]> www.ginac.de Git - ginac.git/blob - ginac/power.cpp
* Happy New Year(s)!
[ginac.git] / ginac / power.cpp
1 /** @file power.cpp
2  *
3  *  Implementation of GiNaC's symbolic exponentiation (basis^exponent). */
4
5 /*
6  *  GiNaC Copyright (C) 1999-2007 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
21  */
22
23 #include <vector>
24 #include <iostream>
25 #include <stdexcept>
26 #include <limits>
27
28 #include "power.h"
29 #include "expairseq.h"
30 #include "add.h"
31 #include "mul.h"
32 #include "ncmul.h"
33 #include "numeric.h"
34 #include "constant.h"
35 #include "operators.h"
36 #include "inifcns.h" // for log() in power::derivative()
37 #include "matrix.h"
38 #include "indexed.h"
39 #include "symbol.h"
40 #include "lst.h"
41 #include "archive.h"
42 #include "utils.h"
43
44 namespace GiNaC {
45
46 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(power, basic,
47   print_func<print_dflt>(&power::do_print_dflt).
48   print_func<print_latex>(&power::do_print_latex).
49   print_func<print_csrc>(&power::do_print_csrc).
50   print_func<print_python>(&power::do_print_python).
51   print_func<print_python_repr>(&power::do_print_python_repr))
52
53 typedef std::vector<int> intvector;
54
55 //////////
56 // default constructor
57 //////////
58
59 power::power() : inherited(TINFO_power) { }
60
61 //////////
62 // other constructors
63 //////////
64
65 // all inlined
66
67 //////////
68 // archiving
69 //////////
70
71 power::power(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst)
72 {
73         n.find_ex("basis", basis, sym_lst);
74         n.find_ex("exponent", exponent, sym_lst);
75 }
76
77 void power::archive(archive_node &n) const
78 {
79         inherited::archive(n);
80         n.add_ex("basis", basis);
81         n.add_ex("exponent", exponent);
82 }
83
84 DEFAULT_UNARCHIVE(power)
85
86 //////////
87 // functions overriding virtual functions from base classes
88 //////////
89
90 // public
91
92 void power::print_power(const print_context & c, const char *powersymbol, const char *openbrace, const char *closebrace, unsigned level) const
93 {
94         // Ordinary output of powers using '^' or '**'
95         if (precedence() <= level)
96                 c.s << openbrace << '(';
97         basis.print(c, precedence());
98         c.s << powersymbol;
99         c.s << openbrace;
100         exponent.print(c, precedence());
101         c.s << closebrace;
102         if (precedence() <= level)
103                 c.s << ')' << closebrace;
104 }
105
106 void power::do_print_dflt(const print_dflt & c, unsigned level) const
107 {
108         if (exponent.is_equal(_ex1_2)) {
109
110                 // Square roots are printed in a special way
111                 c.s << "sqrt(";
112                 basis.print(c);
113                 c.s << ')';
114
115         } else
116                 print_power(c, "^", "", "", level);
117 }
118
119 void power::do_print_latex(const print_latex & c, unsigned level) const
120 {
121         if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_negative()) {
122
123                 // Powers with negative numeric exponents are printed as fractions
124                 c.s << "\\frac{1}{";
125                 power(basis, -exponent).eval().print(c);
126                 c.s << '}';
127
128         } else if (exponent.is_equal(_ex1_2)) {
129
130                 // Square roots are printed in a special way
131                 c.s << "\\sqrt{";
132                 basis.print(c);
133                 c.s << '}';
134
135         } else
136                 print_power(c, "^", "{", "}", level);
137 }
138
139 static void print_sym_pow(const print_context & c, const symbol &x, int exp)
140 {
141         // Optimal output of integer powers of symbols to aid compiler CSE.
142         // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15
143         // to learn why such a parenthesation is really necessary.
