1 /** @file ginsh_parser.ypp
3 * Input grammar definition for ginsh.
4 * This file must be processed with yacc/bison. */
7 * GiNaC Copyright (C) 1999-2024 Johannes Gutenberg University Mainz, Germany
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
34 #include <sys/resource.h>
40 #include <sys/types.h>
49 using namespace GiNaC;
51 #define YYERROR_VERBOSE 1
53 #ifdef HAVE_LIBREADLINE
54 // Original readline settings
55 static int orig_completion_append_character;
56 static const char *orig_basic_word_break_characters;
58 #if (RL_VERSION_MAJOR >= 5)
59 #define GINAC_RL_COMPLETER_CAST(a) const_cast<char *>((a))
61 #define GINAC_RL_COMPLETER_CAST(a) (a)
63 #endif // HAVE_LIBREADLINE
65 // Expression stack for %, %% and %%%
66 static void push(const ex &e);
69 static exmap assigned_symbol_table;
71 // Start and end time for the time() function
73 static struct rusage start_time, end_time;
74 #define START_TIMER getrusage(RUSAGE_SELF, &start_time);
75 #define STOP_TIMER getrusage(RUSAGE_SELF, &end_time);
76 #define PRINT_TIME_USED cout << \
77 (end_time.ru_utime.tv_sec - start_time.ru_utime.tv_sec) + \
78 (end_time.ru_stime.tv_sec - start_time.ru_stime.tv_sec) + \
79 double(end_time.ru_utime.tv_usec - start_time.ru_utime.tv_usec) / 1e6 + \
80 double(end_time.ru_stime.tv_usec - start_time.ru_stime.tv_usec) / 1e6 \
83 static std::clock_t start_time, end_time;
84 #define START_TIMER start_time = std::clock();
85 #define STOP_TIMER end_time = std::clock();
86 #define PRINT_TIME_USED \
87 cout << double(end_time - start_time)/CLOCKS_PER_SEC << 's' << endl;
90 // Table of functions (a multimap, because one function may appear with different
91 // numbers of parameters)
92 typedef ex (*fcnp)(const exprseq &e);
93 typedef ex (*fcnp2)(const exprseq &e, int serial);
96 fcn_desc() : p(nullptr), num_params(0), is_ginac(false), serial(0) {}
97 fcn_desc(fcnp func, int num) : p(func), num_params(num), is_ginac(false), serial(0) {}
98 fcn_desc(fcnp2 func, int num, int ser) : p((fcnp)func), num_params(num), is_ginac(true), serial(ser) {}
100 fcnp p; // Pointer to function
101 int num_params; // Number of parameters (0 = arbitrary)
102 bool is_ginac; // Flag: function is GiNaC function
103 int serial; // GiNaC function serial number (if is_ginac == true)
106 typedef multimap<string, fcn_desc> fcn_tab;
109 static fcn_tab::const_iterator find_function(const ex &sym, int req_params);
111 // Table to map help topics to help strings
112 typedef multimap<string, string> help_tab;
113 static help_tab help;
115 static void insert_fcn_help(const char *name, const char *str);
116 static void print_help(const string &topic);
117 static void print_help_topics(void);
120 /* Tokens (T_LITERAL means a literal value returned by the parser, but not
121 of class numeric or symbol (e.g. a constant or the FAIL object)) */
122 %token T_NUMBER T_SYMBOL T_LITERAL T_DIGITS T_QUOTE T_QUOTE2 T_QUOTE3
123 %token T_EQUAL T_NOTEQ T_LESSEQ T_GREATEREQ
125 %token T_QUIT T_WARRANTY T_PRINT T_IPRINT T_PRINTLATEX T_PRINTCSRC T_TIME
126 %token T_XYZZY T_INVENTORY T_LOOK T_SCORE T_COMPLEX_SYMBOLS T_REAL_SYMBOLS
128 /* Operator precedence and associativity */
130 %left T_EQUAL T_NOTEQ
131 %left '<' '>' T_LESSEQ T_GREATEREQ
155 } catch (exception &e) {
156 cerr << e.what() << endl;
163 } catch (exception &e) {
164 std::cerr << e.what() << endl;
168 | T_PRINT '(' exp ')' ';' {
170 $3.print(print_tree(std::cout));
171 } catch (exception &e) {
172 std::cerr << e.what() << endl;
