(cit->coeff.is_equal(_ex1))) {
++number_of_adds;
if (is_exactly_a<add>(last_expanded)) {
+#if 1
+ // Expand a product of two sums, simple and robust version.
const add & add1 = ex_to<add>(last_expanded);
const add & add2 = ex_to<add>(cit->rest);
- int n1 = add1.nops();
- int n2 = add2.nops();
+ const int n1 = add1.nops();
+ const int n2 = add2.nops();
+ ex tmp_accu;
exvector distrseq;
- distrseq.reserve(n1*n2);
+ distrseq.reserve(n2);
for (int i1=0; i1<n1; ++i1) {
// cache the first operand (for efficiency):
const ex op1 = add1.op(i1);
for (int i2=0; i2<n2; ++i2)
distrseq.push_back(op1 * add2.op(i2));
+ tmp_accu += (new add(distrseq))->
+ setflag(status_flags::dynallocated);
+ distrseq.clear();
}
- last_expanded = (new add(distrseq))->
- setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
+ last_expanded = tmp_accu;
+#else
+ // Expand a product of two sums, aggressive version.
+ // Caring for the overall coefficients in separate loops can give
+ // a performance gain of up to 20%!
+ const add & add1 = ex_to<add>(last_expanded);
+ const add & add2 = ex_to<add>(cit->rest);
+ const epvector::const_iterator add1begin = add1.seq.begin();
+ const epvector::const_iterator add1end = add1.seq.end();
+ const epvector::const_iterator add2begin = add2.seq.begin();
+ const epvector::const_iterator add2end = add2.seq.end();
+ epvector distrseq;
+ distrseq.reserve(add1.seq.size()+add2.seq.size());
+ // Multiply add2 with the overall coefficient of add1 and append it to distrseq:
+ if (!add1.overall_coeff.is_zero()) {
+ if (add1.overall_coeff.is_equal(_ex1))
+ distrseq.insert(distrseq.end(),add2begin,add2end);
+ else
+ for (epvector::const_iterator i=add2begin; i!=add2end; ++i)
+ distrseq.push_back(expair(i->rest, ex_to<numeric>(i->coeff).mul_dyn(ex_to<numeric>(add1.overall_coeff))));
+ }
+ // Multiply add1 with the overall coefficient of add2 and append it to distrseq:
+ if (!add2.overall_coeff.is_zero()) {
+ if (add2.overall_coeff.is_equal(_ex1))
+ distrseq.insert(distrseq.end(),add1begin,add1end);
+ else
+ for (epvector::const_iterator i=add1begin; i!=add1end; ++i)
+ distrseq.push_back(expair(i->rest, ex_to<numeric>(i->coeff).mul_dyn(ex_to<numeric>(add2.overall_coeff))));
+ }
+ // Compute the new overall coefficient and put it together:
+ ex tmp_accu = (new add(distrseq, ex_to<numeric>(add1.overall_coeff).mul(ex_to<numeric>(add2.overall_coeff))))->
+ setflag(status_flags::dynallocated);
+ // Multiply explicitly all non-numeric terms of add1 and add2:
+ for (epvector::const_iterator i1=add1begin; i1!=add1end; ++i1) {
+ // We really have to combine terms here in order to compactify
+ // the result. Otherwise it would become waayy tooo bigg.
+ numeric oc;
+ distrseq.clear();
+ for (epvector::const_iterator i2=add2begin; i2!=add2end; ++i2) {
+ // Don't push_back expairs which might have a rest that evaluates to a numeric,
+ // since that would violate an invariant of expairseq:
+ const ex rest = (new mul(i1->rest, i2->rest))->setflag(status_flags::dynallocated);
+ if (is_exactly_a<numeric>(rest))
+ oc *= ex_to<numeric>(rest).mul_dyn(ex_to<numeric>(i1->coeff).mul_dyn(ex_to<numeric>(i2->coeff)));
+ else
+ distrseq.push_back(expair(rest, ex_to<numeric>(i1->coeff).mul_dyn(ex_to<numeric>(i2->coeff))));
+ }
+ tmp_accu += (new add(distrseq, oc))->setflag(status_flags::dynallocated);
+ }
+ last_expanded = tmp_accu;
+#endif
} else {
non_adds.push_back(split_ex_to_pair(last_expanded));
last_expanded = cit->rest;