X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?a=blobdiff_plain;f=ginac%2Fmatrix.cpp;h=c48fb6b124bc99b090e3e4961c5a795cf71ae8a8;hb=fe86c2b3a16dfcf289adb3923ef0d292f5a740dc;hp=650799e55f6353db6807e1d42a8d7904cc55291b;hpb=08d556dc3ac3fbf2b0ad3acd37016a1f925d7c02;p=ginac.git diff --git a/ginac/matrix.cpp b/ginac/matrix.cpp index 650799e5..c48fb6b1 100644 --- a/ginac/matrix.cpp +++ b/ginac/matrix.cpp @@ -25,16 +25,17 @@ #include #include "matrix.h" -#include "archive.h" #include "numeric.h" #include "lst.h" #include "idx.h" #include "indexed.h" -#include "utils.h" -#include "debugmsg.h" #include "power.h" #include "symbol.h" #include "normal.h" +#include "print.h" +#include "archive.h" +#include "utils.h" +#include "debugmsg.h" namespace GiNaC { @@ -44,8 +45,6 @@ GINAC_IMPLEMENT_REGISTERED_CLASS(matrix, basic) // default ctor, dtor, copy ctor, assignment operator and helpers: ////////// -// public - /** Default ctor. Initializes to 1 x 1-dimensional zero-matrix. */ matrix::matrix() : inherited(TINFO_matrix), row(1), col(1) { @@ -53,9 +52,6 @@ matrix::matrix() : inherited(TINFO_matrix), row(1), col(1) m.push_back(_ex0()); } -// protected - -/** For use by copy ctor and assignment operator. */ void matrix::copy(const matrix & other) { inherited::copy(other); @@ -64,10 +60,7 @@ void matrix::copy(const matrix & other) m = other.m; // STL's vector copying invoked here } -void matrix::destroy(bool call_parent) -{ - if (call_parent) inherited::destroy(call_parent); -} +DEFAULT_DESTROY(matrix) ////////// // other ctors @@ -118,7 +111,6 @@ matrix::matrix(unsigned r, unsigned c, const lst & l) // archiving ////////// -/** Construct object from archive_node. */ matrix::matrix(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { debugmsg("matrix ctor from archive_node", LOGLEVEL_CONSTRUCT); @@ -134,13 +126,6 @@ matrix::matrix(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst } } -/** Unarchive the object. */ -ex matrix::unarchive(const archive_node &n, const lst &sym_lst) -{ - return (new matrix(n, sym_lst))->setflag(status_flags::dynallocated); -} - -/** Archive the object. */ void matrix::archive(archive_node &n) const { inherited::archive(n); @@ -153,42 +138,43 @@ void matrix::archive(archive_node &n) const } } +DEFAULT_UNARCHIVE(matrix) + ////////// -// functions overriding virtual functions from bases classes +// functions overriding virtual functions from base classes ////////// // public -void matrix::print(std::ostream & os, unsigned upper_precedence) const +void matrix::print(const print_context & c, unsigned level) const { - debugmsg("matrix print",LOGLEVEL_PRINT); - os << "[[ "; - for (unsigned r=0; r(c)) { + + inherited::print(c, level); + + } else { + + c.s << "["; + for (unsigned y=0; y(const_cast(other)); + GINAC_ASSERT(is_exactly_a(other)); + const matrix &o = static_cast(other); // compare number of rows if (row != o.rows()) @@ -323,11 +259,21 @@ int matrix::compare_same_type(const basic & other) const return 0; } +bool matrix::match_same_type(const basic & other) const +{ + GINAC_ASSERT(is_exactly_a(other)); + const matrix & o = static_cast(other); + + // The number of rows and columns must be the same. This is necessary to + // prevent a 2x3 matrix from matching a 3x2 one. + return row == o.rows() && col == o.cols(); +} + /** Automatic symbolic evaluation of an indexed matrix. */ ex matrix::eval_indexed(const basic & i) const { - GINAC_ASSERT(is_of_type(i, indexed)); - GINAC_ASSERT(is_ex_of_type(i.op(0), matrix)); + GINAC_ASSERT(is_a(i)); + GINAC_ASSERT(is_a(i.op(0))); bool all_indices_unsigned = static_cast(i).all_index_values_are(info_flags::nonnegint); @@ -338,7 +284,7 @@ ex matrix::eval_indexed(const basic & i) const if (row != 1 && col != 1) throw (std::runtime_error("matrix::eval_indexed(): vector must have exactly 1 index")); - const idx & i1 = ex_to_idx(i.op(1)); + const idx & i1 = ex_to(i.op(1)); if (col == 1) { @@ -348,7 +294,7 @@ ex matrix::eval_indexed(const basic & i) const // Index numeric -> return vector element if (all_indices_unsigned) { - unsigned n1 = ex_to_numeric(i1.get_value()).to_int(); + unsigned n1 = ex_to(i1.get_value()).to_int(); if (n1 >= row) throw (std::runtime_error("matrix::eval_indexed(): value of index exceeds number of vector elements")); return (*this)(n1, 0); @@ -362,7 +308,7 @@ ex matrix::eval_indexed(const basic & i) const // Index numeric -> return vector element if (all_indices_unsigned) { - unsigned n1 = ex_to_numeric(i1.get_value()).to_int(); + unsigned n1 = ex_to(i1.get_value()).to_int(); if (n1 >= col) throw (std::runtime_error("matrix::eval_indexed(): value of index exceeds number of vector elements")); return (*this)(0, n1); @@ -372,8 +318,8 @@ ex matrix::eval_indexed(const basic & i) const } else if (i.nops() == 3) { // Two indices - const idx & i1 = ex_to_idx(i.op(1)); - const idx & i2 = ex_to_idx(i.op(2)); + const idx & i1 = ex_to(i.op(1)); + const idx & i2 = ex_to(i.op(2)); if (!i1.get_dim().is_equal(row)) throw (std::runtime_error("matrix::eval_indexed(): dimension of first index must match number of rows")); @@ -386,7 +332,7 @@ ex matrix::eval_indexed(const basic & i) const // Both indices numeric -> return matrix element if (all_indices_unsigned) { - unsigned n1 = ex_to_numeric(i1.get_value()).to_int(), n2 = ex_to_numeric(i2.get_value()).to_int(); + unsigned n1 = ex_to(i1.get_value()).to_int(), n2 = ex_to(i2.get_value()).to_int(); if (n1 >= row) throw (std::runtime_error("matrix::eval_indexed(): value of first index exceeds number of rows")); if (n2 >= col) @@ -403,17 +349,17 @@ ex matrix::eval_indexed(const basic & i) const /** Sum of two indexed matrices. */ ex matrix::add_indexed(const ex & self, const ex & other) const { - GINAC_ASSERT(is_ex_of_type(self, indexed)); - GINAC_ASSERT(is_ex_of_type(self.op(0), matrix)); - GINAC_ASSERT(is_ex_of_type(other, indexed)); + GINAC_ASSERT(is_a(self)); + GINAC_ASSERT(is_a(self.op(0))); + GINAC_ASSERT(is_a(other)); GINAC_ASSERT(self.nops() == 2 || self.nops() == 3); // Only add two matrices if (is_ex_of_type(other.op(0), matrix)) { GINAC_ASSERT(other.nops() == 2 || other.nops() == 3); - const matrix &self_matrix = ex_to_matrix(self.op(0)); - const matrix &other_matrix = ex_to_matrix(other.op(0)); + const matrix &self_matrix = ex_to(self.op(0)); + const matrix &other_matrix = ex_to(other.op(0)); if (self.nops() == 2 && other.nops() == 2) { // vector + vector @@ -439,11 +385,11 @@ ex matrix::add_indexed(const ex & self, const ex & other) const /** Product of an indexed matrix with a number. */ ex matrix::scalar_mul_indexed(const ex & self, const numeric & other) const { - GINAC_ASSERT(is_ex_of_type(self, indexed)); - GINAC_ASSERT(is_ex_of_type(self.op(0), matrix)); + GINAC_ASSERT(is_a(self)); + GINAC_ASSERT(is_a(self.op(0))); GINAC_ASSERT(self.nops() == 2 || self.nops() == 3); - const matrix &self_matrix = ex_to_matrix(self.op(0)); + const matrix &self_matrix = ex_to(self.op(0)); if (self.nops() == 2) return indexed(self_matrix.mul(other), self.op(1)); @@ -454,10 +400,10 @@ ex matrix::scalar_mul_indexed(const ex & self, const numeric & other) const /** Contraction of an indexed matrix with something else. */ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { - GINAC_ASSERT(is_ex_of_type(*self, indexed)); - GINAC_ASSERT(is_ex_of_type(*other, indexed)); + GINAC_ASSERT(is_a(*self)); + GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(self->nops() == 2 || self->nops() == 3); - GINAC_ASSERT(is_ex_of_type(self->op(0), matrix)); + GINAC_ASSERT(is_a(self->op(0))); // Only contract with other matrices if (!is_ex_of_type(other->op(0), matrix)) @@ -465,14 +411,12 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex GINAC_ASSERT(other->nops() == 2 || other->nops() == 3); - const matrix &self_matrix = ex_to_matrix(self->op(0)); - const matrix &other_matrix = ex_to_matrix(other->op(0)); + const matrix &self_matrix = ex_to(self->op(0)); + const matrix &other_matrix = ex_to(other->op(0)); if (self->nops() == 2) { - unsigned self_dim = (self_matrix.col == 1) ? self_matrix.row : self_matrix.col; if (other->nops() == 2) { // vector * vector (scalar product) - unsigned other_dim = (other_matrix.col == 1) ? other_matrix.row : other_matrix.col; if (self_matrix.col == 1) { if (other_matrix.col == 1) { @@ -564,13 +508,13 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex matrix matrix::add(const matrix & other) const { if (col != other.col || row != other.row) - throw (std::logic_error("matrix::add(): incompatible matrices")); + throw std::logic_error("matrix::add(): incompatible matrices"); exvector sum(this->m); - exvector::iterator i; - exvector::const_iterator ci; - for (i=sum.begin(), ci=other.m.begin(); i!=sum.end(); ++i, ++ci) - (*i) += (*ci); + exvector::iterator i = sum.begin(), end = sum.end(); + exvector::const_iterator ci = other.m.begin(); + while (i != end) + *i++ += *ci++; return matrix(row,col,sum); } @@ -582,13 +526,13 @@ matrix matrix::add(const matrix & other) const matrix matrix::sub(const matrix & other) const { if (col != other.col || row != other.row) - throw (std::logic_error("matrix::sub(): incompatible matrices")); + throw std::logic_error("matrix::sub(): incompatible matrices"); exvector dif(this->m); - exvector::iterator i; - exvector::const_iterator ci; - for (i=dif.begin(), ci=other.m.begin(); i!=dif.end(); ++i, ++ci) - (*i) -= (*ci); + exvector::iterator i = dif.begin(), end = dif.end(); + exvector::const_iterator ci = other.m.begin(); + while (i != end) + *i++ -= *ci++; return matrix(row,col,dif); } @@ -600,7 +544,7 @@ matrix matrix::sub(const matrix & other) const matrix matrix::mul(const matrix & other) const { if (this->cols() != other.rows()) - throw (std::logic_error("matrix::mul(): incompatible matrices")); + throw std::logic_error("matrix::mul(): incompatible matrices"); exvector prod(this->rows()*other.cols()); @@ -629,7 +573,64 @@ matrix matrix::mul(const numeric & other) const } -/** operator() to access elements. +/** Product of matrix and scalar expression. */ +matrix matrix::mul_scalar(const ex & other) const +{ + if (other.return_type() != return_types::commutative) + throw std::runtime_error("matrix::mul_scalar(): non-commutative scalar"); + + exvector prod(row * col); + + for (unsigned r=0; r(expn); + matrix A(row,col); + if (expn.info(info_flags::negative)) { + b *= -1; + A = this->inverse(); + } else { + A = *this; + } + matrix C(row,col); + for (unsigned r=0; r=row || co>=col) - throw (std::range_error("matrix::set(): index out of range")); - + throw (std::range_error("matrix::operator(): index out of range")); + ensure_if_modifiable(); - m[ro*col+co] = value; - return *this; + return m[ro*col+co]; } @@ -670,7 +672,6 @@ matrix matrix::transpose(void) const return matrix(this->cols(),this->rows(),trans); } - /** Determinant of square matrix. This routine doesn't actually calculate the * determinant, it only implements some heuristics about which algorithm to * run. If all the elements of the matrix are elements of an integral domain @@ -695,9 +696,10 @@ ex matrix::determinant(unsigned algo) const bool numeric_flag = true; bool normal_flag = false; unsigned sparse_count = 0; // counts non-zero elements - for (exvector::const_iterator r=m.begin(); r!=m.end(); ++r) { + exvector::const_iterator r = m.begin(), rend = m.end(); + while (r != rend) { lst srl; // symbol replacement list - ex rtest = (*r).to_rational(srl); + ex rtest = r->to_rational(srl); if (!rtest.is_zero()) ++sparse_count; if (!rtest.info(info_flags::numeric)) @@ -705,6 +707,7 @@ ex matrix::determinant(unsigned algo) const if (!rtest.info(info_flags::crational_polynomial) && rtest.info(info_flags::rational_function)) normal_flag = true; + ++r; } // Here is the heuristics in case this routine has to decide: @@ -784,12 +787,13 @@ ex matrix::determinant(unsigned algo) const } sort(c_zeros.begin(),c_zeros.end()); std::vector pre_sort; - for (std::vector::iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i) + for (std::vector::const_iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i) pre_sort.push_back(i->second); - int sign = permutation_sign(pre_sort); + std::vector pre_sort_test(pre_sort); // permutation_sign() modifies the vector so we make a copy here + int sign = permutation_sign(pre_sort_test.begin(), pre_sort_test.end()); exvector result(row*col); // represents sorted matrix unsigned c = 0; - for (std::vector::iterator i=pre_sort.begin(); + for (std::vector::const_iterator i=pre_sort.begin(); i!