144         if (exp == 1) {
145                 x.print(c);
146         } else if (exp == 2) {
147                 x.print(c);
148                 c.s << "*";
149                 x.print(c);
150         } else if (exp & 1) {
151                 x.print(c);
152                 c.s << "*";
153                 print_sym_pow(c, x, exp-1);
154         } else {
155                 c.s << "(";
156                 print_sym_pow(c, x, exp >> 1);
157                 c.s << ")*(";
158                 print_sym_pow(c, x, exp >> 1);
159                 c.s << ")";
160         }
161 }
162
163 void power::do_print_csrc(const print_csrc & c, unsigned level) const
164 {
165         // Integer powers of symbols are printed in a special, optimized way
166         if (exponent.info(info_flags::integer)
167          && (is_a<symbol>(basis) || is_a<constant>(basis))) {
168                 int exp = ex_to<numeric>(exponent).to_int();
169                 if (exp > 0)
170                         c.s << '(';
171                 else {
172                         exp = -exp;
173                         if (is_a<print_csrc_cl_N>(c))
174                                 c.s << "recip(";
175                         else
176                                 c.s << "1.0/(";
177                 }
178                 print_sym_pow(c, ex_to<symbol>(basis), exp);
179                 c.s << ')';
180
181         // <expr>^-1 is printed as "1.0/<expr>" or with the recip() function of CLN
182         } else if (exponent.is_equal(_ex_1)) {
183                 if (is_a<print_csrc_cl_N>(c))
184                         c.s << "recip(";
185                 else
186                         c.s << "1.0/(";
187                 basis.print(c);
188                 c.s << ')';
189
190         // Otherwise, use the pow() or expt() (CLN) functions
191         } else {
192                 if (is_a<print_csrc_cl_N>(c))
193                         c.s << "expt(";
194                 else
195                         c.s << "pow(";
196                 basis.print(c);
197                 c.s << ',';
198                 exponent.print(c);
199                 c.s << ')';
200         }
201 }
202
203 void power::do_print_python(const print_python & c, unsigned level) const
204 {
205         print_power(c, "**", "", "", level);
206 }
207
208 void power::do_print_python_repr(const print_python_repr & c, unsigned level) const
209 {
210         c.s << class_name() << '(';
211         basis.print(c);
212         c.s << ',';
213         exponent.print(c);
214         c.s << ')';
215 }
216
217 bool power::info(unsigned inf) const
218 {
219         switch (inf) {
220                 case info_flags::polynomial:
221                 case info_flags::integer_polynomial:
222                 case info_flags::cinteger_polynomial:
223                 case info_flags::rational_polynomial:
224                 case info_flags::crational_polynomial:
225                         return exponent.info(info_flags::nonnegint) &&
226                                basis.info(inf);
227                 case info_flags::rational_function:
228                         return exponent.info(info_flags::integer) &&
229                                basis.info(inf);
230                 case info_flags::algebraic:
231                         return !exponent.info(info_flags::integer) ||
232                                basis.info(inf);
233         }
234         return inherited::info(inf);
235 }
236
237 size_t power::nops() const
238 {
239         return 2;
240 }
241
242 ex power::op(size_t i) const
243 {
244         GINAC_ASSERT(i<2);
245
246         return i==0 ? basis : exponent;
247 }
248
249 ex power::map(map_function & f) const
250 {
251         const ex &mapped_basis = f(basis);
252         const ex &mapped_exponent = f(exponent);
253
254         if (!are_ex_trivially_equal(basis, mapped_basis)
255          || !are_ex_trivially_equal(exponent, mapped_exponent))
256                 return (new power(mapped_basis, mapped_exponent))->setflag(status_flags::dynallocated);
257         else
258                 return *this;
259 }
260
261 int power::degree(const ex & s) const
262 {
263         if (is_equal(ex_to<basic>(s)))
264                 return 1;
265         else if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
266                 if (basis.is_equal(s))
267                         return ex_to<numeric>(exponent).to_int();
268                 else
269                         return basis.degree(s) * ex_to<numeric>(exponent).to_int();
270         } else if (basis.has(s))
271                 throw(std::runtime_error("power::degree(): undefined degree because of non-integer exponent"));
272         else
273                 return 0;
274 }
275
276 int power::ldegree(const ex & s) const 
277 {
278         if (is_equal(ex_to<basic>(s)))
279                 return 1;
280         else if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
281                 if (basis.is_equal(s))
282                         return ex_to<numeric>(exponent).to_int();
283                 else
284                         return basis.ldegree(s) * ex_to<numeric>(exponent).to_int();
285         } else if (basis.has(s))
286                 throw(std::runtime_error("power::ldegree(): undefined degree because of non-integer exponent"));
287         else
288                 return 0;
289 }
290
291 ex power::coeff(const ex & s, int n) const
292 {
293         if (is_equal(ex_to<basic>(s)))
294                 return n==1 ? _ex1 : _ex0;
295         else if (!basis.is_equal(s)) {
296                 // basis not equal to s
297                 if (n == 0)
298                         return *this;
299                 else
300                         return _ex0;
301         } else {
302                 // basis equal to s
303                 if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
304                         // integer exponent
305                         int int_exp = ex_to<numeric>(exponent).to_int();
306                         if (n == int_exp)
307                                 return _ex1;
308                         else
309                                 return _ex0;
310                 } else {
311                         // non-integer exponents are treated as zero
312                         if (n == 0)
313                                 return *this;
314                         else
315                                 return _ex0;
316                 }
317         }
318 }
319
320 /** Perform automatic term rewriting rules in this class.  In the following
321  *  x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2...
