]> www.ginac.de Git - ginac.git/blob - ginsh/ginsh_parser.ypp
a142f4bba25109c139b50b33284dac2d8afd9e6d
[ginac.git] / ginsh / ginsh_parser.ypp
1 /** @file ginsh_parser.ypp
2  *
3  *  Input grammar definition for ginsh.
4  *  This file must be processed with yacc/bison. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2024 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
22  */
23
24
25 /*
26  *  Definitions
27  */
28
29 %{
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33 #ifdef HAVE_RUSAGE
34 #include <sys/resource.h>
35 #else
36 #include <ctime>
37 #endif
38
39 #ifdef HAVE_UNISTD_H
40 #include <sys/types.h>
41 #include <unistd.h>
42 #endif
43
44 #include <stdexcept>
45
46 #include "ginsh.h"
47
48 using namespace std;
49 using namespace GiNaC;
50
51 #define YYERROR_VERBOSE 1
52
53 #ifdef HAVE_LIBREADLINE
54 // Original readline settings
55 static int orig_completion_append_character;
56 static const char *orig_basic_word_break_characters;
57
58 #if (RL_VERSION_MAJOR >= 5)
59 #define GINAC_RL_COMPLETER_CAST(a) const_cast<char *>((a))
60 #else
61 #define GINAC_RL_COMPLETER_CAST(a) (a)
62 #endif
63 #endif // HAVE_LIBREADLINE
64
65 // Expression stack for %, %% and %%%
66 static void push(const ex &e);
67 static ex exstack[3];
68 // Assigned symbols
69 static exmap assigned_symbol_table;
70
71 // Start and end time for the time() function
72 #ifdef HAVE_RUSAGE
73 static struct rusage start_time, end_time;
74 #define START_TIMER getrusage(RUSAGE_SELF, &start_time);
75 #define STOP_TIMER getrusage(RUSAGE_SELF, &end_time);
76 #define PRINT_TIME_USED cout << \
77    (end_time.ru_utime.tv_sec - start_time.ru_utime.tv_sec) + \
78        (end_time.ru_stime.tv_sec - start_time.ru_stime.tv_sec) + \
79        double(end_time.ru_utime.tv_usec - start_time.ru_utime.tv_usec) / 1e6 + \
80        double(end_time.ru_stime.tv_usec - start_time.ru_stime.tv_usec) / 1e6 \
81                        << 's' << endl;
82 #else
83 static std::clock_t start_time, end_time;
84 #define START_TIMER start_time = std::clock();
85 #define STOP_TIMER end_time = std::clock();
86 #define PRINT_TIME_USED \
87   cout << double(end_time - start_time)/CLOCKS_PER_SEC << 's' << endl;
88 #endif
89
90 // Table of functions (a multimap, because one function may appear with different
91 // numbers of parameters)
92 typedef ex (*fcnp)(const exprseq &e);
93 typedef ex (*fcnp2)(const exprseq &e, int serial);
94
95 struct fcn_desc {
96         fcn_desc() : p(nullptr), num_params(0), is_ginac(false), serial(0) {}
97         fcn_desc(fcnp func, int num) : p(func), num_params(num), is_ginac(false), serial(0) {}
98         fcn_desc(fcnp2 func, int num, int ser) : p((fcnp)func), num_params(num), is_ginac(true), serial(ser) {}
99
100         fcnp p;         // Pointer to function
101         int num_params; // Number of parameters (0 = arbitrary)
102         bool is_ginac;  // Flag: function is GiNaC function
103         int serial;     // GiNaC function serial number (if is_ginac == true)
104 };
105
106 typedef multimap<string, fcn_desc> fcn_tab;
107 static fcn_tab fcns;
108
109 static fcn_tab::const_iterator find_function(const ex &sym, int req_params);
110
111 // Table to map help topics to help strings
112 typedef multimap<string, string> help_tab;
113 static help_tab help;
114
115 static void insert_fcn_help(const char *name, const char *str);
116 static void print_help(const string &topic);
117 static void print_help_topics(void);
118 %}
119
120 /* Tokens (T_LITERAL means a literal value returned by the parser, but not
121    of class numeric or symbol (e.g. a constant or the FAIL object)) */
122 %token T_NUMBER T_SYMBOL T_LITERAL T_DIGITS T_QUOTE T_QUOTE2 T_QUOTE3
123 %token T_EQUAL T_NOTEQ T_LESSEQ T_GREATEREQ
124
125 %token T_QUIT T_WARRANTY T_PRINT T_IPRINT T_PRINTLATEX T_PRINTCSRC T_TIME
126 %token T_XYZZY T_INVENTORY T_LOOK T_SCORE T_COMPLEX_SYMBOLS T_REAL_SYMBOLS
127
128 /* Operator precedence and associativity */
129 %right '='
130 %left T_EQUAL T_NOTEQ
131 %left '<' '>' T_LESSEQ T_GREATEREQ
132 %left '+' '-'
133 %left '*' '/'
134 %nonassoc NEG
135 %right '^'
136 %nonassoc '!'
