]> www.ginac.de Git - ginac.git/blobdiff - doc/tutorial/ginac.texi
Allow underscores in identifiers.
[ginac.git] / doc / tutorial / ginac.texi
index 45a14e614de271944b57d33948942e12707b6348..de1e7e9d6e680135c200155f8a565547029acd9a 100644 (file)
@@ -24,7 +24,7 @@
 This is a tutorial that documents GiNaC @value{VERSION}, an open
 framework for symbolic computation within the C++ programming language.
 
 This is a tutorial that documents GiNaC @value{VERSION}, an open
 framework for symbolic computation within the C++ programming language.
 
-Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
+Copyright (C) 1999-2009 Johannes Gutenberg University Mainz, Germany
 
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
 
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
@@ -52,7 +52,7 @@ notice identical to this one.
 
 @page
 @vskip 0pt plus 1filll
 
 @page
 @vskip 0pt plus 1filll
-Copyright @copyright{} 1999-2008 Johannes Gutenberg University Mainz, Germany
+Copyright @copyright{} 1999-2009 Johannes Gutenberg University Mainz, Germany
 @sp 2
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
 @sp 2
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
@@ -135,7 +135,7 @@ the near future.
 
 @section License
 The GiNaC framework for symbolic computation within the C++ programming
 
 @section License
 The GiNaC framework for symbolic computation within the C++ programming
-language is Copyright @copyright{} 1999-2008 Johannes Gutenberg
+language is Copyright @copyright{} 1999-2009 Johannes Gutenberg
 University Mainz, Germany.
 
 This program is free software; you can redistribute it and/or
 University Mainz, Germany.
 
 This program is free software; you can redistribute it and/or
@@ -1479,7 +1479,7 @@ evaluated immediately:
 @tab modulus in positive representation (in the range @code{[0, abs(b)-1]} with the sign of b, or zero)
 @cindex @code{mod()}
 @item @code{smod(a, b)}
 @tab modulus in positive representation (in the range @code{[0, abs(b)-1]} with the sign of b, or zero)
 @cindex @code{mod()}
 @item @code{smod(a, b)}
-@tab modulus in symmetric representation (in the range @code{[-iquo(abs(b)-1, 2), iquo(abs(b), 2)]})
+@tab modulus in symmetric representation (in the range @code{[-iquo(abs(b), 2), iquo(abs(b), 2)]})
 @cindex @code{smod()}
 @item @code{irem(a, b)}
 @tab integer remainder (has the sign of @math{a}, or is zero)
 @cindex @code{smod()}
 @item @code{irem(a, b)}
 @tab integer remainder (has the sign of @math{a}, or is zero)
@@ -3040,8 +3040,8 @@ Information about the commutativity of an object or expression can be
 obtained with the two member functions
 
 @example
 obtained with the two member functions
 
 @example
-unsigned ex::return_type() const;
-unsigned ex::return_type_tinfo() const;
+unsigned      ex::return_type() const;
+return_type_t ex::return_type_tinfo() const;
 @end example
 
 The @code{return_type()} function returns one of three values (defined in
 @end example
 
 The @code{return_type()} function returns one of three values (defined in
@@ -3062,31 +3062,27 @@ expressions in GiNaC:
   @code{noncommutative_composite} expressions.
 @end itemize
 
   @code{noncommutative_composite} expressions.
 @end itemize
 
-The value returned by the @code{return_type_tinfo()} method is valid only
-when the return type of the expression is @code{noncommutative}. It is a
-value that is unique to the class of the object, but may vary every time a
-GiNaC program is being run (it is dynamically assigned on start-up).
+The @code{return_type_tinfo()} method returns an object of type
+@code{return_type_t} that contains information about the type of the expression
+and, if given, its representation label (see section on dirac gamma matrices for
+more details).  The objects of type @code{return_type_t} can be tested for
+equality to test whether two expressions belong to the same category and
+therefore may not commute.
 