176 | T_IPRINT '(' exp ')' ';' {
179 if (!e.info(info_flags::integer))
180 throw (std::invalid_argument("argument to iprint() must be an integer"));
181 long i = ex_to<numeric>(e).to_long();
183 cout << "#o" << oct << i << endl;
184 cout << "#x" << hex << i << dec << endl;
185 } catch (exception &e) {
186 cerr << e.what() << endl;
190 | T_PRINTLATEX '(' exp ')' ';' {
192 $3.print(print_latex(std::cout)); cout << endl;
193 } catch (exception &e) {
194 std::cerr << e.what() << endl;
198 | T_PRINTCSRC '(' exp ')' ';' {
200 $3.print(print_csrc_double(std::cout)); cout << endl;
201 } catch (exception &e) {
202 std::cerr << e.what() << endl;
206 | '?' T_SYMBOL {print_help(ex_to<symbol>($2).get_name());}
207 | '?' T_TIME {print_help("time");}
208 | '?' T_PRINT {print_help("print");}
209 | '?' T_IPRINT {print_help("iprint");}
210 | '?' T_PRINTLATEX {print_help("print_latex");}
211 | '?' T_PRINTCSRC {print_help("print_csrc");}
212 | '?' '?' {print_help_topics();}
215 cout << "This program is free software; you can redistribute it and/or modify it under\n";
216 cout << "the terms of the GNU General Public License as published by the Free Software\n";
217 cout << "Foundation; either version 2 of the License, or (at your option) any later\n";
218 cout << "version.\n";
219 cout << "This program is distributed in the hope that it will be useful, but WITHOUT\n";
220 cout << "ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS\n";
221 cout << "FOR A PARTICULAR PURPOSE. See the GNU General Public License for more\n";
222 cout << "details.\n";
223 cout << "You should have received a copy of the GNU General Public License along with\n";
224 cout << "this program. If not, write to the Free Software Foundation,\n";
225 cout << "51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.\n";
227 | T_XYZZY {cout << "Nothing happens.\n";}
228 | T_INVENTORY {cout << "You're not carrying anything.\n";}
229 | T_LOOK {cout << "You're in a twisty little maze of passages, all alike.\n";}
231 cout << "If you were to quit now, you would score ";
232 cout << (syms.size() > 350 ? 350 : syms.size());
233 cout << " out of a possible 350.\n";
235 | T_REAL_SYMBOLS { symboltype = domain::real; }
236 | T_COMPLEX_SYMBOLS { symboltype = domain::complex; }
237 | T_TIME { START_TIMER } '(' exp ')' { STOP_TIMER PRINT_TIME_USED }
238 | error ';' {yyclearin; yyerrok;}
239 | error ':' {yyclearin; yyerrok;}
242 exp : T_NUMBER {$$ = $1;}
244 auto i = assigned_symbol_table.find($1);
245 if (i == assigned_symbol_table.end())
250 | '\'' T_SYMBOL '\'' {$$ = $2;}
251 | T_LITERAL {$$ = $1;}
252 | T_DIGITS {$$ = $1;}
253 | T_QUOTE {$$ = exstack[0];}
254 | T_QUOTE2 {$$ = exstack[1];}
255 | T_QUOTE3 {$$ = exstack[2];}
256 | T_SYMBOL '(' exprseq ')' {
257 auto i = find_function($1, $3.nops());
258 if (i->second.is_ginac) {
259 $$ = ((fcnp2)(i->second.p))(ex_to<exprseq>($3), i->second.serial);
261 $$ = (i->second.p)(ex_to<exprseq>($3));
264 | T_DIGITS '=' T_NUMBER {$$ = $3; Digits = ex_to<numeric>($3).to_int();}
265 | T_SYMBOL '=' exp {$$ = $3; assigned_symbol_table[$1] = $3; }
266 | exp T_EQUAL exp {$$ = $1 == $3;}
267 | exp T_NOTEQ exp {$$ = $1 != $3;}
268 | exp '<' exp {$$ = $1 < $3;}
269 | exp T_LESSEQ exp {$$ = $1 <= $3;}
270 | exp '>' exp {$$ = $1 > $3;}
271 | exp T_GREATEREQ exp {$$ = $1 >= $3;}
272 | exp '+' exp {$$ = $1 + $3;}
273 | exp '-' exp {$$ = $1 - $3;}
274 | exp '*' exp {$$ = $1 * $3;}
275 | exp '/' exp {$$ = $1 / $3;}
276 | '-' exp %prec NEG {$$ = -$2;}