137
138 %start input
139
140
141 /*
142  *  Grammar rules
143  */
144
145 %%
146 input   : /* empty */
147         | input line
148         ;
149
150 line    : ';'
151         | exp ';' {
152                 try {
153                         cout << $1 << endl;
154                         push($1);
155                 } catch (exception &e) {
156                         cerr << e.what() << endl;
157                         YYERROR;
158                 }
159         }
160         | exp ':' {
161                 try {
162                         push($1);
163                 } catch (exception &e) {
164                         std::cerr << e.what() << endl;
165                         YYERROR;
166                 }
167         }
168         | T_PRINT '(' exp ')' ';' {
169                 try {
170                         $3.print(print_tree(std::cout));
171                 } catch (exception &e) {
172                         std::cerr << e.what() << endl;
173                         YYERROR;
174                 }
175         }
176         | T_IPRINT '(' exp ')' ';' {
177                 try {
178                         ex e = $3;
179                         if (!e.info(info_flags::integer))
180                                 throw (std::invalid_argument("argument to iprint() must be an integer"));
181                         long i = ex_to<numeric>(e).to_long();
182                         cout << i << endl;
183                         cout << "#o" << oct << i << endl;
184                         cout << "#x" << hex << i << dec << endl;
185                 } catch (exception &e) {
186                         cerr << e.what() << endl;
187                         YYERROR;
188                 }
189         }
190         | T_PRINTLATEX '(' exp ')' ';' {
191                 try {
192                         $3.print(print_latex(std::cout)); cout << endl;
193                 } catch (exception &e) {
194                         std::cerr << e.what() << endl;
195                         YYERROR;
196                 }
197         }
198         | T_PRINTCSRC '(' exp ')' ';' {
199                 try {
200                         $3.print(print_csrc_double(std::cout)); cout << endl;
201                 } catch (exception &e) {
202                         std::cerr << e.what() << endl;
203                         YYERROR;
204                 }
205         }
206         | '?' T_SYMBOL          {print_help(ex_to<symbol>($2).get_name());}
207         | '?' T_TIME            {print_help("time");}
208         | '?' T_PRINT           {print_help("print");}
209         | '?' T_IPRINT          {print_help("iprint");}
210         | '?' T_PRINTLATEX      {print_help("print_latex");}
211         | '?' T_PRINTCSRC       {print_help("print_csrc");}
212         | '?' '?'               {print_help_topics();}
213         | T_QUIT                {YYACCEPT;}
214         | T_WARRANTY {
215                 cout << "This program is free software; you can redistribute it and/or modify it under\n";
216                 cout << "the terms of the GNU General Public License as published by the Free Software\n";
217                 cout << "Foundation; either version 2 of the License, or (at your option) any later\n";
218                 cout << "version.\n";
219                 cout << "This program is distributed in the hope that it will be useful, but WITHOUT\n";
220                 cout << "ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS\n";
221                 cout << "FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more\n";
222                 cout << "details.\n";
223                 cout << "You should have received a copy of the GNU General Public License along with\n";
224                 cout << "this program. If not, write to the Free Software Foundation,\n";
225                 cout << "51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.\n";
226         }
227         | T_XYZZY               {cout << "Nothing happens.\n";}
228         | T_INVENTORY           {cout << "You're not carrying anything.\n";}
229         | T_LOOK                {cout << "You're in a twisty little maze of passages, all alike.\n";}
230         | T_SCORE {
231                 cout << "If you were to quit now, you would score ";
232                 cout << (syms.size() > 350 ? 350 : syms.size());
233                 cout << " out of a possible 350.\n";
234         }
235         | T_REAL_SYMBOLS { symboltype = domain::real; }
236         | T_COMPLEX_SYMBOLS { symboltype = domain::complex; }
237         | T_TIME { START_TIMER } '(' exp ')' { STOP_TIMER PRINT_TIME_USED }
238         | error ';'             {yyclearin; yyerrok;}
239         | error ':'             {yyclearin; yyerrok;}
240         ;
241
242 exp     : T_NUMBER              {$$ = $1;}
243         | T_SYMBOL              {
244                 auto i = assigned_symbol_table.find($1);
245                 if (i == assigned_symbol_table.end())