322  *  stand for such expressions that contain a plain number.
323  *  - ^(x,0) -> 1  (also handles ^(0,0))
324  *  - ^(x,1) -> x
325  *  - ^(0,c) -> 0 or exception  (depending on the real part of c)
326  *  - ^(1,x) -> 1
327  *  - ^(c1,c2) -> *(c1^n,c1^(c2-n))  (so that 0<(c2-n)<1, try to evaluate roots, possibly in numerator and denominator of c1)
328  *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  if x is positive and c1 is real.
329  *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  (c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
330  *  - ^(*(x,y,z),c) -> *(x^c,y^c,z^c)  (if c integer)
331  *  - ^(*(x,c1),c2) -> ^(x,c2)*c1^c2  (c1>0)
332  *  - ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2  (c1<0)
333  *
334  *  @param level cut-off in recursive evaluation */
335 ex power::eval(int level) const
336 {
337         if ((level==1) && (flags & status_flags::evaluated))
338                 return *this;
339         else if (level == -max_recursion_level)
340                 throw(std::runtime_error("max recursion level reached"));
341         
342         const ex & ebasis    = level==1 ? basis    : basis.eval(level-1);
343         const ex & eexponent = level==1 ? exponent : exponent.eval(level-1);
344         
345         bool basis_is_numerical = false;
346         bool exponent_is_numerical = false;
347         const numeric *num_basis;
348         const numeric *num_exponent;
349         
350         if (is_exactly_a<numeric>(ebasis)) {
351                 basis_is_numerical = true;
352                 num_basis = &ex_to<numeric>(ebasis);
353         }
354         if (is_exactly_a<numeric>(eexponent)) {
355                 exponent_is_numerical = true;
356                 num_exponent = &ex_to<numeric>(eexponent);
357         }
358         
359         // ^(x,0) -> 1  (0^0 also handled here)
360         if (eexponent.is_zero()) {
361                 if (ebasis.is_zero())
362                         throw (std::domain_error("power::eval(): pow(0,0) is undefined"));
363                 else
364                         return _ex1;
365         }
366         
367         // ^(x,1) -> x
368         if (eexponent.is_equal(_ex1))
369                 return ebasis;
370
371         // ^(0,c1) -> 0 or exception  (depending on real value of c1)
372         if (ebasis.is_zero() && exponent_is_numerical) {
373                 if ((num_exponent->real()).is_zero())
374                         throw (std::domain_error("power::eval(): pow(0,I) is undefined"));
375                 else if ((num_exponent->real()).is_negative())
376                         throw (pole_error("power::eval(): division by zero",1));
377                 else
378                         return _ex0;
379         }
380
381         // ^(1,x) -> 1
382         if (ebasis.is_equal(_ex1))
383                 return _ex1;
384
385         // Turn (x^c)^d into x^(c*d) in the case that x is positive and c is real.
