]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
fbb7583b3bc1b0b10e7c16eacff1b86f5049fc24
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23
24 #include <stdexcept>
25
26 #include "pseries.h"
27 #include "add.h"
28 #include "inifcns.h"
29 #include "lst.h"
30 #include "mul.h"
31 #include "power.h"
32 #include "relational.h"
33 #include "symbol.h"
34 #include "archive.h"
35 #include "utils.h"
36 #include "debugmsg.h"
37
38 namespace GiNaC {
39
40 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
41
42 /*
43  *  Default ctor, dtor, copy ctor, assignment operator and helpers
44  */
45
46 pseries::pseries() : basic(TINFO_pseries)
47 {
48         debugmsg("pseries default ctor", LOGLEVEL_CONSTRUCT);
49 }
50
51 void pseries::copy(const pseries &other)
52 {
53         inherited::copy(other);
54         seq = other.seq;
55         var = other.var;
56         point = other.point;
57 }
58
59 void pseries::destroy(bool call_parent)
60 {
61         if (call_parent)
62                 inherited::destroy(call_parent);
63 }
64
65
66 /*
67  *  Other ctors
68  */
69
70 /** Construct pseries from a vector of coefficients and powers.
71  *  expair.rest holds the coefficient, expair.coeff holds the power.
72  *  The powers must be integers (positive or negative) and in ascending order;
73  *  the last coefficient can be Order(_ex1()) to represent a truncated,
74  *  non-terminating series.
75  *
76  *  @param rel_  expansion variable and point (must hold a relational)
77  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
78  *  @return newly constructed pseries */
79 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
80 {
81         debugmsg("pseries ctor from ex,epvector", LOGLEVEL_CONSTRUCT);
82         GINAC_ASSERT(is_ex_exactly_of_type(rel_, relational));
83         GINAC_ASSERT(is_ex_exactly_of_type(rel_.lhs(),symbol));
84         point = rel_.rhs();
85         var = *static_cast<symbol *>(rel_.lhs().bp);
86 }
87
88
89 /*
90  *  Archiving
91  */
92
93 /** Construct object from archive_node. */
94 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
95 {
96         debugmsg("pseries ctor from archive_node", LOGLEVEL_CONSTRUCT);
97         for (unsigned int i=0; true; ++i) {
98                 ex rest;
99                 ex coeff;
100                 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
101                         seq.push_back(expair(rest, coeff));
102                 else
103                         break;
104         }
105         n.find_ex("var", var, sym_lst);
106         n.find_ex("point", point, sym_lst);
107 }
108
109 /** Unarchive the object. */
110 ex pseries::unarchive(const archive_node &n, const lst &sym_lst)
111 {
112         return (new pseries(n, sym_lst))->setflag(status_flags::dynallocated);
113 }
114
115 /** Archive the object. */
116 void pseries::archive(archive_node &n) const
117 {
118         inherited::archive(n);
119         epvector::const_iterator i = seq.begin(), iend = seq.end();
120         while (i != iend) {
121                 n.add_ex("coeff", i->rest);
122                 n.add_ex("power", i->coeff);
123                 ++i;
124         }
125         n.add_ex("var", var);
126         n.add_ex("point", point);
127 }
128
129 //////////
130 // functions overriding virtual functions from bases classes
131 //////////
132
133 void pseries::print(std::ostream &os, unsigned upper_precedence) const
134 {
135         debugmsg("pseries print", LOGLEVEL_PRINT);
136         if (precedence<=upper_precedence) os << "(";
137         // objects of type pseries must not have any zero entries, so the
138         // trivial (zero) pseries needs a special treatment here:
139         if (seq.size()==0)
140                 os << '0';
141         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
142                 // print a sign, if needed
143                 if (i!=seq.begin())
144                         os << '+';
145                 if (!is_order_function(i->rest)) {
146                         // print 'rest', i.e. the expansion coefficient
147                         if (i->rest.info(info_flags::numeric) &&
148                                 i->rest.info(info_flags::positive)) {
149                                 os << i->rest;
150                         } else
151                                 os << "(" << i->rest << ')';
152                         // print 'coeff', something like (x-1)^42
153                         if (!i->coeff.is_zero()) {
154                                 os << '*';
155                                 if (!point.is_zero())
156                                         os << '(' << var-point << ')';
157                                 else
