]> www.ginac.de Git - ginac.git/commitdiff
Add Markowitz-ordered Gaussian elimination algorithm.
authorVitaly Magerya <vmagerya@gmail.com>
Thu, 31 May 2018 15:43:56 +0000 (17:43 +0200)
committerRichard Kreckel <kreckel@ginac.de>
Thu, 31 May 2018 15:43:56 +0000 (17:43 +0200)
This algorithm avoids the 'fill-in' problem of Gaussian elimination
and significantly improves the times for solving large sparse systems.
See: <https://www.ginac.de/pipermail/ginac-list/2018-May/002202.html>.

AUTHORS
check/check_lsolve.cpp
ginac/flags.h
ginac/inifcns.cpp
ginac/matrix.cpp
ginac/matrix.h

diff --git a/AUTHORS b/AUTHORS
index d6eaa874867de38ef400ea848f8a7755872cdcb9..7fb3466b0da870f103e82c54bea65a725f5248d3 100644 (file)
--- a/AUTHORS
+++ b/AUTHORS
@@ -12,7 +12,7 @@ Contributors of patches
 -----------------------
 
 Roberto Bagnara, Do Hoang Son, Markus Nullmeier, Pearu Peterson, Benedikt
-Pluemper, Ben Sapp, Stefan Weinzierl.
+Pluemper, Ben Sapp, Stefan Weinzierl, Vitaly Magerya.
 (Please send email if you think you were forgotten.)
 
 
index 8c4f438b1a88d25af552109c321e53520e3ecb2b..247776ba5d8b1a0ac121d1fb0930b6d17a4044ee 100644 (file)
@@ -118,7 +118,6 @@ static unsigned check_inifcns_lsolve(unsigned n)
                }
                lst eqns;  // equation list
                lst vars;  // variable list
-               ex sol; // solution
                // Create a random linear system...
                for (unsigned i=0; i<n; ++i) {
                        ex lhs = rand()%201-100;
@@ -131,32 +130,34 @@ static unsigned check_inifcns_lsolve(unsigned n)
                        eqns.append(lhs==rhs);
                        vars.append(x[i]);
                }
-               // ...solve it...
-               sol = lsolve(eqns, vars);
-               
-               // ...and check the solution:
-               if (sol.nops() == 0) {
-                       // no solution was found
-                       // is the coefficient matrix really, really, really degenerate?
-                       matrix coeffmat(n,n);
-                       for (unsigned ro=0; ro<n; ++ro)
-                               for (unsigned co=0; co<n; ++co)
-                                       coeffmat.set(ro,co,eqns.op(co).rhs().coeff(a[co],1));
-                       if (!coeffmat.determinant().is_zero()) {
-                               ++result;
-                               clog << "solution of the system " << eqns << " for " << vars
-                                        << " was not found" << endl;
-                       }
-               } else {
-                       // insert the solution into rhs of out equations
-                       bool errorflag = false;
-                       for (unsigned i=0; i<n; ++i)
-                               if (eqns.op(i).rhs().subs(sol) != eqns.op(i).lhs())
-                                       errorflag = true;
-                       if (errorflag) {
-                               ++result;
-                               clog << "solution of the system " << eqns << " for " << vars
-                                    << " erroneously returned " << sol << endl;
+               // ...solve it with each algorithm...
+               for (int algo = solve_algo::automatic; algo <= solve_algo::markowitz; algo++) {
+                       ex sol = lsolve(eqns, vars, algo);
+                       // ...and check the solution:
+                       if (sol.nops() == 0) {
+                               // no solution was found
+                               // is the coefficient matrix really, really, really degenerate?
+                               matrix coeffmat(n,n);
+                               for (unsigned ro=0; ro<n; ++ro)
+                                       for (unsigned co=0; co<n; ++co)
+                                               coeffmat.set(ro,co,eqns.op(co).rhs().coeff(a[co],1));
+                               if (!coeffmat.determinant().is_zero()) {
+                                       ++result;
+                                       clog << "solution of the system " << eqns << " for " << vars
+                                            << " was not found using algorithm " << algo << endl;
+                               }
+                       } else {
+                               // insert the solution into rhs of out equations
+                               bool errorflag = false;
+                               for (unsigned i=0; i<n; ++i)
+                                       if (eqns.op(i).rhs().subs(sol) != eqns.op(i).lhs())
+                                               errorflag = true;
+                               if (errorflag) {
+                                       ++result;
+                                       clog << "solution of the system " << eqns << " for " << vars
+                                            << " erroneously returned " << sol << " using algorithm "
+                                            << algo << endl;
+                               }
                        }
                }
        }
index c97229af5386952fb4c8ae77aa629971cc1b6a1f..cebc3fd449966d647c6e745081f71bd286ca956b 100644 (file)
@@ -182,7 +182,13 @@ public:
                 *  linear systems.  In contrast to division-free elimination it only
                 *  has a linear expression swell.  For two-dimensional systems, the
                 *  two algorithms are equivalent, however. */
-               bareiss
+               bareiss,
+               /** Markowitz-ordered Gaussian elimination. Same as the usual
+                *  Gaussian elimination, but with additional effort spent on
+                *  selection pivots that minimize fill-in. Much faster than the
+                *  methods above for large sparse matrices, marginally slower
+                *  than Gaussian elimination otherwise. */
+               markowitz
        };
 };
 