277 | '+' exp %prec NEG {$$ = $2;}
278 | exp '^' exp {$$ = power($1, $3);}
279 | exp '!' {$$ = factorial($1);}
280 | '(' exp ')' {$$ = $2;}
281 | '{' list_or_empty '}' {$$ = $2;}
282 | '[' matrix ']' {$$ = lst_to_matrix(ex_to<lst>($2));}
285 exprseq : exp {$$ = exprseq{$1};}
286 | exprseq ',' exp {exprseq es(ex_to<exprseq>($1)); $$ = es.append($3);}
289 list_or_empty: /* empty */ {$$ = *new lst;}
293 list : exp {$$ = lst{$1};}
294 | list ',' exp {lst l(ex_to<lst>($1)); $$ = l.append($3);}
297 matrix : '[' row ']' {$$ = lst{$2};}
298 | matrix ',' '[' row ']' {lst l(ex_to<lst>($1)); $$ = l.append($4);}
301 row : exp {$$ = lst{$1};}
302 | row ',' exp {lst l(ex_to<lst>($1)); $$ = l.append($3);}
311 // Error print routine
312 int yyerror(const char *s)
314 cerr << s << " at " << yytext << endl;
318 // Push expression "e" onto the expression stack (for ", "" and """)
319 static void push(const ex &e)
321 exstack[2] = exstack[1];
322 exstack[1] = exstack[0];
331 static ex f_collect(const exprseq &e) {return e[0].collect(e[1]);}
332 static ex f_collect_distributed(const exprseq &e) {return e[0].collect(e[1], true);}
333 static ex f_collect_common_factors(const exprseq &e) {return collect_common_factors(e[0]);}
334 static ex f_convert_H_to_Li(const exprseq &e) {return convert_H_to_Li(e[0], e[1]);}
335 static ex f_degree(const exprseq &e) {return e[0].degree(e[1]);}
336 static ex f_denom(const exprseq &e) {return e[0].denom();}
337 static ex f_evalf(const exprseq &e) {return e[0].evalf();}
338 static ex f_evalm(const exprseq &e) {return e[0].evalm();}
339 static ex f_eval_integ(const exprseq &e) {return e[0].eval_integ();}
340 static ex f_expand(const exprseq &e) {return e[0].expand();}
341 static ex f_factor(const exprseq &e) {return factor(e[0]);}
342 static ex f_gcd(const exprseq &e) {return gcd(e[0], e[1]);}
343 static ex f_has(const exprseq &e) {return e[0].has(e[1]) ? ex(1) : ex(0);}
344 static ex f_lcm(const exprseq &e) {return lcm(e[0], e[1]);}
345 static ex f_lcoeff(const exprseq &e) {return e[0].lcoeff(e[1]);}
346 static ex f_ldegree(const exprseq &e) {return e[0].ldegree(e[1]);}
347 static ex f_lsolve(const exprseq &e) {return lsolve(e[0], e[1]);}
348 static ex f_nops(const exprseq &e) {return e[0].nops();}
349 static ex f_normal(const exprseq &e) {return e[0].normal();}
350 static ex f_numer(const exprseq &e) {return e[0].numer();}
351 static ex f_numer_denom(const exprseq &e) {return e[0].numer_denom();}
352 static ex f_pow(const exprseq &e) {return pow(e[0], e[1]);}
353 static ex f_sqrt(const exprseq &e) {return sqrt(e[0]);}
354 static ex f_sqrfree1(const exprseq &e) {return sqrfree(e[0]);}
355 static ex f_subs2(const exprseq &e) {return e[0].subs(e[1]);}
356 static ex f_tcoeff(const exprseq &e) {return e[0].tcoeff(e[1]);}
358 #define CHECK_ARG(num, type, fcn) if (!is_a<type>(e[num])) throw(std::invalid_argument("argument " #num " to " #fcn "() must be a " #type))
360 static ex f_charpoly(const exprseq &e)
362 CHECK_ARG(0, matrix, charpoly);
363 return ex_to<matrix>(e[0]).charpoly(e[1]);
366 static ex f_coeff(const exprseq &e)
368 CHECK_ARG(2, numeric, coeff);
369 return e[0].coeff(e[1], ex_to<numeric>(e[2]).to_int());
372 static ex f_content(const exprseq &e)
374 return e[0].content(e[1]);
377 static ex f_decomp_rational(const exprseq &e)
379 return decomp_rational(e[0], e[1]);
382 static ex f_determinant(const exprseq &e)
384 CHECK_ARG(0, matrix, determinant);
385 return ex_to<matrix>(e[0]).determinant();