158                                         os << var;
159                                 if (i->coeff.compare(_ex1())) {
160                                         os << '^';
161                                         if (i->coeff.info(info_flags::negative))
162                                                 os << '(' << i->coeff << ')';
163                                         else
164                                                 os << i->coeff;
165                                 }
166                         }
167                 } else {
168                         os << Order(power(var-point,i->coeff));
169                 }
170         }
171         if (precedence<=upper_precedence) os << ")";
172 }
173
174
175 void pseries::printraw(std::ostream &os) const
176 {
177         debugmsg("pseries printraw", LOGLEVEL_PRINT);
178         os << "pseries(" << var << ";" << point << ";";
179         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i)
180                 os << "(" << (*i).rest << "," << (*i).coeff << "),";
181         os << ")";
182 }
183
184
185 void pseries::printtree(std::ostream & os, unsigned indent) const
186 {
187         debugmsg("pseries printtree",LOGLEVEL_PRINT);
188         os << std::string(indent,' ') << "pseries " 
189            << ", hash=" << hashvalue
190            << " (0x" << std::hex << hashvalue << std::dec << ")"
191            << ", flags=" << flags << std::endl;
192         for (unsigned i=0; i<seq.size(); ++i) {
193                 seq[i].rest.printtree(os,indent+delta_indent);
194                 seq[i].coeff.printtree(os,indent+delta_indent);
195                 if (i!=seq.size()-1)
196                         os << std::string(indent+delta_indent,' ') << "-----" << std::endl;
197         }
198         var.printtree(os, indent+delta_indent);
199         point.printtree(os, indent+delta_indent);
200 }
201
202 int pseries::compare_same_type(const basic & other) const
203 {
204         GINAC_ASSERT(is_of_type(other, pseries));
205         const pseries &o = static_cast<const pseries &>(other);
206
207         int cmpval = var.compare(o.var);
208         if (cmpval)
209                 return cmpval;
210         cmpval = point.compare(o.point);
211         if (cmpval)
212                 return cmpval;
213
214         epvector::const_iterator it1 = seq.begin(), it2 = o.seq.begin(), it1end = seq.end(), it2end = o.seq.end();
215         while ((it1 != it1end) && (it2 != it2end)) {
216                 cmpval = it1->compare(*it2);
217                 if (cmpval)
218                         return cmpval;
219                 it1++; it2++;
220         }
221         if (it1 == it1end)
222                 return it2 == it2end ? 0 : -1;
223
224         return 0;
225 }
226
227 /** Return the number of operands including a possible order term. */
228 unsigned pseries::nops(void) const
229 {
230         return seq.size();
231 }
232
233
234 /** Return the ith term in the series when represented as a sum. */
235 ex pseries::op(int i) const
236 {
237         if (i < 0 || unsigned(i) >= seq.size())
238                 throw (std::out_of_range("op() out of range"));
239         return seq[i].rest * power(var - point, seq[i].coeff);
240 }
241
242
243 ex &pseries::let_op(int i)
244 {
245         throw (std::logic_error("let_op not defined for pseries"));
246 }
247
248
249 /** Return degree of highest power of the series.  This is usually the exponent
250  *  of the Order term.  If s is not the expansion variable of the series, the
251  *  series is examined termwise. */
252 int pseries::degree(const symbol &s) const
253 {
254         if (var.is_equal(s)) {
255                 // Return last exponent
256                 if (seq.size())
257                         return ex_to_numeric((*(seq.end() - 1)).coeff).to_int();
258                 else
259                         return 0;
260         } else {
261                 epvector::const_iterator it = seq.begin(), itend = seq.end();
262                 if (it == itend)
263                         return 0;
264                 int max_pow = INT_MIN;
265                 while (it != itend) {
266                         int pow = it->rest.degree(s);
267                         if (pow > max_pow)
268                                 max_pow = pow;
269                         ++it;
270                 }
271                 return max_pow;
272         }
273 }
274
275 /** Return degree of lowest power of the series.  This is usually the exponent
276  *  of the leading term.  If s is not the expansion variable of the series, the
277  *  series is examined termwise.  If s is the expansion variable but the
278  *  expansion point is not zero the series is not expanded to find the degree.
