]> www.ginac.de Git - ginac.git/blob - doc/tutorial/ginac.texi
1a1f7e9eca6488059b0c617a1c0b726dd62efa22
[ginac.git] / doc / tutorial / ginac.texi
1 \input texinfo  @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename ginac.info
4 @settitle GiNaC, an open framework for symbolic computation within the C++ programming language
5 @setchapternewpage on
6 @afourpaper
7 @c For `info' only.
8 @paragraphindent 0
9 @c For TeX only.
10 @iftex
11 @c I hate putting "@noindent" in front of every paragraph.
12 @parindent=0pt
13 @end iftex
14 @c %**end of header
15
16 @include version.texi
17
18 @dircategory Mathematics
19 @direntry
20 * ginac: (ginac).                   C++ library for symbolic computation.
21 @end direntry
22
23 @ifinfo
24 This is a tutorial that documents GiNaC @value{VERSION}, an open
25 framework for symbolic computation within the C++ programming language.
26
27 Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
28
29 Permission is granted to make and distribute verbatim copies of
30 this manual provided the copyright notice and this permission notice
31 are preserved on all copies.
32
33 @ignore
34 Permission is granted to process this file through TeX and print the
35 results, provided the printed document carries copying permission
36 notice identical to this one except for the removal of this paragraph
37
38 @end ignore
39 Permission is granted to copy and distribute modified versions of this
40 manual under the conditions for verbatim copying, provided that the entire
41 resulting derived work is distributed under the terms of a permission
42 notice identical to this one.
43 @end ifinfo
44
45 @finalout
46 @c finalout prevents ugly black rectangles on overfull hbox lines
47 @titlepage
48 @title GiNaC @value{VERSION}
49 @subtitle An open framework for symbolic computation within the C++ programming language
50 @subtitle @value{UPDATED}
51 @author @uref{http://www.ginac.de}
52
53 @page
54 @vskip 0pt plus 1filll
55 Copyright @copyright{} 1999-2008 Johannes Gutenberg University Mainz, Germany
56 @sp 2
57 Permission is granted to make and distribute verbatim copies of
58 this manual provided the copyright notice and this permission notice
59 are preserved on all copies.
60
61 Permission is granted to copy and distribute modified versions of this
62 manual under the conditions for verbatim copying, provided that the entire
63 resulting derived work is distributed under the terms of a permission
64 notice identical to this one.
65 @end titlepage
66
67 @page
68 @contents
69
70 @page
71
72
73 @node Top, Introduction, (dir), (dir)
74 @c    node-name, next, previous, up
75 @top GiNaC
76
77 This is a tutorial that documents GiNaC @value{VERSION}, an open
78 framework for symbolic computation within the C++ programming language.
79
80 @menu
81 * Introduction::                 GiNaC's purpose.
82 * A tour of GiNaC::              A quick tour of the library.
83 * Installation::                 How to install the package.
84 * Basic concepts::               Description of fundamental classes.
85 * Methods and functions::        Algorithms for symbolic manipulations.
86 * Extending GiNaC::              How to extend the library.
87 * A comparison with other CAS::  Compares GiNaC to traditional CAS.
88 * Internal structures::          Description of some internal structures.
89 * Package tools::                Configuring packages to work with GiNaC.
90 * Bibliography::
91 * Concept index::
92 @end menu
93
94
95 @node Introduction, A tour of GiNaC, Top, Top
96 @c    node-name, next, previous, up
97 @chapter Introduction
98 @cindex history of GiNaC
99
100 The motivation behind GiNaC derives from the observation that most
101 present day computer algebra systems (CAS) are linguistically and
102 semantically impoverished.  Although they are quite powerful tools for
103 learning math and solving particular problems they lack modern
104 linguistic structures that allow for the creation of large-scale
105 projects.  GiNaC is an attempt to overcome this situation by extending a
106 well established and standardized computer language (C++) by some
107 fundamental symbolic capabilities, thus allowing for integrated systems
108 that embed symbolic manipulations together with more established areas
109 of computer science (like computation-intense numeric applications,
110 graphical interfaces, etc.) under one roof.
111
112 The particular problem that led to the writing of the GiNaC framework is
113 still a very active field of research, namely the calculation of higher
114 order corrections to elementary particle interactions.  There,
115 theoretical physicists are interested in matching present day theories
116 against experiments taking place at particle accelerators.  The
117 computations involved are so complex they call for a combined symbolical
118 and numerical approach.  This turned out to be quite difficult to
119 accomplish with the present day CAS we have worked with so far and so we
120 tried to fill the gap by writing GiNaC.  But of course its applications
121 are in no way restricted to theoretical physics.
122
123 This tutorial is intended for the novice user who is new to GiNaC but
124 already has some background in C++ programming.  However, since a
125 hand-made documentation like this one is difficult to keep in sync with
126 the development, the actual documentation is inside the sources in the
127 form of comments.  That documentation may be parsed by one of the many
128 Javadoc-like documentation systems.  If you fail at generating it you
129 may access it from @uref{http://www.ginac.de/reference/, the GiNaC home
130 page}.  It is an invaluable resource not only for the advanced user who
131 wishes to extend the system (or chase bugs) but for everybody who wants
132 to comprehend the inner workings of GiNaC.  This little tutorial on the
133 other hand only covers the basic things that are unlikely to change in
134 the near future.
135
136 @section License
137 The GiNaC framework for symbolic computation within the C++ programming
138 language is Copyright @copyright{} 1999-2008 Johannes Gutenberg
139 University Mainz, Germany.
140
141 This program is free software; you can redistribute it and/or
142 modify it under the terms of the GNU General Public License as
143 published by the Free Software Foundation; either version 2 of the
144 License, or (at your option) any later version.
145
146 This program is distributed in the hope that it will be useful, but
147 WITHOUT ANY WARRANTY; without even the implied warranty of
148 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
149 General Public License for more details.
150
151 You should have received a copy of the GNU General Public License
152 along with this program; see the file COPYING.  If not, write to the
153 Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
154 MA 02110-1301, USA.
155
156
157 @node A tour of GiNaC, How to use it from within C++, Introduction, Top
158 @c    node-name, next, previous, up
159 @chapter A Tour of GiNaC
160
161 This quick tour of GiNaC wants to arise your interest in the
162 subsequent chapters by showing off a bit.  Please excuse us if it
163 leaves many open questions.
164
165 @menu
166 * How to use it from within C++::  Two simple examples.
167 * What it can do for you::         A Tour of GiNaC's features.
168 @end menu
169
170
171 @node How to use it from within C++, What it can do for you, A tour of GiNaC, A tour of GiNaC
172 @c    node-name, next, previous, up
173 @section How to use it from within C++
174
175 The GiNaC open framework for symbolic computation within the C++ programming
176 language does not try to define a language of its own as conventional
177 CAS do.  Instead, it extends the capabilities of C++ by symbolic
178 manipulations.  Here is how to generate and print a simple (and rather
179 pointless) bivariate polynomial with some large coefficients:
180
181 @example
182 #include <iostream>
183 #include <ginac/ginac.h>
184 using namespace std;
185 using namespace GiNaC;
186
187 int main()
188 @{
189     symbol x("x"), y("y");
190     ex poly;
191
192     for (int i=0; i<3; ++i)
193         poly += factorial(i+16)*pow(x,i)*pow(y,2-i);
194
195     cout << poly << endl;
196     return 0;
197 @}
198 @end example
199
200 Assuming the file is called @file{hello.cc}, on our system we can compile
201 and run it like this:
202
203 @example
204 $ c++ hello.cc -o hello -lcln -lginac
205 $ ./hello
206 355687428096000*x*y+20922789888000*y^2+6402373705728000*x^2
207 @end example
208
209 (@xref{Package tools}, for tools that help you when creating a software
210 package that uses GiNaC.)
211
212 @cindex Hermite polynomial
213 Next, there is a more meaningful C++ program that calls a function which
214 generates Hermite polynomials in a specified free variable.
215
216 @example
217 #include <iostream>
218 #include <ginac/ginac.h>
219 using namespace std;
220 using namespace GiNaC;
221
222 ex HermitePoly(const symbol & x, int n)
223 @{
224     ex HKer=exp(-pow(x, 2));
225     // uses the identity H_n(x) == (-1)^n exp(x^2) (d/dx)^n exp(-x^2)
226     return normal(pow(-1, n) * diff(HKer, x, n) / HKer);
227 @}
228
229 int main()
230 @{
231     symbol z("z");
232
233     for (int i=0; i<6; ++i)
234         cout << "H_" << i << "(z) == " << HermitePoly(z,i) << endl;
235
236     return 0;
237 @}
238 @end example
239
240 When run, this will type out
241
242 @example
243 H_0(z) == 1
244 H_1(z) == 2*z
245 H_2(z) == 4*z^2-2
246 H_3(z) == -12*z+8*z^3
247 H_4(z) == -48*z^2+16*z^4+12
248 H_5(z) == 120*z-160*z^3+32*z^5
249 @end example
250
251 This method of generating the coefficients is of course far from optimal
252 for production purposes.
253
254 In order to show some more examples of what GiNaC can do we will now use
255 the @command{ginsh}, a simple GiNaC interactive shell that provides a
256 convenient window into GiNaC's capabilities.
257
258
259 @node What it can do for you, Installation, How to use it from within C++, A tour of GiNaC
260 @c    node-name, next, previous, up
261 @section What it can do for you
262
263 @cindex @command{ginsh}
264 After invoking @command{ginsh} one can test and experiment with GiNaC's
265 features much like in other Computer Algebra Systems except that it does
266 not provide programming constructs like loops or conditionals.  For a
267 concise description of the @command{ginsh} syntax we refer to its
268 accompanied man page. Suffice to say that assignments and comparisons in
269 @command{ginsh} are written as they are in C, i.e. @code{=} assigns and
270 @code{==} compares.
271
272 It can manipulate arbitrary precision integers in a very fast way.
273 Rational numbers are automatically converted to fractions of coprime
274 integers:
275
276 @example
277 > x=3^150;
278 369988485035126972924700782451696644186473100389722973815184405301748249
279 > y=3^149;
280 123329495011708990974900260817232214728824366796574324605061468433916083
281 > x/y;
282 3
283 > y/x;
284 1/3
285 @end example
286
287 Exact numbers are always retained as exact numbers and only evaluated as
288 floating point numbers if requested.  For instance, with numeric
289 radicals is dealt pretty much as with symbols.  Products of sums of them
290 can be expanded:
291
292 @example
293 > expand((1+a^(1/5)-a^(2/5))^3);
294 1+3*a+3*a^(1/5)-5*a^(3/5)-a^(6/5)
295 > expand((1+3^(1/5)-3^(2/5))^3);
296 10-5*3^(3/5)
297 > evalf((1+3^(1/5)-3^(2/5))^3);
298 0.33408977534118624228
299 @end example
300
301 The function @code{evalf} that was used above converts any number in
302 GiNaC's expressions into floating point numbers.  This can be done to
303 arbitrary predefined accuracy:
304
305 @example
306 > evalf(1/7);
307 0.14285714285714285714
308 > Digits=150;
309 150
310 > evalf(1/7);
311 0.1428571428571428571428571428571428571428571428571428571428571428571428
312 5714285714285714285714285714285714285
313 @end example
314
315 Exact numbers other than rationals that can be manipulated in GiNaC
316 include predefined constants like Archimedes' @code{Pi}.  They can both
317 be used in symbolic manipulations (as an exact number) as well as in
318 numeric expressions (as an inexact number):
319
320 @example
321 > a=Pi^2+x;
322 x+Pi^2
323 > evalf(a);
324 9.869604401089358619+x
325 > x=2;
326 2
327 > evalf(a);
328 11.869604401089358619
329 @end example
330
331 Built-in functions evaluate immediately to exact numbers if
332 this is possible.  Conversions that can be safely performed are done
333 immediately; conversions that are not generally valid are not done:
334
335 @example
336 > cos(42*Pi);
337 1
338 > cos(acos(x));
339 x
340 > acos(cos(x));
341 acos(cos(x))
342 @end example
343
344 (Note that converting the last input to @code{x} would allow one to
345 conclude that @code{42*Pi} is equal to @code{0}.)