index 4e426f4ca3d097abe0ab7cb84381d0f5d4442d6a..d81b03c74df6339f9df310e287d7688a401028bc 100644 (file)
@@ -1038,6 +1038,24 @@ REGISTER_FUNCTION(Order, eval_func(Order_eval).
 // Solve linear system
 //////////
 
+static void insert_symbols(exset &es, const ex &e)
+{
+       if (is_a<symbol>(e)) {
+               es.insert(e);
+       } else {
+               for (const ex &sube : e) {
+                       insert_symbols(es, sube);
+               }
+       }
+}
+
+static exset symbolset(const ex &e)
+{
+       exset s;
+       insert_symbols(s, e);
+       return s;
+}
+
 ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
 {
        // solve a system of linear equations
@@ -1077,8 +1095,10 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        
        for (size_t r=0; r<eqns.nops(); r++) {
                const ex eq = eqns.op(r).op(0)-eqns.op(r).op(1); // lhs-rhs==0
+               const exset syms = symbolset(eq);
                ex linpart = eq;
                for (size_t c=0; c<symbols.nops(); c++) {
+                       if (syms.count(symbols.op(c)) == 0) continue;
                        const ex co = eq.coeff(ex_to<symbol>(symbols.op(c)),1);
                        linpart -= co*symbols.op(c);
                        sys(r,c) = co;
@@ -1088,11 +1108,13 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        }
        
        // test if system is linear and fill vars matrix
+       const exset sys_syms = symbolset(sys);
+       const exset rhs_syms = symbolset(rhs);
        for (size_t i=0; i<symbols.nops(); i++) {
                vars(i,0) = symbols.op(i);
-               if (sys.has(symbols.op(i)))
+               if (sys_syms.count(symbols.op(i)) != 0)
                        throw(std::logic_error("lsolve: system is not linear"));
-               if (rhs.has(symbols.op(i)))
+               if (rhs_syms.count(symbols.op(i)) != 0)
                        throw(std::logic_error("lsolve: system is not linear"));
        }
        
index 5b9822510c6642c340511d502483248a0f468d5c..7b0b34889f396cfb66feda3f0011e7fb45378393 100644 (file)
@@ -1003,7 +1003,7 @@ matrix matrix::solve(const matrix & vars,
        const unsigned p = rhs.cols();
        
        // syntax checks    
-       if ((rhs.rows() != m) || (vars.rows() != n) || (vars.col != p))
+       if ((rhs.rows() != m) || (vars.rows() != n) || (vars.cols() != p))
                throw (std::logic_error("matrix::solve(): incompatible matrices"));
        for (unsigned ro=0; ro<n; ++ro)
                for (unsigned co=0; co<p; ++co)
@@ -1042,6 +1042,10 @@ matrix matrix::solve(const matrix & vars,
        }
        