246                         $$ = $1;
247                 else
248                         $$ = i->second;
249         }
250         | '\'' T_SYMBOL '\''    {$$ = $2;}
251         | T_LITERAL             {$$ = $1;}
252         | T_DIGITS              {$$ = $1;}
253         | T_QUOTE               {$$ = exstack[0];}
254         | T_QUOTE2              {$$ = exstack[1];}
255         | T_QUOTE3              {$$ = exstack[2];}
256         | T_SYMBOL '(' exprseq ')' {
257                 auto i = find_function($1, $3.nops());
258                 if (i->second.is_ginac) {
259                         $$ = ((fcnp2)(i->second.p))(ex_to<exprseq>($3), i->second.serial);
260                 } else {
261                         $$ = (i->second.p)(ex_to<exprseq>($3));
262                 }
263         }
264         | T_DIGITS '=' T_NUMBER {$$ = $3; Digits = ex_to<numeric>($3).to_int();}
265         | T_SYMBOL '=' exp      {$$ = $3; assigned_symbol_table[$1] = $3; }
266         | exp T_EQUAL exp       {$$ = $1 == $3;}
267         | exp T_NOTEQ exp       {$$ = $1 != $3;}
268         | exp '<' exp           {$$ = $1 < $3;}
269         | exp T_LESSEQ exp      {$$ = $1 <= $3;}
270         | exp '>' exp           {$$ = $1 > $3;}
271         | exp T_GREATEREQ exp   {$$ = $1 >= $3;}
272         | exp '+' exp           {$$ = $1 + $3;}
273         | exp '-' exp           {$$ = $1 - $3;}
274         | exp '*' exp           {$$ = $1 * $3;}
275         | exp '/' exp           {$$ = $1 / $3;}
276         | '-' exp %prec NEG     {$$ = -$2;}
277         | '+' exp %prec NEG     {$$ = $2;}
278         | exp '^' exp           {$$ = power($1, $3);}
279         | exp '!'               {$$ = factorial($1);}
280         | '(' exp ')'           {$$ = $2;}
281         | '{' list_or_empty '}' {$$ = $2;}
282         | '[' matrix ']'        {$$ = lst_to_matrix(ex_to<lst>($2));}
283         ;
284
285 exprseq : exp                   {$$ = exprseq{$1};}
286         | exprseq ',' exp       {exprseq es(ex_to<exprseq>($1)); $$ = es.append($3);}
287         ;
288
289 list_or_empty: /* empty */      {$$ = *new lst;}
290         | list                  {$$ = $1;}
291         ;
292
293 list    : exp                   {$$ = lst{$1};}
294         | list ',' exp          {lst l(ex_to<lst>($1)); $$ = l.append($3);}
295         ;
296
297 matrix  : '[' row ']'           {$$ = lst{$2};}
298         | matrix ',' '[' row ']' {lst l(ex_to<lst>($1)); $$ = l.append($4);}
299         ;
300
301 row     : exp                   {$$ = lst{$1};}
302         | row ',' exp           {lst l(ex_to<lst>($1)); $$ = l.append($3);}
303         ;
304
305
306 /*
307  *  Routines
308  */
309
310 %%
311 // Error print routine
312 int yyerror(const char *s)
313 {
314         cerr << s << " at " << yytext << endl;
315         return 0;
316 }
317
318 // Push expression "e" onto the expression stack (for ", "" and """)
319 static void push(const ex &e)
320 {
321         exstack[2] = exstack[1];
322         exstack[1] = exstack[0];
323         exstack[0] = e;
324 }
325
326
327 /*
328  *  Built-in functions
329  */
330
331 static ex f_collect(const exprseq &e) {return e[0].collect(e[1]);}
332 static ex f_collect_distributed(const exprseq &e) {return e[0].collect(e[1], true);}
333 static ex f_collect_common_factors(const exprseq &e) {return collect_common_factors(e[0]);}
334 static ex f_convert_H_to_Li(const exprseq &e) {return convert_H_to_Li(e[0], e[1]);}
335 static ex f_degree(const exprseq &e) {return e[0].degree(e[1]);}
336 static ex f_denom(const exprseq &e) {return e[0].denom();}
337 static ex f_evalf(const exprseq &e) {return e[0].evalf();}
338 static ex f_evalm(const exprseq &e) {return e[0].evalm();}
339 static ex f_eval_integ(const exprseq &e) {return e[0].eval_integ();}
340 static ex f_expand(const exprseq &e) {return e[0].expand();}
341 static ex f_factor(const exprseq &e) {return factor(e[0]);}
342 static ex f_gcd(const exprseq &e) {return gcd(e[0], e[1]);}
343 static ex f_has(const exprseq &e) {return e[0].has(e[1]) ? ex(1) : ex(0);}
344 static ex f_lcm(const exprseq &e) {return lcm(e[0], e[1]);}
345 static ex f_lcoeff(const exprseq &e) {return e[0].lcoeff(e[1]);}
346 static ex f_ldegree(const exprseq &e) {return e[0].ldegree(e[1]);}
347 static ex f_lsolve(const exprseq &e) {return lsolve(e[0], e[1]);}
348 static ex f_nops(const exprseq &e) {return e[0].nops();}
349 static ex f_normal(const exprseq &e) {return e[0].normal();}
350 static ex f_numer(const exprseq &e) {return e[0].numer();}
351 static ex f_numer_denom(const exprseq &e) {return e[0].numer_denom();}
352 static ex f_pow(const exprseq &e) {return pow(e[0], e[1]);}
353 static ex f_sqrt(const exprseq &e) {return sqrt(e[0]);}
354 static ex f_sqrfree1(const exprseq &e) {return sqrfree(e[0]);}
355 static ex f_subs2(const exprseq &e) {return e[0].subs(e[1]);}
356 static ex f_tcoeff(const exprseq &e) {return e[0].tcoeff(e[1]);}
357