346
347 Linear equation systems can be solved along with basic linear
348 algebra manipulations over symbolic expressions.  In C++ GiNaC offers
349 a matrix class for this purpose but we can see what it can do using
350 @command{ginsh}'s bracket notation to type them in:
351
352 @example
353 > lsolve(a+x*y==z,x);
354 y^(-1)*(z-a);
355 > lsolve(@{3*x+5*y == 7, -2*x+10*y == -5@}, @{x, y@});
356 @{x==19/8,y==-1/40@}
357 > M = [ [1, 3], [-3, 2] ];
358 [[1,3],[-3,2]]
359 > determinant(M);
360 11
361 > charpoly(M,lambda);
362 lambda^2-3*lambda+11
363 > A = [ [1, 1], [2, -1] ];
364 [[1,1],[2,-1]]
365 > A+2*M;
366 [[1,1],[2,-1]]+2*[[1,3],[-3,2]]
367 > evalm(%);
368 [[3,7],[-4,3]]
369 > B = [ [0, 0, a], [b, 1, -b], [-1/a, 0, 0] ];
370 > evalm(B^(2^12345));
371 [[1,0,0],[0,1,0],[0,0,1]]
372 @end example
373
374 Multivariate polynomials and rational functions may be expanded,
375 collected and normalized (i.e. converted to a ratio of two coprime 
376 polynomials):
377
378 @example
379 > a = x^4 + 2*x^2*y^2 + 4*x^3*y + 12*x*y^3 - 3*y^4;
380 12*x*y^3+2*x^2*y^2+4*x^3*y-3*y^4+x^4
381 > b = x^2 + 4*x*y - y^2;
382 4*x*y-y^2+x^2
383 > expand(a*b);
384 8*x^5*y+17*x^4*y^2+43*x^2*y^4-24*x*y^5+16*x^3*y^3+3*y^6+x^6
385 > collect(a+b,x);
386 4*x^3*y-y^2-3*y^4+(12*y^3+4*y)*x+x^4+x^2*(1+2*y^2)
387 > collect(a+b,y);
388 12*x*y^3-3*y^4+(-1+2*x^2)*y^2+(4*x+4*x^3)*y+x^2+x^4
389 > normal(a/b);
390 3*y^2+x^2
391 @end example
392
393 You can differentiate functions and expand them as Taylor or Laurent
394 series in a very natural syntax (the second argument of @code{series} is
395 a relation defining the evaluation point, the third specifies the
396 order):
397
398 @cindex Zeta function
399 @example
400 > diff(tan(x),x);
401 tan(x)^2+1
402 > series(sin(x),x==0,4);
403 x-1/6*x^3+Order(x^4)
404 > series(1/tan(x),x==0,4);
405 x^(-1)-1/3*x+Order(x^2)
406 > series(tgamma(x),x==0,3);
407 x^(-1)-Euler+(1/12*Pi^2+1/2*Euler^2)*x+
408 (-1/3*zeta(3)-1/12*Pi^2*Euler-1/6*Euler^3)*x^2+Order(x^3)
409 > evalf(%);
410 x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x
411 -(0.90747907608088628905)*x^2+Order(x^3)
412 > series(tgamma(2*sin(x)-2),x==Pi/2,6);
413 -(x-1/2*Pi)^(-2)+(-1/12*Pi^2-1/2*Euler^2-1/240)*(x-1/2*Pi)^2
414 -Euler-1/12+Order((x-1/2*Pi)^3)
415 @end example
416
417 Here we have made use of the @command{ginsh}-command @code{%} to pop the
418 previously evaluated element from @command{ginsh}'s internal stack.
419
420 Often, functions don't have roots in closed form.  Nevertheless, it's
421 quite easy to compute a solution numerically, to arbitrary precision:
422
423 @cindex fsolve
424 @example
425 > Digits=50:
426 > fsolve(cos(x)==x,x,0,2);
427 0.7390851332151606416553120876738734040134117589007574649658
428 > f=exp(sin(x))-x:
429 > X=fsolve(f,x,-10,10);
430 2.2191071489137460325957851882042901681753665565320678854155
431 > subs(f,x==X);
432 -6.372367644529809108115521591070847222364418220770475144296E-58
433 @end example
434
435 Notice how the final result above differs slightly from zero by about
436 @math{6*10^(-58)}.  This is because with 50 decimal digits precision the
437 root cannot be represented more accurately than @code{X}.  Such
438 inaccuracies are to be expected when computing with finite floating
439 point values.
440
441 If you ever wanted to convert units in C or C++ and found this is
442 cumbersome, here is the solution.  Symbolic types can always be used as
443 tags for different types of objects.  Converting from wrong units to the
444 metric system is now easy:
445
446 @example
447 > in=.0254*m;
448 0.0254*m
449 > lb=.45359237*kg;
450 0.45359237*kg
451 > 200*lb/in^2;
452 140613.91592783185568*kg*m^(-2)
453 @end example
454
455
456 @node Installation, Prerequisites, What it can do for you, Top
457 @c    node-name, next, previous, up
458 @chapter Installation
459
460 @cindex CLN
461 GiNaC's installation follows the spirit of most GNU software. It is
462 easily installed on your system by three steps: configuration, build,
463 installation.
464
465 @menu
466 * Prerequisites::                Packages upon which GiNaC depends.
467 * Configuration::                How to configure GiNaC.
468 * Building GiNaC::               How to compile GiNaC.
469 * Installing GiNaC::             How to install GiNaC on your system.
470 @end menu
471
472
473 @node Prerequisites, Configuration, Installation, Installation
474 @c    node-name, next, previous, up
475 @section Prerequisites
476
477 In order to install GiNaC on your system, some prerequisites need to be
478 met.  First of all, you need to have a C++-compiler adhering to the
479 ANSI-standard @cite{ISO/IEC 14882:1998(E)}.  We used GCC for development
480 so if you have a different compiler you are on your own.  For the
481 configuration to succeed you need a Posix compliant shell installed in
482 @file{/bin/sh}, GNU @command{bash} is fine. The pkg-config utility is
483 required for the configuration, it can be downloaded from
484 @uref{http://pkg-config.freedesktop.org}.
485 Last but not least, the CLN library
486 is used extensively and needs to be installed on your system.
487 Please get it from @uref{ftp://ftpthep.physik.uni-mainz.de/pub/gnu/}
488 (it is covered by GPL) and install it prior to trying to install
489 GiNaC.  The configure script checks if it can find it and if it cannot
490 it will refuse to continue.
491
492
493 @node Configuration, Building GiNaC, Prerequisites, Installation
494 @c    node-name, next, previous, up
495 @section Configuration
496 @cindex configuration
497 @cindex Autoconf
498
499 To configure GiNaC means to prepare the source distribution for
500 building.  It is done via a shell script called @command{configure} that
501 is shipped with the sources and was originally generated by GNU
502 Autoconf.  Since a configure script generated by GNU Autoconf never
503 prompts, all customization must be done either via command line
504 parameters or environment variables.  It accepts a list of parameters,
505 the complete set of which can be listed by calling it with the
506 @option{--help} option.  The most important ones will be shortly
507 described in what follows:
508
509 @itemize @bullet
510
511 @item
512 @option{--disable-shared}: When given, this option switches off the
513 build of a shared library, i.e. a @file{.so} file.  This may be convenient
514 when developing because it considerably speeds up compilation.
515
516 @item
517 @option{--prefix=@var{PREFIX}}: The directory where the compiled library
518 and headers are installed. It defaults to @file{/usr/local} which means
519 that the library is installed in the directory @file{/usr/local/lib},
520 the header files in @file{/usr/local/include/ginac} and the documentation
521 (like this one) into @file{/usr/local/share/doc/GiNaC}.
522
523 @item
524 @option{--libdir=@var{LIBDIR}}: Use this option in case you want to have
525 the library installed in some other directory than
526 @file{@var{PREFIX}/lib/}.
527
528 @item
529 @option{--includedir=@var{INCLUDEDIR}}: Use this option in case you want
530 to have the header files installed in some other directory than
531 @file{@var{PREFIX}/include/ginac/}. For instance, if you specify
532 @option{--includedir=/usr/include} you will end up with the header files
533 sitting in the directory @file{/usr/include/ginac/}. Note that the
534 subdirectory @file{ginac} is enforced by this process in order to
535 keep the header files separated from others.  This avoids some
536 clashes and allows for an easier deinstallation of GiNaC. This ought
537 to be considered A Good Thing (tm).
538
539 @item
540 @option{--datadir=@var{DATADIR}}: This option may be given in case you
541 want to have the documentation installed in some other directory than
542 @file{@var{PREFIX}/share/doc/GiNaC/}.
543
544 @end itemize
545
546 In addition, you may specify some environment variables.  @env{CXX}
547 holds the path and the name of the C++ compiler in case you want to
548 override the default in your path.  (The @command{configure} script
549 searches your path for @command{c++}, @command{g++}, @command{gcc},
550 @command{CC}, @command{cxx} and @command{cc++} in that order.)  It may
551 be very useful to define some compiler flags with the @env{CXXFLAGS}
552 environment variable, like optimization, debugging information and
553 warning levels.  If omitted, it defaults to @option{-g
554 -O2}.@footnote{The @command{configure} script is itself generated from
555 the file @file{configure.ac}.  It is only distributed in packaged
556 releases of GiNaC.  If you got the naked sources, e.g. from git, you
557 must generate @command{configure} along with the various
558 @file{Makefile.in} by using the @command{autoreconf} utility.  This will
559 require a fair amount of support from your local toolchain, though.}
560
561 The whole process is illustrated in the following two
562 examples. (Substitute @command{setenv @var{VARIABLE} @var{value}} for
563 @command{export @var{VARIABLE}=@var{value}} if the Berkeley C shell is
564 your login shell.)
565
566 Here is a simple configuration for a site-wide GiNaC library assuming
567 everything is in default paths:
568
569 @example
570 $ export CXXFLAGS="-Wall -O2"
571 $ ./configure
572 @end example
573
574 And here is a configuration for a private static GiNaC library with
575 several components sitting in custom places (site-wide GCC and private
576 CLN).  The compiler is persuaded to be picky and full assertions and
577 debugging information are switched on:
578
579 @example
580 $ export CXX=/usr/local/gnu/bin/c++
581 $ export CPPFLAGS="$(CPPFLAGS) -I$(HOME)/include"
582 $ export CXXFLAGS="$(CXXFLAGS) -DDO_GINAC_ASSERT -ggdb -Wall -pedantic"
583 $ export LDFLAGS="$(LDFLAGS) -L$(HOME)/lib"
584 $ ./configure --disable-shared --prefix=$(HOME)
585 @end example
586
587
588 @node Building GiNaC, Installing GiNaC, Configuration, Installation
589 @c    node-name, next, previous, up
590 @section Building GiNaC
591 @cindex building GiNaC
592
593 After proper configuration you should just build the whole
594 library by typing
595 @example
596 $ make
597 @end example
598 at the command prompt and go for a cup of coffee.  The exact time it
599 takes to compile GiNaC depends not only on the speed of your machines
600 but also on other parameters, for instance what value for @env{CXXFLAGS}
601 you entered.  Optimization may be very time-consuming.
602
603 Just to make sure GiNaC works properly you may run a collection of
604 regression tests by typing
605
606 @example
607 $ make check
608 @end example
609
610 This will compile some sample programs, run them and check the output
611 for correctness.  The regression tests fall in three categories.  First,
612 the so called @emph{exams} are performed, simple tests where some
613 predefined input is evaluated (like a pupils' exam).  Second, the
614 @emph{checks} test the coherence of results among each other with
615 possible random input.  Third, some @emph{timings} are performed, which
616 benchmark some predefined problems with different sizes and display the
617 CPU time used in seconds.  Each individual test should return a message
618 @samp{passed}.  This is mostly intended to be a QA-check if something
619 was broken during development, not a sanity check of your system.  Some
620 of the tests in sections @emph{checks} and @emph{timings} may require
621 insane amounts of memory and CPU time.  Feel free to kill them if your
622 machine catches fire.  Another quite important intent is to allow people
623 to fiddle around with optimization.
