X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?a=blobdiff_plain;f=ginac%2Finifcns_gamma.cpp;h=3f7fc677adda5d3725418a02be8351bc72f4001c;hb=955cb185a85535ab328ffedbfccdc508ce80fa91;hp=bb3a74e0c0a24566bf52fe1ee88d5687bd2f11f7;hpb=24fe247f9ed16114a765a01c593fec5c4a2f591c;p=ginac.git diff --git a/ginac/inifcns_gamma.cpp b/ginac/inifcns_gamma.cpp index bb3a74e0..3f7fc677 100644 --- a/ginac/inifcns_gamma.cpp +++ b/ginac/inifcns_gamma.cpp @@ -1,7 +1,7 @@ /** @file inifcns_gamma.cpp * - * Implementation of Gamma-function, Polygamma-functions, and some related - * stuff. */ + * Implementation of Gamma-function, Beta-function, Polygamma-functions, and + * some related stuff. */ /* * GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany @@ -27,98 +27,244 @@ #include "inifcns.h" #include "ex.h" #include "constant.h" +#include "series.h" #include "numeric.h" #include "power.h" +#include "relational.h" #include "symbol.h" +#include "utils.h" +#ifndef NO_GINAC_NAMESPACE namespace GiNaC { +#endif // ndef NO_GINAC_NAMESPACE ////////// // Gamma-function ////////// +static ex gamma_evalf(ex const & x) +{ + BEGIN_TYPECHECK + TYPECHECK(x,numeric) + END_TYPECHECK(gamma(x)) + + return gamma(ex_to_numeric(x)); +} + /** Evaluation of gamma(x). Knows about integer arguments, half-integer * arguments and that's it. Somebody ought to provide some good numerical * evaluation some day... * - * @exception fail_numeric("complex_infinity") or something similar... */ + * @exception std::domain_error("gamma_eval(): simple pole") */ static ex gamma_eval(ex const & x) { if (x.info(info_flags::numeric)) { // trap integer arguments: - if ( x.info(info_flags::integer) ) { + if (x.info(info_flags::integer)) { // gamma(n+1) -> n! for postitive n - if ( x.info(info_flags::posint) ) { - return factorial(ex_to_numeric(x).sub(numONE())); + if (x.info(info_flags::posint)) { + return factorial(ex_to_numeric(x).sub(_num1())); } else { - return numZERO(); // Infinity. Throw? What? + throw (std::domain_error("gamma_eval(): simple pole")); } } // trap half integer arguments: - if ( (x*2).info(info_flags::integer) ) { - // trap positive x=(n+1/2) + if ((x*2).info(info_flags::integer)) { + // trap positive x==(n+1/2) // gamma(n+1/2) -> Pi^(1/2)*(1*3*..*(2*n-1))/(2^n) - if ( (x*2).info(info_flags::posint) ) { - numeric n = ex_to_numeric(x).sub(numHALF()); - numeric coefficient = doublefactorial(n.mul(numTWO()).sub(numONE())); - coefficient = coefficient.div(numTWO().power(n)); - return coefficient * pow(Pi,numHALF()); + if ((x*2).info(info_flags::posint)) { + numeric n = ex_to_numeric(x).sub(_num1_2()); + numeric coefficient = doublefactorial(n.mul(_num2()).sub(_num1())); + coefficient = coefficient.div(_num2().power(n)); + return coefficient * pow(Pi,_num1_2()); } else { - // trap negative x=(-n+1/2) + // trap negative x==(-n+1/2) // gamma(-n+1/2) -> Pi^(1/2)*(-2)^n/(1*3*..*(2*n-1)) - numeric n = abs(ex_to_numeric(x).sub(numHALF())); + numeric n = abs(ex_to_numeric(x).sub(_num1_2())); numeric coefficient = numeric(-2).power(n); - coefficient = coefficient.div(doublefactorial(n.mul(numTWO()).sub(numONE())));; + coefficient = coefficient.div(doublefactorial(n.mul(_num2()).sub(_num1())));; return coefficient*sqrt(Pi); } } } return gamma(x).hold(); } + +static ex gamma_diff(ex const & x, unsigned diff_param) +{ + GINAC_ASSERT(diff_param==0); -static ex gamma_evalf(ex const & x) + // d/dx log(gamma(x)) -> psi(x) + // d/dx gamma(x) -> psi(x)*gamma(x) + return psi(x)*gamma(x); +} + +static ex gamma_series(ex const & x, symbol const & s, ex const & point, int order) +{ + // method: + // Taylor series where there is no pole falls back to psi function evaluation. + // On a pole at -m use the recurrence relation + // gamma(x) == gamma(x+1) / x + // from which follows + // series(gamma(x),x,-m,order) == + // series(gamma(x+m+1)/(x*(x+1)...