + pow(t, 7) / 5040 + Order(pow(x, 8));
99     result += check_series(e, 0, d.expand());
100     
101     return result;
102 }
103
104 // Series addition
105 static unsigned exam_series2(void)
106 {
107     unsigned result = 0;
108     ex e, d;
109     
110     e = pow(sin(x), -1).series(x==0, 8) + pow(sin(-x), -1).series(x==0, 12);
111     d = Order(pow(x, 6));
112     result += check_series(e, 0, d);
113     
114     return result;
115 }
116
117 // Series multiplication
118 static unsigned exam_series3(void)
119 {
120     unsigned result = 0;
121     ex e, d;
122     
123     e = sin(x).series(x==0, 8) * pow(sin(x), -1).series(x==0, 12);
124     d = 1 + Order(pow(x, 7));
125     result += check_series(e, 0, d);
126     
127     return result;
128 }
129
130 // Order term handling
131 static unsigned exam_series4(void)
132 {
133     unsigned result = 0;
134     ex e, d;
135
136     e = 1 + x + pow(x, 2) + pow(x, 3);
137     d = Order(1);
138     result += check_series(e, 0, d, 0);
139     d = 1 + Order(x);
140     result += check_series(e, 0, d, 1);
141     d = 1 + x + Order(pow(x, 2));
142     result += check_series(e, 0, d, 2);
143     d = 1 + x + pow(x, 2) + Order(pow(x, 3));
144     result += check_series(e, 0, d, 3);
145     d = 1 + x + pow(x, 2) + pow(x, 3);
146     result += check_series(e, 0, d, 4);
147     return result;
148 }
149
150 // Series expansion of tgamma(-1)
151 static unsigned exam_series5(void)
152 {
153     ex e = tgamma(2*x);
154     ex d = pow(x+1,-1)*numeric(1,4) +
155            pow(x+1,0)*(numeric(3,4) -
156                        numeric(1,2)*Euler) +
157            pow(x+1,1)*(numeric(7,4) -
158                        numeric(3,2)*Euler +
159                        numeric(1,2)*pow(Euler,2) +
160                        numeric(1,12)*pow(Pi,2)) +
161            pow(x+1,2)*(numeric(15,4) -
162                        numeric(7,2)*Euler -
163                        numeric(1,3)*pow(Euler,3) +
164                        numeric(1,4)*pow(Pi,2) +
165                        numeric(3,2)*pow(Euler,2) -
166                        numeric(1,6)*pow(Pi,2)*Euler -
167                        numeric(2,3)*zeta(3)) +
168            pow(x+1,3)*(numeric(31,4) - pow(Euler,3) -
169                        numeric(15,2)*Euler +
170                        numeric(1,6)*pow(Euler,4) +
171                        numeric(7,2)*pow(Euler,2) +
172                        numeric(7,12)*pow(Pi,2) -
173                        numeric(1,2)*pow(Pi,2)*Euler -
174                        numeric(2)*zeta(3) +
175                        numeric(1,6)*pow(Euler,2)*pow(Pi,2) +
176                        numeric(1,40)*pow(Pi,4) +
177                        numeric(4,3)*zeta(3)*Euler) +
178            Order(pow(x+1,4));
179     return check_series(e, -1, d, 4);
180 }
181     
182 // Series expansion of tan(x==Pi/2)
183 static unsigned exam_series6(void)
184 {
185     ex e = tan(x*Pi/2);
186     ex d = pow(x-1,-1)/Pi*(-2) + pow(x-1,1)*Pi/6 + pow(x-1,3)*pow(Pi,3)/360
187           +pow(x-1,5)*pow(Pi,5)/15120 + pow(x-1,7)*pow(Pi,7)/604800
188           +Order(pow(x-1,8));
189     return check_series(e,1,d,8);
190 }
191
192 // Series expansion of log(sin(x==0))
193 static unsigned exam_series7(void)
194 {
195     ex e = log(sin(x));
196     ex d = log(x) - pow(x,2)/6 - pow(x,4)/180 - pow(x,6)/2835
197           +Order(pow(x,8));
198     return check_series(e,0,d,8);
199 }
200
201 // Series expansion of Li2(sin(x==0))
202 static unsigned exam_series8(void)
203 {
204     ex e = Li2(sin(x));
205     ex d = x + pow(x,2)/4 - pow(x,3)/18 - pow(x,4)/48
206            - 13*pow(x,5)/1800 - pow(x,6)/360 - 23*pow(x,7)/21168
207            + Order(pow(x,8));
208     return check_series(e,0,d,8);
209 }
210
211 // Series expansion of Li2((x==2)^2), caring about branch-cut
212 static unsigned exam_series9(void)
213 {
214     ex e = Li2(pow(x,2));
215     ex d = Li2(4) + (-log(3) + I*Pi*csgn(I-I*pow(x,2))) * (x-2)
216            + (numeric(-2,3) + log(3)/4 - I*Pi/4*csgn(I-I*pow(x,2))) * pow(x-2,2)
217            + (numeric(11,27) - log(3)/12 + I*Pi/12*csgn(I-I*pow(x,2))) * pow(x-2,3)
218            + (numeric(-155,648) + log(3)/32 - I*Pi/32*csgn(I-I*pow(x,2))) * pow(x-2,4)
219            + Order(pow(x-2,5));
220     return check_series(e,2,d,5);
221 }
222
223 unsigned exam_pseries(void)
224 {
225     unsigned result = 0;
226     
227     cout << "examining series expansion" << flush;
228     clog << "----------series expansion:" << endl;
229     
230     result += exam_series1();  cout << '.' << flush;
231     result += exam_series2();  cout << '.' << flush;
232     result += exam_series3();  cout << '.' << flush;
233     result += exam_series4();  cout << '.' << flush;
234     result += exam_series5();  cout << '.' << flush;
235     result += exam_series6();  cout << '.' << flush;
236     result += exam_series7();  cout << '.' << flush;
237     result += exam_series8();  cout << '.' << flush;
238     result += exam_series9();  cout << '.' << flush;
239     
240     if (!result) {
241         cout << " passed " << endl;
242         clog << "(no output)" << endl;
243     } else {
244         cout << " failed " << endl;
245     }
246     return result;
247 }