include ginac.pc in libginac-dev [Alexei Sheplyakov]
[ginac.git] / check / exam_pseries.cpp
1 /** @File exam_pseries.cpp
2  *
3  *  Series expansion test (Laurent and Taylor series). */
4
5 /*
6  *  GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include "exams.h"
24
25 static symbol x("x");
26
27 static unsigned check_series(const ex &e, const ex &point, const ex &d, int order = 8)
28 {
29         ex es = e.series(x==point, order);
30         ex ep = ex_to<pseries>(es).convert_to_poly();
31         if (!(ep - d).expand().is_zero()) {
32                 clog << "series expansion of " << e << " at " << point
33                      << " erroneously returned " << ep << " (instead of " << d
34                      << ")" << endl;
35                 clog << tree << (ep-d) << dflt;
36                 return 1;
37         }
38         return 0;
39 }
40
41 // Series expansion
42 static unsigned exam_series1()
43 {
44         using GiNaC::log;
45
46         symbol a("a");
47         symbol b("b");
48         unsigned result = 0;
49         ex e, d;
50         
51         e = pow(a+b, x);
52         d = 1 + Order(pow(x, 1));
53         result += check_series(e, 0, d, 1);
54
55         e = sin(x);
56         d = x - pow(x, 3) / 6 + pow(x, 5) / 120 - pow(x, 7) / 5040 + Order(pow(x, 8));
57         result += check_series(e, 0, d);
58         
59         e = cos(x);
60         d = 1 - pow(x, 2) / 2 + pow(x, 4) / 24 - pow(x, 6) / 720 + Order(pow(x, 8));
61         result += check_series(e, 0, d);
62         
63         e = exp(x);
64         d = 1 + x + pow(x, 2) / 2 + pow(x, 3) / 6 + pow(x, 4) / 24 + pow(x, 5) / 120 + pow(x, 6) / 720 + pow(x, 7) / 5040 + Order(pow(x, 8));
65         result += check_series(e, 0, d);
66         
67         e = pow(1 - x, -1);
68         d = 1 + x + pow(x, 2) + pow(x, 3) + pow(x, 4) + pow(x, 5) + pow(x, 6) + pow(x, 7) + Order(pow(x, 8));
69         result += check_series(e, 0, d);
70         
71         e = x + pow(x, -1);
72         d = x + pow(x, -1);
73         result += check_series(e, 0, d);
74         
75         e = x + pow(x, -1);
76         d = 2 + pow(x-1, 2) - pow(x-1, 3) + pow(x-1, 4) - pow(x-1, 5) + pow(x-1, 6) - pow(x-1, 7) + Order(pow(x-1, 8));
77         result += check_series(e, 1, d);
78         
79         e = pow(x + pow(x, 3), -1);
80         d = pow(x, -1) - x + pow(x, 3) - pow(x, 5) + pow(x, 7) + Order(pow(x, 8));
81         result += check_series(e, 0, d);
82         
83         e = pow(pow(x, 2) + pow(x, 4), -1);
84         d = pow(x, -2) - 1 + pow(x, 2) - pow(x, 4) + pow(x, 6) + Order(pow(x, 8));
85         result += check_series(e, 0, d);
86         
87         e = pow(sin(x), -2);
88         d = pow(x, -2) + numeric(1,3) + pow(x, 2) / 15 + pow(x, 4) * 2/189 + pow(x, 6) / 675  + Order(pow(x, 8));
89         result += check_series(e, 0, d);
90         
91         e = sin(x) / cos(x);
92         d = x + pow(x, 3) / 3 + pow(x, 5) * 2/15 + pow(x, 7) * 17/315 + Order(pow(x, 8));
93         result += check_series(e, 0, d);
94         
95         e = cos(x) / sin(x);
96         d = pow(x, -1) - x / 3 - pow(x, 3) / 45 - pow(x, 5) * 2/945 - pow(x, 7) / 4725 + Order(pow(x, 8));
97         result += check_series(e, 0, d);
98         
99         e = pow(numeric(2), x);
100         ex t = log(2) * x;
101         d = 1 + t + pow(t, 2) / 2 + pow(t, 3) / 6 + pow(t, 4) / 24 + pow(t, 5) / 120 + pow(t, 6) / 720 + pow(t, 7) / 5040 + Order(pow(x, 8));
102         result += check_series(e, 0, d.expand());
103         
104         e = pow(Pi, x);
105         t = log(Pi) * x;