388 static ex f_diag(const exprseq &e)
390 size_t dim = e.nops();
391 matrix &m = *new matrix(dim, dim);
392 for (size_t i=0; i<dim; i++)
393 m.set(i, i, e.op(i));
397 static ex f_diff2(const exprseq &e)
399 CHECK_ARG(1, symbol, diff);
400 return e[0].diff(ex_to<symbol>(e[1]));
403 static ex f_diff3(const exprseq &e)
405 CHECK_ARG(1, symbol, diff);
406 CHECK_ARG(2, numeric, diff);
407 return e[0].diff(ex_to<symbol>(e[1]), ex_to<numeric>(e[2]).to_int());
410 static ex f_divide(const exprseq &e)
413 if (divide(e[0], e[1], q))
419 static ex f_find(const exprseq &e)
422 e[0].find(e[1], found);
424 for (auto & i : found)
429 static ex f_fsolve(const exprseq &e)
431 CHECK_ARG(1, symbol, fsolve);
432 CHECK_ARG(2, numeric, fsolve);
433 CHECK_ARG(3, numeric, fsolve);
434 return fsolve(e[0], ex_to<symbol>(e[1]), ex_to<numeric>(e[2]), ex_to<numeric>(e[3]));
437 static ex f_integer_content(const exprseq &e)
439 return e[0].expand().integer_content();
442 static ex f_integral(const exprseq &e)
444 CHECK_ARG(0, symbol, integral);
445 return GiNaC::integral(e[0], e[1], e[2], e[3]);
448 static ex f_inverse(const exprseq &e)
450 CHECK_ARG(0, matrix, inverse);
451 return ex_to<matrix>(e[0]).inverse();
454 static ex f_is(const exprseq &e)
456 CHECK_ARG(0, relational, is);
457 return (bool)ex_to<relational>(e[0]) ? ex(1) : ex(0);
460 class apply_map_function : public map_function {
463 apply_map_function(const ex & a) : apply(a) {}
464 virtual ~apply_map_function() {}
465 ex operator()(const ex & e) override { return apply.subs(wild() == e, true); }
468 static ex f_map(const exprseq &e)
470 apply_map_function fcn(e[1]);
471 return e[0].map(fcn);
474 static ex f_match(const exprseq &e)
477 if (e[0].match(e[1], repls)) {
479 for (auto & i : repls)
480 repl_lst.append(relational(i.first, i.second, relational::equal));
483 throw std::runtime_error("FAIL");
486 static ex f_op(const exprseq &e)
488 CHECK_ARG(1, numeric, op);
489 int n = ex_to<numeric>(e[1]).to_int();
490 if (n < 0 || n >= (int)e[0].nops())
491 throw(std::out_of_range("second argument to op() is out of range"));
495 static ex f_prem(const exprseq &e)
497 return prem(e[0], e[1], e[2]);
500 static ex f_primpart(const exprseq &e)
502 return e[0].primpart(e[1]);
505 static ex f_quo(const exprseq &e)
507 return quo(e[0], e[1], e[2]);
510 static ex f_rank(const exprseq &e)
512 CHECK_ARG(0, matrix, rank);
513 return ex_to<matrix>(e[0]).rank();
516 static ex f_rem(const exprseq &e)
518 return rem(e[0], e[1], e[2]);
521 static ex f_resultant(const exprseq &e)
523 CHECK_ARG(2, symbol, resultant);
524 return resultant(e[0], e[1], ex_to<symbol>(e[2]));
527 static ex f_series(const exprseq &e)
529 CHECK_ARG(2, numeric, series);
530 return e[0].series(e[1], ex_to<numeric>(e[2]).to_int());
533 static ex f_series_to_poly(const exprseq &e)
535 CHECK_ARG(0, pseries, series_to_poly);
536 return series_to_poly(ex_to<pseries>(e[0]));
539 static ex f_sprem(const exprseq &e)
541 return sprem(e[0], e[1], e[2]);
544 static ex f_sqrfree2(const exprseq &e)
546 CHECK_ARG(1, lst, sqrfree);
547 return sqrfree(e[0], ex_to<lst>(e[1]));
550 static ex f_sqrfree_parfrac(const exprseq &e)
552 return sqrfree_parfrac(e[0], ex_to<symbol>(e[1]));
555 static ex f_subs3(const exprseq &e)
557 CHECK_ARG(1, lst, subs);
558 CHECK_ARG(2, lst, subs);
559 return e[0].subs(ex_to<lst>(e[1]), ex_to<lst>(e[2]));
562 static ex f_trace(const exprseq &e)
564 CHECK_ARG(0, matrix, trace);
565 return ex_to<matrix>(e[0]).trace();
