1 /** @file expairseq.cpp
3 * Implementation of sequences of expression pairs. */
6 * GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 #include "expairseq.h"
28 #include "relational.h"
31 #include "operators.h"
33 #include "hash_seed.h"
37 #if EXPAIRSEQ_USE_HASHTAB
39 #endif // EXPAIRSEQ_USE_HASHTAB
48 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(expairseq, basic,
49 print_func<print_context>(&expairseq::do_print).
50 print_func<print_tree>(&expairseq::do_print_tree))
60 bool operator()(const epp &lh, const epp &rh) const
62 return (*lh).is_less(*rh);
67 // default constructor
72 expairseq::expairseq()
73 #if EXPAIRSEQ_USE_HASHTAB
75 #endif // EXPAIRSEQ_USE_HASHTAB
81 /** For use by copy ctor and assignment operator. */
82 void expairseq::copy(const expairseq &other)
85 overall_coeff = other.overall_coeff;
86 #if EXPAIRSEQ_USE_HASHTAB
88 hashtabsize = other.hashtabsize;
90 hashmask = other.hashmask;
91 hashtab.resize(hashtabsize);
92 epvector::const_iterator osb = other.seq.begin();
93 for (unsigned i=0; i<hashtabsize; ++i) {
95 for (epplist::const_iterator cit=other.hashtab[i].begin();
96 cit!=other.hashtab[i].end(); ++cit) {
97 hashtab[i].push_back(seq.begin()+((*cit)-osb));
103 #endif // EXPAIRSEQ_USE_HASHTAB
108 // other constructors
111 expairseq::expairseq(const ex &lh, const ex &rh)
113 construct_from_2_ex(lh,rh);
114 GINAC_ASSERT(is_canonical());
117 expairseq::expairseq(const exvector &v)
119 construct_from_exvector(v);
120 GINAC_ASSERT(is_canonical());
123 expairseq::expairseq(const epvector &v, const ex &oc, bool do_index_renaming)
126 GINAC_ASSERT(is_a<numeric>(oc));
127 construct_from_epvector(v, do_index_renaming);
128 GINAC_ASSERT(is_canonical());
131 expairseq::expairseq(std::auto_ptr<epvector> vp, const ex &oc, bool do_index_renaming)
134 GINAC_ASSERT(vp.get()!=0);
135 GINAC_ASSERT(is_a<numeric>(oc));
136 construct_from_epvector(*vp, do_index_renaming);
137 GINAC_ASSERT(is_canonical());
144 void expairseq::read_archive(const archive_node &n, lst &sym_lst)
146 inherited::read_archive(n, sym_lst);
147 archive_node::archive_node_cit first = n.find_first("rest");
148 archive_node::archive_node_cit last = n.find_last("coeff");
150 seq.reserve((last-first)/2);
152 for (archive_node::archive_node_cit loc = first; loc < last;) {
155 n.find_ex_by_loc(loc++, rest, sym_lst);
156 n.find_ex_by_loc(loc++, coeff, sym_lst);
157 seq.push_back(expair(rest, coeff));
160 n.find_ex("overall_coeff", overall_coeff, sym_lst);
163 GINAC_ASSERT(is_canonical());
166 void expairseq::archive(archive_node &n) const
168 inherited::archive(n);
169 epvector::const_iterator i = seq.begin(), iend = seq.end();
171 n.add_ex("rest", i->rest);
172 n.add_ex("coeff", i->coeff);
175 n.add_ex("overall_coeff", overall_coeff);
180 // functions overriding virtual functions from base classes
185 void expairseq::do_print(const print_context & c, unsigned level) const
188 printseq(c, ',', precedence(), level);
192 void expairseq::do_print_tree(const print_tree & c, unsigned level) const
194 c.s << std::string(level, ' ') << class_name() << " @" << this
195 << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
196 << ", nops=" << nops()
198 size_t num = seq.size();
199 for (size_t i=0; i<num; ++i) {
200 seq[i].rest.print(c, level + c.delta_indent);
201 seq[i].coeff.print(c, level + c.delta_indent);
203 c.s << std::string(level + c.delta_indent, ' ') << "-----" << std::endl;
205 if (!overall_coeff.is_equal(default_overall_coeff())) {
206 c.s << std::string(level + c.delta_indent, ' ') << "-----" << std::endl
207 << std::string(level + c.delta_indent, ' ') << "overall_coeff" << std::endl;
208 overall_coeff.print(c, level + c.delta_indent);
210 c.s << std::string(level + c.delta_indent,' ') << "=====" << std::endl;
211 #if EXPAIRSEQ_USE_HASHTAB
212 c.s << std::string(level + c.delta_indent,' ')
213 << "hashtab size " << hashtabsize << std::endl;
214 if (hashtabsize == 0) return;
216 unsigned count[MAXCOUNT+1];
217 for (int i=0; i<MAXCOUNT+1; ++i)
219 unsigned this_bin_fill;
220 unsigned cum_fill_sq = 0;
221 unsigned cum_fill = 0;
222 for (unsigned i=0; i<hashtabsize; ++i) {
224 if (hashtab[i].size() > 0) {
225 c.s << std::string(level + c.delta_indent, ' ')
226 << "bin " << i << " with entries ";
227 for (epplist::const_iterator it=hashtab[i].begin();
228 it!=hashtab[i].end(); ++it) {
229 c.s << *it-seq.begin() << " ";
233 cum_fill += this_bin_fill;
234 cum_fill_sq += this_bin_fill*this_bin_fill;
236 if (this_bin_fill<MAXCOUNT)
237 ++count[this_bin_fill];
243 double lambda = (1.0*seq.size()) / hashtabsize;
244 for (int k=0; k<MAXCOUNT; ++k) {
247 double prob = std::pow(lambda,k)/fact * std::exp(-lambda);
249 c.s << std::string(level + c.delta_indent, ' ') << "bins with " << k << " entries: "
250 << int(1000.0*count[k]/hashtabsize)/10.0 << "% (expected: "
251 << int(prob*1000)/10.0 << ")" << std::endl;
253 c.s << std::string(level + c.delta_indent, ' ') << "bins with more entries: "
254 << int(1000.0*count[MAXCOUNT]/hashtabsize)/10.0 << "% (expected: "
255 << int((1-cum_prob)*1000)/10.0 << ")" << std::endl;
257 c.s << std::string(level + c.delta_indent, ' ') << "variance: "
258 << 1.0/hashtabsize*cum_fill_sq-(1.0/hashtabsize*cum_fill)*(1.0/hashtabsize*cum_fill)