624
625 By default, the only documentation that will be built is this tutorial
626 in @file{.info} format. To build the GiNaC tutorial and reference manual
627 in HTML, DVI, PostScript, or PDF formats, use one of
628
629 @example
630 $ make html
631 $ make dvi
632 $ make ps
633 $ make pdf
634 @end example
635
636 Generally, the top-level Makefile runs recursively to the
637 subdirectories.  It is therefore safe to go into any subdirectory
638 (@code{doc/}, @code{ginsh/}, @dots{}) and simply type @code{make}
639 @var{target} there in case something went wrong.
640
641
642 @node Installing GiNaC, Basic concepts, Building GiNaC, Installation
643 @c    node-name, next, previous, up
644 @section Installing GiNaC
645 @cindex installation
646
647 To install GiNaC on your system, simply type
648
649 @example
650 $ make install
651 @end example
652
653 As described in the section about configuration the files will be
654 installed in the following directories (the directories will be created
655 if they don't already exist):
656
657 @itemize @bullet
658
659 @item
660 @file{libginac.a} will go into @file{@var{PREFIX}/lib/} (or
661 @file{@var{LIBDIR}}) which defaults to @file{/usr/local/lib/}.
662 So will @file{libginac.so} unless the configure script was
663 given the option @option{--disable-shared}.  The proper symlinks
664 will be established as well.
665
666 @item
667 All the header files will be installed into @file{@var{PREFIX}/include/ginac/}
668 (or @file{@var{INCLUDEDIR}/ginac/}, if specified).
669
670 @item
671 All documentation (info) will be stuffed into
672 @file{@var{PREFIX}/share/doc/GiNaC/} (or
673 @file{@var{DATADIR}/doc/GiNaC/}, if @var{DATADIR} was specified).
674
675 @end itemize
676
677 For the sake of completeness we will list some other useful make
678 targets: @command{make clean} deletes all files generated by
679 @command{make}, i.e. all the object files.  In addition @command{make
680 distclean} removes all files generated by the configuration and
681 @command{make maintainer-clean} goes one step further and deletes files
682 that may require special tools to rebuild (like the @command{libtool}
683 for instance).  Finally @command{make uninstall} removes the installed
684 library, header files and documentation@footnote{Uninstallation does not
685 work after you have called @command{make distclean} since the
686 @file{Makefile} is itself generated by the configuration from
687 @file{Makefile.in} and hence deleted by @command{make distclean}.  There
688 are two obvious ways out of this dilemma.  First, you can run the
689 configuration again with the same @var{PREFIX} thus creating a
690 @file{Makefile} with a working @samp{uninstall} target.  Second, you can
691 do it by hand since you now know where all the files went during
692 installation.}.
693
694
695 @node Basic concepts, Expressions, Installing GiNaC, Top
696 @c    node-name, next, previous, up
697 @chapter Basic concepts
698
699 This chapter will describe the different fundamental objects that can be
700 handled by GiNaC.  But before doing so, it is worthwhile introducing you
701 to the more commonly used class of expressions, representing a flexible
702 meta-class for storing all mathematical objects.
703
704 @menu
705 * Expressions::                  The fundamental GiNaC class.
706 * Automatic evaluation::         Evaluation and canonicalization.
707 * Error handling::               How the library reports errors.
708 * The class hierarchy::          Overview of GiNaC's classes.
709 * Symbols::                      Symbolic objects.
710 * Numbers::                      Numerical objects.
711 * Constants::                    Pre-defined constants.
712 * Fundamental containers::       Sums, products and powers.
713 * Lists::                        Lists of expressions.
714 * Mathematical functions::       Mathematical functions.
715 * Relations::                    Equality, Inequality and all that.
716 * Integrals::                    Symbolic integrals.
717 * Matrices::                     Matrices.
718 * Indexed objects::              Handling indexed quantities.
719 * Non-commutative objects::      Algebras with non-commutative products.
720 * Hash maps::                    A faster alternative to std::map<>.
721 @end menu
722
723
724 @node Expressions, Automatic evaluation, Basic concepts, Basic concepts
725 @c    node-name, next, previous, up
726 @section Expressions
727 @cindex expression (class @code{ex})
728 @cindex @code{has()}
729
730 The most common class of objects a user deals with is the expression
731 @code{ex}, representing a mathematical object like a variable, number,
732 function, sum, product, etc@dots{}  Expressions may be put together to form
733 new expressions, passed as arguments to functions, and so on.  Here is a
734 little collection of valid expressions:
735
736 @example
737 ex MyEx1 = 5;                       // simple number
738 ex MyEx2 = x + 2*y;                 // polynomial in x and y
739 ex MyEx3 = (x + 1)/(x - 1);         // rational expression
740 ex MyEx4 = sin(x + 2*y) + 3*z + 41; // containing a function
741 ex MyEx5 = MyEx4 + 1;               // similar to above
742 @end example
743
744 Expressions are handles to other more fundamental objects, that often
745 contain other expressions thus creating a tree of expressions
746 (@xref{Internal structures}, for particular examples).  Most methods on
747 @code{ex} therefore run top-down through such an expression tree.  For
748 example, the method @code{has()} scans recursively for occurrences of
749 something inside an expression.  Thus, if you have declared @code{MyEx4}
750 as in the example above @code{MyEx4.has(y)} will find @code{y} inside
751 the argument of @code{sin} and hence return @code{true}.
752
753 The next sections will outline the general picture of GiNaC's class
754 hierarchy and describe the classes of objects that are handled by
755 @code{ex}.
756
757 @subsection Note: Expressions and STL containers
758
759 GiNaC expressions (@code{ex} objects) have value semantics (they can be
760 assigned, reassigned and copied like integral types) but the operator
761 @code{<} doesn't provide a well-defined ordering on them. In STL-speak,
762 expressions are @samp{Assignable} but not @samp{LessThanComparable}.
763
764 This implies that in order to use expressions in sorted containers such as
765 @code{std::map<>} and @code{std::set<>} you have to supply a suitable
766 comparison predicate. GiNaC provides such a predicate, called
767 @code{ex_is_less}. For example, a set of expressions should be defined
768 as @code{std::set<ex, ex_is_less>}.
769
770 Unsorted containers such as @code{std::vector<>} and @code{std::list<>}
771 don't pose a problem. A @code{std::vector<ex>} works as expected.
772
773 @xref{Information about expressions}, for more about comparing and ordering
774 expressions.
775
776
777 @node Automatic evaluation, Error handling, Expressions, Basic concepts
778 @c    node-name, next, previous, up
779 @section Automatic evaluation and canonicalization of expressions
780 @cindex evaluation
781
782 GiNaC performs some automatic transformations on expressions, to simplify
783 them and put them into a canonical form. Some examples:
784
785 @example
786 ex MyEx1 = 2*x - 1 + x;  // 3*x-1
787 ex MyEx2 = x - x;        // 0
788 ex MyEx3 = cos(2*Pi);    // 1
789 ex MyEx4 = x*y/x;        // y
790 @end example
791
792 This behavior is usually referred to as @dfn{automatic} or @dfn{anonymous
793 evaluation}. GiNaC only performs transformations that are
794
795 @itemize @bullet
796 @item
797 at most of complexity
798 @tex
799 $O(n\log n)$
800 @end tex
801 @ifnottex
802 @math{O(n log n)}
803 @end ifnottex
804 @item
805 algebraically correct, possibly except for a set of measure zero (e.g.
806 @math{x/x} is transformed to @math{1} although this is incorrect for @math{x=0})
807 @end itemize
808
809 There are two types of automatic transformations in GiNaC that may not
810 behave in an entirely obvious way at first glance:
811
812 @itemize
813 @item
814 The terms of sums and products (and some other things like the arguments of
815 symmetric functions, the indices of symmetric tensors etc.) are re-ordered
816 into a canonical form that is deterministic, but not lexicographical or in
817 any other way easy to guess (it almost always depends on the number and
818 order of the symbols you define). However, constructing the same expression
819 twice, either implicitly or explicitly, will always result in the same
820 canonical form.
821 @item
822 Expressions of the form 'number times sum' are automatically expanded (this
823 has to do with GiNaC's internal representation of sums and products). For
824 example
825 @example
826 ex MyEx5 = 2*(x + y);   // 2*x+2*y
827 ex MyEx6 = z*(x + y);   // z*(x+y)
828 @end example
829 @end itemize
830
831 The general rule is that when you construct expressions, GiNaC automatically
832 creates them in canonical form, which might differ from the form you typed in
833 your program. This may create some awkward looking output (@samp{-y+x} instead
834 of @samp{x-y}) but allows for more efficient operation and usually yields
835 some immediate simplifications.
836
837 @cindex @code{eval()}
838 Internally, the anonymous evaluator in GiNaC is implemented by the methods
839
840 @example
841 ex ex::eval(int level = 0) const;
842 ex basic::eval(int level = 0) const;
843 @end example
844
845 but unless you are extending GiNaC with your own classes or functions, there
846 should never be any reason to call them explicitly. All GiNaC methods that
847 transform expressions, like @code{subs()} or @code{normal()}, automatically
848 re-evaluate their results.
849
850
851 @node Error handling, The class hierarchy, Automatic evaluation, Basic concepts
852 @c    node-name, next, previous, up
853 @section Error handling
854 @cindex exceptions
855 @cindex @code{pole_error} (class)
856
857 GiNaC reports run-time errors by throwing C++ exceptions. All exceptions
858 generated by GiNaC are subclassed from the standard @code{exception} class
859 defined in the @file{<stdexcept>} header. In addition to the predefined
860 @code{logic_error}, @code{domain_error}, @code{out_of_range},
861 @code{invalid_argument}, @code{runtime_error}, @code{range_error} and
862 @code{overflow_error} types, GiNaC also defines a @code{pole_error}
863 exception that gets thrown when trying to evaluate a mathematical function
864 at a singularity.
865
866 The @code{pole_error} class has a member function
867
868 @example
869 int pole_error::degree() const;
870 @end example
871
872 that returns the order of the singularity (or 0 when the pole is
873 logarithmic or the order is undefined).
874
875 When using GiNaC it is useful to arrange for exceptions to be caught in
876 the main program even if you don't want to do any special error handling.
877 Otherwise whenever an error occurs in GiNaC, it will be delegated to the
878 default exception handler of your C++ compiler's run-time system which
879 usually only aborts the program without giving any information what went
880 wrong.
881
882 Here is an example for a @code{main()} function that catches and prints
883 exceptions generated by GiNaC:
884
885 @example
886 #include <iostream>
887 #include <stdexcept>
888 #include <ginac/ginac.h>
889 using namespace std;
890 using namespace GiNaC;
891
892 int main()
893 @{
894     try @{
895         ...
896         // code using GiNaC
897         ...
898     @} catch (exception &p) @{
899         cerr << p.what() << endl;
900         return 1;
901     @}
902     return 0;
903 @}
904 @end example
905
906
907 @node The class hierarchy, Symbols, Error handling, Basic concepts
908 @c    node-name, next, previous, up
909 @section The class hierarchy
910
911 GiNaC's class hierarchy consists of several classes representing
912 mathematical objects, all of which (except for @code{ex} and some
913 helpers) are internally derived from one abstract base class called
914 @code{basic}.  You do not have to deal with objects of class
915 @code{basic}, instead you'll be dealing with symbols, numbers,
916 containers of expressions and so on.
917
918 @cindex container
919 @cindex atom
920 To get an idea about what kinds of symbolic composites may be built we
921 have a look at the most important classes in the class hierarchy and
922 some of the relations among the classes:
923
924 @ifnotinfo
925 @image{classhierarchy}
926 @end ifnotinfo
927 @ifinfo
928 <PICTURE MISSING>
929 @end ifinfo
930
931 The abstract classes shown here (the ones without drop-shadow) are of no
932 interest for the user.  They are used internally in order to avoid code
933 duplication if two or more classes derived from them share certain
934 features.  An example is @code{expairseq}, a container for a sequence of
935 pairs each consisting of one expression and a number (@code{numeric}).