386         if (is_exactly_a<power>(ebasis) && ebasis.op(0).info(info_flags::positive) && ebasis.op(1).info(info_flags::real))
387                 return power(ebasis.op(0), ebasis.op(1) * eexponent);
388
389         if (exponent_is_numerical) {
390
391                 // ^(c1,c2) -> c1^c2  (c1, c2 numeric(),
392                 // except if c1,c2 are rational, but c1^c2 is not)
393                 if (basis_is_numerical) {
394                         const bool basis_is_crational = num_basis->is_crational();
395                         const bool exponent_is_crational = num_exponent->is_crational();
396                         if (!basis_is_crational || !exponent_is_crational) {
397                                 // return a plain float
398                                 return (new numeric(num_basis->power(*num_exponent)))->setflag(status_flags::dynallocated |
399                                                                                                status_flags::evaluated |
400                                                                                                status_flags::expanded);
401                         }
402
403                         const numeric res = num_basis->power(*num_exponent);
404                         if (res.is_crational()) {
405                                 return res;
406                         }
407                         GINAC_ASSERT(!num_exponent->is_integer());  // has been handled by now
408
409                         // ^(c1,n/m) -> *(c1^q,c1^(n/m-q)), 0<(n/m-q)<1, q integer
410                         if (basis_is_crational && exponent_is_crational
411                             && num_exponent->is_real()
412                             && !num_exponent->is_integer()) {
413                                 const numeric n = num_exponent->numer();
414                                 const numeric m = num_exponent->denom();
415                                 numeric r;
416                                 numeric q = iquo(n, m, r);
417                                 if (r.is_negative()) {
418                                         r += m;
419                                         --q;
420                                 }
421                                 if (q.is_zero()) {  // the exponent was in the allowed range 0<(n/m)<1
422                                         if (num_basis->is_rational() && !num_basis->is_integer()) {
423                                                 // try it for numerator and denominator separately, in order to
424                                                 // partially simplify things like (5/8)^(1/3) -> 1/2*5^(1/3)
425                                                 const numeric bnum = num_basis->numer();
426                                                 const numeric bden = num_basis->denom();
427                                                 const numeric res_bnum = bnum.power(*num_exponent);
428                                                 const numeric res_bden = bden.power(*num_exponent);
429                                                 if (res_bnum.is_integer())
430                                                         return (new mul(power(bden,-*num_exponent),res_bnum))->setflag(status_flags::dynallocated | status_flags::evaluated);
431                                                 if (res_bden.is_integer())
432                                                         return (new mul(power(bnum,*num_exponent),res_bden.inverse()))->setflag(status_flags::dynallocated | status_flags::evaluated);
433                                         }
434                                         return this->hold();
435                                 } else {
436                                         // assemble resulting product, but allowing for a re-evaluation,
437                                         // because otherwise we'll end up with something like
438                                         //    (7/8)^(4/3)  ->  7/8*(1/2*7^(1/3))
439                                         // instead of 7/16*7^(1/3).
440                                         ex prod = power(*num_basis,r.div(m));
441                                         return prod*power(*num_basis,q);
442                                 }
443                         }
444                 }
445         
446                 // ^(^(x,c1),c2) -> ^(x,c1*c2)
447                 // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1,
448                 // case c1==1 should not happen, see below!)
