* epsilon_tensor(idx(fail(), 3), idx(0, 3), idx(y/2, 3))
+ lorentz_g(
varidx(lst(x, -11*y, acos(2*x).series(x==3-5*I, 3)) * color_ONE()
- * metric_tensor(spinidx(0, 5, false, true), varidx(2, 4)), zeta(3)),
+ * metric_tensor(varidx(log(cos(128.0/(x*y))), 5), varidx(2, 5)), zeta(3)),
varidx(diag_matrix(lst(-1, Euler, atan(x/y==-15*I/17)))
- * delta_tensor(idx(x, 2), idx(wild(7), 3)), log(cos(128.0/(x*y))), true),
+ * delta_tensor(idx(x, 2), idx(wild(7), 3)), zeta(3), true),
true
)
+ dirac_gamma(varidx(mu, dim)) * dirac_gamma(varidx(mu, 4-dim, true))
* color_T(idx(x, 8), 1) * color_h(idx(x, 8), idx(y, 8), idx(2, 8))
* indexed(x, sy_anti(), idx(2*y+1, x), varidx(-mu, 5))
- - 2.4275 * spinor_metric(spinidx(x), spinidx(y))
+ - 2.4275 * spinor_metric(spinidx(0, 2, false, true), spinidx(y))
+ abs(x).series(x == y, 4);
archive ar;
{
if (!is_a<varidx>(i1) || !is_a<varidx>(i2))
throw(std::invalid_argument("indices of metric tensor must be of type varidx"));
+ ex dim = ex_to<idx>(i1).get_dim();
+ if (!dim.is_equal(ex_to<idx>(i2).get_dim()))
+ throw(std::invalid_argument("all indices of metric tensor must have the same dimension"));
return indexed(tensmetric(), sy_symm(), i1, i2);
}
{
if (!is_a<varidx>(i1) || !is_a<varidx>(i2))
throw(std::invalid_argument("indices of metric tensor must be of type varidx"));
+ ex dim = ex_to<idx>(i1).get_dim();
+ if (!dim.is_equal(ex_to<idx>(i2).get_dim()))
+ throw(std::invalid_argument("all indices of metric tensor must have the same dimension"));
return indexed(minkmetric(pos_sig), sy_symm(), i1, i2);
}