936 What @emph{is} visible to the user are the derived classes @code{add}
937 and @code{mul}, representing sums and products.  @xref{Internal
938 structures}, where these two classes are described in more detail.  The
939 following table shortly summarizes what kinds of mathematical objects
940 are stored in the different classes:
941
942 @cartouche
943 @multitable @columnfractions .22 .78
944 @item @code{symbol} @tab Algebraic symbols @math{a}, @math{x}, @math{y}@dots{}
945 @item @code{constant} @tab Constants like 
946 @tex
947 $\pi$
948 @end tex
949 @ifnottex
950 @math{Pi}
951 @end ifnottex
952 @item @code{numeric} @tab All kinds of numbers, @math{42}, @math{7/3*I}, @math{3.14159}@dots{}
953 @item @code{add} @tab Sums like @math{x+y} or @math{a-(2*b)+3}
954 @item @code{mul} @tab Products like @math{x*y} or @math{2*a^2*(x+y+z)/b}
955 @item @code{ncmul} @tab Products of non-commutative objects
956 @item @code{power} @tab Exponentials such as @math{x^2}, @math{a^b}, 
957 @tex
958 $\sqrt{2}$
959 @end tex
960 @ifnottex
961 @code{sqrt(}@math{2}@code{)}
962 @end ifnottex
963 @dots{}
964 @item @code{pseries} @tab Power Series, e.g. @math{x-1/6*x^3+1/120*x^5+O(x^7)}
965 @item @code{function} @tab A symbolic function like
966 @tex
967 $\sin 2x$
968 @end tex
969 @ifnottex
970 @math{sin(2*x)}
971 @end ifnottex
972 @item @code{lst} @tab Lists of expressions @{@math{x}, @math{2*y}, @math{3+z}@}
973 @item @code{matrix} @tab @math{m}x@math{n} matrices of expressions
974 @item @code{relational} @tab A relation like the identity @math{x}@code{==}@math{y}
975 @item @code{indexed} @tab Indexed object like @math{A_ij}
976 @item @code{tensor} @tab Special tensor like the delta and metric tensors
977 @item @code{idx} @tab Index of an indexed object
978 @item @code{varidx} @tab Index with variance
979 @item @code{spinidx} @tab Index with variance and dot (used in Weyl-van-der-Waerden spinor formalism)
980 @item @code{wildcard} @tab Wildcard for pattern matching
981 @item @code{structure} @tab Template for user-defined classes
982 @end multitable
983 @end cartouche
984
985
986 @node Symbols, Numbers, The class hierarchy, Basic concepts
987 @c    node-name, next, previous, up
988 @section Symbols
989 @cindex @code{symbol} (class)
990 @cindex hierarchy of classes
991
992 @cindex atom
993 Symbolic indeterminates, or @dfn{symbols} for short, are for symbolic
994 manipulation what atoms are for chemistry.
995
996 A typical symbol definition looks like this:
997 @example
998 symbol x("x");
999 @end example
1000
1001 This definition actually contains three very different things:
1002 @itemize
1003 @item a C++ variable named @code{x}
1004 @item a @code{symbol} object stored in this C++ variable; this object
1005   represents the symbol in a GiNaC expression
1006 @item the string @code{"x"} which is the name of the symbol, used (almost)
1007   exclusively for printing expressions holding the symbol
1008 @end itemize
1009
1010 Symbols have an explicit name, supplied as a string during construction,
1011 because in C++, variable names can't be used as values, and the C++ compiler
1012 throws them away during compilation.
1013
1014 It is possible to omit the symbol name in the definition:
1015 @example
1016 symbol x;
1017 @end example
1018
1019 In this case, GiNaC will assign the symbol an internal, unique name of the
1020 form @code{symbolNNN}. This won't affect the usability of the symbol but
1021 the output of your calculations will become more readable if you give your
1022 symbols sensible names (for intermediate expressions that are only used
1023 internally such anonymous symbols can be quite useful, however).
1024
1025 Now, here is one important property of GiNaC that differentiates it from
1026 other computer algebra programs you may have used: GiNaC does @emph{not} use
1027 the names of symbols to tell them apart, but a (hidden) serial number that
1028 is unique for each newly created @code{symbol} object. If you want to use
1029 one and the same symbol in different places in your program, you must only
1030 create one @code{symbol} object and pass that around. If you create another
1031 symbol, even if it has the same name, GiNaC will treat it as a different
1032 indeterminate.
1033
1034 Observe:
1035 @example
1036 ex f(int n)
1037 @{
1038     symbol x("x");
1039     return pow(x, n);
1040 @}
1041
1042 int main()
1043 @{
1044     symbol x("x");
1045     ex e = f(6);
1046
1047     cout << e << endl;
1048      // prints "x^6" which looks right, but...
1049
1050     cout << e.degree(x) << endl;
1051      // ...this doesn't work. The symbol "x" here is different from the one
1052      // in f() and in the expression returned by f(). Consequently, it
1053      // prints "0".
1054 @}
1055 @end example
1056
1057 One possibility to ensure that @code{f()} and @code{main()} use the same
1058 symbol is to pass the symbol as an argument to @code{f()}:
1059 @example
1060 ex f(int n, const ex & x)
1061 @{
1062     return pow(x, n);
1063 @}
1064
1065 int main()
1066 @{
1067     symbol x("x");
1068
1069     // Now, f() uses the same symbol.
1070     ex e = f(6, x);
1071
1072     cout << e.degree(x) << endl;
1073      // prints "6", as expected
1074 @}
1075 @end example
1076
1077 Another possibility would be to define a global symbol @code{x} that is used
1078 by both @code{f()} and @code{main()}. If you are using global symbols and
1079 multiple compilation units you must take special care, however. Suppose
1080 that you have a header file @file{globals.h} in your program that defines
1081 a @code{symbol x("x");}. In this case, every unit that includes
1082 @file{globals.h} would also get its own definition of @code{x} (because
1083 header files are just inlined into the source code by the C++ preprocessor),
1084 and hence you would again end up with multiple equally-named, but different,
1085 symbols. Instead, the @file{globals.h} header should only contain a
1086 @emph{declaration} like @code{extern symbol x;}, with the definition of
1087 @code{x} moved into a C++ source file such as @file{globals.cpp}.
1088
1089 A different approach to ensuring that symbols used in different parts of
1090 your program are identical is to create them with a @emph{factory} function
1091 like this one:
1092 @example
1093 const symbol & get_symbol(const string & s)
1094 @{
1095     static map<string, symbol> directory;
1096     map<string, symbol>::iterator i = directory.find(s);
1097     if (i != directory.end())
1098         return i->second;
1099     else
1100         return directory.insert(make_pair(s, symbol(s))).first->second;
1101 @}
1102 @end example
1103
1104 This function returns one newly constructed symbol for each name that is
1105 passed in, and it returns the same symbol when called multiple times with
1106 the same name. Using this symbol factory, we can rewrite our example like
1107 this:
1108 @example
1109 ex f(int n)
1110 @{
1111     return pow(get_symbol("x"), n);
1112 @}
1113
1114 int main()
1115 @{
1116     ex e = f(6);
1117
1118     // Both calls of get_symbol("x") yield the same symbol.
1119     cout << e.degree(get_symbol("x")) << endl;
1120      // prints "6"
1121 @}
1122 @end example
1123
1124 Instead of creating symbols from strings we could also have
1125 @code{get_symbol()} take, for example, an integer number as its argument.
1126 In this case, we would probably want to give the generated symbols names
1127 that include this number, which can be accomplished with the help of an
1128 @code{ostringstream}.
1129
1130 In general, if you're getting weird results from GiNaC such as an expression
1131 @samp{x-x} that is not simplified to zero, you should check your symbol
1132 definitions.
1133
1134 As we said, the names of symbols primarily serve for purposes of expression
1135 output. But there are actually two instances where GiNaC uses the names for
1136 identifying symbols: When constructing an expression from a string, and when
1137 recreating an expression from an archive (@pxref{Input/output}).
1138
1139 In addition to its name, a symbol may contain a special string that is used
1140 in LaTeX output:
1141 @example
1142 symbol x("x", "\\Box");
1143 @end example
1144
1145 This creates a symbol that is printed as "@code{x}" in normal output, but
1146 as "@code{\Box}" in LaTeX code (@xref{Input/output}, for more
1147 information about the different output formats of expressions in GiNaC).
1148 GiNaC automatically creates proper LaTeX code for symbols having names of
1149 greek letters (@samp{alpha}, @samp{mu}, etc.).
1150
1151 @cindex @code{subs()}
1152 Symbols in GiNaC can't be assigned values. If you need to store results of
1153 calculations and give them a name, use C++ variables of type @code{ex}.
1154 If you want to replace a symbol in an expression with something else, you
1155 can invoke the expression's @code{.subs()} method
1156 (@pxref{Substituting expressions}).
1157
1158 @cindex @code{realsymbol()}
1159 By default, symbols are expected to stand in for complex values, i.e. they live
1160 in the complex domain.  As a consequence, operations like complex conjugation,
1161 for example (@pxref{Complex expressions}), do @emph{not} evaluate if applied
1162 to such symbols. Likewise @code{log(exp(x))} does not evaluate to @code{x},
1163 because of the unknown imaginary part of @code{x}.
1164 On the other hand, if you are sure that your symbols will hold only real
1165 values, you would like to have such functions evaluated. Therefore GiNaC
1166 allows you to specify
1167 the domain of the symbol. Instead of @code{symbol x("x");} you can write
1168 @code{realsymbol x("x");} to tell GiNaC that @code{x} stands in for real values.
1169
1170 @cindex @code{possymbol()}
1171 Furthermore, it is also possible to declare a symbol as positive. This will,
1172 for instance, enable the automatic simplification of @code{abs(x)} into 
1173 @code{x}. This is done by declaring the symbol as @code{possymbol x("x");}.
1174
1175
1176 @node Numbers, Constants, Symbols, Basic concepts
1177 @c    node-name, next, previous, up
1178 @section Numbers
1179 @cindex @code{numeric} (class)
1180
1181 @cindex GMP
1182 @cindex CLN
1183 @cindex rational
1184 @cindex fraction
1185 For storing numerical things, GiNaC uses Bruno Haible's library CLN.
1186 The classes therein serve as foundation classes for GiNaC.  CLN stands
1187 for Class Library for Numbers or alternatively for Common Lisp Numbers.
1188 In order to find out more about CLN's internals, the reader is referred to
1189 the documentation of that library.  @inforef{Introduction, , cln}, for
1190 more information. Suffice to say that it is by itself build on top of
1191 another library, the GNU Multiple Precision library GMP, which is an
1192 extremely fast library for arbitrary long integers and rationals as well
1193 as arbitrary precision floating point numbers.  It is very commonly used
1194 by several popular cryptographic applications.  CLN extends GMP by
1195 several useful things: First, it introduces the complex number field
1196 over either reals (i.e. floating point numbers with arbitrary precision)
1197 or rationals.  Second, it automatically converts rationals to integers
1198 if the denominator is unity and complex numbers to real numbers if the
1199 imaginary part vanishes and also correctly treats algebraic functions.
1200 Third it provides good implementations of state-of-the-art algorithms
1201 for all trigonometric and hyperbolic functions as well as for
1202 calculation of some useful constants.
1203
1204 The user can construct an object of class @code{numeric} in several
1205 ways.  The following example shows the four most important constructors.
1206 It uses construction from C-integer, construction of fractions from two
1207 integers, construction from C-float and construction from a string:
1208
1209 @example
1210 #include <iostream>
1211 #include <ginac/ginac.h>
1212 using namespace GiNaC;
1213
1214 int main()
1215 @{
1216     numeric two = 2;                      // exact integer 2
1217     numeric r(2,3);                       // exact fraction 2/3
1218     numeric e(2.71828);                   // floating point number
1219     numeric p = "3.14159265358979323846"; // constructor from string
1220     // Trott's constant in scientific notation:
1221     numeric trott("1.0841015122311136151E-2");
1222     
1223     std::cout << two*p << std::endl;  // floating point 6.283...
1224     ...
1225 @end example
1226
1227 @cindex @code{I}
1228 @cindex complex numbers
1229 The imaginary unit in GiNaC is a predefined @code{numeric} object with the
1230 name @code{I}:
1231
1232 @example
1233     ...