449                 if (is_exactly_a<power>(ebasis)) {
450                         const power & sub_power = ex_to<power>(ebasis);
451                         const ex & sub_basis = sub_power.basis;
452                         const ex & sub_exponent = sub_power.exponent;
453                         if (is_exactly_a<numeric>(sub_exponent)) {
454                                 const numeric & num_sub_exponent = ex_to<numeric>(sub_exponent);
455                                 GINAC_ASSERT(num_sub_exponent!=numeric(1));
456                                 if (num_exponent->is_integer() || (abs(num_sub_exponent) - (*_num1_p)).is_negative())
457                                         return power(sub_basis,num_sub_exponent.mul(*num_exponent));
458                         }
459                 }
460         
461                 // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
462                 if (num_exponent->is_integer() && is_exactly_a<mul>(ebasis)) {
463                         return expand_mul(ex_to<mul>(ebasis), *num_exponent, 0);
464                 }
465         
466                 // ^(*(...,x;c1),c2) -> *(^(*(...,x;1),c2),c1^c2)  (c1, c2 numeric(), c1>0)
467                 // ^(*(...,x;c1),c2) -> *(^(*(...,x;-1),c2),(-c1)^c2)  (c1, c2 numeric(), c1<0)
468                 if (is_exactly_a<mul>(ebasis)) {
469                         GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above
470                         const mul & mulref = ex_to<mul>(ebasis);
471                         if (!mulref.overall_coeff.is_equal(_ex1)) {
472                                 const numeric & num_coeff = ex_to<numeric>(mulref.overall_coeff);
473                                 if (num_coeff.is_real()) {
474                                         if (num_coeff.is_positive()) {
475                                                 mul *mulp = new mul(mulref);
476                                                 mulp->overall_coeff = _ex1;
477                                                 mulp->clearflag(status_flags::evaluated);
478                                                 mulp->clearflag(status_flags::hash_calculated);
479                                                 return (new mul(power(*mulp,exponent),
480                                                                 power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated);
481                                         } else {
482                                                 GINAC_ASSERT(num_coeff.compare(*_num0_p)<0);
483                                                 if (!num_coeff.is_equal(*_num_1_p)) {
484                                                         mul *mulp = new mul(mulref);
485                                                         mulp->overall_coeff = _ex_1;
486                                                         mulp->clearflag(status_flags::evaluated);
487                                                         mulp->clearflag(status_flags::hash_calculated);
488                                                         return (new mul(power(*mulp,exponent),
489                                                                         power(abs(num_coeff),*num_exponent)))->setflag(status_flags::dynallocated);
490                                                 }
491                                         }
492                                 }
493                         }
494                 }
495
496                 // ^(nc,c1) -> ncmul(nc,nc,...) (c1 positive integer, unless nc is a matrix)
497                 if (num_exponent->is_pos_integer() &&
498                     ebasis.return_type() != return_types::commutative &&
499                     !is_a<matrix>(ebasis)) {
500                         return ncmul(exvector(num_exponent->to_int(), ebasis), true);
501                 }
502         }
503         
504         if (are_ex_trivially_equal(ebasis,basis) &&
505             are_ex_trivially_equal(eexponent,exponent)) {
506                 return this->hold();
507         }
508         return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated |
509                                                        status_flags::evaluated);
510 }
511
512 ex power::evalf(int level) const
513 {
514         ex ebasis;
515         ex eexponent;
516         
517         if (level==1) {
518                 ebasis = basis;
519                 eexponent = exponent;
520         } else if (level == -max_recursion_level) {
521                 throw(std::runtime_error("max recursion level reached"));
522         } else {
523                 ebasis = basis.evalf(level-1);
524                 if (!is_exactly_a<numeric>(exponent))
525                         eexponent = exponent.evalf(level-1);
526                 else
527                         eexponent = exponent;
528         }
529
530         return power(ebasis,eexponent);
531 }
532
533 ex power::evalm() const
534 {
535         const ex ebasis = basis.evalm();
536         const ex eexponent = exponent.evalm();
537         if (is_a<matrix>(ebasis)) {
538                 if (is_exactly_a<numeric>(eexponent)) {
539                         return (new matrix(ex_to<matrix>(ebasis).pow(eexponent)))->setflag(status_flags::dynallocated);
540                 }
541         }
542         return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated);
543 }
544
545 // from mul.cpp
546 extern bool tryfactsubs(const ex &, const ex &, int &, lst &);
547
548 ex power::subs(const exmap & m, unsigned options) const
549 {       
550         const ex &subsed_basis = basis.subs(m, options);
551         const ex &subsed_exponent = exponent.subs(m, options);
552
553         if (!are_ex_trivially_equal(basis, subsed_basis)
554          || !are_ex_trivially_equal(exponent, subsed_exponent)) 
555                 return power(subsed_basis, subsed_exponent).subs_one_level(m, options);
556
557         if (!(options & subs_options::algebraic))
558                 return subs_one_level(m, options);
559
560         for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) {
561                 int nummatches = std::numeric_limits<int>::max();
562                 lst repls;
563                 if (tryfactsubs(*this, it->first, nummatches, repls))
564                         return (ex_to<basic>((*this) * power(it->second.subs(ex(repls), subs_options::no_pattern) / it->first.subs(ex(repls), subs_options::no_pattern), nummatches))).subs_one_level(m, options);
565         }
566
567         return subs_one_level(m, options);
568 }
569
570 ex power::eval_ncmul(const exvector & v) const
571 {
572         return inherited::eval_ncmul(v);
573 }
574
575 ex power::conjugate() const
576 {
577         ex newbasis = basis.conjugate();
578         ex newexponent = exponent.conjugate();
579         if (are_ex_trivially_equal(basis, newbasis) && are_ex_trivially_equal(exponent, newexponent)) {
580                 return *this;
581         }
582         return (new power(newbasis, newexponent))->setflag(status_flags::dynallocated);
583 }
584
585 // protected
586
587 /** Implementation of ex::diff() for a power.
