3 * Implementation of GiNaC's symbolic exponentiation (basis^exponent). */
6 * GiNaC Copyright (C) 1999-2005 Johannes Gutenberg University Mainz, Germany
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
29 #include "expairseq.h"
35 #include "operators.h"
36 #include "inifcns.h" // for log() in power::derivative()
46 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(power, basic,
47 print_func<print_dflt>(&power::do_print_dflt).
48 print_func<print_latex>(&power::do_print_latex).
49 print_func<print_csrc>(&power::do_print_csrc).
50 print_func<print_python>(&power::do_print_python).
51 print_func<print_python_repr>(&power::do_print_python_repr))
53 typedef std::vector<int> intvector;
56 // default constructor
59 power::power() : inherited(TINFO_power) { }
71 power::power(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst)
73 n.find_ex("basis", basis, sym_lst);
74 n.find_ex("exponent", exponent, sym_lst);
77 void power::archive(archive_node &n) const
79 inherited::archive(n);
80 n.add_ex("basis", basis);
81 n.add_ex("exponent", exponent);
84 DEFAULT_UNARCHIVE(power)
87 // functions overriding virtual functions from base classes
92 void power::print_power(const print_context & c, const char *powersymbol, const char *openbrace, const char *closebrace, unsigned level) const
94 // Ordinary output of powers using '^' or '**'
95 if (precedence() <= level)
96 c.s << openbrace << '(';
97 basis.print(c, precedence());
100 exponent.print(c, precedence());
102 if (precedence() <= level)
103 c.s << ')' << closebrace;
106 void power::do_print_dflt(const print_dflt & c, unsigned level) const
108 if (exponent.is_equal(_ex1_2)) {
110 // Square roots are printed in a special way
116 print_power(c, "^", "", "", level);
119 void power::do_print_latex(const print_latex & c, unsigned level) const
121 if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_negative()) {
123 // Powers with negative numeric exponents are printed as fractions
125 power(basis, -exponent).eval().print(c);
128 } else if (exponent.is_equal(_ex1_2)) {
130 // Square roots are printed in a special way
136 print_power(c, "^", "{", "}", level);
139 static void print_sym_pow(const print_context & c, const symbol &x, int exp)
141 // Optimal output of integer powers of symbols to aid compiler CSE.
142 // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15
143 // to learn why such a parenthesation is really necessary.
146 } else if (exp == 2) {
150 } else if (exp & 1) {
153 print_sym_pow(c, x, exp-1);
156 print_sym_pow(c, x, exp >> 1);
158 print_sym_pow(c, x, exp >> 1);
163 void power::do_print_csrc(const print_csrc & c, unsigned level) const
165 // Integer powers of symbols are printed in a special, optimized way
166 if (exponent.info(info_flags::integer)
167 && (is_a<symbol>(basis) || is_a<constant>(basis))) {
168 int exp = ex_to<numeric>(exponent).to_int();
173 if (is_a<print_csrc_cl_N>(c))
178 print_sym_pow(c, ex_to<symbol>(basis), exp);
181 // <expr>^-1 is printed as "1.0/<expr>" or with the recip() function of CLN
182 } else if (exponent.is_equal(_ex_1)) {
183 if (is_a<print_csrc_cl_N>(c))
190 // Otherwise, use the pow() or expt() (CLN) functions
192 if (is_a<print_csrc_cl_N>(c))
203 void power::do_print_python(const print_python & c, unsigned level) const
205 print_power(c, "**", "", "", level);
208 void power::do_print_python_repr(const print_python_repr & c, unsigned level) const
210 c.s << class_name() << '(';
217 bool power::info(unsigned inf) const
220 case info_flags::polynomial:
221 case info_flags::integer_polynomial:
222 case info_flags::cinteger_polynomial:
223 case info_flags::rational_polynomial:
224 case info_flags::crational_polynomial:
225 return exponent.info(info_flags::nonnegint) &&
227 case info_flags::rational_function:
228 return exponent.info(info_flags::integer) &&
230 case info_flags::algebraic:
231 return !exponent.info(info_flags::integer) ||
234 return inherited::info(inf);
237 size_t power::nops() const
242 ex power::op(size_t i) const
246 return i==0 ? basis : exponent;
249 ex power::map(map_function & f) const
251 const ex &mapped_basis = f(basis);
252 const ex &mapped_exponent = f(exponent);
254 if (!are_ex_trivially_equal(basis, mapped_basis)
255 || !are_ex_trivially_equal(exponent, mapped_exponent))
256 return (new power(mapped_basis, mapped_exponent))->setflag(status_flags::dynallocated);
261 int power::degree(const ex & s) const
263 if (is_equal(ex_to<basic>(s)))
265 else if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
266 if (basis.is_equal(s))
267 return ex_to<numeric>(exponent).to_int();
269 return basis.degree(s) * ex_to<numeric>(exponent).to_int();
270 } else if (basis.has(s))
271 throw(std::runtime_error("power::degree(): undefined degree because of non-integer exponent"));
276 int power::ldegree(const ex & s) const
278 if (is_equal(ex_to<basic>(s)))
280 else if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
281 if (basis.is_equal(s))
282 return ex_to<numeric>(exponent).to_int();
284 return basis.ldegree(s) * ex_to<numeric>(exponent).to_int();
285 } else if (basis.has(s))
286 throw(std::runtime_error("power::ldegree(): undefined degree because of non-integer exponent"));
291 ex power::coeff(const ex & s, int n) const
293 if (is_equal(ex_to<basic>(s)))
294 return n==1 ? _ex1 : _ex0;
295 else if (!basis.is_equal(s)) {
296 // basis not equal to s
303 if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
305 int int_exp = ex_to<numeric>(exponent).to_int();
311 // non-integer exponents are treated as zero
320 /** Perform automatic term rewriting rules in this class. In the following
321 * x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2...
322 * stand for such expressions that contain a plain number.
323 * - ^(x,0) -> 1 (also handles ^(0,0))
325 * - ^(0,c) -> 0 or exception (depending on the real part of c)
327 * - ^(c1,c2) -> *(c1^n,c1^(c2-n)) (so that 0<(c2-n)<1, try to evaluate roots, possibly in numerator and denominator of c1)
328 * - ^(^(x,c1),c2) -> ^(x,c1*c2) (c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
329 * - ^(*(x,y,z),c) -> *(x^c,y^c,z^c) (if c integer)
330 * - ^(*(x,c1),c2) -> ^(x,c2)*c1^c2 (c1>0)
331 * - ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2 (c1<0)
333 * @param level cut-off in recursive evaluation */
334 ex power::eval(int level) const
336 if ((level==1) && (flags & status_flags::evaluated))
338 else if (level == -max_recursion_level)
339 throw(std::runtime_error("max recursion level reached"));
341 const ex & ebasis = level==1 ? basis : basis.eval(level-1);
342 const ex & eexponent = level==1 ? exponent : exponent.eval(level-1);
344 bool basis_is_numerical = false;
345 bool exponent_is_numerical = false;
346 const numeric *num_basis;
347 const numeric *num_exponent;
349 if (is_exactly_a<numeric>(ebasis)) {
350 basis_is_numerical = true;
351 num_basis = &ex_to<numeric>(ebasis);
353 if (is_exactly_a<numeric>(eexponent)) {
354 exponent_is_numerical = true;
355 num_exponent = &ex_to<numeric>(eexponent);
358 // ^(x,0) -> 1 (0^0 also handled here)
359 if (eexponent.is_zero()) {
360 if (ebasis.is_zero())