106         d = 1 + t + pow(t, 2) / 2 + pow(t, 3) / 6 + pow(t, 4) / 24 + pow(t, 5) / 120 + pow(t, 6) / 720 + pow(t, 7) / 5040 + Order(pow(x, 8));
107         result += check_series(e, 0, d.expand());
108         
109         e = log(x);
110         d = e;
111         result += check_series(e, 0, d, 1);
112         result += check_series(e, 0, d, 2);
113         
114         e = pow(x, 8) * pow(pow(x,3)+ pow(x + pow(x,3), 2), -2);
115         d = pow(x, 4) - 2*pow(x, 5) + Order(pow(x, 6));
116         result += check_series(e, 0, d, 6);
117         
118         e = cos(x) * pow(sin(x)*(pow(x, 5) + 4 * pow(x, 2)), -3);
119         d = pow(x, -9) / 64 - 3 * pow(x, -6) / 256 - pow(x, -5) / 960 + 535 * pow(x, -3) / 96768
120             + pow(x, -2) / 1280 - pow(x, -1) / 14400 - numeric(283, 129024) - 2143 * x / 5322240
121             + Order(pow(x, 2));
122         result += check_series(e, 0, d, 2);
123         
124         e = sqrt(1+x*x) * sqrt(1+2*x*x);
125         d = 1 + Order(pow(x, 2));
126         result += check_series(e, 0, d, 2);
127
128         e = pow(x, 4) * sin(a) + pow(x, 2);
129         d = pow(x, 2) + Order(pow(x, 3));
130         result += check_series(e, 0, d, 3);
131
132         e = log(a*x + b*x*x*log(x));
133         d = log(a*x) + b/a*log(x)*x - pow(b/a, 2)/2*pow(log(x)*x, 2) + Order(pow(x, 3));
134         result += check_series(e, 0, d, 3);
135
136         return result;
137 }
138
139 // Series addition
140 static unsigned exam_series2()
141 {
142         unsigned result = 0;
143         ex e, d;
144         
145         e = pow(sin(x), -1).series(x==0, 8) + pow(sin(-x), -1).series(x==0, 12);
146         d = Order(pow(x, 8));
147         result += check_series(e, 0, d);
148         
149         return result;
150 }
151
152 // Series multiplication
153 static unsigned exam_series3()
154 {
155         unsigned result = 0;
156         ex e, d;
157         
158         e = sin(x).series(x==0, 8) * pow(sin(x), -1).series(x==0, 12);
159         d = 1 + Order(pow(x, 7));
160         result += check_series(e, 0, d);
161         
162         return result;
163 }
164
165 // Series exponentiation
166 static unsigned exam_series4()
167 {
168         unsigned result = 0;
169         ex e, d;
170         
171         e = pow((2*cos(x)).series(x==0, 5), 2).series(x==0, 5);
172         d = 4 - 4*pow(x, 2) + 4*pow(x, 4)/3 + Order(pow(x, 5));
173         result += check_series(e, 0, d);
174         
175         e = pow(tgamma(x), 2).series(x==0, 2);
176         d = pow(x,-2) - 2*Euler/x + (pow(Pi,2)/6+2*pow(Euler,2)) 
177                 + x*(-4*pow(Euler, 3)/3 -pow(Pi,2)*Euler/3 - 2*zeta(3)/3) + Order(pow(x, 2));
178         result += check_series(e, 0, d);
179         
180         return result;
181 }
182
183 // Order term handling
184 static unsigned exam_series5()
185 {
186         unsigned result = 0;
187         ex e, d;
188
189         e = 1 + x + pow(x, 2) + pow(x, 3);
190         d = Order(1);
191         result += check_series(e, 0, d, 0);
192         d = 1 + Order(x);
193         result += check_series(e, 0, d, 1);
194         d = 1 + x + Order(pow(x, 2));
195         result += check_series(e, 0, d, 2);
196         d = 1 + x + pow(x, 2) + Order(pow(x, 3));
197         result += check_series(e, 0, d, 3);
198         d = 1 + x + pow(x, 2) + pow(x, 3);
199         result += check_series(e, 0, d, 4);
200         return result;
201 }
202
203 // Series expansion of tgamma(-1)
204 static unsigned exam_series6()
205 {
206         ex e = tgamma(2*x);
207         ex d = pow(x+1,-1)*numeric(1,4) +
208                pow(x+1,0)*(numeric(3,4) -
209                            numeric(1,2)*Euler) +