260 c.s << std::string(level + c.delta_indent, ' ') << "average fill: "
261 << (1.0*cum_fill)/hashtabsize
262 << " (should be equal to " << (1.0*seq.size())/hashtabsize << ")" << std::endl;
263 #endif // EXPAIRSEQ_USE_HASHTAB
266 bool expairseq::info(unsigned inf) const
269 case info_flags::expanded:
270 return (flags & status_flags::expanded);
271 case info_flags::has_indices: {
272 if (flags & status_flags::has_indices)
274 else if (flags & status_flags::has_no_indices)
276 for (epvector::const_iterator i = seq.begin(); i != seq.end(); ++i) {
277 if (i->rest.info(info_flags::has_indices)) {
278 this->setflag(status_flags::has_indices);
279 this->clearflag(status_flags::has_no_indices);
283 this->clearflag(status_flags::has_indices);
284 this->setflag(status_flags::has_no_indices);
288 return inherited::info(inf);
291 size_t expairseq::nops() const
293 if (overall_coeff.is_equal(default_overall_coeff()))
299 ex expairseq::op(size_t i) const
302 return recombine_pair_to_ex(seq[i]);
303 GINAC_ASSERT(!overall_coeff.is_equal(default_overall_coeff()));
304 return overall_coeff;
307 ex expairseq::map(map_function &f) const
309 std::auto_ptr<epvector> v(new epvector);
310 v->reserve(seq.size()+1);
312 epvector::const_iterator cit = seq.begin(), last = seq.end();
313 while (cit != last) {
314 v->push_back(split_ex_to_pair(f(recombine_pair_to_ex(*cit))));
318 if (overall_coeff.is_equal(default_overall_coeff()))
319 return thisexpairseq(v, default_overall_coeff(), true);
321 ex newcoeff = f(overall_coeff);
322 if(is_a<numeric>(newcoeff))
323 return thisexpairseq(v, newcoeff, true);
325 v->push_back(split_ex_to_pair(newcoeff));
326 return thisexpairseq(v, default_overall_coeff(), true);
331 /** Perform coefficient-wise automatic term rewriting rules in this class. */
332 ex expairseq::eval(int level) const
334 if ((level==1) && (flags &status_flags::evaluated))
337 std::auto_ptr<epvector> vp = evalchildren(level);
341 return (new expairseq(vp, overall_coeff))->setflag(status_flags::dynallocated | status_flags::evaluated);
344 epvector* conjugateepvector(const epvector&epv)
346 epvector *newepv = 0;
347 for (epvector::const_iterator i=epv.begin(); i!=epv.end(); ++i) {
349 newepv->push_back(i->conjugate());
352 expair x = i->conjugate();
353 if (x.is_equal(*i)) {
356 newepv = new epvector;
357 newepv->reserve(epv.size());
358 for (epvector::const_iterator j=epv.begin(); j!=i; ++j) {
359 newepv->push_back(*j);
361 newepv->push_back(x);
366 ex expairseq::conjugate() const
368 epvector* newepv = conjugateepvector(seq);
369 ex x = overall_coeff.conjugate();
370 if (!newepv && are_ex_trivially_equal(x, overall_coeff)) {
373 ex result = thisexpairseq(newepv ? *newepv : seq, x);
378 bool expairseq::match(const ex & pattern, exmap & repl_lst) const
380 // This differs from basic::match() because we want "a+b+c+d" to
381 // match "d+*+b" with "*" being "a+c", and we want to honor commutativity
383 if (typeid(*this) == typeid(ex_to<basic>(pattern))) {
385 // Check whether global wildcard (one that matches the "rest of the
386 // expression", like "*" above) is present
387 bool has_global_wildcard = false;
389 for (size_t i=0; i<pattern.nops(); i++) {
390 if (is_exactly_a<wildcard>(pattern.op(i))) {
391 has_global_wildcard = true;
392 global_wildcard = pattern.op(i);
397 // Unfortunately, this is an O(N^2) operation because we can't
398 // sort the pattern in a useful way...
403 for (size_t i=0; i<nops(); i++)
404 ops.push_back(op(i));
406 // Now, for every term of the pattern, look for a matching term in
407 // the expression and remove the match
408 for (size_t i=0; i<pattern.nops(); i++) {
409 ex p = pattern.op(i);
410 if (has_global_wildcard && p.is_equal(global_wildcard))
412 exvector::iterator it = ops.begin(), itend = ops.end();
413 while (it != itend) {
414 if (it->match(p, repl_lst)) {
420 return false; // no match found
424 if (has_global_wildcard) {
426 // Assign all the remaining terms to the global wildcard (unless
427 // it has already been matched before, in which case the matches
429 size_t num = ops.size();
430 std::auto_ptr<epvector> vp(new epvector);
432 for (size_t i=0; i<num; i++)
433 vp->push_back(split_ex_to_pair(ops[i]));
434 ex rest = thisexpairseq(vp, default_overall_coeff());
435 for (exmap::const_iterator it = repl_lst.begin(); it != repl_lst.end(); ++it) {
436 if (it->first.is_equal(global_wildcard))
437 return rest.is_equal(it->second);
439 repl_lst[global_wildcard] = rest;
444 // No global wildcard, then the match fails if there are any
445 // unmatched terms left
449 return inherited::match(pattern, repl_lst);
452 ex expairseq::subs(const exmap & m, unsigned options) const
454 std::auto_ptr<epvector> vp = subschildren(m, options);
456 return ex_to<basic>(thisexpairseq(vp, overall_coeff, true));
457 else if ((options & subs_options::algebraic) && is_exactly_a<mul>(*this))
458 return static_cast<const mul *>(this)->algebraic_subs_mul(m, options);
460 return subs_one_level(m, options);
465 int expairseq::compare_same_type(const basic &other) const
467 GINAC_ASSERT(is_a<expairseq>(other));
468 const expairseq &o = static_cast<const expairseq &>(other);
472 // compare number of elements
473 if (seq.size() != o.seq.size())
474 return (seq.size()<o.seq.size()) ? -1 : 1;
476 // compare overall_coeff