279  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
280 int pseries::ldegree(const symbol &s) const
281 {
282         if (var.is_equal(s)) {
283                 // Return first exponent
284                 if (seq.size())
285                         return ex_to_numeric((*(seq.begin())).coeff).to_int();
286                 else
287                         return 0;
288         } else {
289                 epvector::const_iterator it = seq.begin(), itend = seq.end();
290                 if (it == itend)
291                         return 0;
292                 int min_pow = INT_MAX;
293                 while (it != itend) {
294                         int pow = it->rest.ldegree(s);
295                         if (pow < min_pow)
296                                 min_pow = pow;
297                         ++it;
298                 }
299                 return min_pow;
300         }
301 }
302
303 /** Return coefficient of degree n in power series if s is the expansion
304  *  variable.  If the expansion point is nonzero, by definition the n=1
305  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
306  *  the expansion took place in the s in the first place).
307  *  If s is not the expansion variable, an attempt is made to convert the
308  *  series to a polynomial and return the corresponding coefficient from
309  *  there. */
310 ex pseries::coeff(const symbol &s, int n) const
311 {
312         if (var.is_equal(s)) {
313                 if (seq.size() == 0)
314                         return _ex0();
315                 
316                 // Binary search in sequence for given power
317                 numeric looking_for = numeric(n);
318                 int lo = 0, hi = seq.size() - 1;
319                 while (lo <= hi) {
320                         int mid = (lo + hi) / 2;
321                         GINAC_ASSERT(is_ex_exactly_of_type(seq[mid].coeff, numeric));
322                         int cmp = ex_to_numeric(seq[mid].coeff).compare(looking_for);
323                         switch (cmp) {
324                                 case -1:
325                                         lo = mid + 1;
326                                         break;
327                                 case 0:
328                                         return seq[mid].rest;
329                                 case 1:
330                                         hi = mid - 1;
331                                         break;
332                                 default:
333                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
334                         }
335                 }
336                 return _ex0();
337         } else
338                 return convert_to_poly().coeff(s, n);
339 }
340
341 /** Does nothing. */
342 ex pseries::collect(const symbol &s) const
343 {
344         return *this;
345 }
346
347
348 /** Evaluate coefficients. */
349 ex pseries::eval(int level) const
350 {
351         if (level == 1)
352                 return this->hold();
353         
354         if (level == -max_recursion_level)
355                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
356         
357         // Construct a new series with evaluated coefficients
358         epvector new_seq;
359         new_seq.reserve(seq.size());
360         epvector::const_iterator it = seq.begin(), itend = seq.end();
361         while (it != itend) {
362                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
363                 ++it;
364         }
365         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
366 }
367
368
369 /** Evaluate coefficients numerically. */
370 ex pseries::evalf(int level) const
371 {
372         if (level == 1)
373                 return *this;
374         
375         if (level == -max_recursion_level)
376                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
377         
378         // Construct a new series with evaluated coefficients
379         epvector new_seq;
380         new_seq.reserve(seq.size());
381         epvector::const_iterator it = seq.begin(), itend = seq.end();
382         while (it != itend) {
383                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
384                 ++it;
385         }
386         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
387 }
388
389
390 ex pseries::subs(const lst & ls, const lst & lr) const
391 {
392         // If expansion variable is being substituted, convert the series to a
393         // polynomial and do the substitution there because the result might
394         // no longer be a power series
395         if (ls.has(var))
396                 return convert_to_poly(true).subs(ls, lr);
397         
398         // Otherwise construct a new series with substituted coefficients and
399         // expansion point
400         epvector newseq;
401         newseq.reserve(seq.size());
402         epvector::const_iterator it = seq.begin(), itend = seq.end();
403         while (it != itend) {
404                 newseq.push_back(expair(it->rest.subs(ls, lr), it->coeff));
405                 ++it;
406         }
407         return (new pseries(relational(var,point.subs(ls, lr)), newseq))->setflag(status_flags::dynallocated);
408 }
409
410
411 /** Implementation of ex::expand() for a power series.  It expands all the
412  *  terms individually and returns the resulting series as a new pseries. */
413 ex pseries::expand(unsigned options) const
414 {
415         epvector newseq;
416         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
417                 ex restexp = i->rest.expand();
418                 if (!restexp.is_zero())
419                         newseq.push_back(expair(restexp, i->coeff));
420         }
421         return (new pseries(relational(var,point), newseq))
422                 ->setflag(status_flags::dynallocated | status_flags::expanded);
423 }
424
425
426 /** Implementation of ex::diff() for a power series.  It treats the series as a
427  *  polynomial.