588  *  @see ex::diff */
589 ex power::derivative(const symbol & s) const
590 {
591         if (is_a<numeric>(exponent)) {
592                 // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
593                 epvector newseq;
594                 newseq.reserve(2);
595                 newseq.push_back(expair(basis, exponent - _ex1));
596                 newseq.push_back(expair(basis.diff(s), _ex1));
597                 return mul(newseq, exponent);
598         } else {
599                 // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b)
600                 return mul(*this,
601                            add(mul(exponent.diff(s), log(basis)),
602                            mul(mul(exponent, basis.diff(s)), power(basis, _ex_1))));
603         }
604 }
605
606 int power::compare_same_type(const basic & other) const
607 {
608         GINAC_ASSERT(is_exactly_a<power>(other));
609         const power &o = static_cast<const power &>(other);
610
611         int cmpval = basis.compare(o.basis);
612         if (cmpval)
613                 return cmpval;
614         else
615                 return exponent.compare(o.exponent);
616 }
617
618 unsigned power::return_type() const
619 {
620         return basis.return_type();
621 }
622    
623 unsigned power::return_type_tinfo() const
624 {
625         return basis.return_type_tinfo();
626 }
627
628 ex power::expand(unsigned options) const
629 {
630         if (options == 0 && (flags & status_flags::expanded))
631                 return *this;
632         
633         const ex expanded_basis = basis.expand(options);
634         const ex expanded_exponent = exponent.expand(options);
635         
636         // x^(a+b) -> x^a * x^b
637         if (is_exactly_a<add>(expanded_exponent)) {
638                 const add &a = ex_to<add>(expanded_exponent);
639                 exvector distrseq;
640                 distrseq.reserve(a.seq.size() + 1);
641                 epvector::const_iterator last = a.seq.end();
642                 epvector::const_iterator cit = a.seq.begin();
643                 while (cit!=last) {
644                         distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(*cit)));
645                         ++cit;
646                 }
647                 
648                 // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor
649                 if (ex_to<numeric>(a.overall_coeff).is_integer()) {
650                         const numeric &num_exponent = ex_to<numeric>(a.overall_coeff);
651                         int int_exponent = num_exponent.to_int();
652                         if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
653                                 distrseq.push_back(expand_add(ex_to<add>(expanded_basis), int_exponent, options));
654                         else
655                                 distrseq.push_back(power(expanded_basis, a.overall_coeff));
656                 } else
657                         distrseq.push_back(power(expanded_basis, a.overall_coeff));
658                 
659                 // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
660                 ex r = (new mul(distrseq))->setflag(status_flags::dynallocated);
661                 return r.expand(options);
662         }
663         
664         if (!is_exactly_a<numeric>(expanded_exponent) ||
665                 !ex_to<numeric>(expanded_exponent).is_integer()) {
666                 if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) {
667                         return this->hold();
668                 } else {
669                         return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
670                 }
671         }
672         
673         // integer numeric exponent
674         const numeric & num_exponent = ex_to<numeric>(expanded_exponent);
675         int int_exponent = num_exponent.to_int();
676         
677         // (x+y)^n, n>0
678         if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
679                 return expand_add(ex_to<add>(expanded_basis), int_exponent, options);
680         
681         // (x*y)^n -> x^n * y^n
682         if (is_exactly_a<mul>(expanded_basis))
683                 return expand_mul(ex_to<mul>(expanded_basis), num_exponent, options, true);
684         
685         // cannot expand further
686         if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent))
687                 return this->hold();
688         else
689                 return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
690 }
691
692 //////////
693 // new virtual functions which can be overridden by derived classes
694 //////////
695
696 // none
697
698 //////////
699 // non-virtual functions in this class
700 //////////
701
702 /** expand a^n where a is an add and n is a positive integer.