        // Eliminate the augmented matrix:
+       std::vector<unsigned> colid(aug.cols());
+       for (unsigned c = 0; c < aug.cols(); c++) {
+               colid[c] = c;
+       }
        switch(algo) {
                case solve_algo::gauss:
                        aug.gauss_elimination();
@@ -1050,8 +1054,13 @@ matrix matrix::solve(const matrix & vars,
                        aug.division_free_elimination();
                        break;
                case solve_algo::bareiss:
-               default:
                        aug.fraction_free_elimination();
+                       break;
+               case solve_algo::markowitz:
+                       colid = aug.markowitz_elimination(n);
+                       break;
+               default:
+                       throw std::invalid_argument("matrix::solve(): 'algo' is not one of the solve_algo enum");
        }
        
        // assemble the solution matrix:
@@ -1071,18 +1080,18 @@ matrix matrix::solve(const matrix & vars,
                                // assign solutions for vars between fnz+1 and
                                // last_assigned_sol-1: free parameters
                                for (unsigned c=fnz; c<last_assigned_sol-1; ++c)
-                                       sol(c,co) = vars.m[c*p+co];
+                                       sol(colid[c],co) = vars.m[colid[c]*p+co];
                                ex e = aug.m[r*(n+p)+n+co];
                                for (unsigned c=fnz; c<n; ++c)
-                                       e -= aug.m[r*(n+p)+c]*sol.m[c*p+co];
-                               sol(fnz-1,co) = (e/(aug.m[r*(n+p)+(fnz-1)])).normal();
+                                       e -= aug.m[r*(n+p)+c]*sol.m[colid[c]*p+co];
+                               sol(colid[fnz-1],co) = (e/(aug.m[r*(n+p)+fnz-1])).normal();
                                last_assigned_sol = fnz;
                        }
                }
                // assign solutions for vars between 1 and
                // last_assigned_sol-1: free parameters
                for (unsigned ro=0; ro<last_assigned_sol-1; ++ro)
-                       sol(ro,co) = vars(ro,co);
+                       sol(colid[ro],co) = vars(colid[ro],co);
        }
        
        return sol;
@@ -1293,6 +1302,119 @@ int matrix::gauss_elimination(const bool det)
        return sign;
 }
 