=pre_sort.end(); ++i,++c) { for (unsigned r=0; rinfo(info_flags::numeric)) numeric_flag = false; - } + ++r; } // The pure numeric case is traditionally rather common. Hence, it is @@ -889,50 +894,32 @@ matrix matrix::inverse(void) const if (row != col) throw (std::logic_error("matrix::inverse(): matrix not square")); - // NOTE: the Gauss-Jordan elimination used here can in principle be - // replaced by two clever calls to gauss_elimination() and some to - // transpose(). Wouldn't be more efficient (maybe less?), just more - // orthogonal. - matrix tmp(row,col); - // set tmp to the unit matrix - for (unsigned i=0; isolve(vars,identity); + } catch (const std::runtime_error & e) { + if (e.what()==std::string("matrix::solve(): inconsistent linear system")) throw (std::runtime_error("matrix::inverse(): singular matrix")); - } - if (indx != 0) { // swap rows r and indx of matrix tmp - for (unsigned i=0; iinfo(info_flags::numeric)) numeric_flag = false; + ++r; } // Here is the heuristics in case this routine has to decide: @@ -995,8 +984,10 @@ matrix matrix::solve(const matrix & vars, switch(algo) { case solve_algo::gauss: aug.gauss_elimination(); + break; case solve_algo::divfree: aug.division_free_elimination(); + break; case solve_algo::bareiss: default: aug.fraction_free_elimination(); @@ -1019,19 +1010,18 @@ matrix matrix::solve(const matrix & vars, // assign solutions for vars between fnz+1 and // last_assigned_sol-1: free parameters for (unsigned c=fnz; cm.begin(); - exvector::iterator tmp_n_it = tmp_n.m.begin(); - exvector::iterator tmp_d_it = tmp_d.m.begin(); - for (; it!= this->m.end(); ++it, ++tmp_n_it, ++tmp_d_it) { - (*tmp_n_it) = (*it).normal().to_rational(srl); - (*tmp_d_it) = (*tmp_n_it).denom(); - (*tmp_n_it) = (*tmp_n_it).numer(); + exvector::const_iterator cit = this->m.begin(), citend = this->m.end(); + exvector::iterator tmp_n_it = tmp_n.m.begin(), tmp_d_it = tmp_d.m.begin(); + while (cit != citend) { + ex nd = cit->normal().to_rational(srl).numer_denom(); + ++cit; + *tmp_n_it++ = nd.op(0); + *tmp_d_it++ = nd.op(1); } unsigned r0 = 0; @@ -1379,11 +1369,11 @@ int matrix::fraction_free_elimination(const bool det) } } // repopulate *this matrix: - it = this->m.begin(); + exvector::iterator it = this->m.begin(), itend = this->m.end(); tmp_n_it = tmp_n.m.begin(); tmp_d_it = tmp_d.m.begin(); - for (; it!= this->m.end(); ++it, ++tmp_n_it, ++tmp_d_it) - (*it) = ((*tmp_n_it)/(*tmp_d_it)).subs(srl); + while (it != itend) + *it++ = ((*tmp_n_it++)/(*tmp_d_it++)).subs(srl); return sign; } @@ -1411,12 +1401,12 @@ int matrix::pivot(unsigned ro, unsigned co, bool symbolic) ++k; } else { // search largest element in column co beginning at row ro - GINAC_ASSERT(is_ex_of_type(this->m[k*col+co],numeric)); + GINAC_ASSERT(is_a(this->m[k*col+co])); unsigned kmax = k+1; - numeric mmax = abs(ex_to_numeric(m[kmax*col+co])); + numeric mmax = abs(ex_to(m[kmax*col+co])); while (kmaxm[kmax*col+co],numeric)); - numeric tmp = ex_to_numeric(this->m[kmax*col+co]); + GINAC_ASSERT(is_a(this->m[kmax*col+co])); + numeric tmp = ex_to(this->m[kmax*col+co]); if (abs(tmp) > mmax) { mmax = tmp; k = kmax; @@ -1447,15 +1437,16 @@ ex lst_to_matrix(const lst & l) for (i=0; i cols) cols = l.op(i).nops(); - + // Allocate and fill matrix matrix &m = *new matrix(rows, cols); + m.setflag(status_flags::dynallocated); for (i=0; i j) - m.set(i, j, l.op(i).op(j)); + m(i, j) = l.op(i).op(j); else - m.set(i, j, ex(0)); + m(i, j) = _ex0(); return m; } @@ -1464,8 +1455,9 @@ ex diag_matrix(const lst & l) unsigned dim = l.nops(); matrix &m = *new matrix(dim, dim); + m.setflag(status_flags::dynallocated); for (unsigned i=0; i