361 throw (std::domain_error("power::eval(): pow(0,0) is undefined"));
367 if (eexponent.is_equal(_ex1))
370 // ^(0,c1) -> 0 or exception (depending on real value of c1)
371 if (ebasis.is_zero() && exponent_is_numerical) {
372 if ((num_exponent->real()).is_zero())
373 throw (std::domain_error("power::eval(): pow(0,I) is undefined"));
374 else if ((num_exponent->real()).is_negative())
375 throw (pole_error("power::eval(): division by zero",1));
381 if (ebasis.is_equal(_ex1))
384 if (exponent_is_numerical) {
386 // ^(c1,c2) -> c1^c2 (c1, c2 numeric(),
387 // except if c1,c2 are rational, but c1^c2 is not)
388 if (basis_is_numerical) {
389 const bool basis_is_crational = num_basis->is_crational();
390 const bool exponent_is_crational = num_exponent->is_crational();
391 if (!basis_is_crational || !exponent_is_crational) {
392 // return a plain float
393 return (new numeric(num_basis->power(*num_exponent)))->setflag(status_flags::dynallocated |
394 status_flags::evaluated |
395 status_flags::expanded);
398 const numeric res = num_basis->power(*num_exponent);
399 if (res.is_crational()) {
402 GINAC_ASSERT(!num_exponent->is_integer()); // has been handled by now
404 // ^(c1,n/m) -> *(c1^q,c1^(n/m-q)), 0<(n/m-q)<1, q integer
405 if (basis_is_crational && exponent_is_crational
406 && num_exponent->is_real()
407 && !num_exponent->is_integer()) {
408 const numeric n = num_exponent->numer();
409 const numeric m = num_exponent->denom();
411 numeric q = iquo(n, m, r);
412 if (r.is_negative()) {
416 if (q.is_zero()) { // the exponent was in the allowed range 0<(n/m)<1
417 if (num_basis->is_rational() && !num_basis->is_integer()) {
418 // try it for numerator and denominator separately, in order to
419 // partially simplify things like (5/8)^(1/3) -> 1/2*5^(1/3)
420 const numeric bnum = num_basis->numer();
421 const numeric bden = num_basis->denom();
422 const numeric res_bnum = bnum.power(*num_exponent);
423 const numeric res_bden = bden.power(*num_exponent);
424 if (res_bnum.is_integer())
425 return (new mul(power(bden,-*num_exponent),res_bnum))->setflag(status_flags::dynallocated | status_flags::evaluated);
426 if (res_bden.is_integer())
427 return (new mul(power(bnum,*num_exponent),res_bden.inverse()))->setflag(status_flags::dynallocated | status_flags::evaluated);
431 // assemble resulting product, but allowing for a re-evaluation,
432 // because otherwise we'll end up with something like
433 // (7/8)^(4/3) -> 7/8*(1/2*7^(1/3))
434 // instead of 7/16*7^(1/3).
435 ex prod = power(*num_basis,r.div(m));
436 return prod*power(*num_basis,q);
441 // ^(^(x,c1),c2) -> ^(x,c1*c2)
442 // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1,
443 // case c1==1 should not happen, see below!)
444 if (is_exactly_a<power>(ebasis)) {
445 const power & sub_power = ex_to<power>(ebasis);
446 const ex & sub_basis = sub_power.basis;
447 const ex & sub_exponent = sub_power.exponent;
448 if (is_exactly_a<numeric>(sub_exponent)) {
449 const numeric & num_sub_exponent = ex_to<numeric>(sub_exponent);
450 GINAC_ASSERT(num_sub_exponent!=numeric(1));
451 if (num_exponent->is_integer() || (abs(num_sub_exponent) - (*_num1_p)).is_negative())
452 return power(sub_basis,num_sub_exponent.mul(*num_exponent));
456 // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
457 if (num_exponent->is_integer() && is_exactly_a<mul>(ebasis)) {
458 return expand_mul(ex_to<mul>(ebasis), *num_exponent, 0);
461 // ^(*(...,x;c1),c2) -> *(^(*(...,x;1),c2),c1^c2) (c1, c2 numeric(), c1>0)
462 // ^(*(...,x;c1),c2) -> *(^(*(...,x;-1),c2),(-c1)^c2) (c1, c2 numeric(), c1<0)