477 cmpval = overall_coeff.compare(o.overall_coeff);
481 #if EXPAIRSEQ_USE_HASHTAB
482 GINAC_ASSERT(hashtabsize==o.hashtabsize);
483 if (hashtabsize==0) {
484 #endif // EXPAIRSEQ_USE_HASHTAB
485 epvector::const_iterator cit1 = seq.begin();
486 epvector::const_iterator cit2 = o.seq.begin();
487 epvector::const_iterator last1 = seq.end();
488 epvector::const_iterator last2 = o.seq.end();
490 for (; (cit1!=last1)&&(cit2!=last2); ++cit1, ++cit2) {
491 cmpval = (*cit1).compare(*cit2);
492 if (cmpval!=0) return cmpval;
495 GINAC_ASSERT(cit1==last1);
496 GINAC_ASSERT(cit2==last2);
499 #if EXPAIRSEQ_USE_HASHTAB
502 // compare number of elements in each hashtab entry
503 for (unsigned i=0; i<hashtabsize; ++i) {
504 unsigned cursize=hashtab[i].size();
505 if (cursize != o.hashtab[i].size())
506 return (cursize < o.hashtab[i].size()) ? -1 : 1;
509 // compare individual (sorted) hashtab entries
510 for (unsigned i=0; i<hashtabsize; ++i) {
511 unsigned sz = hashtab[i].size();
513 const epplist &eppl1 = hashtab[i];
514 const epplist &eppl2 = o.hashtab[i];
515 epplist::const_iterator it1 = eppl1.begin();
516 epplist::const_iterator it2 = eppl2.begin();
517 while (it1!=eppl1.end()) {
518 cmpval = (*(*it1)).compare(*(*it2));
528 #endif // EXPAIRSEQ_USE_HASHTAB
531 bool expairseq::is_equal_same_type(const basic &other) const
533 const expairseq &o = static_cast<const expairseq &>(other);
535 // compare number of elements
536 if (seq.size()!=o.seq.size())
539 // compare overall_coeff
540 if (!overall_coeff.is_equal(o.overall_coeff))
543 #if EXPAIRSEQ_USE_HASHTAB
544 // compare number of elements in each hashtab entry
545 if (hashtabsize!=o.hashtabsize) {
546 std::cout << "this:" << std::endl;
547 print(print_tree(std::cout));
548 std::cout << "other:" << std::endl;
549 other.print(print_tree(std::cout));
552 GINAC_ASSERT(hashtabsize==o.hashtabsize);
554 if (hashtabsize==0) {
555 #endif // EXPAIRSEQ_USE_HASHTAB
556 epvector::const_iterator cit1 = seq.begin();
557 epvector::const_iterator cit2 = o.seq.begin();
558 epvector::const_iterator last1 = seq.end();
560 while (cit1!=last1) {
561 if (!(*cit1).is_equal(*cit2)) return false;
567 #if EXPAIRSEQ_USE_HASHTAB
570 for (unsigned i=0; i<hashtabsize; ++i) {
571 if (hashtab[i].size() != o.hashtab[i].size())
575 // compare individual sorted hashtab entries
576 for (unsigned i=0; i<hashtabsize; ++i) {
577 unsigned sz = hashtab[i].size();
579 const epplist &eppl1 = hashtab[i];
580 const epplist &eppl2 = o.hashtab[i];
581 epplist::const_iterator it1 = eppl1.begin();
582 epplist::const_iterator it2 = eppl2.begin();
583 while (it1!=eppl1.end()) {
584 if (!(*(*it1)).is_equal(*(*it2))) return false;
592 #endif // EXPAIRSEQ_USE_HASHTAB
595 unsigned expairseq::return_type() const
597 return return_types::noncommutative_composite;
600 unsigned expairseq::calchash() const
602 unsigned v = make_hash_seed(typeid(*this));
603 epvector::const_iterator i = seq.begin();
604 const epvector::const_iterator end = seq.end();
606 v ^= i->rest.gethash();
607 #if !EXPAIRSEQ_USE_HASHTAB
608 // rotation spoils commutativity!
610 v ^= i->coeff.gethash();
611 #endif // !EXPAIRSEQ_USE_HASHTAB
615 v ^= overall_coeff.gethash();
617 // store calculated hash value only if object is already evaluated
618 if (flags &status_flags::evaluated) {
619 setflag(status_flags::hash_calculated);
626 ex expairseq::expand(unsigned options) const
628 std::auto_ptr<epvector> vp = expandchildren(options);
630 return thisexpairseq(vp, overall_coeff);
632 // The terms have not changed, so it is safe to declare this expanded
633 return (options == 0) ? setflag(status_flags::expanded) : *this;
638 // new virtual functions which can be overridden by derived classes
643 /** Create an object of this type.
644 * This method works similar to a constructor. It is useful because expairseq
645 * has (at least) two possible different semantics but we want to inherit
646 * methods thus avoiding code duplication. Sometimes a method in expairseq
647 * has to create a new one of the same semantics, which cannot be done by a
648 * ctor because the name (add, mul,...) is unknown on the expaiseq level. In
649 * order for this trick to work a derived class must of course override this
651 ex expairseq::thisexpairseq(const epvector &v, const ex &oc, bool do_index_renaming) const
653 return expairseq(v, oc, do_index_renaming);
656 ex expairseq::thisexpairseq(std::auto_ptr<epvector> vp, const ex &oc, bool do_index_renaming) const
658 return expairseq(vp, oc, do_index_renaming);
661 void expairseq::printpair(const print_context & c, const expair & p, unsigned upper_precedence) const
664 p.rest.print(c, precedence());
666 p.coeff.print(c, precedence());
670 void expairseq::printseq(const print_context & c, char delim,
671 unsigned this_precedence,
672 unsigned upper_precedence) const
674 if (this_precedence <= upper_precedence)
676 epvector::const_iterator it, it_last = seq.end() - 1;
677 for (it=seq.begin(); it!=it_last; ++it) {
678 printpair(c, *it, this_precedence);
681 printpair(c, *it, this_precedence);
682 if (!overall_coeff.is_equal(default_overall_coeff())) {
684 overall_coeff.print(c, this_precedence);
687 if (this_precedence <= upper_precedence)
692 /** Form an expair from an ex, using the corresponding semantics.