*(x+m)),x,-m,order+1); + ex xpoint = x.subs(s==point); + if (!xpoint.info(info_flags::integer) || xpoint.info(info_flags::positive)) + throw do_taylor(); // caught by function::series() + // if we got here we have to care for a simple pole at -m: + numeric m = -ex_to_numeric(xpoint); + ex ser_numer = gamma(x+m+_ex1()); + ex ser_denom = _ex1(); + for (numeric p; p<=m; ++p) + ser_denom *= x+p; + return (ser_numer/ser_denom).series(s, point, order+1); +} + +REGISTER_FUNCTION(gamma, gamma_eval, gamma_evalf, gamma_diff, gamma_series); + +////////// +// Beta-function +////////// + +static ex beta_evalf(ex const & x, ex const & y) { BEGIN_TYPECHECK TYPECHECK(x,numeric) - END_TYPECHECK(gamma(x)) + TYPECHECK(y,numeric) + END_TYPECHECK(beta(x,y)) - return gamma(ex_to_numeric(x)); + return gamma(ex_to_numeric(x))*gamma(ex_to_numeric(y)) + / gamma(ex_to_numeric(x+y)); } -static ex gamma_diff(ex const & x, unsigned diff_param) +static ex beta_eval(ex const & x, ex const & y) { - GINAC_ASSERT(diff_param==0); - - return psi(exZERO(),x)*gamma(x); // diff(log(gamma(x)),x)==psi(0,x) + if (x.info(info_flags::numeric) && y.info(info_flags::numeric)) { + numeric nx(ex_to_numeric(x)); + numeric ny(ex_to_numeric(y)); + // treat all problematic x and y that may not be passed into gamma, + // because they would throw there although beta(x,y) is well-defined: + if (nx.is_real() && nx.is_integer() && + ny.is_real() && ny.is_integer()) { + if (nx.is_negative()) { + if (nx<=-ny) + return _num_1().power(ny)*beta(1-x-y, y); + else + throw (std::domain_error("beta_eval(): simple pole")); + } + if (ny.is_negative()) { + if (ny<=-nx) + return _num_1().power(nx)*beta(1-y-x, x); + else + throw (std::domain_error("beta_eval(): simple pole")); + } + return gamma(x)*gamma(y)/gamma(x+y); + } + // no problem in numerator, but denominator has pole: + if ((nx+ny).is_real() && + (nx+ny).is_integer() && + !(nx+ny).is_positive()) + return _ex0(); + return gamma(x)*gamma(y)/gamma(x+y); + } + return beta(x,y).hold(); } -static ex gamma_series(ex const & x, symbol const & s, ex const & point, int order) +static ex beta_diff(ex const & x, ex const & y, unsigned diff_param) { - // FIXME: Only handle one special case for now... - if (x.is_equal(s) && point.is_zero()) { - ex e = 1 / s - EulerGamma + s * (pow(Pi, 2) / 12 + pow(EulerGamma, 2) / 2) + Order(pow(s, 2)); - return e.series(s, point, order); - } else - throw(std::logic_error("don't know the series expansion of this particular gamma function")); + GINAC_ASSERT(diff_param<2); + ex retval; + + // d/dx beta(x,y) -> (psi(x)-psi(x+y)) * beta(x,y) + if (diff_param==0) + retval = (psi(x)-psi(x+y))*beta(x,y); + // d/dy beta(x,y) -> (psi(y)-psi(x+y)) * beta(x,y) + if (diff_param==1) + retval = (psi(y)-psi(x+y))*beta(x,y); + return retval; } -REGISTER_FUNCTION(gamma, gamma_eval, gamma_evalf, gamma_diff, gamma_series); +REGISTER_FUNCTION(beta, beta_eval, beta_evalf, beta_diff, NULL); ////////// -// Psi-function (aka polygamma-function) +// Psi-function (aka digamma-function) ////////// -/** Evaluation of polygamma-function psi(n,x). +static ex psi1_evalf(ex const & x) +{ + BEGIN_TYPECHECK + TYPECHECK(x,numeric) + END_TYPECHECK(psi(x)) + + return psi(ex_to_numeric(x)); +} + +/** Evaluation of digamma-function psi(x). * Somebody ought to provide some good numerical evaluation some day... */ -static ex psi_eval(ex const & n, ex const & x) +static ex psi1_eval(ex const & x) { - if (n.info(info_flags::numeric) && x.info(info_flags::numeric)) { - // do some stuff... + if (x.info(info_flags::numeric)) { + if (x.info(info_flags::integer) && !x.info(info_flags::positive)) + throw (std::domain_error("psi_eval(): simple pole")); + if (x.info(info_flags::positive)) { + // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - EulerGamma + if (x.info(info_flags::integer)) { + numeric rat(0); + for (numeric i(ex_to_numeric(x)-_num1()); i.is_positive(); --i) + rat += i.inverse(); + return rat-EulerGamma; + } + // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - EulerGamma - 2log(2) + if ((_ex2()*x).info(info_flags::integer)) { + numeric rat(0); + for (numeric