428  *  @see ex::diff */
429 ex pseries::derivative(const symbol & s) const
430 {
431         if (s == var) {
432                 epvector new_seq;
433                 epvector::const_iterator it = seq.begin(), itend = seq.end();
434                 
435                 // FIXME: coeff might depend on var
436                 while (it != itend) {
437                         if (is_order_function(it->rest)) {
438                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
439                         } else {
440                                 ex c = it->rest * it->coeff;
441                                 if (!c.is_zero())
442                                         new_seq.push_back(expair(c, it->coeff - 1));
443                         }
444                         ++it;
445                 }
446                 return pseries(relational(var,point), new_seq);
447         } else {
448                 return *this;
449         }
450 }
451
452
453 /** Convert a pseries object to an ordinary polynomial.
454  *
455  *  @param no_order flag: discard higher order terms */
456 ex pseries::convert_to_poly(bool no_order) const
457 {
458         ex e;
459         epvector::const_iterator it = seq.begin(), itend = seq.end();
460         
461         while (it != itend) {
462                 if (is_order_function(it->rest)) {
463                         if (!no_order)
464                                 e += Order(power(var - point, it->coeff));
465                 } else
466                         e += it->rest * power(var - point, it->coeff);
467                 ++it;
468         }
469         return e;
470 }
471
472
473 /** Returns true if there is no order term, i.e. the series terminates and
474  *  false otherwise. */
475 bool pseries::is_terminating(void) const
476 {
477         return seq.size() == 0 || !is_order_function((seq.end()-1)->rest);
478 }
479
480
481 /*
482  *  Implementations of series expansion
483  */
484
485 /** Default implementation of ex::series(). This performs Taylor expansion.
486  *  @see ex::series */
487 ex basic::series(const relational & r, int order, unsigned options) const
488 {
489         epvector seq;
490         numeric fac(1);
491         ex deriv = *this;
492         ex coeff = deriv.subs(r);
493         const symbol *s = static_cast<symbol *>(r.lhs().bp);
494         
495         if (!coeff.is_zero())
496                 seq.push_back(expair(coeff, numeric(0)));
497         
498         int n;
499         for (n=1; n<order; ++n) {
500                 fac = fac.mul(numeric(n));
501                 deriv = deriv.diff(*s).expand();
502                 if (deriv.is_zero()) {
503                         // Series terminates
504                         return pseries(r, seq);
505                 }
506                 coeff = deriv.subs(r);
507                 if (!coeff.is_zero())
508                         seq.push_back(expair(fac.inverse() * coeff, numeric(n)));
509         }
510         
511         // Higher-order terms, if present
512         deriv = deriv.diff(*s);
513         if (!deriv.expand().is_zero())
514                 seq.push_back(expair(Order(_ex1()), numeric(n)));
515         return pseries(r, seq);
516 }
517
518
519 /** Implementation of ex::series() for symbols.
520  *  @see ex::series */
521 ex symbol::series(const relational & r, int order, unsigned options) const
522 {
523         epvector seq;
524         const ex point = r.rhs();
525         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
526         const symbol *s = static_cast<symbol *>(r.lhs().bp);
527         
528         if (this->is_equal(*s)) {
529                 if (order > 0 && !point.is_zero())
530                         seq.push_back(expair(point, _ex0()));
531                 if (order > 1)
532                         seq.push_back(expair(_ex1(), _ex1()));
533                 else
534                         seq.push_back(expair(Order(_ex1()), numeric(order)));
535         } else
536                 seq.push_back(expair(*this, _ex0()));
537         return pseries(r, seq);
538 }
539
540
541 /** Add one series object to another, producing a pseries object that
542  *  represents the sum.