693 * @see expairseq::recombine_pair_to_ex() */
694 expair expairseq::split_ex_to_pair(const ex &e) const
696 return expair(e,_ex1);
700 expair expairseq::combine_ex_with_coeff_to_pair(const ex &e,
703 GINAC_ASSERT(is_exactly_a<numeric>(c));
709 expair expairseq::combine_pair_with_coeff_to_pair(const expair &p,
712 GINAC_ASSERT(is_exactly_a<numeric>(p.coeff));
713 GINAC_ASSERT(is_exactly_a<numeric>(c));
715 return expair(p.rest,ex_to<numeric>(p.coeff).mul_dyn(ex_to<numeric>(c)));
719 /** Form an ex out of an expair, using the corresponding semantics.
720 * @see expairseq::split_ex_to_pair() */
721 ex expairseq::recombine_pair_to_ex(const expair &p) const
723 return lst(p.rest,p.coeff);
726 bool expairseq::expair_needs_further_processing(epp it)
728 #if EXPAIRSEQ_USE_HASHTAB
729 //# error "FIXME: expair_needs_further_processing not yet implemented for hashtabs, sorry. A.F."
730 #endif // EXPAIRSEQ_USE_HASHTAB
734 ex expairseq::default_overall_coeff() const
739 void expairseq::combine_overall_coeff(const ex &c)
741 GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
742 GINAC_ASSERT(is_exactly_a<numeric>(c));
743 overall_coeff = ex_to<numeric>(overall_coeff).add_dyn(ex_to<numeric>(c));
746 void expairseq::combine_overall_coeff(const ex &c1, const ex &c2)
748 GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
749 GINAC_ASSERT(is_exactly_a<numeric>(c1));
750 GINAC_ASSERT(is_exactly_a<numeric>(c2));
751 overall_coeff = ex_to<numeric>(overall_coeff).
752 add_dyn(ex_to<numeric>(c1).mul(ex_to<numeric>(c2)));
755 bool expairseq::can_make_flat(const expair &p) const
762 // non-virtual functions in this class
765 void expairseq::construct_from_2_ex_via_exvector(const ex &lh, const ex &rh)
771 construct_from_exvector(v);
772 #if EXPAIRSEQ_USE_HASHTAB
773 GINAC_ASSERT((hashtabsize==0)||(hashtabsize>=minhashtabsize));
774 GINAC_ASSERT(hashtabsize==calc_hashtabsize(seq.size()));
775 #endif // EXPAIRSEQ_USE_HASHTAB
778 void expairseq::construct_from_2_ex(const ex &lh, const ex &rh)
780 if (typeid(ex_to<basic>(lh)) == typeid(*this)) {
781 if (typeid(ex_to<basic>(rh)) == typeid(*this)) {
782 #if EXPAIRSEQ_USE_HASHTAB
783 unsigned totalsize = ex_to<expairseq>(lh).seq.size() +
784 ex_to<expairseq>(rh).seq.size();
785 if (calc_hashtabsize(totalsize)!=0) {
786 construct_from_2_ex_via_exvector(lh,rh);
788 #endif // EXPAIRSEQ_USE_HASHTAB
789 if (is_a<mul>(lh) && lh.info(info_flags::has_indices) &&
790 rh.info(info_flags::has_indices)) {
791 ex newrh=rename_dummy_indices_uniquely(lh, rh);
792 construct_from_2_expairseq(ex_to<expairseq>(lh),
793 ex_to<expairseq>(newrh));
796 construct_from_2_expairseq(ex_to<expairseq>(lh),
797 ex_to<expairseq>(rh));
798 #if EXPAIRSEQ_USE_HASHTAB
800 #endif // EXPAIRSEQ_USE_HASHTAB
803 #if EXPAIRSEQ_USE_HASHTAB
804 unsigned totalsize = ex_to<expairseq>(lh).seq.size()+1;
805 if (calc_hashtabsize(totalsize)!=0) {
806 construct_from_2_ex_via_exvector(lh, rh);
808 #endif // EXPAIRSEQ_USE_HASHTAB
809 construct_from_expairseq_ex(ex_to<expairseq>(lh), rh);
810 #if EXPAIRSEQ_USE_HASHTAB
812 #endif // EXPAIRSEQ_USE_HASHTAB
815 } else if (typeid(ex_to<basic>(rh)) == typeid(*this)) {
816 #if EXPAIRSEQ_USE_HASHTAB
817 unsigned totalsize=ex_to<expairseq>(rh).seq.size()+1;
818 if (calc_hashtabsize(totalsize)!=0) {
819 construct_from_2_ex_via_exvector(lh,rh);
821 #endif // EXPAIRSEQ_USE_HASHTAB
822 construct_from_expairseq_ex(ex_to<expairseq>(rh),lh);
823 #if EXPAIRSEQ_USE_HASHTAB
825 #endif // EXPAIRSEQ_USE_HASHTAB
829 #if EXPAIRSEQ_USE_HASHTAB
830 if (calc_hashtabsize(2)!=0) {
831 construct_from_2_ex_via_exvector(lh,rh);
835 #endif // EXPAIRSEQ_USE_HASHTAB
837 if (is_exactly_a<numeric>(lh)) {
838 if (is_exactly_a<numeric>(rh)) {
839 combine_overall_coeff(lh);
840 combine_overall_coeff(rh);
842 combine_overall_coeff(lh);
843 seq.push_back(split_ex_to_pair(rh));
846 if (is_exactly_a<numeric>(rh)) {
847 combine_overall_coeff(rh);
848 seq.push_back(split_ex_to_pair(lh));
850 expair p1 = split_ex_to_pair(lh);
851 expair p2 = split_ex_to_pair(rh);
853 int cmpval = p1.rest.compare(p2.rest);
855 p1.coeff = ex_to<numeric>(p1.coeff).add_dyn(ex_to<numeric>(p2.coeff));
856 if (!ex_to<numeric>(p1.coeff).is_zero()) {
857 // no further processing is necessary, since this
858 // one element will usually be recombined in eval()
875 void expairseq::construct_from_2_expairseq(const expairseq &s1,
878 combine_overall_coeff(s1.overall_coeff);
879 combine_overall_coeff(s2.overall_coeff);
881 epvector::const_iterator first1 = s1.seq.begin();
882 epvector::const_iterator last1 = s1.seq.end();
883 epvector::const_iterator first2 = s2.seq.begin();
884 epvector::const_iterator last2 = s2.seq.end();
886 seq.reserve(s1.seq.size()+s2.seq.size());
888 bool needs_further_processing=false;
890 while (first1!=last1 && first2!=last2) {
891 int cmpval = (*first1).rest.compare((*first2).rest);
895 const numeric &newcoeff = ex_to<numeric>(first1->coeff).