210                pow(x+1,1)*(numeric(7,4) -
211                            numeric(3,2)*Euler +
212                            numeric(1,2)*pow(Euler,2) +
213                            numeric(1,12)*pow(Pi,2)) +
214                pow(x+1,2)*(numeric(15,4) -
215                            numeric(7,2)*Euler -
216                            numeric(1,3)*pow(Euler,3) +
217                            numeric(1,4)*pow(Pi,2) +
218                            numeric(3,2)*pow(Euler,2) -
219                            numeric(1,6)*pow(Pi,2)*Euler -
220                            numeric(2,3)*zeta(3)) +
221                pow(x+1,3)*(numeric(31,4) - pow(Euler,3) -
222                            numeric(15,2)*Euler +
223                            numeric(1,6)*pow(Euler,4) +
224                            numeric(7,2)*pow(Euler,2) +
225                            numeric(7,12)*pow(Pi,2) -
226                            numeric(1,2)*pow(Pi,2)*Euler -
227                            numeric(2)*zeta(3) +
228                            numeric(1,6)*pow(Euler,2)*pow(Pi,2) +
229                            numeric(1,40)*pow(Pi,4) +
230                            numeric(4,3)*zeta(3)*Euler) +
231                Order(pow(x+1,4));
232         return check_series(e, -1, d, 4);
233 }
234         
235 // Series expansion of tan(x==Pi/2)
236 static unsigned exam_series7()
237 {
238         ex e = tan(x*Pi/2);
239         ex d = pow(x-1,-1)/Pi*(-2) + pow(x-1,1)*Pi/6 + pow(x-1,3)*pow(Pi,3)/360
240               +pow(x-1,5)*pow(Pi,5)/15120 + pow(x-1,7)*pow(Pi,7)/604800
241               +Order(pow(x-1,9));
242         return check_series(e,1,d,9);
243 }
244
245 // Series expansion of log(sin(x==0))
246 static unsigned exam_series8()
247 {
248         ex e = log(sin(x));
249         ex d = log(x) - pow(x,2)/6 - pow(x,4)/180 - pow(x,6)/2835 - pow(x,8)/37800 + Order(pow(x,9));
250         return check_series(e,0,d,9);
251 }
252
253 // Series expansion of Li2(sin(x==0))
254 static unsigned exam_series9()
255 {
256         ex e = Li2(sin(x));
257         ex d = x + pow(x,2)/4 - pow(x,3)/18 - pow(x,4)/48
258                - 13*pow(x,5)/1800 - pow(x,6)/360 - 23*pow(x,7)/21168
259                + Order(pow(x,8));
260         return check_series(e,0,d,8);
261 }
262
263 // Series expansion of Li2((x==2)^2), caring about branch-cut
264 static unsigned exam_series10()
265 {
266         using GiNaC::log;
267
268         ex e = Li2(pow(x,2));
269         ex d = Li2(4) + (-log(3) + I*Pi*csgn(I-I*pow(x,2))) * (x-2)
270                + (numeric(-2,3) + log(3)/4 - I*Pi/4*csgn(I-I*pow(x,2))) * pow(x-2,2)
271                + (numeric(11,27) - log(3)/12 + I*Pi/12*csgn(I-I*pow(x,2))) * pow(x-2,3)
272                + (numeric(-155,648) + log(3)/32 - I*Pi/32*csgn(I-I*pow(x,2))) * pow(x-2,4)
273                + Order(pow(x-2,5));
274         return check_series(e,2,d,5);
275 }
276
277 // Series expansion of logarithms around branch points
278 static unsigned exam_series11()
279 {
280         using GiNaC::log;
281
282         unsigned result = 0;
283         ex e, d;
284         symbol a("a");
285         
286         e = log(x);
287         d = log(x);
288         result += check_series(e,0,d,5);
289         
290         e = log(3/x);
291         d = log(3)-log(x);
292         result += check_series(e,0,d,5);
293         
294         e = log(3*pow(x,2));
295         d = log(3)+2*log(x);
296         result += check_series(e,0,d,5);
297         
298         // These ones must not be expanded because it would result in a branch cut
299         // running in the wrong direction. (Other systems tend to get this wrong.)