463 if (is_exactly_a<mul>(ebasis)) {
464 GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above
465 const mul & mulref = ex_to<mul>(ebasis);
466 if (!mulref.overall_coeff.is_equal(_ex1)) {
467 const numeric & num_coeff = ex_to<numeric>(mulref.overall_coeff);
468 if (num_coeff.is_real()) {
469 if (num_coeff.is_positive()) {
470 mul *mulp = new mul(mulref);
471 mulp->overall_coeff = _ex1;
472 mulp->clearflag(status_flags::evaluated);
473 mulp->clearflag(status_flags::hash_calculated);
474 return (new mul(power(*mulp,exponent),
475 power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated);
477 GINAC_ASSERT(num_coeff.compare(*_num0_p)<0);
478 if (!num_coeff.is_equal(*_num_1_p)) {
479 mul *mulp = new mul(mulref);
480 mulp->overall_coeff = _ex_1;
481 mulp->clearflag(status_flags::evaluated);
482 mulp->clearflag(status_flags::hash_calculated);
483 return (new mul(power(*mulp,exponent),
484 power(abs(num_coeff),*num_exponent)))->setflag(status_flags::dynallocated);
491 // ^(nc,c1) -> ncmul(nc,nc,...) (c1 positive integer, unless nc is a matrix)
492 if (num_exponent->is_pos_integer() &&
493 ebasis.return_type() != return_types::commutative &&
494 !is_a<matrix>(ebasis)) {
495 return ncmul(exvector(num_exponent->to_int(), ebasis), true);
499 if (are_ex_trivially_equal(ebasis,basis) &&
500 are_ex_trivially_equal(eexponent,exponent)) {
503 return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated |
504 status_flags::evaluated);
507 ex power::evalf(int level) const
514 eexponent = exponent;
515 } else if (level == -max_recursion_level) {
516 throw(std::runtime_error("max recursion level reached"));
518 ebasis = basis.evalf(level-1);
519 if (!is_exactly_a<numeric>(exponent))
520 eexponent = exponent.evalf(level-1);
522 eexponent = exponent;
525 return power(ebasis,eexponent);
528 ex power::evalm() const
530 const ex ebasis = basis.evalm();
531 const ex eexponent = exponent.evalm();
532 if (is_a<matrix>(ebasis)) {
533 if (is_exactly_a<numeric>(eexponent)) {
534 return (new matrix(ex_to<matrix>(ebasis).pow(eexponent)))->setflag(status_flags::dynallocated);
537 return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated);
541 extern bool tryfactsubs(const ex &, const ex &, int &, lst &);
543 ex power::subs(const exmap & m, unsigned options) const
545 const ex &subsed_basis = basis.subs(m, options);
546 const ex &subsed_exponent = exponent.subs(m, options);
548 if (!are_ex_trivially_equal(basis, subsed_basis)
549 || !are_ex_trivially_equal(exponent, subsed_exponent))
550 return power(subsed_basis, subsed_exponent).subs_one_level(m, options);
552 if (!(options & subs_options::algebraic))
553 return subs_one_level(m, options);
555 for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) {
556 int nummatches = std::numeric_limits<int>::max();
558 if (tryfactsubs(*this, it->first, nummatches, repls))
559 return (ex_to<basic>((*this) * power(it->second.subs(ex(repls), subs_options::no_pattern) / it->first.subs(ex(repls), subs_options::no_pattern), nummatches))).subs_one_level(m, options);
562 return subs_one_level(m, options);
565 ex power::eval_ncmul(const exvector & v) const
567 return inherited::eval_ncmul(v);
570 ex power::conjugate() const
572 ex newbasis = basis.conjugate();
573 ex newexponent = exponent.conjugate();
574 if (are_ex_trivially_equal(basis, newbasis) && are_ex_trivially_equal(exponent, newexponent)) {
577 return (new power(newbasis, newexponent))->setflag(status_flags::dynallocated);
582 /** Implementation of ex::diff() for a power.