568 static ex f_transpose(const exprseq &e)
570 CHECK_ARG(0, matrix, transpose);
571 return ex_to<matrix>(e[0]).transpose();
574 static ex f_unassign(const exprseq &e)
576 CHECK_ARG(0, symbol, unassign);
577 exmap::iterator i = assigned_symbol_table.find(e[0]);
578 if (i != assigned_symbol_table.end())
579 assigned_symbol_table.erase(i);
583 static ex f_unit(const exprseq &e)
585 return e[0].unit(e[1]);
588 static ex f_basic_log_kernel(const exprseq &e)
590 return basic_log_kernel();
593 static ex f_multiple_polylog_kernel(const exprseq &e)
595 return multiple_polylog_kernel(e[0]);
598 static ex f_ELi_kernel(const exprseq &e)
600 return ELi_kernel(e[0],e[1],e[2],e[3]);
603 static ex f_Ebar_kernel(const exprseq &e)
605 return Ebar_kernel(e[0],e[1],e[2],e[3]);
608 static ex f_Kronecker_dtau_kernel_4(const exprseq &e)
610 return Kronecker_dtau_kernel(e[0],e[1],e[2],e[3]);
613 static ex f_Kronecker_dtau_kernel_3(const exprseq &e)
615 return Kronecker_dtau_kernel(e[0],e[1],e[2]);
618 static ex f_Kronecker_dtau_kernel_2(const exprseq &e)
620 return Kronecker_dtau_kernel(e[0],e[1]);
623 static ex f_Kronecker_dz_kernel_5(const exprseq &e)
625 return Kronecker_dz_kernel(e[0],e[1],e[2],e[3],e[4]);
628 static ex f_Kronecker_dz_kernel_4(const exprseq &e)
630 return Kronecker_dz_kernel(e[0],e[1],e[2],e[3]);
633 static ex f_Kronecker_dz_kernel_3(const exprseq &e)
635 return Kronecker_dz_kernel(e[0],e[1],e[2]);
638 static ex f_Eisenstein_kernel_6(const exprseq &e)
640 return Eisenstein_kernel(e[0],e[1],e[2],e[3],e[4],e[5]);
643 static ex f_Eisenstein_kernel_5(const exprseq &e)
645 return Eisenstein_kernel(e[0],e[1],e[2],e[3],e[4]);
648 static ex f_Eisenstein_h_kernel_5(const exprseq &e)
650 return Eisenstein_h_kernel(e[0],e[1],e[2],e[3],e[4]);
653 static ex f_Eisenstein_h_kernel_4(const exprseq &e)
655 return Eisenstein_h_kernel(e[0],e[1],e[2],e[3]);
658 static ex f_modular_form_kernel_3(const exprseq &e)
660 return modular_form_kernel(e[0],e[1],e[2]);
663 static ex f_modular_form_kernel_2(const exprseq &e)
665 return modular_form_kernel(e[0],e[1]);
668 static ex f_user_defined_kernel(const exprseq &e)
670 return user_defined_kernel(e[0],e[1]);
673 static ex f_q_expansion_modular_form(const exprseq &e)
675 if ( is_a<Eisenstein_kernel>(e[0]) ) {
676 return ex_to<Eisenstein_kernel>(e[0]).q_expansion_modular_form(e[1], ex_to<numeric>(e[2]).to_int());
678 if ( is_a<Eisenstein_h_kernel>(e[0]) ) {
679 return ex_to<Eisenstein_h_kernel>(e[0]).q_expansion_modular_form(e[1], ex_to<numeric>(e[2]).to_int());
681 if ( is_a<modular_form_kernel>(e[0]) ) {
682 return ex_to<modular_form_kernel>(e[0]).q_expansion_modular_form(e[1], ex_to<numeric>(e[2]).to_int());
684 throw(std::invalid_argument("first argument must be a modular form"));
687 static ex f_dummy(const exprseq &e)
689 throw(std::logic_error("dummy function called (shouldn't happen)"));
692 // Tables for initializing the "fcns" map and the function help topics
699 static const fcn_init builtin_fcns[] = {
700 {"charpoly", f_charpoly, 2},
701 {"coeff", f_coeff, 3},
702 {"collect", f_collect, 2},
703 {"collect_common_factors", f_collect_common_factors, 1},
704 {"collect_distributed", f_collect_distributed, 2},
705 {"content", f_content, 2},
706 {"convert_H_to_Li", f_convert_H_to_Li, 2},
707 {"decomp_rational", f_decomp_rational, 2},
708 {"degree", f_degree, 2},
709 {"denom", f_denom, 1},
710 {"determinant", f_determinant, 1},
712 {"diff", f_diff2, 2},
713 {"diff", f_diff3, 3},
714 {"divide", f_divide, 2},