358 #define CHECK_ARG(num, type, fcn) if (!is_a<type>(e[num])) throw(std::invalid_argument("argument " #num " to " #fcn "() must be a " #type))
359
360 static ex f_charpoly(const exprseq &e)
361 {
362         CHECK_ARG(0, matrix, charpoly);
363         return ex_to<matrix>(e[0]).charpoly(e[1]);
364 }
365
366 static ex f_coeff(const exprseq &e)
367 {
368         CHECK_ARG(2, numeric, coeff);
369         return e[0].coeff(e[1], ex_to<numeric>(e[2]).to_int());
370 }
371
372 static ex f_content(const exprseq &e)
373 {
374         return e[0].content(e[1]);
375 }
376
377 static ex f_decomp_rational(const exprseq &e)
378 {
379         return decomp_rational(e[0], e[1]);
380 }
381
382 static ex f_determinant(const exprseq &e)
383 {
384         CHECK_ARG(0, matrix, determinant);
385         return ex_to<matrix>(e[0]).determinant();
386 }
387
388 static ex f_diag(const exprseq &e)
389 {
390         size_t dim = e.nops();
391         matrix &m = *new matrix(dim, dim);
392         for (size_t i=0; i<dim; i++)
393                 m.set(i, i, e.op(i));
394         return m;
395 }
396
397 static ex f_diff2(const exprseq &e)
398 {
399         CHECK_ARG(1, symbol, diff);
400         return e[0].diff(ex_to<symbol>(e[1]));
401 }
402
403 static ex f_diff3(const exprseq &e)
404 {
405         CHECK_ARG(1, symbol, diff);
406         CHECK_ARG(2, numeric, diff);
407         return e[0].diff(ex_to<symbol>(e[1]), ex_to<numeric>(e[2]).to_int());
408 }
409
410 static ex f_divide(const exprseq &e)
411 {
412         ex q;
413         if (divide(e[0], e[1], q))
414                 return q;
415         else
416                 return fail();
417 }
418
419 static ex f_find(const exprseq &e)
420 {
421         exset found;
422         e[0].find(e[1], found);
423         lst l;
424         for (auto & i : found)
425                 l.append(i);
426         return l;
427 }
428
429 static ex f_fsolve(const exprseq &e)
430 {
431         CHECK_ARG(1, symbol, fsolve);
432         CHECK_ARG(2, numeric, fsolve);
433         CHECK_ARG(3, numeric, fsolve);
434         return fsolve(e[0], ex_to<symbol>(e[1]), ex_to<numeric>(e[2]), ex_to<numeric>(e[3]));
435 }
436
437 static ex f_integer_content(const exprseq &e)
438 {
439         return e[0].expand().integer_content();
440 }
441
442 static ex f_integral(const exprseq &e)
443 {
444         CHECK_ARG(0, symbol, integral);
445         return GiNaC::integral(e[0], e[1], e[2], e[3]);
446 }
447
448 static ex f_inverse(const exprseq &e)
449 {
450         CHECK_ARG(0, matrix, inverse);
451         return ex_to<matrix>(e[0]).inverse();
452 }
453
454 static ex f_is(const exprseq &e)
455 {
456         CHECK_ARG(0, relational, is);
457         return (bool)ex_to<relational>(e[0]) ? ex(1) : ex(0);
458 }
459
460 class apply_map_function : public map_function {
461         ex apply;
462 public:
463         apply_map_function(const ex & a) : apply(a) {}
464         virtual ~apply_map_function() {}
465         ex operator()(const ex & e) override { return apply.subs(wild() == e, true); }
466 };
467
468 static ex f_map(const exprseq &e)
469 {
470         apply_map_function fcn(e[1]);
471         return e[0].map(fcn);
472 }
473
474 static ex f_match(const exprseq &e)
475 {
476         exmap repls;
477         if (e[0].match(e[1], repls)) {
478                 lst repl_lst;
479                 for (auto & i : repls)
480                         repl_lst.append(relational(i.first, i.second, relational::equal));
481                 return repl_lst;
482         }
483         throw std::runtime_error("FAIL");
484 }
485
486 static ex f_op(const exprseq &e)
487 {
488         CHECK_ARG(1, numeric, op);
489         int n = ex_to<numeric>(e[1]).to_int();
490         if (n < 0 || n >= (int)e[0].nops())
491                 throw(std::out_of_range("second argument to op() is out of range"));
492         return e[0].op(n);
493 }
494
495 static ex f_prem(const exprseq &e)
496 {
497         return prem(e[0], e[1], e[2]);
498 }
499
500 static ex f_primpart(const exprseq &e)
501 {
502         return e[0].primpart(e[1]);
503 }
504
505 static ex f_quo(const exprseq &e)
506 {
507         return quo(e[0], e[1], e[2]);
508 }
509
510 static ex f_rank(const exprseq &e)
511 {
512         CHECK_ARG(0, matrix, rank);
513         return ex_to<matrix>(e[0]).rank();
514 }
515
516 static ex f_rem(const exprseq &e)
517 {
518         return rem(e[0], e[1], e[2]);
519 }
520
521 static ex f_resultant(const exprseq &e)
522 {
523         CHECK_ARG(2, symbol, resultant);
524         return resultant(e[0], e[1], ex_to<symbol>(e[2]));
525 }
526
527 static ex f_series(const exprseq &e)
528 {
529         CHECK_ARG(2, numeric, series);
530         return e[0].series(e[1], ex_to<numeric>(e[2]).to_int());
531 }
532
533 static ex f_series_to_poly(const exprseq &e)
534 {
535         CHECK_ARG(0, pseries, series_to_poly);
536         return series_to_poly(ex_to<pseries>(e[0]));
537 }
538
539 static ex f_sprem(const exprseq &e)
540 {
541         return sprem(e[0], e[1], e[2]);
542 }
543