1234     numeric z1 = 2-3*I;                    // exact complex number 2-3i
1235     numeric z2 = 5.9+1.6*I;                // complex floating point number
1236 @}
1237 @end example
1238
1239 It may be tempting to construct fractions by writing @code{numeric r(3/2)}.
1240 This would, however, call C's built-in operator @code{/} for integers
1241 first and result in a numeric holding a plain integer 1.  @strong{Never
1242 use the operator @code{/} on integers} unless you know exactly what you
1243 are doing!  Use the constructor from two integers instead, as shown in
1244 the example above.  Writing @code{numeric(1)/2} may look funny but works
1245 also.
1246
1247 @cindex @code{Digits}
1248 @cindex accuracy
1249 We have seen now the distinction between exact numbers and floating
1250 point numbers.  Clearly, the user should never have to worry about
1251 dynamically created exact numbers, since their `exactness' always
1252 determines how they ought to be handled, i.e. how `long' they are.  The
1253 situation is different for floating point numbers.  Their accuracy is
1254 controlled by one @emph{global} variable, called @code{Digits}.  (For
1255 those readers who know about Maple: it behaves very much like Maple's
1256 @code{Digits}).  All objects of class numeric that are constructed from
1257 then on will be stored with a precision matching that number of decimal
1258 digits:
1259
1260 @example
1261 #include <iostream>
1262 #include <ginac/ginac.h>
1263 using namespace std;
1264 using namespace GiNaC;
1265
1266 void foo()
1267 @{
1268     numeric three(3.0), one(1.0);
1269     numeric x = one/three;
1270
1271     cout << "in " << Digits << " digits:" << endl;
1272     cout << x << endl;
1273     cout << Pi.evalf() << endl;
1274 @}
1275
1276 int main()
1277 @{
1278     foo();
1279     Digits = 60;
1280     foo();
1281     return 0;
1282 @}
1283 @end example
1284
1285 The above example prints the following output to screen:
1286
1287 @example
1288 in 17 digits:
1289 0.33333333333333333334
1290 3.1415926535897932385
1291 in 60 digits:
1292 0.33333333333333333333333333333333333333333333333333333333333333333334
1293 3.1415926535897932384626433832795028841971693993751058209749445923078
1294 @end example
1295
1296 @cindex rounding
1297 Note that the last number is not necessarily rounded as you would
1298 naively expect it to be rounded in the decimal system.  But note also,
1299 that in both cases you got a couple of extra digits.  This is because
1300 numbers are internally stored by CLN as chunks of binary digits in order
1301 to match your machine's word size and to not waste precision.  Thus, on
1302 architectures with different word size, the above output might even
1303 differ with regard to actually computed digits.
1304
1305 It should be clear that objects of class @code{numeric} should be used
1306 for constructing numbers or for doing arithmetic with them.  The objects
1307 one deals with most of the time are the polymorphic expressions @code{ex}.
1308
1309 @subsection Tests on numbers
1310
1311 Once you have declared some numbers, assigned them to expressions and
1312 done some arithmetic with them it is frequently desired to retrieve some
1313 kind of information from them like asking whether that number is
1314 integer, rational, real or complex.  For those cases GiNaC provides
1315 several useful methods.  (Internally, they fall back to invocations of
1316 certain CLN functions.)
1317
1318 As an example, let's construct some rational number, multiply it with
1319 some multiple of its denominator and test what comes out:
1320
1321 @example
1322 #include <iostream>
1323 #include <ginac/ginac.h>
1324 using namespace std;
1325 using namespace GiNaC;
1326
1327 // some very important constants:
1328 const numeric twentyone(21);
1329 const numeric ten(10);
1330 const numeric five(5);
1331
1332 int main()
1333 @{
1334     numeric answer = twentyone;
1335
1336     answer /= five;
1337     cout << answer.is_integer() << endl;  // false, it's 21/5
1338     answer *= ten;
1339     cout << answer.is_integer() << endl;  // true, it's 42 now!
1340 @}
1341 @end example
1342
1343 Note that the variable @code{answer} is constructed here as an integer
1344 by @code{numeric}'s copy constructor, but in an intermediate step it
1345 holds a rational number represented as integer numerator and integer
1346 denominator.  When multiplied by 10, the denominator becomes unity and
1347 the result is automatically converted to a pure integer again.
1348 Internally, the underlying CLN is responsible for this behavior and we
1349 refer the reader to CLN's documentation.  Suffice to say that
1350 the same behavior applies to complex numbers as well as return values of
1351 certain functions.  Complex numbers are automatically converted to real
1352 numbers if the imaginary part becomes zero.  The full set of tests that
1353 can be applied is listed in the following table.
1354
1355 @cartouche
1356 @multitable @columnfractions .30 .70
1357 @item @strong{Method} @tab @strong{Returns true if the object is@dots{}}
1358 @item @code{.is_zero()}
1359 @tab @dots{}equal to zero
1360 @item @code{.is_positive()}
1361 @tab @dots{}not complex and greater than 0
1362 @item @code{.is_negative()}
1363 @tab @dots{}not complex and smaller than 0
1364 @item @code{.is_integer()}
1365 @tab @dots{}a (non-complex) integer
1366 @item @code{.is_pos_integer()}
1367 @tab @dots{}an integer and greater than 0
1368 @item @code{.is_nonneg_integer()}
1369 @tab @dots{}an integer and greater equal 0
1370 @item @code{.is_even()}
1371 @tab @dots{}an even integer
1372 @item @code{.is_odd()}
1373 @tab @dots{}an odd integer
1374 @item @code{.is_prime()}
1375 @tab @dots{}a prime integer (probabilistic primality test)
1376 @item @code{.is_rational()}
1377 @tab @dots{}an exact rational number (integers are rational, too)
1378 @item @code{.is_real()}
1379 @tab @dots{}a real integer, rational or float (i.e. is not complex)
1380 @item @code{.is_cinteger()}
1381 @tab @dots{}a (complex) integer (such as @math{2-3*I})
1382 @item @code{.is_crational()}
1383 @tab @dots{}an exact (complex) rational number (such as @math{2/3+7/2*I})
1384 @end multitable
1385 @end cartouche
1386
1387 @page
1388
1389 @subsection Numeric functions
1390
1391 The following functions can be applied to @code{numeric} objects and will be
1392 evaluated immediately:
1393
1394 @cartouche
1395 @multitable @columnfractions .30 .70
1396 @item @strong{Name} @tab @strong{Function}
1397 @item @code{inverse(z)}
1398 @tab returns @math{1/z}
1399 @cindex @code{inverse()} (numeric)
1400 @item @code{pow(a, b)}
1401 @tab exponentiation @math{a^b}
1402 @item @code{abs(z)}
1403 @tab absolute value
1404 @item @code{real(z)}
1405 @tab real part
1406 @cindex @code{real()}
1407 @item @code{imag(z)}
1408 @tab imaginary part
1409 @cindex @code{imag()}
1410 @item @code{csgn(z)}
1411 @tab complex sign (returns an @code{int})
1412 @item @code{step(x)}
1413 @tab step function (returns an @code{numeric})
1414 @item @code{numer(z)}
1415 @tab numerator of rational or complex rational number
1416 @item @code{denom(z)}
1417 @tab denominator of rational or complex rational number
1418 @item @code{sqrt(z)}
1419 @tab square root
1420 @item @code{isqrt(n)}
1421 @tab integer square root
1422 @cindex @code{isqrt()}
1423 @item @code{sin(z)}
1424 @tab sine
1425 @item @code{cos(z)}
1426 @tab cosine
1427 @item @code{tan(z)}
1428 @tab tangent
1429 @item @code{asin(z)}
1430 @tab inverse sine
1431 @item @code{acos(z)}
1432 @tab inverse cosine
1433 @item @code{atan(z)}
1434 @tab inverse tangent
1435 @item @code{atan(y, x)}
1436 @tab inverse tangent with two arguments
1437 @item @code{sinh(z)}
1438 @tab hyperbolic sine
1439 @item @code{cosh(z)}
1440 @tab hyperbolic cosine
1441 @item @code{tanh(z)}
1442 @tab hyperbolic tangent
1443 @item @code{asinh(z)}
1444 @tab inverse hyperbolic sine
1445 @item @code{acosh(z)}
1446 @tab inverse hyperbolic cosine
1447 @item @code{atanh(z)}
1448 @tab inverse hyperbolic tangent
1449 @item @code{exp(z)}
1450 @tab exponential function
1451 @item @code{log(z)}
1452 @tab natural logarithm
1453 @item @code{Li2(z)}
1454 @tab dilogarithm
1455 @item @code{zeta(z)}
1456 @tab Riemann's zeta function
1457 @item @code{tgamma(z)}
1458 @tab gamma function
1459 @item @code{lgamma(z)}
1460 @tab logarithm of gamma function
1461 @item @code{psi(z)}
1462 @tab psi (digamma) function
1463 @item @code{psi(n, z)}
1464 @tab derivatives of psi function (polygamma functions)
1465 @item @code{factorial(n)}
1466 @tab factorial function @math{n!}
1467 @item @code{doublefactorial(n)}
1468 @tab double factorial function @math{n!!}
1469 @cindex @code{doublefactorial()}
1470 @item @code{binomial(n, k)}
1471 @tab binomial coefficients
1472 @item @code{bernoulli(n)}
1473 @tab Bernoulli numbers
1474 @cindex @code{bernoulli()}
1475 @item @code{fibonacci(n)}
1476 @tab Fibonacci numbers
1477 @cindex @code{fibonacci()}
1478 @item @code{mod(a, b)}
1479 @tab modulus in positive representation (in the range @code{[0, abs(b)-1]} with the sign of b, or zero)
1480 @cindex @code{mod()}
1481 @item @code{smod(a, b)}
1482 @tab modulus in symmetric representation (in the range @code{[-iquo(abs(b)-1, 2), iquo(abs(b), 2)]})
1483 @cindex @code{smod()}
1484 @item @code{irem(a, b)}
1485 @tab integer remainder (has the sign of @math{a}, or is zero)
1486 @cindex @code{irem()}
1487 @item @code{irem(a, b, q)}
1488 @tab integer remainder and quotient, @code{irem(a, b, q) == a-q*b}
1489 @item @code{iquo(a, b)}
1490 @tab integer quotient
1491 @cindex @code{iquo()}
1492 @item @code{iquo(a, b, r)}
1493 @tab integer quotient and remainder, @code{r == a-iquo(a, b)*b}
1494 @item @code{gcd(a, b)}
1495 @tab greatest common divisor
1496 @item @code{lcm(a, b)}
1497 @tab least common multiple
1498 @end multitable
1499 @end cartouche
1500
1501 Most of these functions are also available as symbolic functions that can be
1502 used in expressions (@pxref{Mathematical functions}) or, like @code{gcd()},
1503 as polynomial algorithms.
1504
1505 @subsection Converting numbers
1506
1507 Sometimes it is desirable to convert a @code{numeric} object back to a
1508 built-in arithmetic type (@code{int}, @code{double}, etc.). The @code{numeric}
1509 class provides a couple of methods for this purpose:
1510
1511 @cindex @code{to_int()}
1512 @cindex @code{to_long()}
1513 @cindex @code{to_double()}
1514 @cindex @code{to_cl_N()}
1515 @example
1516 int numeric::to_int() const;
1517 long numeric::to_long() const;
1518 double numeric::to_double() const;
1519 cln::cl_N numeric::to_cl_N() const;
1520 @end example
1521
1522 @code{to_int()} and @code{to_long()} only work when the number they are
1523 applied on is an exact integer. Otherwise the program will halt with a
1524 message like @samp{Not a 32-bit integer}. @code{to_double()} applied on a
1525 rational number will return a floating-point approximation. Both
1526 @code{to_int()/to_long()} and @code{to_double()} discard the imaginary
1527 part of complex numbers.
1528
1529
1530 @node Constants, Fundamental containers, Numbers, Basic concepts
1531 @c    node-name, next, previous, up
1532 @section Constants
1533 @cindex @code{constant} (class)
1534
1535 @cindex @code{Pi}
1536 @cindex @code{Catalan}
1537 @cindex @code{Euler}
1538 @cindex @code{evalf()}
1539 Constants behave pretty much like symbols except that they return some
1540 specific number when the method @code{.evalf()} is called.