896 add(ex_to<numeric>(first2->coeff));
897 if (!newcoeff.is_zero()) {
898 seq.push_back(expair(first1->rest,newcoeff));
899 if (expair_needs_further_processing(seq.end()-1)) {
900 needs_further_processing = true;
905 } else if (cmpval<0) {
906 seq.push_back(*first1);
909 seq.push_back(*first2);
914 while (first1!=last1) {
915 seq.push_back(*first1);
918 while (first2!=last2) {
919 seq.push_back(*first2);
923 if (needs_further_processing) {
926 construct_from_epvector(v);
930 void expairseq::construct_from_expairseq_ex(const expairseq &s,
933 combine_overall_coeff(s.overall_coeff);
934 if (is_exactly_a<numeric>(e)) {
935 combine_overall_coeff(e);
940 epvector::const_iterator first = s.seq.begin();
941 epvector::const_iterator last = s.seq.end();
942 expair p = split_ex_to_pair(e);
944 seq.reserve(s.seq.size()+1);
945 bool p_pushed = false;
947 bool needs_further_processing=false;
949 // merge p into s.seq
950 while (first!=last) {
951 int cmpval = (*first).rest.compare(p.rest);
954 const numeric &newcoeff = ex_to<numeric>(first->coeff).
955 add(ex_to<numeric>(p.coeff));
956 if (!newcoeff.is_zero()) {
957 seq.push_back(expair(first->rest,newcoeff));
958 if (expair_needs_further_processing(seq.end()-1))
959 needs_further_processing = true;
964 } else if (cmpval<0) {
965 seq.push_back(*first);
975 // while loop exited because p was pushed, now push rest of s.seq
976 while (first!=last) {
977 seq.push_back(*first);
981 // while loop exited because s.seq was pushed, now push p
985 if (needs_further_processing) {
988 construct_from_epvector(v);
992 void expairseq::construct_from_exvector(const exvector &v)
994 // simplifications: +(a,+(b,c),d) -> +(a,b,c,d) (associativity)
995 // +(d,b,c,a) -> +(a,b,c,d) (canonicalization)
996 // +(...,x,*(x,c1),*(x,c2)) -> +(...,*(x,1+c1+c2)) (c1, c2 numeric())
997 // (same for (+,*) -> (*,^)
1000 #if EXPAIRSEQ_USE_HASHTAB
1001 combine_same_terms();
1004 combine_same_terms_sorted_seq();
1005 #endif // EXPAIRSEQ_USE_HASHTAB
1008 void expairseq::construct_from_epvector(const epvector &v, bool do_index_renaming)
1010 // simplifications: +(a,+(b,c),d) -> +(a,b,c,d) (associativity)
1011 // +(d,b,c,a) -> +(a,b,c,d) (canonicalization)
1012 // +(...,x,*(x,c1),*(x,c2)) -> +(...,*(x,1+c1+c2)) (c1, c2 numeric())
1013 // (same for (+,*) -> (*,^)
1015 make_flat(v, do_index_renaming);
1016 #if EXPAIRSEQ_USE_HASHTAB
1017 combine_same_terms();
1020 combine_same_terms_sorted_seq();
1021 #endif // EXPAIRSEQ_USE_HASHTAB
1024 /** Combine this expairseq with argument exvector.
1025 * It cares for associativity as well as for special handling of numerics. */
1026 void expairseq::make_flat(const exvector &v)
1028 exvector::const_iterator cit;
1030 // count number of operands which are of same expairseq derived type
1031 // and their cumulative number of operands
1032 int nexpairseqs = 0;
1034 bool do_idx_rename = false;
1037 while (cit!=v.end()) {
1038 if (typeid(ex_to<basic>(*cit)) == typeid(*this)) {
1040 noperands += ex_to<expairseq>(*cit).seq.size();
1042 if (is_a<mul>(*this) && (!do_idx_rename) &&
1043 cit->info(info_flags::has_indices))
1044 do_idx_rename = true;
1048 // reserve seq and coeffseq which will hold all operands
1049 seq.reserve(v.size()+noperands-nexpairseqs);
1051 // copy elements and split off numerical part
1052 make_flat_inserter mf(v, do_idx_rename);
1054 while (cit!=v.end()) {
1055 if (typeid(ex_to<basic>(*cit)) == typeid(*this)) {
1056 ex newfactor = mf.handle_factor(*cit, _ex1);
1057 const expairseq &subseqref = ex_to<expairseq>(newfactor);
1058 combine_overall_coeff(subseqref.overall_coeff);
1059 epvector::const_iterator cit_s = subseqref.seq.begin();
1060 while (cit_s!=subseqref.seq.end()) {
1061 seq.push_back(*cit_s);
1065 if (is_exactly_a<numeric>(*cit))
1066 combine_overall_coeff(*cit);
1068 ex newfactor = mf.handle_factor(*cit, _ex1);
1069 seq.push_back(split_ex_to_pair(newfactor));
1076 /** Combine this expairseq with argument epvector.