715 {"evalf", f_evalf, 1},
716 {"evalm", f_evalm, 1},
717 {"eval_integ", f_eval_integ, 1},
718 {"expand", f_expand, 1},
719 {"factor", f_factor, 1},
721 {"fsolve", f_fsolve, 4},
724 {"integer_content", f_integer_content, 1},
725 {"integral", f_integral, 4},
726 {"inverse", f_inverse, 1},
727 {"iprint", f_dummy, 0}, // for Tab-completion
730 {"lcoeff", f_lcoeff, 2},
731 {"ldegree", f_ldegree, 2},
732 {"lsolve", f_lsolve, 2},
734 {"match", f_match, 2},
736 {"normal", f_normal, 1},
737 {"numer", f_numer, 1},
738 {"numer_denom", f_numer_denom, 1},
742 {"primpart", f_primpart, 2},
743 {"print", f_dummy, 0}, // for Tab-completion
744 {"print_csrc", f_dummy, 0}, // for Tab-completion
745 {"print_latex", f_dummy, 0}, // for Tab-completion
749 {"resultant", f_resultant, 3},
750 {"series", f_series, 3},
751 {"series_to_poly", f_series_to_poly, 1},
752 {"sprem", f_sprem, 3},
753 {"sqrfree", f_sqrfree1, 1},
754 {"sqrfree", f_sqrfree2, 2},
755 {"sqrfree_parfrac", f_sqrfree_parfrac, 2},
757 {"subs", f_subs2, 2},
758 {"subs", f_subs3, 3},
759 {"tcoeff", f_tcoeff, 2},
760 {"time", f_dummy, 0}, // for Tab-completion
761 {"trace", f_trace, 1},
762 {"transpose", f_transpose, 1},
763 {"unassign", f_unassign, 1},
765 {"basic_log_kernel", f_basic_log_kernel, 0},
766 {"multiple_polylog_kernel", f_multiple_polylog_kernel, 1},
767 {"ELi_kernel", f_ELi_kernel, 4},
768 {"Ebar_kernel", f_Ebar_kernel, 4},
769 {"Kronecker_dtau_kernel", f_Kronecker_dtau_kernel_4, 4},
770 {"Kronecker_dtau_kernel", f_Kronecker_dtau_kernel_3, 3},
771 {"Kronecker_dtau_kernel", f_Kronecker_dtau_kernel_2, 2},
772 {"Kronecker_dz_kernel", f_Kronecker_dz_kernel_5, 5},
773 {"Kronecker_dz_kernel", f_Kronecker_dz_kernel_4, 4},
774 {"Kronecker_dz_kernel", f_Kronecker_dz_kernel_3, 3},
775 {"Eisenstein_kernel", f_Eisenstein_kernel_6, 6},
776 {"Eisenstein_kernel", f_Eisenstein_kernel_5, 5},
777 {"Eisenstein_h_kernel", f_Eisenstein_h_kernel_5, 5},
778 {"Eisenstein_h_kernel", f_Eisenstein_h_kernel_4, 4},
779 {"modular_form_kernel", f_modular_form_kernel_3, 3},
780 {"modular_form_kernel", f_modular_form_kernel_2, 2},
781 {"user_defined_kernel", f_user_defined_kernel, 2},
782 {"q_expansion_modular_form", f_q_expansion_modular_form, 3},
783 {nullptr, f_dummy, 0} // End marker
786 struct fcn_help_init {
791 static const fcn_help_init builtin_help[] = {
792 {"acos", "inverse cosine function"},
793 {"acosh", "inverse hyperbolic cosine function"},
794 {"asin", "inverse sine function"},
795 {"asinh", "inverse hyperbolic sine function"},
796 {"atan", "inverse tangent function"},
797 {"atan2", "inverse tangent function with two arguments"},
798 {"atanh", "inverse hyperbolic tangent function"},
799 {"beta", "Beta function"},
800 {"binomial", "binomial function"},
801 {"cos", "cosine function"},
802 {"cosh", "hyperbolic cosine function"},
803 {"exp", "exponential function"},
804 {"factorial", "factorial function"},
805 {"lgamma", "natural logarithm of Gamma function"},
806 {"tgamma", "Gamma function"},
807 {"log", "natural logarithm"},
808 {"psi", "psi function\npsi(x) is the digamma function, psi(n,x) the nth polygamma function"},
809 {"sin", "sine function"},
810 {"sinh", "hyperbolic sine function"},
811 {"tan", "tangent function"},
812 {"tanh", "hyperbolic tangent function"},
813 {"zeta", "zeta function\nzeta(x) is Riemann's zeta function, zetaderiv(n,x) its nth derivative.\nIf x is a GiNaC::lst, it is a multiple zeta value\nzeta(x,s) is an alternating Euler sum"},
