X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?a=blobdiff_plain;f=ginac%2Fnormal.cpp;h=610c48d6a2653bd9945ce35862b5e59e7f2f66da;hb=e0909883f133a031a8931a0280f465e3c4d6ffea;hp=4b490ed0e9824d301cb979fc830433b98aa22019;hpb=274c1632d78ec31575c4b3b328d75ad95a7855aa;p=ginac.git diff --git a/ginac/normal.cpp b/ginac/normal.cpp index 4b490ed0..610c48d6 100644 --- a/ginac/normal.cpp +++ b/ginac/normal.cpp @@ -6,7 +6,7 @@ * computation, square-free factorization and rational function normalization. */ /* - * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -1741,11 +1741,41 @@ static exvector sqrfree_yun(const ex &a, const symbol &x) return res; } -/** Compute square-free factorization of multivariate polynomial in Q[X]. +/** Compute a square-free factorization of a multivariate polynomial in Q[X]. * * @param a multivariate polynomial over Q[X] * @param x lst of variables to factor in, may be left empty for autodetection - * @return polynomial a in square-free factored form. */ + * @return a square-free factorization of \p a. + * + * \note + * A polynomial \f$p(X) \in C[X]\f$ is said square-free + * if, whenever any two polynomials \f$q(X)\f$ and \f$r(X)\f$ + * are such that + * \f[ + * p(X) = q(X)^2 r(X), + * \f] + * we have \f$q(X) \in C\f$. + * This means that \f$p(X)\f$ has no repeated factors, apart + * eventually from constants. + * Given a polynomial \f$p(X) \in C[X]\f$, we say that the + * decomposition + * \f[ + * p(X) = b \cdot p_1(X)^{a_1} \cdot p_2(X)^{a_2} \cdots p_r(X)^{a_r} + * \f] + * is a square-free factorization of \f$p(X)\f$ if the + * following conditions hold: + * -# \f$b \in C\f$ and \f$b \neq 0\f$; + * -# \f$a_i\f$ is a positive integer for \f$i = 1, \ldots, r\f$; + * -# the degree of the polynomial \f$p_i\f$ is strictly positive + * for \f$i = 1, \ldots, r\f$; + * -# the polynomial \f$\Pi_{i=1}^r p_i(X)\f$ is square-free. + * + * Square-free factorizations need not be unique. For example, if + * \f$a_i\f$ is even, we could change the polynomial \f$p_i(X)\f$ + * into \f$-p_i(X)\f$. + * Observe also that the factors \f$p_i(X)\f$ need not be irreducible + * polynomials. + */ ex sqrfree(const ex &a, const lst &l) { if (is_a(a) || // algorithm does not trap a==0