544 static ex f_sqrfree2(const exprseq &e)
545 {
546         CHECK_ARG(1, lst, sqrfree);
547         return sqrfree(e[0], ex_to<lst>(e[1]));
548 }
549
550 static ex f_sqrfree_parfrac(const exprseq &e)
551 {
552         return sqrfree_parfrac(e[0], ex_to<symbol>(e[1]));
553 }
554
555 static ex f_subs3(const exprseq &e)
556 {
557         CHECK_ARG(1, lst, subs);
558         CHECK_ARG(2, lst, subs);
559         return e[0].subs(ex_to<lst>(e[1]), ex_to<lst>(e[2]));
560 }
561
562 static ex f_trace(const exprseq &e)
563 {
564         CHECK_ARG(0, matrix, trace);
565         return ex_to<matrix>(e[0]).trace();
566 }
567
568 static ex f_transpose(const exprseq &e)
569 {
570         CHECK_ARG(0, matrix, transpose);
571         return ex_to<matrix>(e[0]).transpose();
572 }
573
574 static ex f_unassign(const exprseq &e)
575 {
576         CHECK_ARG(0, symbol, unassign);
577         exmap::iterator i = assigned_symbol_table.find(e[0]);
578         if (i != assigned_symbol_table.end())
579                 assigned_symbol_table.erase(i);
580         return e[0];
581 }
582
583 static ex f_unit(const exprseq &e)
584 {
585         return e[0].unit(e[1]);
586 }
587
588 static ex f_basic_log_kernel(const exprseq &e)
589 {
590         return basic_log_kernel();      
591 }
592
593 static ex f_multiple_polylog_kernel(const exprseq &e)
594 {
595         return multiple_polylog_kernel(e[0]);   
596 }
597
598 static ex f_ELi_kernel(const exprseq &e)
599 {
600         return ELi_kernel(e[0],e[1],e[2],e[3]); 
601 }
602
603 static ex f_Ebar_kernel(const exprseq &e)
604 {
605         return Ebar_kernel(e[0],e[1],e[2],e[3]);        
606 }
607
608 static ex f_Kronecker_dtau_kernel_4(const exprseq &e)
609 {
610         return Kronecker_dtau_kernel(e[0],e[1],e[2],e[3]);      
611 }
612
613 static ex f_Kronecker_dtau_kernel_3(const exprseq &e)
614 {
615         return Kronecker_dtau_kernel(e[0],e[1],e[2]);   
616 }
617
618 static ex f_Kronecker_dtau_kernel_2(const exprseq &e)
619 {
620         return Kronecker_dtau_kernel(e[0],e[1]);        
621 }
622
623 static ex f_Kronecker_dz_kernel_5(const exprseq &e)
624 {
625         return Kronecker_dz_kernel(e[0],e[1],e[2],e[3],e[4]);   
626 }
627
628 static ex f_Kronecker_dz_kernel_4(const exprseq &e)
629 {
630         return Kronecker_dz_kernel(e[0],e[1],e[2],e[3]);        
631 }
632
633 static ex f_Kronecker_dz_kernel_3(const exprseq &e)
634 {
635         return Kronecker_dz_kernel(e[0],e[1],e[2]);     
636 }
637
638 static ex f_Eisenstein_kernel_6(const exprseq &e)
639 {
640         return Eisenstein_kernel(e[0],e[1],e[2],e[3],e[4],e[5]);        
641 }
642
643 static ex f_Eisenstein_kernel_5(const exprseq &e)
644 {
645         return Eisenstein_kernel(e[0],e[1],e[2],e[3],e[4]);     
646 }
647
648 static ex f_Eisenstein_h_kernel_5(const exprseq &e)
649 {
650         return Eisenstein_h_kernel(e[0],e[1],e[2],e[3],e[4]);   
651 }
652
653 static ex f_Eisenstein_h_kernel_4(const exprseq &e)
654 {
655         return Eisenstein_h_kernel(e[0],e[1],e[2],e[3]);        
656 }
657
658 static ex f_modular_form_kernel_3(const exprseq &e)
659 {
660         return modular_form_kernel(e[0],e[1],e[2]);     
661 }
662
663 static ex f_modular_form_kernel_2(const exprseq &e)
664 {
665         return modular_form_kernel(e[0],e[1]);  
666 }
667
668 static ex f_user_defined_kernel(const exprseq &e)
669 {
670         return user_defined_kernel(e[0],e[1]);  
671 }
672
673 static ex f_q_expansion_modular_form(const exprseq &e)
674 {
675         if ( is_a<Eisenstein_kernel>(e[0]) ) {
676                 return ex_to<Eisenstein_kernel>(e[0]).q_expansion_modular_form(e[1], ex_to<numeric>(e[2]).to_int());
677         }       
678         if ( is_a<Eisenstein_h_kernel>(e[0]) ) {
679                 return ex_to<Eisenstein_h_kernel>(e[0]).q_expansion_modular_form(e[1], ex_to<numeric>(e[2]).to_int());
680         }       
681         if ( is_a<modular_form_kernel>(e[0]) ) {
682                 return ex_to<modular_form_kernel>(e[0]).q_expansion_modular_form(e[1], ex_to<numeric>(e[2]).to_int());
683         }       
684         throw(std::invalid_argument("first argument must be a modular form"));
685 }
686
687 static ex f_dummy(const exprseq &e)
688 {
689         throw(std::logic_error("dummy function called (shouldn't happen)"));
690 }
691
692 // Tables for initializing the "fcns" map and the function help topics
693 struct fcn_init {
694         const char *name;
695         fcnp p;
696         int num_params;
697 };
698
699 static const fcn_init builtin_fcns[] = {
700         {"charpoly", f_charpoly, 2},
701         {"coeff", f_coeff, 3},
702         {"collect", f_collect, 2},
703         {"collect_common_factors", f_collect_common_factors, 1},
704         {"collect_distributed", f_collect_distributed, 2},
705         {"content", f_content, 2},
706         {"convert_H_to_Li", f_convert_H_to_Li, 2},
707         {"decomp_rational", f_decomp_rational, 2},
708         {"degree", f_degree, 2},