703  *  @see power::expand */
704 ex power::expand_add(const add & a, int n, unsigned options) const
705 {
706         if (n==2)
707                 return expand_add_2(a, options);
708
709         const size_t m = a.nops();
710         exvector result;
711         // The number of terms will be the number of combinatorial compositions,
712         // i.e. the number of unordered arrangements of m nonnegative integers
713         // which sum up to n.  It is frequently written as C_n(m) and directly
714         // related with binomial coefficients:
715         result.reserve(binomial(numeric(n+m-1), numeric(m-1)).to_int());
716         intvector k(m-1);
717         intvector k_cum(m-1); // k_cum[l]:=sum(i=0,l,k[l]);
718         intvector upper_limit(m-1);
719         int l;
720
721         for (size_t l=0; l<m-1; ++l) {
722                 k[l] = 0;
723                 k_cum[l] = 0;
724                 upper_limit[l] = n;
725         }
726
727         while (true) {
728                 exvector term;
729                 term.reserve(m+1);
730                 for (l=0; l<m-1; ++l) {
731                         const ex & b = a.op(l);
732                         GINAC_ASSERT(!is_exactly_a<add>(b));
733                         GINAC_ASSERT(!is_exactly_a<power>(b) ||
734                                      !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
735                                      !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
736                                      !is_exactly_a<add>(ex_to<power>(b).basis) ||
737                                      !is_exactly_a<mul>(ex_to<power>(b).basis) ||
738                                      !is_exactly_a<power>(ex_to<power>(b).basis));
739                         if (is_exactly_a<mul>(b))
740                                 term.push_back(expand_mul(ex_to<mul>(b), numeric(k[l]), options, true));
741                         else
742                                 term.push_back(power(b,k[l]));
743                 }
744
745                 const ex & b = a.op(l);
746                 GINAC_ASSERT(!is_exactly_a<add>(b));
747                 GINAC_ASSERT(!is_exactly_a<power>(b) ||
748                              !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
749                              !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
750                              !is_exactly_a<add>(ex_to<power>(b).basis) ||
751                              !is_exactly_a<mul>(ex_to<power>(b).basis) ||
752                              !is_exactly_a<power>(ex_to<power>(b).basis));
753                 if (is_exactly_a<mul>(b))
754                         term.push_back(expand_mul(ex_to<mul>(b), numeric(n-k_cum[m-2]), options, true));
755                 else
756                         term.push_back(power(b,n-k_cum[m-2]));
757
758                 numeric f = binomial(numeric(n),numeric(k[0]));
759                 for (l=1; l<m-1; ++l)
760                         f *= binomial(numeric(n-k_cum[l-1]),numeric(k[l]));
761
762                 term.push_back(f);
763
764                 result.push_back(ex((new mul(term))->setflag(status_flags::dynallocated)).expand(options));
765
766                 // increment k[]
767                 l = m-2;
768                 while ((l>=0) && ((++k[l])>upper_limit[l])) {
769                         k[l] = 0;
770                         --l;
771                 }
772                 if (l<0) break;
773
774                 // recalc k_cum[] and upper_limit[]
775                 k_cum[l] = (l==0 ? k[0] : k_cum[l-1]+k[l]);
776
777                 for (size_t i=l+1; i<m-1; ++i)
778                         k_cum[i] = k_cum[i-1]+k[i];
779
780                 for (size_t i=l+1; i<m-1; ++i)
781                         upper_limit[i] = n-k_cum[i-1];
782         }
783
784         return (new add(result))->setflag(status_flags::dynallocated |
785                                           status_flags::expanded);
786 }
787
788
789 /** Special case of power::expand_add. Expands a^2 where a is an add.