+/* Perform Markowitz-ordered Gaussian elimination (with full
+ * pivoting) on a matrix, constraining the choice of pivots to
+ * the first n columns (this simplifies handling of augmented
+ * matrices). Return the column id vector v, such that v[column]
+ * is the original number of the column before shuffling (v[i]==i
+ * for i >= n). */
+std::vector<unsigned>
+matrix::markowitz_elimination(unsigned n)
+{
+       GINAC_ASSERT(n <= col);
+       std::vector<int> rowcnt(row, 0);
+       std::vector<int> colcnt(col, 0);
+       // Normalize everything before start. We'll keep all the
+       // cells normalized throughout the algorithm to properly
+       // handle unnormal zeros.
+       for (unsigned r = 0; r < row; r++) {
+               for (unsigned c = 0; c < col; c++) {
+                       if (!m[r*col + c].is_zero()) {
+                               m[r*col + c] = m[r*col + c].normal();
+                               rowcnt[r]++;
+                               colcnt[c]++;
+                       }
+               }
+       }
+       std::vector<unsigned> colid(col);
+       for (unsigned c = 0; c < col; c++) {
+               colid[c] = c;
+       }
+       exvector ab(row);
+       for (unsigned k = 0; (k < col) && (k < row - 1); k++) {
+               // Find the pivot that minimizes (rowcnt[r]-1)*(colcnt[c]-1).
+               unsigned pivot_r = row + 1;
+               unsigned pivot_c = col + 1;
+               int pivot_m = row*col;
+               for (unsigned r = k; r < row; r++) {
+                       for (unsigned c = k; c < n; c++) {
+                               const ex &mrc = m[r*col + c];
+                               if (mrc.is_zero())
+                                       continue;
+                               GINAC_ASSERT(rowcnt[r] > 0);
+                               GINAC_ASSERT(colcnt[c] > 0);
+                               int measure = (rowcnt[r] - 1)*(colcnt[c] - 1);
+                               if (measure < pivot_m) {
+                                       pivot_m = measure;
+                                       pivot_r = r;
+                                       pivot_c = c;
+                               }
+                       }
+               }
+               if (pivot_m == row*col) {
+                       // The rest of the matrix is zero.
+                       break;
+               }
+               GINAC_ASSERT(k <= pivot_r && pivot_r < row);
+               GINAC_ASSERT(k <= pivot_c && pivot_c < col);
+               // Swap the pivot into (k, k).
+               if (pivot_c != k) {
+                       for (unsigned r = 0; r < row; r++) {
+                               m[r*col + pivot_c].swap(m[r*col + k]);
+                       }
+                       std::swap(colid[pivot_c], colid[k]);
+                       std::swap(colcnt[pivot_c], colcnt[k]);
+               }
+               if (pivot_r != k) {
+                       for (unsigned c = k; c < col; c++) {
+                               m[pivot_r*col + c].swap(m[k*col + c]);
+                       }
+                       std::swap(rowcnt[pivot_r], rowcnt[k]);
+               }
+               // No normalization before is_zero() here, because
+               // we maintain the matrix normalized throughout the
+               // algorithm.
+               ex a = m[k*col + k];
+               GINAC_ASSERT(!a.is_zero());
+               // Subtract the pivot row KJI-style (so: loop by pivot, then
+               // column, then row) to maximally exploit pivot row zeros (at
+               // the expense of the pivot column zeros). The speedup compared
+               // to the usual KIJ order is not really significant though...
+               for (unsigned r = k + 1; r < row; r++) {
+                       const ex &b = m[r*col + k];
+                       if (!b.is_zero()) {
+                               ab[r] = b/a;
+                               rowcnt[r]--;
+                       }
+               }
+               colcnt[k] = rowcnt[k] = 0;
+               for (unsigned c = k + 1; c < col; c++) {
+                       const ex &mr0c = m[k*col + c];
+                       if (mr0c.is_zero())
+                               continue;
+                       colcnt[c]--;
+                       for (unsigned r = k + 1; r < row; r++) {
+                               if (ab[r].is_zero())
+                                       continue;
+                               bool waszero = m[r*col + c].is_zero();
+                               m[r*col + c] = (m[r*col + c] - ab[r]*mr0c).normal();
+                               bool iszero = m[r*col + c].is_zero();
+                               if (waszero && !iszero) {
+                                       rowcnt[r]++;
+                                       colcnt[c]++;
+                               }
+                               if (!waszero && iszero) {
+                                       rowcnt[r]--;
+                                       colcnt[c]--;
+                               }
+                       }
+               }
+               for (unsigned r = k + 1; r < row; r++) {
+                       ab[r] = m[r*col + k] = _ex0;
+               }
+       }
+       return colid;
+}
 
 /** Perform the steps of division free elimination to bring the m x n matrix
  *  into an upper echelon form.
index 1a95d0aa0f5dbc4d0e8e344fd0f670ebe8681667..cf7dd03954a2e73331d26a113499380584253769 100644 (file)
@@ -159,6 +159,7 @@ protected:
        int gauss_elimination(const bool det = false);
        int division_free_elimination(const bool det = false);
        int fraction_free_elimination(const bool det = false);
+       std::vector<unsigned> markowitz_elimination(unsigned n);
        int pivot(unsigned ro, unsigned co, bool symbolic = true);
 
        void print_elements(const print_context & c, const char *row_start, const char *row_end, const char *row_sep, const char *col_sep) const;