1541
1542 The predefined known constants are:
1543
1544 @cartouche
1545 @multitable @columnfractions .14 .32 .54
1546 @item @strong{Name} @tab @strong{Common Name} @tab @strong{Numerical Value (to 35 digits)}
1547 @item @code{Pi}
1548 @tab Archimedes' constant
1549 @tab 3.14159265358979323846264338327950288
1550 @item @code{Catalan}
1551 @tab Catalan's constant
1552 @tab 0.91596559417721901505460351493238411
1553 @item @code{Euler}
1554 @tab Euler's (or Euler-Mascheroni) constant
1555 @tab 0.57721566490153286060651209008240243
1556 @end multitable
1557 @end cartouche
1558
1559
1560 @node Fundamental containers, Lists, Constants, Basic concepts
1561 @c    node-name, next, previous, up
1562 @section Sums, products and powers
1563 @cindex polynomial
1564 @cindex @code{add}
1565 @cindex @code{mul}
1566 @cindex @code{power}
1567
1568 Simple rational expressions are written down in GiNaC pretty much like
1569 in other CAS or like expressions involving numerical variables in C.
1570 The necessary operators @code{+}, @code{-}, @code{*} and @code{/} have
1571 been overloaded to achieve this goal.  When you run the following
1572 code snippet, the constructor for an object of type @code{mul} is
1573 automatically called to hold the product of @code{a} and @code{b} and
1574 then the constructor for an object of type @code{add} is called to hold
1575 the sum of that @code{mul} object and the number one:
1576
1577 @example
1578     ...
1579     symbol a("a"), b("b");
1580     ex MyTerm = 1+a*b;
1581     ...
1582 @end example
1583
1584 @cindex @code{pow()}
1585 For exponentiation, you have already seen the somewhat clumsy (though C-ish)
1586 statement @code{pow(x,2);} to represent @code{x} squared.  This direct
1587 construction is necessary since we cannot safely overload the constructor
1588 @code{^} in C++ to construct a @code{power} object.  If we did, it would
1589 have several counterintuitive and undesired effects:
1590
1591 @itemize @bullet
1592 @item
1593 Due to C's operator precedence, @code{2*x^2} would be parsed as @code{(2*x)^2}.
1594 @item
1595 Due to the binding of the operator @code{^}, @code{x^a^b} would result in
1596 @code{(x^a)^b}. This would be confusing since most (though not all) other CAS
1597 interpret this as @code{x^(a^b)}.
1598 @item
1599 Also, expressions involving integer exponents are very frequently used,
1600 which makes it even more dangerous to overload @code{^} since it is then
1601 hard to distinguish between the semantics as exponentiation and the one
1602 for exclusive or.  (It would be embarrassing to return @code{1} where one
1603 has requested @code{2^3}.)
1604 @end itemize
1605
1606 @cindex @command{ginsh}
1607 All effects are contrary to mathematical notation and differ from the
1608 way most other CAS handle exponentiation, therefore overloading @code{^}
1609 is ruled out for GiNaC's C++ part.  The situation is different in
1610 @command{ginsh}, there the exponentiation-@code{^} exists.  (Also note
1611 that the other frequently used exponentiation operator @code{**} does
1612 not exist at all in C++).
1613
1614 To be somewhat more precise, objects of the three classes described
1615 here, are all containers for other expressions.  An object of class
1616 @code{power} is best viewed as a container with two slots, one for the
1617 basis, one for the exponent.  All valid GiNaC expressions can be
1618 inserted.  However, basic transformations like simplifying
1619 @code{pow(pow(x,2),3)} to @code{x^6} automatically are only performed
1620 when this is mathematically possible.  If we replace the outer exponent
1621 three in the example by some symbols @code{a}, the simplification is not
1622 safe and will not be performed, since @code{a} might be @code{1/2} and
1623 @code{x} negative.
1624
1625 Objects of type @code{add} and @code{mul} are containers with an
1626 arbitrary number of slots for expressions to be inserted.  Again, simple
1627 and safe simplifications are carried out like transforming
1628 @code{3*x+4-x} to @code{2*x+4}.
1629
1630
1631 @node Lists, Mathematical functions, Fundamental containers, Basic concepts
1632 @c    node-name, next, previous, up
1633 @section Lists of expressions
1634 @cindex @code{lst} (class)
1635 @cindex lists
1636 @cindex @code{nops()}
1637 @cindex @code{op()}
1638 @cindex @code{append()}
1639 @cindex @code{prepend()}
1640 @cindex @code{remove_first()}
1641 @cindex @code{remove_last()}
1642 @cindex @code{remove_all()}
1643
1644 The GiNaC class @code{lst} serves for holding a @dfn{list} of arbitrary
1645 expressions. They are not as ubiquitous as in many other computer algebra
1646 packages, but are sometimes used to supply a variable number of arguments of
1647 the same type to GiNaC methods such as @code{subs()} and some @code{matrix}
1648 constructors, so you should have a basic understanding of them.
1649
1650 Lists can be constructed by assigning a comma-separated sequence of
1651 expressions:
1652
1653 @example
1654 @{
1655     symbol x("x"), y("y");
1656     lst l;
1657     l = x, 2, y, x+y;
1658     // now, l is a list holding the expressions 'x', '2', 'y', and 'x+y',
1659     // in that order
1660     ...
1661 @end example
1662
1663 There are also constructors that allow direct creation of lists of up to
1664 16 expressions, which is often more convenient but slightly less efficient:
1665
1666 @example
1667     ...
1668     // This produces the same list 'l' as above:
1669     // lst l(x, 2, y, x+y);
1670     // lst l = lst(x, 2, y, x+y);
1671     ...
1672 @end example
1673
1674 Use the @code{nops()} method to determine the size (number of expressions) of
1675 a list and the @code{op()} method or the @code{[]} operator to access
1676 individual elements:
1677
1678 @example
1679     ...
1680     cout << l.nops() << endl;                // prints '4'
1681     cout << l.op(2) << " " << l[0] << endl;  // prints 'y x'
1682     ...
1683 @end example
1684
1685 As with the standard @code{list<T>} container, accessing random elements of a
1686 @code{lst} is generally an operation of order @math{O(N)}. Faster read-only
1687 sequential access to the elements of a list is possible with the
1688 iterator types provided by the @code{lst} class:
1689
1690 @example
1691 typedef ... lst::const_iterator;
1692 typedef ... lst::const_reverse_iterator;
1693 lst::const_iterator lst::begin() const;
1694 lst::const_iterator lst::end() const;
1695 lst::const_reverse_iterator lst::rbegin() const;
1696 lst::const_reverse_iterator lst::rend() const;
1697 @end example
1698
1699 For example, to print the elements of a list individually you can use:
1700
1701 @example
1702     ...
1703     // O(N)
1704     for (lst::const_iterator i = l.begin(); i != l.end(); ++i)
1705         cout << *i << endl;
1706     ...
1707 @end example
1708
1709 which is one order faster than
1710
1711 @example
1712     ...
1713     // O(N^2)
1714     for (size_t i = 0; i < l.nops(); ++i)
1715         cout << l.op(i) << endl;
1716     ...
1717 @end example
1718
1719 These iterators also allow you to use some of the algorithms provided by
1720 the C++ standard library:
1721
1722 @example
1723     ...
1724     // print the elements of the list (requires #include <iterator>)
1725     std::copy(l.begin(), l.end(), ostream_iterator<ex>(cout, "\n"));
1726
1727     // sum up the elements of the list (requires #include <numeric>)
1728     ex sum = std::accumulate(l.begin(), l.end(), ex(0));
1729     cout << sum << endl;  // prints '2+2*x+2*y'
1730     ...
1731 @end example
1732
1733 @code{lst} is one of the few GiNaC classes that allow in-place modifications
1734 (the only other one is @code{matrix}). You can modify single elements:
1735
1736 @example
1737     ...
1738     l[1] = 42;       // l is now @{x, 42, y, x+y@}
1739     l.let_op(1) = 7; // l is now @{x, 7, y, x+y@}
1740     ...
1741 @end example
1742
1743 You can append or prepend an expression to a list with the @code{append()}
1744 and @code{prepend()} methods:
1745
1746 @example
1747     ...
1748     l.append(4*x);   // l is now @{x, 7, y, x+y, 4*x@}
1749     l.prepend(0);    // l is now @{0, x, 7, y, x+y, 4*x@}
1750     ...
1751 @end example
1752
1753 You can remove the first or last element of a list with @code{remove_first()}
1754 and @code{remove_last()}:
1755
1756 @example
1757     ...
1758     l.remove_first();   // l is now @{x, 7, y, x+y, 4*x@}
1759     l.remove_last();    // l is now @{x, 7, y, x+y@}
1760     ...
1761 @end example
1762
1763 You can remove all the elements of a list with @code{remove_all()}:
1764
1765 @example
1766     ...
1767     l.remove_all();     // l is now empty
1768     ...
1769 @end example
1770
1771 You can bring the elements of a list into a canonical order with @code{sort()}:
1772
1773 @example
1774     ...
1775     lst l1, l2;
1776     l1 = x, 2, y, x+y;
1777     l2 = 2, x+y, x, y;
1778     l1.sort();
1779     l2.sort();
1780     // l1 and l2 are now equal
1781     ...
1782 @end example
1783
1784 Finally, you can remove all but the first element of consecutive groups of
1785 elements with @code{unique()}:
1786
1787 @example
1788     ...
1789     lst l3;
1790     l3 = x, 2, 2, 2, y, x+y, y+x;
1791     l3.unique();        // l3 is now @{x, 2, y, x+y@}
1792 @}
1793 @end example
1794
1795
1796 @node Mathematical functions, Relations, Lists, Basic concepts
1797 @c    node-name, next, previous, up
1798 @section Mathematical functions
1799 @cindex @code{function} (class)
1800 @cindex trigonometric function
1801 @cindex hyperbolic function
1802
1803 There are quite a number of useful functions hard-wired into GiNaC.  For
1804 instance, all trigonometric and hyperbolic functions are implemented
1805 (@xref{Built-in functions}, for a complete list).
1806
1807 These functions (better called @emph{pseudofunctions}) are all objects
1808 of class @code{function}.  They accept one or more expressions as
1809 arguments and return one expression.  If the arguments are not
1810 numerical, the evaluation of the function may be halted, as it does in
1811 the next example, showing how a function returns itself twice and
1812 finally an expression that may be really useful:
1813
1814 @cindex Gamma function
1815 @cindex @code{subs()}
1816 @example
1817     ...
1818     symbol x("x"), y("y");    
1819     ex foo = x+y/2;
1820     cout << tgamma(foo) << endl;
1821      // -> tgamma(x+(1/2)*y)
1822     ex bar = foo.subs(y==1);
1823     cout << tgamma(bar) << endl;
1824      // -> tgamma(x+1/2)
1825     ex foobar = bar.subs(x==7);
1826     cout << tgamma(foobar) << endl;
1827      // -> (135135/128)*Pi^(1/2)
1828     ...
1829 @end example
1830
1831 Besides evaluation most of these functions allow differentiation, series
1832 expansion and so on.  Read the next chapter in order to learn more about
1833 this.
1834
1835 It must be noted that these pseudofunctions are created by inline
1836 functions, where the argument list is templated.  This means that
1837 whenever you call @code{GiNaC::sin(1)} it is equivalent to
1838 @code{sin(ex(1))} and will therefore not result in a floating point
1839 number.  Unless of course the function prototype is explicitly
1840 overridden -- which is the case for arguments of type @code{numeric}
1841 (not wrapped inside an @code{ex}).  Hence, in order to obtain a floating
1842 point number of class @code{numeric} you should call
1843 @code{sin(numeric(1))}.  This is almost the same as calling
1844 @code{sin(1).evalf()} except that the latter will return a numeric
1845 wrapped inside an @code{ex}.
1846
1847
1848 @node Relations, Integrals, Mathematical functions, Basic concepts
1849 @c    node-name, next, previous, up
1850 @section Relations
1851 @cindex @code{relational} (class)
1852
1853 Sometimes, a relation holding between two expressions must be stored
1854 somehow.  The class @code{relational} is a convenient container for such
1855 purposes.  A relation is by definition a container for two @code{ex} and
1856 a relation between them that signals equality, inequality and so on.