300         e = log(-x);
301         d = e;
302         result += check_series(e,0,d,5);
303         
304         e = log(I*(x-123));
305         d = e;
306         result += check_series(e,123,d,5);
307         
308         e = log(a*x);
309         d = e;  // we don't know anything about a!
310         result += check_series(e,0,d,5);
311         
312         e = log((1-x)/x);
313         d = log(1-x) - (x-1) + pow(x-1,2)/2 - pow(x-1,3)/3  + pow(x-1,4)/4 + Order(pow(x-1,5));
314         result += check_series(e,1,d,5);
315         
316         return result;
317 }
318
319 // Series expansion of other functions around branch points
320 static unsigned exam_series12()
321 {
322         using GiNaC::log;
323
324         unsigned result = 0;
325         ex e, d;
326         
327         // NB: Mma and Maple give different results, but they agree if one
328         // takes into account that by assumption |x|<1.
329         e = atan(x);
330         d = (I*log(2)/2-I*log(1+I*x)/2) + (x-I)/4 + I*pow(x-I,2)/16 + Order(pow(x-I,3));
331         result += check_series(e,I,d,3);
332         
333         // NB: here, at -I, Mathematica disagrees, but it is wrong -- they
334         // pick up a complex phase by incorrectly expanding logarithms.
335         e = atan(x);
336         d = (-I*log(2)/2+I*log(1-I*x)/2) + (x+I)/4 - I*pow(x+I,2)/16 + Order(pow(x+I,3));
337         result += check_series(e,-I,d,3);
338         
339         // This is basically the same as above, the branch point is at +/-1:
340         e = atanh(x);
341         d = (-log(2)/2+log(x+1)/2) + (x+1)/4 + pow(x+1,2)/16 + Order(pow(x+1,3));
342         result += check_series(e,-1,d,3);
343         
344         return result;
345 }
346
347
348 unsigned exam_pseries()
349 {
350         unsigned result = 0;
351         
352         cout << "examining series expansion" << flush;
353         clog << "----------series expansion:" << endl;
354         
355         result += exam_series1();  cout << '.' << flush;
356         result += exam_series2();  cout << '.' << flush;
357         result += exam_series3();  cout << '.' << flush;
358         result += exam_series4();  cout << '.' << flush;
359         result += exam_series5();  cout << '.' << flush;
360         result += exam_series6();  cout << '.' << flush;
361         result += exam_series7();  cout << '.' << flush;
362         result += exam_series8();  cout << '.' << flush;
363         result += exam_series9();  cout << '.' << flush;
364         result += exam_series10();  cout << '.' << flush;
365         result += exam_series11();  cout << '.' << flush;
366         result += exam_series12();  cout << '.' << flush;
367         
368         if (!result) {
369                 cout << " passed " << endl;
370                 clog << "(no output)" << endl;
371         } else {
372                 cout << " failed " << endl;
373         }
374         return result;
375 }