790  *  @see power::expand_add */
791 ex power::expand_add_2(const add & a, unsigned options) const
792 {
793         epvector sum;
794         size_t a_nops = a.nops();
795         sum.reserve((a_nops*(a_nops+1))/2);
796         epvector::const_iterator last = a.seq.end();
797
798         // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c
799         // first part: ignore overall_coeff and expand other terms
800         for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) {
801                 const ex & r = cit0->rest;
802                 const ex & c = cit0->coeff;
803                 
804                 GINAC_ASSERT(!is_exactly_a<add>(r));
805                 GINAC_ASSERT(!is_exactly_a<power>(r) ||
806                              !is_exactly_a<numeric>(ex_to<power>(r).exponent) ||
807                              !ex_to<numeric>(ex_to<power>(r).exponent).is_pos_integer() ||
808                              !is_exactly_a<add>(ex_to<power>(r).basis) ||
809                              !is_exactly_a<mul>(ex_to<power>(r).basis) ||
810                              !is_exactly_a<power>(ex_to<power>(r).basis));
811                 
812                 if (c.is_equal(_ex1)) {
813                         if (is_exactly_a<mul>(r)) {
814                                 sum.push_back(expair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
815                                                      _ex1));
816                         } else {
817                                 sum.push_back(expair((new power(r,_ex2))->setflag(status_flags::dynallocated),
818                                                      _ex1));
819                         }
820                 } else {
821                         if (is_exactly_a<mul>(r)) {
822                                 sum.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
823                                                      ex_to<numeric>(c).power_dyn(*_num2_p)));
824                         } else {
825                                 sum.push_back(a.combine_ex_with_coeff_to_pair((new power(r,_ex2))->setflag(status_flags::dynallocated),
826                                                      ex_to<numeric>(c).power_dyn(*_num2_p)));
827                         }
828                 }
829
830                 for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) {
831                         const ex & r1 = cit1->rest;
832                         const ex & c1 = cit1->coeff;
833                         sum.push_back(a.combine_ex_with_coeff_to_pair((new mul(r,r1))->setflag(status_flags::dynallocated),
834                                                                       _num2_p->mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
835                 }
836         }
837         
838         GINAC_ASSERT(sum.size()==(a.seq.size()*(a.seq.size()+1))/2);
839         
840         // second part: add terms coming from overall_factor (if != 0)
841         if (!a.overall_coeff.is_zero()) {
842                 epvector::const_iterator i = a.seq.begin(), end = a.seq.end();
843                 while (i != end) {
844                         sum.push_back(a.combine_pair_with_coeff_to_pair(*i, ex_to<numeric>(a.overall_coeff).mul_dyn(*_num2_p)));
845                         ++i;
846                 }
847                 sum.push_back(expair(ex_to<numeric>(a.overall_coeff).power_dyn(*_num2_p),_ex1));
848         }
849         
850         GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2);
851         
852         return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded);
853 }
854
855 /** Expand factors of m in m^n where m is a mul and n is and integer.
856  *  @see power::expand */
857 ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool from_expand) const
858 {
859         GINAC_ASSERT(n.is_integer());
860
861         if (n.is_zero()) {
862                 return _ex1;
863         }
864
865         // Leave it to multiplication since dummy indices have to be renamed
866         if (get_all_dummy_indices(m).size() > 0 && n.is_positive()) {
867                 ex result = m;
868                 for (int i=1; i < n.to_int(); i++)
869                         result *= rename_dummy_indices_uniquely(m,m);
870                 return result;
871         }
872
873         epvector distrseq;
874         distrseq.reserve(m.seq.size());
875         bool need_reexpand = false;
876
877         epvector::const_iterator last = m.seq.end();
878         epvector::const_iterator cit = m.seq.begin();
879         while (cit!=last) {
880                 expair p = m.combine_pair_with_coeff_to_pair(*cit, n);
881                 if (from_expand && is_exactly_a<add>(cit->rest) && ex_to<numeric>(p.coeff).is_pos_integer()) {
882                         // this happens when e.g. (a+b)^(1/2) gets squared and
883                         // the resulting product needs to be reexpanded
884                         need_reexpand = true;
885                 }
886                 distrseq.push_back(p);
887                 ++cit;
888         }
889
890         const mul & result = static_cast<const mul &>((new mul(distrseq, ex_to<numeric>(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated));
891         if (need_reexpand)
892                 return ex(result).expand(options);
893         if (from_expand)
894                 return result.setflag(status_flags::expanded);
895         return result;
896 }
897
898 } // namespace GiNaC