1857 They are created by simply using the C++ operators @code{==}, @code{!=},
1858 @code{<}, @code{<=}, @code{>} and @code{>=} between two expressions.
1859
1860 @xref{Mathematical functions}, for examples where various applications
1861 of the @code{.subs()} method show how objects of class relational are
1862 used as arguments.  There they provide an intuitive syntax for
1863 substitutions.  They are also used as arguments to the @code{ex::series}
1864 method, where the left hand side of the relation specifies the variable
1865 to expand in and the right hand side the expansion point.  They can also
1866 be used for creating systems of equations that are to be solved for
1867 unknown variables.  But the most common usage of objects of this class
1868 is rather inconspicuous in statements of the form @code{if
1869 (expand(pow(a+b,2))==a*a+2*a*b+b*b) @{...@}}.  Here, an implicit
1870 conversion from @code{relational} to @code{bool} takes place.  Note,
1871 however, that @code{==} here does not perform any simplifications, hence
1872 @code{expand()} must be called explicitly.
1873
1874 @node Integrals, Matrices, Relations, Basic concepts
1875 @c    node-name, next, previous, up
1876 @section Integrals
1877 @cindex @code{integral} (class)
1878
1879 An object of class @dfn{integral} can be used to hold a symbolic integral.
1880 If you want to symbolically represent the integral of @code{x*x} from 0 to
1881 1, you would write this as
1882 @example
1883 integral(x, 0, 1, x*x)
1884 @end example
1885 The first argument is the integration variable. It should be noted that
1886 GiNaC is not very good (yet?) at symbolically evaluating integrals. In
1887 fact, it can only integrate polynomials. An expression containing integrals
1888 can be evaluated symbolically by calling the
1889 @example
1890 .eval_integ()
1891 @end example
1892 method on it. Numerical evaluation is available by calling the
1893 @example
1894 .evalf()
1895 @end example
1896 method on an expression containing the integral. This will only evaluate
1897 integrals into a number if @code{subs}ing the integration variable by a
1898 number in the fourth argument of an integral and then @code{evalf}ing the
1899 result always results in a number. Of course, also the boundaries of the
1900 integration domain must @code{evalf} into numbers. It should be noted that
1901 trying to @code{evalf} a function with discontinuities in the integration
1902 domain is not recommended. The accuracy of the numeric evaluation of
1903 integrals is determined by the static member variable
1904 @example
1905 ex integral::relative_integration_error
1906 @end example
1907 of the class @code{integral}. The default value of this is 10^-8.
1908 The integration works by halving the interval of integration, until numeric
1909 stability of the answer indicates that the requested accuracy has been
1910 reached. The maximum depth of the halving can be set via the static member
1911 variable
1912 @example
1913 int integral::max_integration_level
1914 @end example
1915 The default value is 15. If this depth is exceeded, @code{evalf} will simply
1916 return the integral unevaluated. The function that performs the numerical
1917 evaluation, is also available as
1918 @example
1919 ex adaptivesimpson(const ex & x, const ex & a, const ex & b, const ex & f,
1920                    const ex & error)
1921 @end example
1922 This function will throw an exception if the maximum depth is exceeded. The
1923 last parameter of the function is optional and defaults to the
1924 @code{relative_integration_error}. To make sure that we do not do too
1925 much work if an expression contains the same integral multiple times,
1926 a lookup table is used.
1927
1928 If you know that an expression holds an integral, you can get the
1929 integration variable, the left boundary, right boundary and integrand by
1930 respectively calling @code{.op(0)}, @code{.op(1)}, @code{.op(2)}, and
1931 @code{.op(3)}. Differentiating integrals with respect to variables works
1932 as expected. Note that it makes no sense to differentiate an integral
1933 with respect to the integration variable.
1934
1935 @node Matrices, Indexed objects, Integrals, Basic concepts
1936 @c    node-name, next, previous, up
1937 @section Matrices
1938 @cindex @code{matrix} (class)
1939
1940 A @dfn{matrix} is a two-dimensional array of expressions. The elements of a
1941 matrix with @math{m} rows and @math{n} columns are accessed with two
1942 @code{unsigned} indices, the first one in the range 0@dots{}@math{m-1}, the
1943 second one in the range 0@dots{}@math{n-1}.
1944
1945 There are a couple of ways to construct matrices, with or without preset
1946 elements. The constructor
1947
1948 @example
1949 matrix::matrix(unsigned r, unsigned c);
1950 @end example
1951
1952 creates a matrix with @samp{r} rows and @samp{c} columns with all elements
1953 set to zero.
1954
1955 The fastest way to create a matrix with preinitialized elements is to assign
1956 a list of comma-separated expressions to an empty matrix (see below for an
1957 example). But you can also specify the elements as a (flat) list with
1958
1959 @example
1960 matrix::matrix(unsigned r, unsigned c, const lst & l);
1961 @end example
1962
1963 The function
1964
1965 @cindex @code{lst_to_matrix()}
1966 @example
1967 ex lst_to_matrix(const lst & l);
1968 @end example
1969
1970 constructs a matrix from a list of lists, each list representing a matrix row.
1971
1972 There is also a set of functions for creating some special types of
1973 matrices:
1974
1975 @cindex @code{diag_matrix()}
1976 @cindex @code{unit_matrix()}
1977 @cindex @code{symbolic_matrix()}
1978 @example
1979 ex diag_matrix(const lst & l);
1980 ex unit_matrix(unsigned x);
1981 ex unit_matrix(unsigned r, unsigned c);
1982 ex symbolic_matrix(unsigned r, unsigned c, const string & base_name);
1983 ex symbolic_matrix(unsigned r, unsigned c, const string & base_name,
1984                    const string & tex_base_name);
1985 @end example
1986
1987 @code{diag_matrix()} constructs a diagonal matrix given the list of diagonal
1988 elements. @code{unit_matrix()} creates an @samp{x} by @samp{x} (or @samp{r}
1989 by @samp{c}) unit matrix. And finally, @code{symbolic_matrix} constructs a
1990 matrix filled with newly generated symbols made of the specified base name
1991 and the position of each element in the matrix.
1992
1993 Matrices often arise by omitting elements of another matrix. For
1994 instance, the submatrix @code{S} of a matrix @code{M} takes a
1995 rectangular block from @code{M}. The reduced matrix @code{R} is defined
1996 by removing one row and one column from a matrix @code{M}. (The
1997 determinant of a reduced matrix is called a @emph{Minor} of @code{M} and
1998 can be used for computing the inverse using Cramer's rule.)
1999
2000 @cindex @code{sub_matrix()}
2001 @cindex @code{reduced_matrix()}
2002 @example
2003 ex sub_matrix(const matrix&m, unsigned r, unsigned nr, unsigned c, unsigned nc);
2004 ex reduced_matrix(const matrix& m, unsigned r, unsigned c);
2005 @end example
2006
2007 The function @code{sub_matrix()} takes a row offset @code{r} and a
2008 column offset @code{c} and takes a block of @code{nr} rows and @code{nc}
2009 columns. The function @code{reduced_matrix()} has two integer arguments
2010 that specify which row and column to remove:
2011
2012 @example
2013 @{
2014     matrix m(3,3);
2015     m = 11, 12, 13,
2016         21, 22, 23,
2017         31, 32, 33;
2018     cout << reduced_matrix(m, 1, 1) << endl;
2019     // -> [[11,13],[31,33]]
2020     cout << sub_matrix(m, 1, 2, 1, 2) << endl;
2021     // -> [[22,23],[32,33]]
2022 @}
2023 @end example
2024
2025 Matrix elements can be accessed and set using the parenthesis (function call)
2026 operator:
2027
2028 @example
2029 const ex & matrix::operator()(unsigned r, unsigned c) const;
2030 ex & matrix::operator()(unsigned r, unsigned c);
2031 @end example
2032
2033 It is also possible to access the matrix elements in a linear fashion with
2034 the @code{op()} method. But C++-style subscripting with square brackets
2035 @samp{[]} is not available.
2036
2037 Here are a couple of examples for constructing matrices:
2038
2039 @example
2040 @{
2041     symbol a("a"), b("b");
2042
2043     matrix M(2, 2);
2044     M = a, 0,
2045         0, b;
2046     cout << M << endl;
2047      // -> [[a,0],[0,b]]
2048
2049     matrix M2(2, 2);
2050     M2(0, 0) = a;
2051     M2(1, 1) = b;
2052     cout << M2 << endl;
2053      // -> [[a,0],[0,b]]
2054
2055     cout << matrix(2, 2, lst(a, 0, 0, b)) << endl;
2056      // -> [[a,0],[0,b]]
2057
2058     cout << lst_to_matrix(lst(lst(a, 0), lst(0, b))) << endl;
2059      // -> [[a,0],[0,b]]
2060
2061     cout << diag_matrix(lst(a, b)) << endl;
2062      // -> [[a,0],[0,b]]
2063
2064     cout << unit_matrix(3) << endl;
2065      // -> [[1,0,0],[0,1,0],[0,0,1]]
2066
2067     cout << symbolic_matrix(2, 3, "x") << endl;
2068      // -> [[x00,x01,x02],[x10,x11,x12]]
2069 @}
2070 @end example
2071
2072 @cindex @code{is_zero_matrix()} 
2073 The method @code{matrix::is_zero_matrix()} returns @code{true} only if
2074 all entries of the matrix are zeros. There is also method
2075 @code{ex::is_zero_matrix()} which returns @code{true} only if the
2076 expression is zero or a zero matrix.
2077
2078 @cindex @code{transpose()}
2079 There are three ways to do arithmetic with matrices. The first (and most
2080 direct one) is to use the methods provided by the @code{matrix} class:
2081
2082 @example
2083 matrix matrix::add(const matrix & other) const;
2084 matrix matrix::sub(const matrix & other) const;
2085 matrix matrix::mul(const matrix & other) const;
2086 matrix matrix::mul_scalar(const ex & other) const;
2087 matrix matrix::pow(const ex & expn) const;
2088 matrix matrix::transpose() const;
2089 @end example
2090
2091 All of these methods return the result as a new matrix object. Here is an
2092 example that calculates @math{A*B-2*C} for three matrices @math{A}, @math{B}
2093 and @math{C}:
2094
2095 @example
2096 @{
2097     matrix A(2, 2), B(2, 2), C(2, 2);
2098     A =  1, 2,
2099          3, 4;
2100     B = -1, 0,
2101          2, 1;
2102     C =  8, 4,
2103          2, 1;
2104
2105     matrix result = A.mul(B).sub(C.mul_scalar(2));
2106     cout << result << endl;
2107      // -> [[-13,-6],[1,2]]
2108     ...
2109 @}
2110 @end example
2111
2112 @cindex @code{evalm()}
2113 The second (and probably the most natural) way is to construct an expression
2114 containing matrices with the usual arithmetic operators and @code{pow()}.
2115 For efficiency reasons, expressions with sums, products and powers of
2116 matrices are not automatically evaluated in GiNaC. You have to call the
2117 method
2118
2119 @example
2120 ex ex::evalm() const;
2121 @end example
2122
2123 to obtain the result:
2124
2125 @example
2126 @{
2127     ...
2128     ex e = A*B - 2*C;
2129     cout << e << endl;
2130      // -> [[1,2],[3,4]]*[[-1,0],[2,1]]-2*[[8,4],[2,1]]
2131     cout << e.evalm() << endl;
2132      // -> [[-13,-6],[1,2]]
2133     ...
2134 @}
2135 @end example
2136
2137 The non-commutativity of the product @code{A*B} in this example is
2138 automatically recognized by GiNaC. There is no need to use a special
2139 operator here. @xref{Non-commutative objects}, for more information about
2140 dealing with non-commutative expressions.
2141
2142 Finally, you can work with indexed matrices and call @code{simplify_indexed()}
2143 to perform the arithmetic:
2144
2145 @example
2146 @{
2147     ...