i((ex_to_numeric(x)-_num1())*_num2()); i.is_positive(); i-=_num2()) + rat += _num2()*i.inverse(); + return rat-EulerGamma-_ex2()*log(_ex2()); + } + if (x.compare(_ex1())==1) { + // should call numeric, since >1 + } + } } - return psi(n, x).hold(); -} + return psi(x).hold(); +} + +static ex psi1_diff(ex const & x, unsigned diff_param) +{ + GINAC_ASSERT(diff_param==0); -static ex psi_evalf(ex const & n, ex const & x) + // d/dx psi(x) -> psi(1,x) + return psi(_ex1(), x); +} + +static ex psi1_series(ex const & x, symbol const & s, ex const & point, int order) +{ + // method: + // Taylor series where there is no pole falls back to polygamma function + // evaluation. + // On a pole at -m use the recurrence relation + // psi(x) == psi(x+1) - 1/z + // from which follows + // series(psi(x),x,-m,order) == + // series(psi(x+m+1) - 1/x - 1/(x+1) - 1/(x+m)),x,-m,order); + ex xpoint = x.subs(s==point); + if (!xpoint.info(info_flags::integer) || xpoint.info(info_flags::positive)) + throw do_taylor(); // caught by function::series() + // if we got here we have to care for a simple pole at -m: + numeric m = -ex_to_numeric(xpoint); + ex recur; + for (numeric p; p<=m; ++p) + recur += power(x+p,_ex_1()); + return (psi(x+m+_ex1())-recur).series(s, point, order); +} + +const unsigned function_index_psi1 = function::register_new("psi", psi1_eval, psi1_evalf, psi1_diff, psi1_series); + +////////// +// Psi-functions (aka polygamma-functions) psi(0,x)==psi(x) +////////// + +static ex psi2_evalf(ex const & n, ex const & x) { BEGIN_TYPECHECK TYPECHECK(n,numeric) @@ -128,18 +274,63 @@ static ex psi_evalf(ex const & n, ex const & x) return psi(ex_to_numeric(n), ex_to_numeric(x)); } -static ex psi_diff(ex const & n, ex const & x, unsigned diff_param) +/** Evaluation of polygamma-function psi(n,x). + * Somebody ought to provide some good numerical evaluation some day... */ +static ex psi2_eval(ex const & n, ex const & x) { - GINAC_ASSERT(diff_param==0); + // psi(0,x) -> psi(x) + if (n.is_zero()) + return psi(x); + // psi(-1,x) -> log(gamma(x)) + if (n.is_equal(_ex_1())) + return log(gamma(x)); + if (n.info(info_flags::numeric) && n.info(info_flags::posint) && + x.info(info_flags::numeric)) { + numeric nn = ex_to_numeric(n); + numeric nx = ex_to_numeric(x); + if (x.is_equal(_ex1())) + return _num_1().power(nn+_num1())*factorial(nn)*zeta(ex(nn+_num1())); + } + return psi(n, x).hold(); +} + +static ex psi2_diff(ex const & n, ex const & x, unsigned diff_param) +{ + GINAC_ASSERT(diff_param<2); + if (diff_param==0) { + // d/dn psi(n,x) + throw(std::logic_error("cannot diff psi(n,x) with respect to n")); + } + // d/dx psi(n,x) -> psi(n+1,x) return psi(n+1, x); } -static ex psi_series(ex const & n, ex const & x, symbol const & s, ex const & point, int order) +static ex psi2_series(ex const & n, ex const & x, symbol const & s, ex const & point, int order) { - throw(std::logic_error("Nobody told me how to series expand the psi function. :-(")); + // method: + // Taylor series where there is no pole falls back to polygamma function + // evaluation. + // On a pole at -m use the recurrence relation + // psi(n,x) == psi(n,x+1) - (-)^n * n! / z^(n+1) + // from which follows + // series(psi(x),x,-m,order) == + // series(psi(x+m+1) - (-1)^n * n! + // * ((x)^(-n-1) + (x+1)^(-n-1) + (x+m)^(-n-1))),x,-m,order); + ex xpoint = x.subs(s==point); + if (!xpoint.info(info_flags::integer) || xpoint.info(info_flags::positive)) + throw do_taylor(); // caught by function::series() + // if we got here we have to care for a pole of order n+1 at -m: + numeric m = -ex_to_numeric(xpoint); + ex recur; + for (numeric p; p<=m; ++p) + recur += power(x+p,-n+_ex_1()); + recur *= factorial(n)*power(_ex_1(),n); + return (psi(n, x+m+_ex1())-recur).series(s, point, order); } -REGISTER_FUNCTION(psi, psi_eval, psi_evalf, psi_diff, psi_series); +const unsigned function_index_psi2 = function::register_new("psi", psi2_eval, psi2_evalf, psi2_diff, psi2_series); +#ifndef NO_GINAC_NAMESPACE } // namespace GiNaC +#endif // ndef NO_GINAC_NAMESPACE