1077 * It cares for associativity as well as for special handling of numerics. */
1078 void expairseq::make_flat(const epvector &v, bool do_index_renaming)
1080 epvector::const_iterator cit;
1082 // count number of operands which are of same expairseq derived type
1083 // and their cumulative number of operands
1084 int nexpairseqs = 0;
1086 bool really_need_rename_inds = false;
1089 while (cit!=v.end()) {
1090 if (typeid(ex_to<basic>(cit->rest)) == typeid(*this)) {
1092 noperands += ex_to<expairseq>(cit->rest).seq.size();
1094 if ((!really_need_rename_inds) && is_a<mul>(*this) &&
1095 cit->rest.info(info_flags::has_indices))
1096 really_need_rename_inds = true;
1099 do_index_renaming = do_index_renaming && really_need_rename_inds;
1101 // reserve seq and coeffseq which will hold all operands
1102 seq.reserve(v.size()+noperands-nexpairseqs);
1103 make_flat_inserter mf(v, do_index_renaming);
1105 // copy elements and split off numerical part
1107 while (cit!=v.end()) {
1108 if ((typeid(ex_to<basic>(cit->rest)) == typeid(*this)) &&
1109 this->can_make_flat(*cit)) {
1110 ex newrest = mf.handle_factor(cit->rest, cit->coeff);
1111 const expairseq &subseqref = ex_to<expairseq>(newrest);
1112 combine_overall_coeff(ex_to<numeric>(subseqref.overall_coeff),
1113 ex_to<numeric>(cit->coeff));
1114 epvector::const_iterator cit_s = subseqref.seq.begin();
1115 while (cit_s!=subseqref.seq.end()) {
1116 seq.push_back(expair(cit_s->rest,
1117 ex_to<numeric>(cit_s->coeff).mul_dyn(ex_to<numeric>(cit->coeff))));
1118 //seq.push_back(combine_pair_with_coeff_to_pair(*cit_s,
1123 if (cit->is_canonical_numeric())
1124 combine_overall_coeff(mf.handle_factor(cit->rest, _ex1));
1126 ex rest = cit->rest;
1127 ex newrest = mf.handle_factor(rest, cit->coeff);
1128 if (are_ex_trivially_equal(newrest, rest))
1129 seq.push_back(*cit);
1131 seq.push_back(expair(newrest, cit->coeff));
1138 /** Brings this expairseq into a sorted (canonical) form. */
1139 void expairseq::canonicalize()
1141 std::sort(seq.begin(), seq.end(), expair_rest_is_less());
1145 /** Compact a presorted expairseq by combining all matching expairs to one
1146 * each. On an add object, this is responsible for 2*x+3*x+y -> 5*x+y, for
1148 void expairseq::combine_same_terms_sorted_seq()
1153 bool needs_further_processing = false;
1155 epvector::iterator itin1 = seq.begin();
1156 epvector::iterator itin2 = itin1+1;
1157 epvector::iterator itout = itin1;
1158 epvector::iterator last = seq.end();
1159 // must_copy will be set to true the first time some combination is
1160 // possible from then on the sequence has changed and must be compacted
1161 bool must_copy = false;
1162 while (itin2!=last) {
1163 if (itin1->rest.compare(itin2->rest)==0) {
1164 itin1->coeff = ex_to<numeric>(itin1->coeff).
1165 add_dyn(ex_to<numeric>(itin2->coeff));
1166 if (expair_needs_further_processing(itin1))
1167 needs_further_processing = true;
1170 if (!ex_to<numeric>(itin1->coeff).is_zero()) {
1179 if (!ex_to<numeric>(itin1->coeff).is_zero()) {
1185 seq.erase(itout,last);
1187 if (needs_further_processing) {
1190 construct_from_epvector(v);
1194 #if EXPAIRSEQ_USE_HASHTAB
1196 unsigned expairseq::calc_hashtabsize(unsigned sz) const
1199 unsigned nearest_power_of_2 = 1 << log2(sz);
1200 // if (nearest_power_of_2 < maxhashtabsize/hashtabfactor) {
1201 // size = nearest_power_of_2*hashtabfactor;
1202 size = nearest_power_of_2/hashtabfactor;
1203 if (size<minhashtabsize)
1206 // hashtabsize must be a power of 2
1207 GINAC_ASSERT((1U << log2(size))==size);
1211 unsigned expairseq::calc_hashindex(const ex &e) const
1213 // calculate hashindex
1215 if (is_a<numeric>(e)) {
1216 hashindex = hashmask;
1218 hashindex = e.gethash() & hashmask;
1219 // last hashtab entry is reserved for numerics
1220 if (hashindex==hashmask) hashindex = 0;
1222 GINAC_ASSERT((hashindex<hashtabsize)||(hashtabsize==0));
1226 void expairseq::shrink_hashtab()
1228 unsigned new_hashtabsize;
1229 while (hashtabsize!=(new_hashtabsize=calc_hashtabsize(seq.size()))) {
1230 GINAC_ASSERT(new_hashtabsize<hashtabsize);
1231 if (new_hashtabsize==0) {
1238 // shrink by a factor of 2
1239 unsigned half_hashtabsize = hashtabsize/2;
1240 for (unsigned i=0; i<half_hashtabsize-1; ++i)
1241 hashtab[i].merge(hashtab[i+half_hashtabsize],epp_is_less());
1242 // special treatment for numeric hashes
1243 hashtab[0].merge(hashtab[half_hashtabsize-1],epp_is_less());
1244 hashtab[half_hashtabsize-1] = hashtab[hashtabsize-1];
1245 hashtab.resize(half_hashtabsize);
1246 hashtabsize = half_hashtabsize;
1247 hashmask = hashtabsize-1;
1251 void expairseq::remove_hashtab_entry(epvector::const_iterator element)
1254 return; // nothing to do
1256 // calculate hashindex of element to be deleted
1257 unsigned hashindex = calc_hashindex((*element).rest);
1259 // find it in hashtab and remove it
1260 epplist &eppl = hashtab[hashindex];
1261 epplist::iterator epplit = eppl.begin();
1262 bool erased = false;
1263 while (epplit!=eppl.end()) {
1264 if (*epplit == element) {
1272 std::cout << "tried to erase " << element-seq.begin() << std::endl;
1273 std::cout << "size " << seq.end()-seq.begin() << std::endl;
1275 unsigned hashindex = calc_hashindex(element->rest);
1276 epplist &eppl = hashtab[hashindex];
1277 epplist::iterator epplit = eppl.begin();
1278 bool erased = false;
1279 while (epplit!=eppl.end()) {
1280 if (*epplit == element) {
1287 GINAC_ASSERT(erased);
1289 GINAC_ASSERT(erased);
1292 void expairseq::move_hashtab_entry(epvector::const_iterator oldpos,
1293 epvector::iterator newpos)
1295 GINAC_ASSERT(hashtabsize!=0);
1297 // calculate hashindex of element which was moved
1298 unsigned hashindex=calc_hashindex((*newpos).rest);
1300 // find it in hashtab and modify it
1301 epplist &eppl = hashtab[hashindex];
1302 epplist::iterator epplit = eppl.begin();
1303 while (epplit!=eppl.end()) {
1304 if (*epplit == oldpos) {
1310 GINAC_ASSERT(epplit!=eppl.end());
1313 void expairseq::sorted_insert(epplist &eppl, epvector::const_iterator elem)
1315 epplist::const_iterator current = eppl.begin();
1316 while ((current!=eppl.end()) && ((*current)->is_less(*elem))) {
1319 eppl.insert(current,elem);
1322 void expairseq::build_hashtab_and_combine(epvector::iterator &first_numeric,
1323 epvector::iterator &last_non_zero,
1324 std::vector<bool> &touched,
1325 unsigned &number_of_zeroes)
1327 epp current = seq.begin();
1329 while (current!=first_numeric) {
1330 if (is_exactly_a<numeric>(current->rest)) {
1332 iter_swap(current,first_numeric);
1334 // calculate hashindex
1335 unsigned currenthashindex = calc_hashindex(current->rest);
1337 // test if there is already a matching expair in the hashtab-list
1338 epplist &eppl=hashtab[currenthashindex];
1339 epplist::iterator epplit = eppl.begin();
1340 while (epplit!=eppl.end()) {
1341 if (current->rest.is_equal((*epplit)->rest))
1345 if (epplit==eppl.end()) {
1346 // no matching expair found, append this to end of list
1347 sorted_insert(eppl,current);
1350 // epplit points to a matching expair, combine it with current
1351 (*epplit)->coeff = ex_to<numeric>((*epplit)->coeff).