543  *
544  *  @param other  pseries object to add with
545  *  @return the sum as a pseries */
546 ex pseries::add_series(const pseries &other) const
547 {
548         // Adding two series with different variables or expansion points
549         // results in an empty (constant) series 
550         if (!is_compatible_to(other)) {
551                 epvector nul;
552                 nul.push_back(expair(Order(_ex1()), _ex0()));
553                 return pseries(relational(var,point), nul);
554         }
555         
556         // Series addition
557         epvector new_seq;
558         epvector::const_iterator a = seq.begin();
559         epvector::const_iterator b = other.seq.begin();
560         epvector::const_iterator a_end = seq.end();
561         epvector::const_iterator b_end = other.seq.end();
562         int pow_a = INT_MAX, pow_b = INT_MAX;
563         for (;;) {
564                 // If a is empty, fill up with elements from b and stop
565                 if (a == a_end) {
566                         while (b != b_end) {
567                                 new_seq.push_back(*b);
568                                 ++b;
569                         }
570                         break;
571                 } else
572                         pow_a = ex_to_numeric((*a).coeff).to_int();
573                 
574                 // If b is empty, fill up with elements from a and stop
575                 if (b == b_end) {
576                         while (a != a_end) {
577                                 new_seq.push_back(*a);
578                                 ++a;
579                         }
580                         break;
581                 } else
582                         pow_b = ex_to_numeric((*b).coeff).to_int();
583                 
584                 // a and b are non-empty, compare powers
585                 if (pow_a < pow_b) {
586                         // a has lesser power, get coefficient from a
587                         new_seq.push_back(*a);
588                         if (is_order_function((*a).rest))
589                                 break;
590                         ++a;
591                 } else if (pow_b < pow_a) {
592                         // b has lesser power, get coefficient from b
593                         new_seq.push_back(*b);
594                         if (is_order_function((*b).rest))
595                                 break;
596                         ++b;
597                 } else {
598                         // Add coefficient of a and b
599                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
600                                 new_seq.push_back(expair(Order(_ex1()), (*a).coeff));
601                                 break;  // Order term ends the sequence
602                         } else {
603                                 ex sum = (*a).rest + (*b).rest;
604                                 if (!(sum.is_zero()))
605                                         new_seq.push_back(expair(sum, numeric(pow_a)));
606                                 ++a;
607                                 ++b;
608                         }
609                 }
610         }
611         return pseries(relational(var,point), new_seq);
612 }
613
614
615 /** Implementation of ex::series() for sums. This performs series addition when
616  *  adding pseries objects.
617  *  @see ex::series */
618 ex add::series(const relational & r, int order, unsigned options) const
619 {
620         ex acc; // Series accumulator
621         
622         // Get first term from overall_coeff
623         acc = overall_coeff.series(r, order, options);
624         
625         // Add remaining terms
626         epvector::const_iterator it = seq.begin();
627         epvector::const_iterator itend = seq.end();
628         for (; it!=itend; ++it) {
629                 ex op;
630                 if (is_ex_exactly_of_type(it->rest, pseries))
631                         op = it->rest;
632                 else
633                         op = it->rest.series(r, order, options);
634                 if (!it->coeff.is_equal(_ex1()))
635                         op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff));
636                 
637                 // Series addition
638                 acc = ex_to_pseries(acc).add_series(ex_to_pseries(op));
639         }
640         return acc;
641 }
642
643
644 /** Multiply a pseries object with a numeric constant, producing a pseries
645  *  object that represents the product.
646  *
647  *  @param other  constant to multiply with
648  *  @return the product as a pseries */
649 ex pseries::mul_const(const numeric &other) const
650 {
651         epvector new_seq;
652         new_seq.reserve(seq.size());
653         
654         epvector::const_iterator it = seq.begin(), itend = seq.end();
655         while (it != itend) {
656                 if (!is_order_function(it->rest))
657                         new_seq.push_back(expair(it->rest * other, it->coeff));
658                 else
659                         new_seq.push_back(*it);
660                 ++it;
661         }
662         return pseries(relational(var,point), new_seq);
663 }
664
665
666 /** Multiply one pseries object to another, producing a pseries object that
667  *  represents the product.