814 {"G", "multiple polylogarithm (integral representation)"},
815 {"Li2", "dilogarithm"},
816 {"Li3", "trilogarithm"},
817 {"Li", "(multiple) polylogarithm"},
818 {"S", "Nielsen's generalized polylogarithm"},
819 {"H", "harmonic polylogarithm"},
820 {"EllipticK", "complete elliptic integral of the first kind"},
821 {"EllipticE", "complete elliptic integral of the second kind"},
822 {"iterated_integral", "iterated integral"},
823 {"Order", "order term function (for truncated power series)"},
824 {"Derivative", "inert differential operator"},
825 {nullptr, nullptr} // End marker
828 #include "ginsh_extensions.h"
832 * Add functions to ginsh
835 // Functions from fcn_init array
836 static void insert_fcns(const fcn_init *p)
839 fcns.insert(make_pair(string(p->name), fcn_desc(p->p, p->num_params)));
844 static ex f_ginac_function(const exprseq &es, int serial)
846 return GiNaC::function(serial, es);
849 // All registered GiNaC functions
851 static void ginsh_get_ginac_functions(void)
854 for (auto & i : function::get_registered_functions()) {
855 fcns.insert(make_pair(i.get_name(), fcn_desc(f_ginac_function, i.get_nparams(), serial)));
863 * Find a function given a name and number of parameters. Throw exceptions on error.
866 static fcn_tab::const_iterator find_function(const ex &sym, int req_params)
868 const string &name = ex_to<symbol>(sym).get_name();
869 typedef fcn_tab::const_iterator I;
870 pair<I, I> b = fcns.equal_range(name);
871 if (b.first == b.second)
872 throw(std::logic_error("unknown function '" + name + "'"));
874 for (I i=b.first; i!=b.second; i++)
875 if ((i->second.num_params == 0) || (i->second.num_params == req_params))
878 throw(std::logic_error("invalid number of arguments to " + name + "()"));
883 * Insert help strings
886 // Normal help string
887 static void insert_help(const char *topic, const char *str)
889 help.insert(make_pair(string(topic), string(str)));
892 // Help string for functions, automatically generates synopsis
893 static void insert_fcn_help(const char *name, const char *str)
895 typedef fcn_tab::const_iterator I;
896 pair<I, I> b = fcns.equal_range(name);
897 if (b.first != b.second) {
898 string help_str = string(name) + "(";
899 for (int i=0; i<b.first->second.num_params; i++) {
902 help_str += "expression";
906 help.insert(make_pair(string(name), help_str));
910 // Help strings for functions from fcn_help_init array
911 static void insert_help(const fcn_help_init *p)
914 insert_fcn_help(p->name, p->help);
924 // Help for a given topic
925 static void print_help(const string &topic)
927 typedef help_tab::const_iterator I;
928 pair<I, I> b = help.equal_range(topic);
929 if (b.first == b.second)
930 cout << "no help for '" << topic << "'\n";
932 for (I i=b.first; i!=b.second; i++)
933 cout << i->second << endl;
937 // List of help topics
938 static void print_help_topics(void)
940 cout << "Available help topics:\n";
941 help_tab::const_iterator i;
942 string last_name = string("*");
944 for (i=help.begin(); i!=help.end(); i++) {
945 // Don't print duplicates
946 if (i->first != last_name) {
951 last_name = i->first;
954 cout << "\nTo get help for a certain topic, type ?topic\n";
959 * Function name completion functions for readline
962 static char *fcn_generator(const char *text, int state)
964 static int len; // Length of word to complete
965 static fcn_tab::const_iterator index; // Iterator to function being currently considered
967 // If this is a new word to complete, initialize now