709         {"denom", f_denom, 1},
710         {"determinant", f_determinant, 1},
711         {"diag", f_diag, 0},
712         {"diff", f_diff2, 2},
713         {"diff", f_diff3, 3},
714         {"divide", f_divide, 2},
715         {"evalf", f_evalf, 1},
716         {"evalm", f_evalm, 1},
717         {"eval_integ", f_eval_integ, 1},
718         {"expand", f_expand, 1},
719         {"factor", f_factor, 1},
720         {"find", f_find, 2},
721         {"fsolve", f_fsolve, 4},
722         {"gcd", f_gcd, 2},
723         {"has", f_has, 2},
724         {"integer_content", f_integer_content, 1},
725         {"integral", f_integral, 4},
726         {"inverse", f_inverse, 1},
727         {"iprint", f_dummy, 0},      // for Tab-completion
728         {"is", f_is, 1},
729         {"lcm", f_lcm, 2},
730         {"lcoeff", f_lcoeff, 2},
731         {"ldegree", f_ldegree, 2},
732         {"lsolve", f_lsolve, 2},
733         {"map", f_map, 2},
734         {"match", f_match, 2},
735         {"nops", f_nops, 1},
736         {"normal", f_normal, 1},
737         {"numer", f_numer, 1},
738         {"numer_denom", f_numer_denom, 1},
739         {"op", f_op, 2},
740         {"pow", f_pow, 2},
741         {"prem", f_prem, 3},
742         {"primpart", f_primpart, 2},
743         {"print", f_dummy, 0},       // for Tab-completion
744         {"print_csrc", f_dummy, 0},  // for Tab-completion
745         {"print_latex", f_dummy, 0}, // for Tab-completion
746         {"quo", f_quo, 3},
747         {"rank", f_rank, 1},
748         {"rem", f_rem, 3},
749         {"resultant", f_resultant, 3},
750         {"series", f_series, 3},
751         {"series_to_poly", f_series_to_poly, 1},
752         {"sprem", f_sprem, 3},
753         {"sqrfree", f_sqrfree1, 1},
754         {"sqrfree", f_sqrfree2, 2},
755         {"sqrfree_parfrac", f_sqrfree_parfrac, 2},
756         {"sqrt", f_sqrt, 1},
757         {"subs", f_subs2, 2},
758         {"subs", f_subs3, 3},
759         {"tcoeff", f_tcoeff, 2},
760         {"time", f_dummy, 0},        // for Tab-completion
761         {"trace", f_trace, 1},
762         {"transpose", f_transpose, 1},
763         {"unassign", f_unassign, 1},
764         {"unit", f_unit, 2},
765         {"basic_log_kernel", f_basic_log_kernel, 0},
766         {"multiple_polylog_kernel", f_multiple_polylog_kernel, 1},
767         {"ELi_kernel", f_ELi_kernel, 4},
768         {"Ebar_kernel", f_Ebar_kernel, 4},
769         {"Kronecker_dtau_kernel", f_Kronecker_dtau_kernel_4, 4},
770         {"Kronecker_dtau_kernel", f_Kronecker_dtau_kernel_3, 3},
771         {"Kronecker_dtau_kernel", f_Kronecker_dtau_kernel_2, 2},
772         {"Kronecker_dz_kernel", f_Kronecker_dz_kernel_5, 5},
773         {"Kronecker_dz_kernel", f_Kronecker_dz_kernel_4, 4},
774         {"Kronecker_dz_kernel", f_Kronecker_dz_kernel_3, 3},
775         {"Eisenstein_kernel", f_Eisenstein_kernel_6, 6},
776         {"Eisenstein_kernel", f_Eisenstein_kernel_5, 5},
777         {"Eisenstein_h_kernel", f_Eisenstein_h_kernel_5, 5},
778         {"Eisenstein_h_kernel", f_Eisenstein_h_kernel_4, 4},
779         {"modular_form_kernel", f_modular_form_kernel_3, 3},
780         {"modular_form_kernel", f_modular_form_kernel_2, 2},
781         {"user_defined_kernel", f_user_defined_kernel, 2},
782         {"q_expansion_modular_form", f_q_expansion_modular_form, 3},
783         {nullptr, f_dummy, 0}        // End marker
784 };
785
786 struct fcn_help_init {
787         const char *name;
788         const char *help;
789 };
790
791 static const fcn_help_init builtin_help[] = {
792         {"acos", "inverse cosine function"},
793         {"acosh", "inverse hyperbolic cosine function"},
794         {"asin", "inverse sine function"},
795         {"asinh", "inverse hyperbolic sine function"},
796         {"atan", "inverse tangent function"},
797         {"atan2", "inverse tangent function with two arguments"},
798         {"atanh", "inverse hyperbolic tangent function"},
799         {"beta", "Beta function"},
800         {"binomial", "binomial function"},
801         {"cos", "cosine function"},
802         {"cosh", "hyperbolic cosine function"},
803         {"exp", "exponential function"},
804         {"factorial", "factorial function"},
805         {"lgamma", "natural logarithm of Gamma function"},
806         {"tgamma", "Gamma function"},
807         {"log", "natural logarithm"},
808         {"psi", "psi function\npsi(x) is the digamma function, psi(n,x) the nth polygamma function"},
809         {"sin", "sine function"},
810         {"sinh", "hyperbolic sine function"},
811         {"tan", "tangent function"},
812         {"tanh", "hyperbolic tangent function"},
813         {"zeta", "zeta function\nzeta(x) is Riemann's zeta function, zetaderiv(n,x) its nth derivative.\nIf x is a GiNaC::lst, it is a multiple zeta value\nzeta(x,s) is an alternating Euler sum"},
814         {"G", "multiple polylogarithm (integral representation)"},
815         {"Li2", "dilogarithm"},