668  *
669  *  @param other  pseries object to multiply with
670  *  @return the product as a pseries */
671 ex pseries::mul_series(const pseries &other) const
672 {
673         // Multiplying two series with different variables or expansion points
674         // results in an empty (constant) series 
675         if (!is_compatible_to(other)) {
676                 epvector nul;
677                 nul.push_back(expair(Order(_ex1()), _ex0()));
678                 return pseries(relational(var,point), nul);
679         }
680         
681         // Series multiplication
682         epvector new_seq;
683         
684         const symbol *s = static_cast<symbol *>(var.bp);
685         int a_max = degree(*s);
686         int b_max = other.degree(*s);
687         int a_min = ldegree(*s);
688         int b_min = other.ldegree(*s);
689         int cdeg_min = a_min + b_min;
690         int cdeg_max = a_max + b_max;
691         
692         int higher_order_a = INT_MAX;
693         int higher_order_b = INT_MAX;
694         if (is_order_function(coeff(*s, a_max)))
695                 higher_order_a = a_max + b_min;
696         if (is_order_function(other.coeff(*s, b_max)))
697                 higher_order_b = b_max + a_min;
698         int higher_order_c = std::min(higher_order_a, higher_order_b);
699         if (cdeg_max >= higher_order_c)
700                 cdeg_max = higher_order_c - 1;
701         
702         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
703                 ex co = _ex0();
704                 // c(i)=a(0)b(i)+...+a(i)b(0)
705                 for (int i=a_min; cdeg-i>=b_min; ++i) {
706                         ex a_coeff = coeff(*s, i);
707                         ex b_coeff = other.coeff(*s, cdeg-i);
708                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
709                                 co += a_coeff * b_coeff;
710                 }
711                 if (!co.is_zero())
712                         new_seq.push_back(expair(co, numeric(cdeg)));
713         }
714         if (higher_order_c < INT_MAX)
715                 new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c)));
716         return pseries(relational(var,point), new_seq);
717 }
718
719
720 /** Implementation of ex::series() for product. This performs series
721  *  multiplication when multiplying series.
722  *  @see ex::series */
723 ex mul::series(const relational & r, int order, unsigned options) const
724 {
725         ex acc; // Series accumulator
726         
727         // Get first term from overall_coeff
728         acc = overall_coeff.series(r, order, options);
729         
730         // Multiply with remaining terms
731         epvector::const_iterator it = seq.begin();
732         epvector::const_iterator itend = seq.end();
733         for (; it!=itend; ++it) {
734                 ex op = it->rest;
735                 if (op.info(info_flags::numeric)) {
736                         // series * const (special case, faster)
737                         ex f = power(op, it->coeff);
738                         acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f));
739                         continue;
740                 } else if (!is_ex_exactly_of_type(op, pseries))
741                         op = op.series(r, order, options);
742                 if (!it->coeff.is_equal(_ex1()))
743                         op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order);
744
745                 // Series multiplication
746                 acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op));
747         }
748         return acc;
749 }
750
751
752 /** Compute the p-th power of a series.
753  *
754  *  @param p  power to compute
755  *  @param deg  truncation order of series calculation */
756 ex pseries::power_const(const numeric &p, int deg) const
757 {
758         // method:
759         // let A(x) be this series and for the time being let it start with a
760         // constant (later we'll generalize):
761         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
762         // We want to compute
763         //     C(x) = A(x)^p
764         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
765         // Taking the derivative on both sides and multiplying with A(x) one
766         // immediately arrives at
767         //     C'(x)*A(x) = p*C(x)*A'(x)
768         // Multiplying this out and comparing coefficients we get the recurrence
769         // formula
770         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
771         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
772         // which can easily be solved given the starting value c_0 = (a_0)^p.
773         // For the more general case where the leading coefficient of A(x) is not
774         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
775         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
776         // then of course x^(p*m) but the recurrence formula still holds.