1352 add_dyn(ex_to<numeric>(current->coeff));
1354 // move obsolete current expair to end by swapping with last_non_zero element
1355 // if this was a numeric, it is swapped with the expair before first_numeric
1356 iter_swap(current,last_non_zero);
1358 if (first_numeric!=last_non_zero) iter_swap(first_numeric,current);
1361 // test if combined term has coeff 0 and can be removed is done later
1362 touched[(*epplit)-seq.begin()] = true;
1368 void expairseq::drop_coeff_0_terms(epvector::iterator &first_numeric,
1369 epvector::iterator &last_non_zero,
1370 std::vector<bool> &touched,
1371 unsigned &number_of_zeroes)
1373 // move terms with coeff 0 to end and remove them from hashtab
1374 // check only those elements which have been touched
1375 epp current = seq.begin();
1377 while (current!=first_numeric) {
1381 } else if (!ex_to<numeric>((*current).coeff).is_zero()) {
1385 remove_hashtab_entry(current);
1387 // move element to the end, unless it is already at the end
1388 if (current!=last_non_zero) {
1389 iter_swap(current,last_non_zero);
1391 bool numeric_swapped = first_numeric!=last_non_zero;
1392 if (numeric_swapped)
1393 iter_swap(first_numeric,current);
1394 epvector::iterator changed_entry;
1396 if (numeric_swapped)
1397 changed_entry = first_numeric;
1399 changed_entry = last_non_zero;
1404 if (first_numeric!=current) {
1406 // change entry in hashtab which referred to first_numeric or last_non_zero to current
1407 move_hashtab_entry(changed_entry,current);
1408 touched[current-seq.begin()] = touched[changed_entry-seq.begin()];
1417 GINAC_ASSERT(i==current-seq.begin());
1420 /** True if one of the coeffs vanishes, otherwise false.
1421 * This would be an invariant violation, so this should only be used for
1422 * debugging purposes. */
1423 bool expairseq::has_coeff_0() const
1425 epvector::const_iterator i = seq.begin(), end = seq.end();
1427 if (i->coeff.is_zero())
1434 void expairseq::add_numerics_to_hashtab(epvector::iterator first_numeric,
1435 epvector::const_iterator last_non_zero)
1437 if (first_numeric == seq.end()) return; // no numerics
1439 epvector::const_iterator current = first_numeric, last = last_non_zero + 1;
1440 while (current != last) {
1441 sorted_insert(hashtab[hashmask], current);
1446 void expairseq::combine_same_terms()
1448 // combine same terms, drop term with coeff 0, move numerics to end
1450 // calculate size of hashtab
1451 hashtabsize = calc_hashtabsize(seq.size());
1453 // hashtabsize is a power of 2
1454 hashmask = hashtabsize-1;
1458 hashtab.resize(hashtabsize);
1460 if (hashtabsize==0) {
1462 combine_same_terms_sorted_seq();
1463 GINAC_ASSERT(!has_coeff_0());
1467 // iterate through seq, move numerics to end,
1468 // fill hashtab and combine same terms
1469 epvector::iterator first_numeric = seq.end();
1470 epvector::iterator last_non_zero = seq.end()-1;
1472 size_t num = seq.size();
1473 std::vector<bool> touched(num);
1475 unsigned number_of_zeroes = 0;
1477 GINAC_ASSERT(!has_coeff_0());
1478 build_hashtab_and_combine(first_numeric,last_non_zero,touched,number_of_zeroes);
1480 // there should not be any terms with coeff 0 from the beginning,
1481 // so it should be safe to skip this step
1482 if (number_of_zeroes!=0) {
1483 drop_coeff_0_terms(first_numeric,last_non_zero,touched,number_of_zeroes);
1486 add_numerics_to_hashtab(first_numeric,last_non_zero);
1488 // pop zero elements
1489 for (unsigned i=0; i<number_of_zeroes; ++i) {
1493 // shrink hashtabsize to calculated value
1494 GINAC_ASSERT(!has_coeff_0());
1498 GINAC_ASSERT(!has_coeff_0());
1501 #endif // EXPAIRSEQ_USE_HASHTAB
1503 /** Check if this expairseq is in sorted (canonical) form. Useful mainly for
1504 * debugging or in assertions since being sorted is an invariance. */
1505 bool expairseq::is_canonical() const
1507 if (seq.size() <= 1)
1510 #if EXPAIRSEQ_USE_HASHTAB
1511 if (hashtabsize > 0) return 1; // not canoncalized
1512 #endif // EXPAIRSEQ_USE_HASHTAB
1514 epvector::const_iterator it = seq.begin(), itend = seq.end();
1515 epvector::const_iterator it_last = it;
1516 for (++it; it!=itend; it_last=it, ++it) {
1517 if (!(it_last->is_less(*it) || it_last->is_equal(*it))) {
1518 if (!is_exactly_a<numeric>(it_last->rest) ||
1519 !is_exactly_a<numeric>(it->rest)) {
1520 // double test makes it easier to set a breakpoint...