584 ex power::derivative(const symbol & s) const
586 if (exponent.info(info_flags::real)) {
587 // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
590 newseq.push_back(expair(basis, exponent - _ex1));
591 newseq.push_back(expair(basis.diff(s), _ex1));
592 return mul(newseq, exponent);
594 // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b)
596 add(mul(exponent.diff(s), log(basis)),
597 mul(mul(exponent, basis.diff(s)), power(basis, _ex_1))));
601 int power::compare_same_type(const basic & other) const
603 GINAC_ASSERT(is_exactly_a<power>(other));
604 const power &o = static_cast<const power &>(other);
606 int cmpval = basis.compare(o.basis);
610 return exponent.compare(o.exponent);
613 unsigned power::return_type() const
615 return basis.return_type();
618 unsigned power::return_type_tinfo() const
620 return basis.return_type_tinfo();
623 ex power::expand(unsigned options) const
625 if (options == 0 && (flags & status_flags::expanded))
628 const ex expanded_basis = basis.expand(options);
629 const ex expanded_exponent = exponent.expand(options);
631 // x^(a+b) -> x^a * x^b
632 if (is_exactly_a<add>(expanded_exponent)) {
633 const add &a = ex_to<add>(expanded_exponent);
635 distrseq.reserve(a.seq.size() + 1);
636 epvector::const_iterator last = a.seq.end();
637 epvector::const_iterator cit = a.seq.begin();
639 distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(*cit)));
643 // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor
644 if (ex_to<numeric>(a.overall_coeff).is_integer()) {
645 const numeric &num_exponent = ex_to<numeric>(a.overall_coeff);
646 int int_exponent = num_exponent.to_int();
647 if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
648 distrseq.push_back(expand_add(ex_to<add>(expanded_basis), int_exponent, options));
650 distrseq.push_back(power(expanded_basis, a.overall_coeff));
652 distrseq.push_back(power(expanded_basis, a.overall_coeff));
654 // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
655 ex r = (new mul(distrseq))->setflag(status_flags::dynallocated);
656 return r.expand(options);
659 if (!is_exactly_a<numeric>(expanded_exponent) ||
660 !ex_to<numeric>(expanded_exponent).is_integer()) {
661 if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) {
664 return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
668 // integer numeric exponent
669 const numeric & num_exponent = ex_to<numeric>(expanded_exponent);
670 int int_exponent = num_exponent.to_int();
673 if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
674 return expand_add(ex_to<add>(expanded_basis), int_exponent, options);
676 // (x*y)^n -> x^n * y^n
677 if (is_exactly_a<mul>(expanded_basis))
678 return expand_mul(ex_to<mul>(expanded_basis), num_exponent, options, true);
680 // cannot expand further
681 if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent))
684 return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
688 // new virtual functions which can be overridden by derived classes
694 // non-virtual functions in this class
697 /** expand a^n where a is an add and n is a positive integer.
698 * @see power::expand */
699 ex power::expand_add(const add & a, int n, unsigned options) const
702 return expand_add_2(a, options);
704 const size_t m = a.nops();
706 // The number of terms will be the number of combinatorial compositions,
707 // i.e. the number of unordered arrangement of m nonnegative integers
708 // which sum up to n. It is frequently written as C_n(m) and directly
709 // related with binomial coefficients:
710 result.reserve(binomial(numeric(n+m-1), numeric(m-1)).to_int());
712 intvector k_cum(m-1); // k_cum[l]:=sum(i=0,l,k[l]);
713 intvector upper_limit(m-1);
716 for (size_t l=0; l<m-1; ++l) {
725 for (l=0; l<m-1; ++l) {
726 const ex & b = a.op(l);
727 GINAC_ASSERT(!is_exactly_a<add>(b));
728 GINAC_ASSERT(!is_exactly_a<power>(b) ||
729 !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
730 !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
731 !is_exactly_a<add>(ex_to<power>(b).basis) ||
732 !is_exactly_a<mul>(ex_to<power>(b).basis) ||
733 !is_exactly_a<power>(ex_to<power>(b).basis));
734 if (is_exactly_a<mul>(b))
735 term.push_back(expand_mul(ex_to<mul>(b), numeric(k[l]), options, true));
737 term.push_back(power(b,k[l]));
740 const ex & b = a.op(l);
741 GINAC_ASSERT(!is_exactly_a<add>(b));
742 GINAC_ASSERT(!is_exactly_a<power>(b) ||
743 !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
744 !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
745 !is_exactly_a<add>(ex_to<power>(b).basis) ||
746 !is_exactly_a<mul>(ex_to<power>(b).basis) ||
747 !is_exactly_a<power>(ex_to<power>(b).basis));
748 if (is_exactly_a<mul>(b))
749 term.push_back(expand_mul(ex_to<mul>(b), numeric(n-k_cum[m-2]), options, true));
751 term.push_back(power(b,n-k_cum[m-2]));
753 numeric f = binomial(numeric(n),numeric(k[0]));
754 for (l=1; l<m-1; ++l)
755 f *= binomial(numeric(n-k_cum[l-1]),numeric(k[l]));
759 result.push_back(ex((new mul(term))->setflag(status_flags::dynallocated)).expand(options));
763 while ((l>=0) && ((++k[l])>upper_limit[l])) {
769 // recalc k_cum[] and upper_limit[]
770 k_cum[l] = (l==0 ? k[0] : k_cum[l-1]+k[l]);
772 for (size_t i=l+1; i<m-1; ++i)
773 k_cum[i] = k_cum[i-1]+k[i];
775 for (size_t i=l+1; i<m-1; ++i)
776 upper_limit[i] = n-k_cum[i-1];
779 return (new add(result))->setflag(status_flags::dynallocated |
780 status_flags::expanded);
784 /** Special case of power::expand_add. Expands a^2 where a is an add.