777         
778         if (seq.size()==0) {
779                 // as a spacial case, handle the empty (zero) series honoring the
780                 // usual power laws such as implemented in power::eval()
781                 if (p.real().is_zero())
782                         throw (std::domain_error("pseries::power_const(): pow(0,I) is undefined"));
783                 else if (p.real().is_negative())
784                         throw (pole_error("pseries::power_const(): division by zero",1));
785                 else
786                         return *this;
787         }
788         
789         const symbol *s = static_cast<symbol *>(var.bp);
790         int ldeg = ldegree(*s);
791         
792         // Compute coefficients of the powered series
793         exvector co;
794         co.reserve(deg);
795         co.push_back(power(coeff(*s, ldeg), p));
796         bool all_sums_zero = true;
797         for (int i=1; i<deg; ++i) {
798                 ex sum = _ex0();
799                 for (int j=1; j<=i; ++j) {
800                         ex c = coeff(*s, j + ldeg);
801                         if (is_order_function(c)) {
802                                 co.push_back(Order(_ex1()));
803                                 break;
804                         } else
805                                 sum += (p * j - (i - j)) * co[i - j] * c;
806                 }
807                 if (!sum.is_zero())
808                         all_sums_zero = false;
809                 co.push_back(sum / coeff(*s, ldeg) / numeric(i));
810         }
811         
812         // Construct new series (of non-zero coefficients)
813         epvector new_seq;
814         bool higher_order = false;
815         for (int i=0; i<deg; ++i) {
816                 if (!co[i].is_zero())
817                         new_seq.push_back(expair(co[i], numeric(i) + p * ldeg));
818                 if (is_order_function(co[i])) {
819                         higher_order = true;
820                         break;
821                 }
822         }
823         if (!higher_order && !all_sums_zero)
824                 new_seq.push_back(expair(Order(_ex1()), numeric(deg) + p * ldeg));
825         return pseries(relational(var,point), new_seq);
826 }
827
828
829 /** Return a new pseries object with the powers shifted by deg. */
830 pseries pseries::shift_exponents(int deg) const
831 {
832         epvector newseq(seq);
833         for (epvector::iterator i=newseq.begin(); i!=newseq.end(); ++i)
834                 i->coeff = i->coeff + deg;
835         return pseries(relational(var, point), newseq);
836 }
837
838
839 /** Implementation of ex::series() for powers. This performs Laurent expansion
840  *  of reciprocals of series at singularities.
841  *  @see ex::series */
842 ex power::series(const relational & r, int order, unsigned options) const
843 {
844         ex e;
845         if (!is_ex_exactly_of_type(basis, pseries)) {
846                 // Basis is not a series, may there be a singularity?
847                 bool must_expand_basis = false;
848                 try {
849                         basis.subs(r);
850                 } catch (pole_error) {
851                         must_expand_basis = true;
852                 }
853                 
854                 // Is the expression of type something^(-int)?
855                 if (!must_expand_basis && !exponent.info(info_flags::negint))
856                         return basic::series(r, order, options);
857                 
858                 // Is the expression of type 0^something?
859                 if (!must_expand_basis && !basis.subs(r).is_zero())
860                         return basic::series(r, order, options);
861                 
862                 // Singularity encountered, expand basis into series
863                 e = basis.series(r, order, options);
864         } else {
865                 // Basis is a series
866                 e = basis;
867         }
868         
869         // Power e
870         return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order);
871 }
872
873
874 /** Re-expansion of a pseries object. */
875 ex pseries::series(const relational & r, int order, unsigned options) const
876 {
877         const ex p = r.rhs();
878         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
879         const symbol *s = static_cast<symbol *>(r.lhs().bp);
880         
881         if (var.is_equal(*s) && point.is_equal(p)) {
882                 if (order > degree(*s))
883                         return *this;
884                 else {
885                         epvector new_seq;
886                         epvector::const_iterator it = seq.begin(), itend = seq.end();
887                         while (it != itend) {
888                                 int o = ex_to_numeric(it->coeff).to_int();
889                                 if (o >= order) {
890                                         new_seq.push_back(expair(Order(_ex1()), o));
891                                         break;
892                                 }
893                                 new_seq.push_back(*it);
894                                 ++it;
895                         }
896                         return pseries(r, new_seq);
897                 }
898         } else
899                 return convert_to_poly().series(r, order, options);
900 }
901
902
903 /** Compute the truncated series expansion of an expression.
904  *  This function returns an expression containing an object of class pseries 
905  *  to represent the series. If the series does not terminate within the given
906  *  truncation order, the last term of the series will be an order term.
907  *
908  *  @param r  expansion relation, lhs holds variable and rhs holds point
909  *  @param order  truncation order of series calculations
910  *  @param options  of class series_options
911  *  @return an expression holding a pseries object */
912 ex ex::series(const ex & r, int order, unsigned options) const
913 {
914         GINAC_ASSERT(bp!=0);
915         ex e;
916         relational rel_;
917         
918         if (is_ex_exactly_of_type(r,relational))
919                 rel_ = ex_to_relational(r);
920         else if (is_ex_exactly_of_type(r,symbol))
921                 rel_ = relational(r,_ex0());
922         else
923                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
924         
925         try {
926                 e = bp->series(rel_, order, options);
927         } catch (std::exception &x) {
928                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
929         }
930         return e;
931 }
932
933 //////////
934 // static member variables
935 //////////
936
937 // protected
938
939 unsigned pseries::precedence = 38;  // for clarity just below add::precedence
940
941 } // namespace GiNaC