969 index = fcns.begin();
973 // Return the next function which partially matches
974 while (index != fcns.end()) {
975 const char *fcn_name = index->first.c_str();
977 if (strncmp(fcn_name, text, len) == 0)
978 return strdup(fcn_name);
983 #ifdef HAVE_LIBREADLINE
984 static char **fcn_completion(const char *text, int start, int end)
986 if (rl_line_buffer[0] == '!') {
987 // For shell commands, revert back to filename completion
988 rl_completion_append_character = orig_completion_append_character;
989 rl_basic_word_break_characters = orig_basic_word_break_characters;
990 rl_completer_word_break_characters = GINAC_RL_COMPLETER_CAST(rl_basic_word_break_characters);
991 return rl_completion_matches(text, rl_filename_completion_function);
993 // Otherwise, complete function names
994 rl_completion_append_character = '(';
995 rl_basic_word_break_characters = " \t\n\"#$%&'()*+,-./:;<=>?@[\\]^`{|}~";
996 rl_completer_word_break_characters = GINAC_RL_COMPLETER_CAST(rl_basic_word_break_characters);
997 return rl_completion_matches(text, fcn_generator);
1000 #endif // HAVE_LIBREADLINE
1002 static void ginsh_readline_init(char* name)
1004 #ifdef HAVE_LIBREADLINE
1005 // Init readline completer
1006 rl_readline_name = name;
1007 rl_attempted_completion_function = fcn_completion;
1008 orig_completion_append_character = rl_completion_append_character;
1009 orig_basic_word_break_characters = rl_basic_word_break_characters;
1010 #endif // HAVE_LIBREADLINE
1015 cout << "ginsh - GiNaC Interactive Shell (GiNaC V" << GINACLIB_VERSION << ")" << endl;
1016 cout << " __, _______ Copyright (C) 1999-2024 Johannes Gutenberg University Mainz,\n"
1017 << " (__) * | Germany. This is free software with ABSOLUTELY NO WARRANTY.\n"
1018 << " ._) i N a C | You are welcome to redistribute it under certain conditions.\n"
1019 << "<-------------' For details type `warranty;'.\n" << endl;
1020 cout << "Type ?? for a list of help topics." << endl;
1027 int main(int argc, char **argv)
1029 // Print banner in interactive mode
1032 assigned_symbol_table = exmap();
1034 // Init function table
1035 insert_fcns(builtin_fcns);
1036 insert_fcns(extended_fcns);
1037 ginsh_get_ginac_functions();
1039 // Init help for operators (automatically generated from man page)
1040 insert_help("operators", "Operators in falling order of precedence:");
1041 #include "ginsh_op_help.h"
1043 // Init help for built-in functions (automatically generated from man page)
1044 #include "ginsh_fcn_help.h"
1046 // Help for GiNaC functions is added manually
1047 insert_help(builtin_help);
1048 insert_help(extended_help);
1050 // Help for other keywords
1051 insert_help("print", "print(expression) - dumps the internal structure of the given expression (for debugging)");
1052 insert_help("iprint", "iprint(expression) - prints the given integer expression in decimal, octal, and hexadecimal bases");
1053 insert_help("print_latex", "print_latex(expression) - prints a LaTeX representation of the given expression");
1054 insert_help("print_csrc", "print_csrc(expression) - prints a C source code representation of the given expression");
1056 ginsh_readline_init(argv[0]);
1058 // Init input file list, open first file
1059 num_files = argc - 1;
1060 file_list = argv + 1;
1062 yyin = fopen(*file_list, "r");
1063 if (yyin == nullptr) {
1064 cerr << "Can't open " << *file_list << endl;
1071 // Parse input, catch all remaining exceptions
1075 } catch (exception &e) {
1076 cerr << e.what() << endl;