785 * @see power::expand_add */
786 ex power::expand_add_2(const add & a, unsigned options) const
789 size_t a_nops = a.nops();
790 sum.reserve((a_nops*(a_nops+1))/2);
791 epvector::const_iterator last = a.seq.end();
793 // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c
794 // first part: ignore overall_coeff and expand other terms
795 for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) {
796 const ex & r = cit0->rest;
797 const ex & c = cit0->coeff;
799 GINAC_ASSERT(!is_exactly_a<add>(r));
800 GINAC_ASSERT(!is_exactly_a<power>(r) ||
801 !is_exactly_a<numeric>(ex_to<power>(r).exponent) ||
802 !ex_to<numeric>(ex_to<power>(r).exponent).is_pos_integer() ||
803 !is_exactly_a<add>(ex_to<power>(r).basis) ||
804 !is_exactly_a<mul>(ex_to<power>(r).basis) ||
805 !is_exactly_a<power>(ex_to<power>(r).basis));
807 if (c.is_equal(_ex1)) {
808 if (is_exactly_a<mul>(r)) {
809 sum.push_back(expair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
812 sum.push_back(expair((new power(r,_ex2))->setflag(status_flags::dynallocated),
816 if (is_exactly_a<mul>(r)) {
817 sum.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
818 ex_to<numeric>(c).power_dyn(*_num2_p)));
820 sum.push_back(a.combine_ex_with_coeff_to_pair((new power(r,_ex2))->setflag(status_flags::dynallocated),
821 ex_to<numeric>(c).power_dyn(*_num2_p)));
825 for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) {
826 const ex & r1 = cit1->rest;
827 const ex & c1 = cit1->coeff;
828 sum.push_back(a.combine_ex_with_coeff_to_pair((new mul(r,r1))->setflag(status_flags::dynallocated),
829 _num2_p->mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
833 GINAC_ASSERT(sum.size()==(a.seq.size()*(a.seq.size()+1))/2);
835 // second part: add terms coming from overall_factor (if != 0)
836 if (!a.overall_coeff.is_zero()) {
837 epvector::const_iterator i = a.seq.begin(), end = a.seq.end();
839 sum.push_back(a.combine_pair_with_coeff_to_pair(*i, ex_to<numeric>(a.overall_coeff).mul_dyn(*_num2_p)));
842 sum.push_back(expair(ex_to<numeric>(a.overall_coeff).power_dyn(*_num2_p),_ex1));
845 GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2);
847 return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded);
850 /** Expand factors of m in m^n where m is a mul and n is and integer.
851 * @see power::expand */
852 ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool from_expand) const
854 GINAC_ASSERT(n.is_integer());
860 // Leave it to multiplication since dummy indices have to be renamed
861 if (get_all_dummy_indices(m).size() > 0) {
863 for (int i=1; i < n.to_int(); i++)
864 result *= rename_dummy_indices_uniquely(m,m);
869 distrseq.reserve(m.seq.size());
870 bool need_reexpand = false;
872 epvector::const_iterator last = m.seq.end();
873 epvector::const_iterator cit = m.seq.begin();
875 if (is_exactly_a<numeric>(cit->rest)) {
876 distrseq.push_back(m.combine_pair_with_coeff_to_pair(*cit, n));
878 // it is safe not to call mul::combine_pair_with_coeff_to_pair()
879 // since n is an integer
880 numeric new_coeff = ex_to<numeric>(cit->coeff).mul(n);
881 if (from_expand && is_exactly_a<add>(cit->rest) && new_coeff.is_pos_integer()) {
882 // this happens when e.g. (a+b)^(1/2) gets squared and
883 // the resulting product needs to be reexpanded
884 need_reexpand = true;
886 distrseq.push_back(expair(cit->rest, new_coeff));
891 const mul & result = static_cast<const mul &>((new mul(distrseq, ex_to<numeric>(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated));
893 return ex(result).expand(options);
895 return result.setflag(status_flags::expanded);