816         {"Li3", "trilogarithm"},
817         {"Li", "(multiple) polylogarithm"},
818         {"S", "Nielsen's generalized polylogarithm"},
819         {"H", "harmonic polylogarithm"},
820         {"EllipticK", "complete elliptic integral of the first kind"},
821         {"EllipticE", "complete elliptic integral of the second kind"},
822         {"iterated_integral", "iterated integral"},
823         {"Order", "order term function (for truncated power series)"},
824         {"Derivative", "inert differential operator"},
825         {nullptr, nullptr}  // End marker
826 };
827
828 #include "ginsh_extensions.h"
829
830
831 /*
832  *  Add functions to ginsh
833  */
834
835 // Functions from fcn_init array
836 static void insert_fcns(const fcn_init *p)
837 {
838         while (p->name) {
839                 fcns.insert(make_pair(string(p->name), fcn_desc(p->p, p->num_params)));
840                 p++;
841         }
842 }
843
844 static ex f_ginac_function(const exprseq &es, int serial)
845 {
846         return GiNaC::function(serial, es);
847 }
848
849 // All registered GiNaC functions
850 namespace GiNaC {
851 static void ginsh_get_ginac_functions(void)
852 {
853         unsigned serial = 0;
854         for (auto & i : function::get_registered_functions()) {
855                 fcns.insert(make_pair(i.get_name(), fcn_desc(f_ginac_function, i.get_nparams(), serial)));
856                 serial++;
857         }
858 }
859 }
860
861
862 /*
863  *  Find a function given a name and number of parameters. Throw exceptions on error.
864  */
865
866 static fcn_tab::const_iterator find_function(const ex &sym, int req_params)
867 {
868         const string &name = ex_to<symbol>(sym).get_name();
869         typedef fcn_tab::const_iterator I;
870         pair<I, I> b = fcns.equal_range(name);
871         if (b.first == b.second)
872                 throw(std::logic_error("unknown function '" + name + "'"));
873         else {
874                 for (I i=b.first; i!=b.second; i++)
875                         if ((i->second.num_params == 0) || (i->second.num_params == req_params))
876                                 return i;
877         }
878         throw(std::logic_error("invalid number of arguments to " + name + "()"));
879 }
880
881
882 /*
883  *  Insert help strings
884  */
885
886 // Normal help string
887 static void insert_help(const char *topic, const char *str)
888 {
889         help.insert(make_pair(string(topic), string(str)));
890 }
891
892 // Help string for functions, automatically generates synopsis
893 static void insert_fcn_help(const char *name, const char *str)
894 {
895         typedef fcn_tab::const_iterator I;
896         pair<I, I> b = fcns.equal_range(name);
897         if (b.first != b.second) {
898                 string help_str = string(name) + "(";
899                 for (int i=0; i<b.first->second.num_params; i++) {
900                         if (i)
901                                 help_str += ", ";
902                         help_str += "expression";
903                 }
904                 help_str += ") - ";
905                 help_str += str;
906                 help.insert(make_pair(string(name), help_str));
907         }
908 }
909
910 // Help strings for functions from fcn_help_init array
911 static void insert_help(const fcn_help_init *p)
912 {
913         while (p->name) {
914                 insert_fcn_help(p->name, p->help);
915                 p++;
916         }
917 }
918
919
920 /*
921  *  Print help to cout
922  */
923
924 // Help for a given topic
925 static void print_help(const string &topic)
926 {
927         typedef help_tab::const_iterator I;
928         pair<I, I> b = help.equal_range(topic);
929         if (b.first == b.second)
930                 cout << "no help for '" << topic << "'\n";
931         else {
932                 for (I i=b.first; i!=b.second; i++)
933                         cout << i->second << endl;
934         }
935 }
936
937 // List of help topics
938 static void print_help_topics(void)
939 {
940         cout << "Available help topics:\n";
941         help_tab::const_iterator i;
942         string last_name = string("*");
943         int num = 0;
944         for (i=help.begin(); i!=help.end(); i++) {
945                 // Don't print duplicates
946                 if (i->first != last_name) {
947                         if (num)
948                                 cout << ", ";
949                         num++;
950                         cout << i->first;
951                         last_name = i->first;
952                 }
953         }
954         cout << "\nTo get help for a certain topic, type ?topic\n";
955 }
956
957
958 /*
959  *  Function name completion functions for readline
960  */
961
962 static char *fcn_generator(const char *text, int state)
963 {
964         static int len;                         // Length of word to complete
965         static fcn_tab::const_iterator index;   // Iterator to function being currently considered