1521 if (!is_exactly_a<numeric>(it_last->rest) ||
1522 !is_exactly_a<numeric>(it->rest)) {
1523 printpair(std::clog, *it_last, 0);
1525 printpair(std::clog, *it, 0);
1527 std::clog << "pair1:" << std::endl;
1528 it_last->rest.print(print_tree(std::clog));
1529 it_last->coeff.print(print_tree(std::clog));
1530 std::clog << "pair2:" << std::endl;
1531 it->rest.print(print_tree(std::clog));
1532 it->coeff.print(print_tree(std::clog));
1542 /** Member-wise expand the expairs in this sequence.
1544 * @see expairseq::expand()
1545 * @return pointer to epvector containing expanded pairs or zero pointer,
1546 * if no members were changed. */
1547 std::auto_ptr<epvector> expairseq::expandchildren(unsigned options) const
1549 const epvector::const_iterator last = seq.end();
1550 epvector::const_iterator cit = seq.begin();
1552 const ex &expanded_ex = cit->rest.expand(options);
1553 if (!are_ex_trivially_equal(cit->rest,expanded_ex)) {
1555 // something changed, copy seq, eval and return it
1556 std::auto_ptr<epvector> s(new epvector);
1557 s->reserve(seq.size());
1559 // copy parts of seq which are known not to have changed
1560 epvector::const_iterator cit2 = seq.begin();
1562 s->push_back(*cit2);
1566 // copy first changed element
1567 s->push_back(combine_ex_with_coeff_to_pair(expanded_ex,
1572 while (cit2!=last) {
1573 s->push_back(combine_ex_with_coeff_to_pair(cit2->rest.expand(options),
1582 return std::auto_ptr<epvector>(0); // signalling nothing has changed
1586 /** Member-wise evaluate the expairs in this sequence.
1588 * @see expairseq::eval()
1589 * @return pointer to epvector containing evaluated pairs or zero pointer,
1590 * if no members were changed. */
1591 std::auto_ptr<epvector> expairseq::evalchildren(int level) const
1593 // returns a NULL pointer if nothing had to be evaluated
1594 // returns a pointer to a newly created epvector otherwise
1595 // (which has to be deleted somewhere else)
1598 return std::auto_ptr<epvector>(0);
1600 if (level == -max_recursion_level)
1601 throw(std::runtime_error("max recursion level reached"));
1604 epvector::const_iterator last = seq.end();
1605 epvector::const_iterator cit = seq.begin();
1607 const ex &evaled_ex = cit->rest.eval(level);
1608 if (!are_ex_trivially_equal(cit->rest,evaled_ex)) {
1610 // something changed, copy seq, eval and return it
1611 std::auto_ptr<epvector> s(new epvector);
1612 s->reserve(seq.size());
1614 // copy parts of seq which are known not to have changed
1615 epvector::const_iterator cit2=seq.begin();
1617 s->push_back(*cit2);
1621 // copy first changed element
1622 s->push_back(combine_ex_with_coeff_to_pair(evaled_ex,
1627 while (cit2!=last) {
1628 s->push_back(combine_ex_with_coeff_to_pair(cit2->rest.eval(level),
1637 return std::auto_ptr<epvector>(0); // signalling nothing has changed
1640 /** Member-wise substitute in this sequence.
1642 * @see expairseq::subs()
1643 * @return pointer to epvector containing pairs after application of subs,
1644 * or NULL pointer if no members were changed. */
1645 std::auto_ptr<epvector> expairseq::subschildren(const exmap & m, unsigned options) const
1647 // When any of the objects to be substituted is a product or power
1648 // we have to recombine the pairs because the numeric coefficients may
1649 // be part of the search pattern.
1650 if (!(options & (subs_options::pattern_is_product | subs_options::pattern_is_not_product))) {
1652 // Search the list of substitutions and cache our findings
1653 for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) {
1654 if (is_exactly_a<mul>(it->first) || is_exactly_a<power>(it->first)) {
1655 options |= subs_options::pattern_is_product;
1659 if (!(options & subs_options::pattern_is_product))
1660 options |= subs_options::pattern_is_not_product;
1663 if (options & subs_options::pattern_is_product) {
1665 // Substitute in the recombined pairs
1666 epvector::const_iterator cit = seq.begin(), last = seq.end();
1667 while (cit != last) {
1669 const ex &orig_ex = recombine_pair_to_ex(*cit);
1670 const ex &subsed_ex = orig_ex.subs(m, options);
1671 if (!are_ex_trivially_equal(orig_ex, subsed_ex)) {
1673 // Something changed, copy seq, subs and return it
1674 std::auto_ptr<epvector> s(new epvector);
1675 s->reserve(seq.size());
1677 // Copy parts of seq which are known not to have changed
1678 s->insert(s->begin(), seq.begin(), cit);
1680 // Copy first changed element
1681 s->push_back(split_ex_to_pair(subsed_ex));
1685 while (cit != last) {
1686 s->push_back(split_ex_to_pair(recombine_pair_to_ex(*cit).subs(m, options)));
1697 // Substitute only in the "rest" part of the pairs
1698 epvector::const_iterator cit = seq.begin(), last = seq.end();
1699 while (cit != last) {
1701 const ex &subsed_ex = cit->rest.subs(m, options);
1702 if (!are_ex_trivially_equal(cit->rest, subsed_ex)) {
1704 // Something changed, copy seq, subs and return it
1705 std::auto_ptr<epvector> s(new epvector);
1706 s->reserve(seq.size());
1708 // Copy parts of seq which are known not to have changed
1709 s->insert(s->begin(), seq.begin(), cit);
1711 // Copy first changed element
1712 s->push_back(combine_ex_with_coeff_to_pair(subsed_ex, cit->coeff));
1716 while (cit != last) {
1717 s->push_back(combine_ex_with_coeff_to_pair(cit->rest.subs(m, options), cit->coeff));
1727 // Nothing has changed
1728 return std::auto_ptr<epvector>(0);
1732 // static member variables
1735 #if EXPAIRSEQ_USE_HASHTAB
1736 unsigned expairseq::maxhashtabsize = 0x4000000U;
1737 unsigned expairseq::minhashtabsize = 0x1000U;
1738 unsigned expairseq::hashtabfactor = 1;
1739 #endif // EXPAIRSEQ_USE_HASHTAB
1741 } // namespace GiNaC