added check for contraction of epsilon with symmetric tensor
[ginac.git] / check / exam_indexed.cpp
1 /** @file exam_indexed.cpp
2  *
3  *  Here we test manipulations on GiNaC's indexed objects. */
4
5 /*
6  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include "exams.h"
24
25 static unsigned check_equal(const ex &e1, const ex &e2)
26 {
27         ex e = e1 - e2;
28         if (!e.is_zero()) {
29                 clog << e1 << "-" << e2 << " erroneously returned "
30                      << e << " instead of 0" << endl;
31                 return 1;
32         }
33         return 0;
34 }
35
36 static unsigned check_equal_simplify(const ex &e1, const ex &e2)
37 {
38         ex e = simplify_indexed(e1) - e2;
39         if (!e.is_zero()) {
40                 clog << "simplify_indexed(" << e1 << ")-" << e2 << " erroneously returned "
41                      << e << " instead of 0" << endl;
42                 return 1;
43         }
44         return 0;
45 }
46
47 static unsigned delta_check(void)
48 {
49         // checks identities of the delta tensor
50
51         unsigned result = 0;
52
53         symbol s_i("i"), s_j("j"), s_k("k");
54         idx i(s_i, 3), j(s_j, 3), k(s_k, 3);
55         symbol A("A");
56
57         // symmetry
58         result += check_equal(delta_tensor(i, j), delta_tensor(j, i));
59
60         // trace = dimension of index space
61         result += check_equal(delta_tensor(i, i), 3);
62         result += check_equal_simplify(delta_tensor(i, j) * delta_tensor(i, j), 3);
63
64         // contraction with delta tensor
65         result += check_equal_simplify(delta_tensor(i, j) * indexed(A, k), delta_tensor(i, j) * indexed(A, k));
66         result += check_equal_simplify(delta_tensor(i, j) * indexed(A, j), indexed(A, i));
67         result += check_equal_simplify(delta_tensor(i, j) * indexed(A, i), indexed(A, j));
68         result += check_equal_simplify(delta_tensor(i, j) * delta_tensor(j, k) * indexed(A, i), indexed(A, k));
69
70         return result;
71 }
72
73 static unsigned metric_check(void)
74 {
75         // checks identities of the metric tensor
76
77         unsigned result = 0;
78
79         symbol s_mu("mu"), s_nu("nu"), s_rho("rho"), s_sigma("sigma");
80         varidx mu(s_mu, 4), nu(s_nu, 4), rho(s_rho, 4), sigma(s_sigma, 4);
81         symbol A("A");
82
83         // becomes delta tensor if indices have opposite variance
84         result += check_equal(metric_tensor(mu, nu.toggle_variance()), delta_tensor(mu, nu.toggle_variance()));
85
86         // scalar contraction = dimension of index space
87         result += check_equal(metric_tensor(mu, mu.toggle_variance()), 4);
88         result += check_equal_simplify(metric_tensor(mu, nu) * metric_tensor(mu.toggle_variance(), nu.toggle_variance()), 4);
89
90         // contraction with metric tensor
91         result += check_equal_simplify(metric_tensor(mu, nu) * indexed(A, nu), metric_tensor(mu, nu) * indexed(A, nu));
92         result += check_equal_simplify(metric_tensor(mu, nu) * indexed(A, nu.toggle_variance()), indexed(A, mu));
93         result += check_equal_simplify(metric_tensor(mu, nu) * indexed(A, mu.toggle_variance()), indexed(A, nu));
94         result += check_equal_simplify(metric_tensor(mu, nu) * metric_tensor(mu.toggle_variance(), rho.toggle_variance()) * indexed(A, nu.toggle_variance()), indexed(A, rho.toggle_variance()));
95         result += check_equal_simplify(metric_tensor(mu, rho) * metric_tensor(nu, sigma) * indexed(A, rho.toggle_variance(), sigma.toggle_variance()), indexed(A, mu, nu));
96         result += check_equal_simplify(indexed(A, mu.toggle_variance()) * metric_tensor(mu, nu) - indexed(A, mu.toggle_variance()) * metric_tensor(nu, mu), 0);
97         result += check_equal_simplify(indexed(A, mu.toggle_variance(), nu.toggle_variance()) * metric_tensor(nu, rho), indexed(A, mu.toggle_variance(), rho));
98
99         // contraction with delta tensor yields a metric tensor
100         result += check_equal_simplify(delta_tensor(mu, nu.toggle_variance()) * metric_tensor(nu, rho), metric_tensor(mu, rho));
101         result += check_equal_simplify(metric_tensor(mu, nu) * indexed(A, nu.toggle_variance()) * delta_tensor(mu.toggle_variance(), rho), indexed(A, rho));
102
103         return result;
104 }
105
106 static unsigned epsilon_check(void)
107 {
108         // checks identities of the epsilon tensor
109
110         unsigned result = 0;
111
112         symbol s_mu("mu"), s_nu("nu"), s_rho("rho"), s_sigma("sigma"), s_tau("tau");
113         symbol d("d");
114         varidx mu(s_mu, 4), nu(s_nu, 4), rho(s_rho, 4), sigma(s_sigma, 4), tau(s_tau, 4);
115
116         // antisymmetry
117         result += check_equal(lorentz_eps(mu, nu, rho, sigma) + lorentz_eps(sigma, rho, mu, nu), 0);
118
119         // convolution is zero
120         result += check_equal(lorentz_eps(mu, nu, rho, nu.toggle_variance()), 0);
121         result += check_equal(lorentz_eps(mu, nu, mu.toggle_variance(), nu.toggle_variance()), 0);
122         result += check_equal_simplify(lorentz_g(mu.toggle_variance(), nu.toggle_variance()) * lorentz_eps(mu, nu, rho, sigma), 0);
123
124         // contraction with symmetric tensor is zero
125         result += check_equal_simplify(lorentz_eps(mu, nu, rho, sigma) * indexed(d, indexed::symmetric, mu.toggle_variance(), nu.toggle_variance()), 0);
126         result += check_equal_simplify(lorentz_eps(mu, nu, rho, sigma) * indexed(d, indexed::symmetric, nu.toggle_variance(), sigma.toggle_variance(), rho.toggle_variance()), 0);
127         ex e = lorentz_eps(mu, nu, rho, sigma) * indexed(d, indexed::symmetric, mu.toggle_variance(), tau);
128         result += check_equal_simplify(e, e);
129
130         return result;
131 }
132
133 static unsigned symmetry_check(void)
134 {
135         // check symmetric/antisymmetric objects
136
137         unsigned result = 0;
138
139         symbol s_i("i"), s_j("j"), s_k("k");
140         idx i(s_i, 3), j(s_j, 3), k(s_k, 3);
141         symbol A("A");
142         ex e, e1, e2;
143
144         result += check_equal(indexed(A, indexed::symmetric, i, j), indexed(A, indexed::symmetric, j, i));
145         result += check_equal(indexed(A, indexed::antisymmetric, i, j) + indexed(A, indexed::antisymmetric, j, i), 0);
146         result += check_equal(indexed(A, indexed::antisymmetric, i, j, k) - indexed(A, indexed::antisymmetric, j, k, i), 0);
147
148         return result;
149 }
150