 Here are a couple of examples:
 
 @cartouche
 
 Here are a couple of examples:
 
 @cartouche
-@multitable @columnfractions 0.33 0.33 0.34
-@item @strong{Expression} @tab @strong{@code{return_type()}} @tab @strong{@code{return_type_tinfo()}}
-@item @code{42} @tab @code{commutative} @tab -
-@item @code{2*x-y} @tab @code{commutative} @tab -
-@item @code{dirac_ONE()} @tab @code{noncommutative} @tab @code{TINFO_clifford}
-@item @code{dirac_gamma(mu)*dirac_gamma(nu)} @tab @code{noncommutative} @tab @code{TINFO_clifford}
-@item @code{2*color_T(a)} @tab @code{noncommutative} @tab @code{TINFO_color}
-@item @code{dirac_ONE()*color_T(a)} @tab @code{noncommutative_composite} @tab -
+@multitable @columnfractions .6 .4
+@item @strong{Expression} @tab @strong{@code{return_type()}}
+@item @code{42} @tab @code{commutative}
+@item @code{2*x-y} @tab @code{commutative}
+@item @code{dirac_ONE()} @tab @code{noncommutative}
+@item @code{dirac_gamma(mu)*dirac_gamma(nu)} @tab @code{noncommutative}
+@item @code{2*color_T(a)} @tab @code{noncommutative}
+@item @code{dirac_ONE()*color_T(a)} @tab @code{noncommutative_composite}
 @end multitable
 @end cartouche
 
 @end multitable
 @end cartouche
 
-Note: the @code{return_type_tinfo()} of Clifford objects is only equal to
-@code{TINFO_clifford} for objects with a representation label of zero.
-Other representation labels yield a different @code{return_type_tinfo()},
-but it's the same for any two objects with the same label. This is also true
-for color objects.
-
 A last note: With the exception of matrices, positive integer powers of
 non-commutative objects are automatically expanded in GiNaC. For example,
 @code{pow(a*b, 2)} becomes @samp{a*b*a*b} if @samp{a} and @samp{b} are
 A last note: With the exception of matrices, positive integer powers of
 non-commutative objects are automatically expanded in GiNaC. For example,
 @code{pow(a*b, 2)} becomes @samp{a*b*a*b} if @samp{a} and @samp{b} are
@@ -3870,7 +3866,7 @@ bool is_a<T>(const ex & e);
 bool is_exactly_a<T>(const ex & e);
 bool ex::info(unsigned flag);
 unsigned ex::return_type() const;
 bool is_exactly_a<T>(const ex & e);
 bool ex::info(unsigned flag);
 unsigned ex::return_type() const;
-unsigned ex::return_type_tinfo() const;
+return_type_t ex::return_type_tinfo() const;
 @end example
 
 When the test made by @code{is_a<T>()} returns true, it is safe to call
 @end example
 
 When the test made by @code{is_a<T>()} returns true, it is safe to call
@@ -5354,13 +5350,7 @@ int main()
 @cindex factorization
 @cindex @code{sqrfree()}
 
 @cindex factorization
 @cindex @code{sqrfree()}
 
-GiNaC still lacks proper factorization support.  Some form of
-factorization is, however, easily implemented by noting that factors
-appearing in a polynomial with power two or more also appear in the
-derivative and hence can easily be found by computing the GCD of the
-original polynomial and its derivatives.  Any decent system has an
-interface for this so called square-free factorization.  So we provide
-one, too:
+Square-free decomposition is available in GiNaC:
 @example
 ex sqrfree(const ex & a, const lst & l = lst());
 @end example
 @example
 ex sqrfree(const ex & a, const lst & l = lst());
 @end example
@@ -5385,6 +5375,57 @@ some care with subsequent processing of the result:
 Note also, how factors with the same exponents are not fully factorized
 with this method.
 
 Note also, how factors with the same exponents are not fully factorized
 with this method.
 