966
967         // If this is a new word to complete, initialize now
968         if (state == 0) {
969                 index = fcns.begin();
970                 len = strlen(text);
971         }
972
973         // Return the next function which partially matches
974         while (index != fcns.end()) {
975                 const char *fcn_name = index->first.c_str();
976                 ++index;
977                 if (strncmp(fcn_name, text, len) == 0)
978                         return strdup(fcn_name);
979         }
980         return nullptr;
981 }
982
983 #ifdef HAVE_LIBREADLINE
984 static char **fcn_completion(const char *text, int start, int end)
985 {
986         if (rl_line_buffer[0] == '!') {
987                 // For shell commands, revert back to filename completion
988                 rl_completion_append_character = orig_completion_append_character;
989                 rl_basic_word_break_characters = orig_basic_word_break_characters;
990                 rl_completer_word_break_characters = GINAC_RL_COMPLETER_CAST(rl_basic_word_break_characters);
991                 return rl_completion_matches(text, rl_filename_completion_function);
992         } else {
993                 // Otherwise, complete function names
994                 rl_completion_append_character = '(';
995                 rl_basic_word_break_characters = " \t\n\"#$%&'()*+,-./:;<=>?@[\\]^`{|}~";
996                 rl_completer_word_break_characters = GINAC_RL_COMPLETER_CAST(rl_basic_word_break_characters);
997                 return rl_completion_matches(text, fcn_generator);
998         }
999 }
1000 #endif // HAVE_LIBREADLINE
1001
1002 static void ginsh_readline_init(char* name)
1003 {
1004 #ifdef HAVE_LIBREADLINE
1005         // Init readline completer
1006         rl_readline_name = name;
1007         rl_attempted_completion_function = fcn_completion;
1008         orig_completion_append_character = rl_completion_append_character;
1009         orig_basic_word_break_characters = rl_basic_word_break_characters;
1010 #endif // HAVE_LIBREADLINE
1011 }
1012
1013 void greeting(void)
1014 {
1015     cout << "ginsh - GiNaC Interactive Shell (GiNaC V" << GINACLIB_VERSION << ")" << endl;
1016     cout << "  __,  _______  Copyright (C) 1999-2024 Johannes Gutenberg University Mainz,\n"
1017          << " (__) *       | Germany.  This is free software with ABSOLUTELY NO WARRANTY.\n"
1018          << "  ._) i N a C | You are welcome to redistribute it under certain conditions.\n"
1019          << "<-------------' For details type `warranty;'.\n" << endl;
1020     cout << "Type ?? for a list of help topics." << endl;
1021 }
1022
1023 /*
1024  *  Main program
1025  */
1026
1027 int main(int argc, char **argv)
1028 {
1029         // Print banner in interactive mode
1030         if (isatty(0)) 
1031                 greeting();
1032         assigned_symbol_table = exmap();
1033
1034         // Init function table
1035         insert_fcns(builtin_fcns);
1036         insert_fcns(extended_fcns);
1037         ginsh_get_ginac_functions();
1038
1039         // Init help for operators (automatically generated from man page)
1040         insert_help("operators", "Operators in falling order of precedence:");
1041 #include "ginsh_op_help.h"
1042
1043         // Init help for built-in functions (automatically generated from man page)
1044 #include "ginsh_fcn_help.h"
1045
1046         // Help for GiNaC functions is added manually
1047         insert_help(builtin_help);
1048         insert_help(extended_help);
1049
1050         // Help for other keywords
1051         insert_help("print", "print(expression) - dumps the internal structure of the given expression (for debugging)");
1052         insert_help("iprint", "iprint(expression) - prints the given integer expression in decimal, octal, and hexadecimal bases");
1053         insert_help("print_latex", "print_latex(expression) - prints a LaTeX representation of the given expression");
1054         insert_help("print_csrc", "print_csrc(expression) - prints a C source code representation of the given expression");
1055
1056         ginsh_readline_init(argv[0]);
1057
1058         // Init input file list, open first file
1059         num_files = argc - 1;
1060         file_list = argv + 1;
1061         if (num_files) {
1062                 yyin = fopen(*file_list, "r");
1063                 if (yyin == nullptr) {
1064                         cerr << "Can't open " << *file_list << endl;
1065                         exit(1);
1066                 }
1067                 num_files--;
1068                 file_list++;
1069         }
1070
1071         // Parse input, catch all remaining exceptions
1072         int result;
1073 again:  try {
1074                 result = yyparse();
1075         } catch (exception &e) {
1076                 cerr << e.what() << endl;
1077                 goto again;
1078         }
1079         return result;
1080 }