+@subsection Polynomial factorization
+@cindex factorization
+@cindex polynomial factorization
+@cindex @code{factor()}
+
+Polynomials can also be fully factored with a call to the function
+@example
+ex factor(const ex & a, unsigned int options = 0);
+@end example
+The factorization works for univariate and multivariate polynomials with
+rational coefficients. The following code snippet shows its capabilities:
+@example
+    ...
+    cout << factor(pow(x,2)-1) << endl;
+     // -> (1+x)*(-1+x)
+    cout << factor(expand((x-y*z)*(x-pow(y,2)-pow(z,3))*(x+y+z))) << endl;
+     // -> (y+z+x)*(y*z-x)*(y^2-x+z^3)
+    cout << factor(pow(x,2)-1+sin(pow(x,2)-1)) << endl;
+     // -> -1+sin(-1+x^2)+x^2
+    ...
+@end example
+The results are as expected except for the last one where no factorization
+seems to have been done. This is due to the default option
+@command{factor_options::polynomial} (equals zero) to @command{factor()}, which
+tells GiNaC to try a factorization only if the expression is a valid polynomial.
+In the shown example this is not the case, because one term is a function.
+
+There exists a second option @command{factor_options::all}, which tells GiNaC to
+ignore non-polynomial parts of an expression and also to look inside function
+arguments. With this option the example gives:
+@example
+    ...
+    cout << factor(pow(x,2)-1+sin(pow(x,2)-1), factor_options::all)
+         << endl;
+     // -> (-1+x)*(1+x)+sin((-1+x)*(1+x))
+    ...
+@end example
+GiNaC's factorization functions cannot handle algebraic extensions. Therefore
+the following example does not factor:
+@example
+    ...
+    cout << factor(pow(x,2)-2) << endl;
+     // -> -2+x^2  and not  (x-sqrt(2))*(x+sqrt(2))
+    ...
+@end example
+Factorization is useful in many applications. A lot of algorithms in computer
+algebra depend on the ability to factor a polynomial. Of course, factorization
+can also be used to simplify expressions, but it is costly and applying it to
+complicated expressions (high degrees or many terms) may consume far too much
+time. So usually, looking for a GCD at strategic points in a calculation is the
+cheaper and more appropriate alternative.
 
 @node Rational expressions, Symbolic differentiation, Polynomial arithmetic, Methods and functions
 @c    node-name, next, previous, up
 
 @node Rational expressions, Symbolic differentiation, Polynomial arithmetic, Methods and functions
 @c    node-name, next, previous, up
@@ -7073,15 +7114,30 @@ This tells @code{evalf()} to not recursively evaluate the parameters of the
 function before calling the @code{evalf_func()}.
 
 @example
 function before calling the @code{evalf_func()}.
 
 @example
-set_return_type(unsigned return_type, unsigned return_type_tinfo)
+set_return_type(unsigned return_type, const return_type_t * return_type_tinfo)
 @end example
 
 This allows you to explicitly specify the commutation properties of the
 function (@xref{Non-commutative objects}, for an explanation of
 @end example
 
 This allows you to explicitly specify the commutation properties of the
 function (@xref{Non-commutative objects}, for an explanation of
-(non)commutativity in GiNaC). For example, you can use
-@code{set_return_type(return_types::noncommutative, TINFO_matrix)} to make
-GiNaC treat your function like a matrix. By default, functions inherit the
-commutation properties of their first argument.
+(non)commutativity in GiNaC). For example, with an object of type
+@code{return_type_t} created like
+
+@example
+return_type_t my_type = make_return_type_t<matrix>();
+@end example
+
+you can use @code{set_return_type(return_types::noncommutative, &my_type)} to
+make GiNaC treat your function like a matrix. By default, functions inherit the
+commutation properties of their first argument. The utilized template function
+@code{make_return_type_t<>()} 
+
+@example
+template<typename T> inline return_type_t make_return_type_t(const unsigned rl = 0)
+@end example
+
+can also be called with an argument specifying the representation label of the
+non-commutative function (see section on dirac gamma matrices for more
+details).
 
 @example
 set_symmetry(const symmetry & s)
 
 @example
 set_symmetry(const symmetry & s)
@@ -8335,7 +8391,7 @@ Of course it also has some disadvantages:
 advanced features: GiNaC cannot compete with a program like
 @emph{Reduce} which exists for more than 30 years now or @emph{Maple}
 which grows since 1981 by the work of dozens of programmers, with
 advanced features: GiNaC cannot compete with a program like
 @emph{Reduce} which exists for more than 30 years now or @emph{Maple}
 which grows since 1981 by the work of dozens of programmers, with
-respect to mathematical features.  Integration, factorization,
+respect to mathematical features.  Integration, 
 non-trivial simplifications, limits etc. are missing in GiNaC (and are
 not planned for the near future).
 
 non-trivial simplifications, limits etc. are missing in GiNaC (and are
 not planned for the near future).