2148     idx i(symbol("i"), 2), j(symbol("j"), 2), k(symbol("k"), 2);
2149     e = indexed(A, i, k) * indexed(B, k, j) - 2 * indexed(C, i, j);
2150     cout << e << endl;
2151      // -> -2*[[8,4],[2,1]].i.j+[[-1,0],[2,1]].k.j*[[1,2],[3,4]].i.k
2152     cout << e.simplify_indexed() << endl;
2153      // -> [[-13,-6],[1,2]].i.j
2154 @}
2155 @end example
2156
2157 Using indices is most useful when working with rectangular matrices and
2158 one-dimensional vectors because you don't have to worry about having to
2159 transpose matrices before multiplying them. @xref{Indexed objects}, for
2160 more information about using matrices with indices, and about indices in
2161 general.
2162
2163 The @code{matrix} class provides a couple of additional methods for
2164 computing determinants, traces, characteristic polynomials and ranks:
2165
2166 @cindex @code{determinant()}
2167 @cindex @code{trace()}
2168 @cindex @code{charpoly()}
2169 @cindex @code{rank()}
2170 @example
2171 ex matrix::determinant(unsigned algo=determinant_algo::automatic) const;
2172 ex matrix::trace() const;
2173 ex matrix::charpoly(const ex & lambda) const;
2174 unsigned matrix::rank() const;
2175 @end example
2176
2177 The @samp{algo} argument of @code{determinant()} allows to select
2178 between different algorithms for calculating the determinant.  The
2179 asymptotic speed (as parametrized by the matrix size) can greatly differ
2180 between those algorithms, depending on the nature of the matrix'
2181 entries.  The possible values are defined in the @file{flags.h} header
2182 file.  By default, GiNaC uses a heuristic to automatically select an
2183 algorithm that is likely (but not guaranteed) to give the result most
2184 quickly.
2185
2186 @cindex @code{inverse()} (matrix)
2187 @cindex @code{solve()}
2188 Matrices may also be inverted using the @code{ex matrix::inverse()}
2189 method and linear systems may be solved with:
2190
2191 @example
2192 matrix matrix::solve(const matrix & vars, const matrix & rhs,
2193                      unsigned algo=solve_algo::automatic) const;
2194 @end example
2195
2196 Assuming the matrix object this method is applied on is an @code{m}
2197 times @code{n} matrix, then @code{vars} must be a @code{n} times
2198 @code{p} matrix of symbolic indeterminates and @code{rhs} a @code{m}
2199 times @code{p} matrix.  The returned matrix then has dimension @code{n}
2200 times @code{p} and in the case of an underdetermined system will still
2201 contain some of the indeterminates from @code{vars}.  If the system is
2202 overdetermined, an exception is thrown.
2203
2204
2205 @node Indexed objects, Non-commutative objects, Matrices, Basic concepts
2206 @c    node-name, next, previous, up
2207 @section Indexed objects
2208
2209 GiNaC allows you to handle expressions containing general indexed objects in
2210 arbitrary spaces. It is also able to canonicalize and simplify such
2211 expressions and perform symbolic dummy index summations. There are a number
2212 of predefined indexed objects provided, like delta and metric tensors.
2213
2214 There are few restrictions placed on indexed objects and their indices and
2215 it is easy to construct nonsense expressions, but our intention is to
2216 provide a general framework that allows you to implement algorithms with
2217 indexed quantities, getting in the way as little as possible.
2218
2219 @cindex @code{idx} (class)
2220 @cindex @code{indexed} (class)
2221 @subsection Indexed quantities and their indices
2222
2223 Indexed expressions in GiNaC are constructed of two special types of objects,
2224 @dfn{index objects} and @dfn{indexed objects}.
2225
2226 @itemize @bullet
2227
2228 @cindex contravariant
2229 @cindex covariant
2230 @cindex variance
2231 @item Index objects are of class @code{idx} or a subclass. Every index has
2232 a @dfn{value} and a @dfn{dimension} (which is the dimension of the space
2233 the index lives in) which can both be arbitrary expressions but are usually
2234 a number or a simple symbol. In addition, indices of class @code{varidx} have
2235 a @dfn{variance} (they can be co- or contravariant), and indices of class
2236 @code{spinidx} have a variance and can be @dfn{dotted} or @dfn{undotted}.
2237
2238 @item Indexed objects are of class @code{indexed} or a subclass. They
2239 contain a @dfn{base expression} (which is the expression being indexed), and
2240 one or more indices.
2241
2242 @end itemize
2243
2244 @strong{Please notice:} when printing expressions, covariant indices and indices
2245 without variance are denoted @samp{.i} while contravariant indices are
2246 denoted @samp{~i}. Dotted indices have a @samp{*} in front of the index
2247 value. In the following, we are going to use that notation in the text so
2248 instead of @math{A^i_jk} we will write @samp{A~i.j.k}. Index dimensions are
2249 not visible in the output.
2250
2251 A simple example shall illustrate the concepts:
2252
2253 @example
2254 #include <iostream>
2255 #include <ginac/ginac.h>
2256 using namespace std;
2257 using namespace GiNaC;
2258
2259 int main()
2260 @{
2261     symbol i_sym("i"), j_sym("j");
2262     idx i(i_sym, 3), j(j_sym, 3);
2263
2264     symbol A("A");
2265     cout << indexed(A, i, j) << endl;
2266      // -> A.i.j
2267     cout << index_dimensions << indexed(A, i, j) << endl;
2268      // -> A.i[3].j[3]
2269     cout << dflt; // reset cout to default output format (dimensions hidden)
2270     ...
2271 @end example
2272
2273 The @code{idx} constructor takes two arguments, the index value and the
2274 index dimension. First we define two index objects, @code{i} and @code{j},
2275 both with the numeric dimension 3. The value of the index @code{i} is the
2276 symbol @code{i_sym} (which prints as @samp{i}) and the value of the index
2277 @code{j} is the symbol @code{j_sym} (which prints as @samp{j}). Next we
2278 construct an expression containing one indexed object, @samp{A.i.j}. It has
2279 the symbol @code{A} as its base expression and the two indices @code{i} and
2280 @code{j}.
2281
2282 The dimensions of indices are normally not visible in the output, but one
2283 can request them to be printed with the @code{index_dimensions} manipulator,
2284 as shown above.
2285
2286 Note the difference between the indices @code{i} and @code{j} which are of
2287 class @code{idx}, and the index values which are the symbols @code{i_sym}
2288 and @code{j_sym}. The indices of indexed objects cannot directly be symbols
2289 or numbers but must be index objects. For example, the following is not
2290 correct and will raise an exception:
2291
2292 @example
2293 symbol i("i"), j("j");
2294 e = indexed(A, i, j); // ERROR: indices must be of type idx
2295 @end example
2296
2297 You can have multiple indexed objects in an expression, index values can
2298 be numeric, and index dimensions symbolic:
2299
2300 @example
2301     ...
2302     symbol B("B"), dim("dim");
2303     cout << 4 * indexed(A, i)
2304           + indexed(B, idx(j_sym, 4), idx(2, 3), idx(i_sym, dim)) << endl;
2305      // -> B.j.2.i+4*A.i
2306     ...
2307 @end example
2308
2309 @code{B} has a 4-dimensional symbolic index @samp{k}, a 3-dimensional numeric
2310 index of value 2, and a symbolic index @samp{i} with the symbolic dimension
2311 @samp{dim}. Note that GiNaC doesn't automatically notify you that the free
2312 indices of @samp{A} and @samp{B} in the sum don't match (you have to call
2313 @code{simplify_indexed()} for that, see below).
2314
2315 In fact, base expressions, index values and index dimensions can be
2316 arbitrary expressions:
2317
2318 @example
2319     ...
2320     cout << indexed(A+B, idx(2*i_sym+1, dim/2)) << endl;
2321      // -> (B+A).(1+2*i)
2322     ...
2323 @end example
2324
2325 It's also possible to construct nonsense like @samp{Pi.sin(x)}. You will not
2326 get an error message from this but you will probably not be able to do
2327 anything useful with it.
2328
2329 @cindex @code{get_value()}
2330 @cindex @code{get_dim()}
2331 The methods
2332
2333 @example
2334 ex idx::get_value();
2335 ex idx::get_dim();
2336 @end example
2337
2338 return the value and dimension of an @code{idx} object. If you have an index
2339 in an expression, such as returned by calling @code{.op()} on an indexed
2340 object, you can get a reference to the @code{idx} object with the function
2341 @code{ex_to<idx>()} on the expression.
2342
2343 There are also the methods
2344
2345 @example
2346 bool idx::is_numeric();
2347 bool idx::is_symbolic();
2348 bool idx::is_dim_numeric();
2349 bool idx::is_dim_symbolic();
2350 @end example
2351
2352 for checking whether the value and dimension are numeric or symbolic
2353 (non-numeric). Using the @code{info()} method of an index (see @ref{Information
2354 about expressions}) returns information about the index value.
2355
2356 @cindex @code{varidx} (class)
2357 If you need co- and contravariant indices, use the @code{varidx} class:
2358
2359 @example
2360     ...
2361     symbol mu_sym("mu"), nu_sym("nu");
2362     varidx mu(mu_sym, 4), nu(nu_sym, 4); // default is contravariant ~mu, ~nu
2363     varidx mu_co(mu_sym, 4, true);       // covariant index .mu
2364
2365     cout << indexed(A, mu, nu) << endl;
2366      // -> A~mu~nu
2367     cout << indexed(A, mu_co, nu) << endl;
2368      // -> A.mu~nu
2369     cout << indexed(A, mu.toggle_variance(), nu) << endl;
2370      // -> A.mu~nu
2371     ...
2372 @end example
2373
2374 A @code{varidx} is an @code{idx} with an additional flag that marks it as
2375 co- or contravariant. The default is a contravariant (upper) index, but
2376 this can be overridden by supplying a third argument to the @code{varidx}
2377 constructor. The two methods
2378
2379 @example
2380 bool varidx::is_covariant();
2381 bool varidx::is_contravariant();
2382 @end example
2383
2384 allow you to check the variance of a @code{varidx} object (use @code{ex_to<varidx>()}
2385 to get the object reference from an expression). There's also the very useful
2386 method
2387
2388 @example
2389 ex varidx::toggle_variance();
2390 @end example
2391
2392 which makes a new index with the same value and dimension but the opposite
2393 variance. By using it you only have to define the index once.
2394
2395 @cindex @code{spinidx} (class)
2396 The @code{spinidx} class provides dotted and undotted variant indices, as
2397 used in the Weyl-van-der-Waerden spinor formalism:
2398
2399 @example
2400     ...
2401     symbol K("K"), C_sym("C"), D_sym("D");
2402     spinidx C(C_sym, 2), D(D_sym);          // default is 2-dimensional,
2403                                             // contravariant, undotted
2404     spinidx C_co(C_sym, 2, true);           // covariant index
2405     spinidx D_dot(D_sym, 2, false, true);   // contravariant, dotted
2406     spinidx D_co_dot(D_sym, 2, true, true); // covariant, dotted
2407
2408     cout << indexed(K, C, D) << endl;
2409      // -> K~C~D
2410     cout << indexed(K, C_co, D_dot) << endl;
2411      // -> K.C~*D
2412     cout << indexed(K, D_co_dot, D) << endl;
2413      // -> K.*D~D
2414     ...
2415 @end example
2416
2417 A @code{spinidx} is a @code{varidx} with an additional flag that marks it as
2418 dotted or undotted. The default is undotted but this can be overridden by
2419 supplying a fourth argument to the @code{spinidx} constructor. The two
2420 methods
2421
2422 @example
2423 bool spinidx::is_dotted();
2424 bool spinidx::is_undotted();
2425 @end example
2426
2427 allow you to check whether or not a @code{spinidx} object is dotted (use
2428 @code{ex_to<spinidx>()} to get the object reference from an expression).
2429 Finally, the two methods
2430
2431 @example
2432 ex spinidx::toggle_dot();
2433 ex spinidx::toggle_variance_dot();
2434 @end example
2435
2436 create a new index with the same value and dimension but opposite dottedness
2437 and the same or opposite variance.
2438
2439 @subsection Substituting indices
2440
2441 @cindex @code{subs()}
2442 Sometimes you will want to substitute one symbolic index with another
2443 symbolic or numeric index, for example when calculating one specific element
2444 of a tensor expression. This is done with the @code{.subs()} method, as it
2445 is done for symbols (see @ref{Substituting expressions}).
2446
2447 You have two possibilities here. You can either substitute the whole index
2448 by another index or expression:
2449
2450 @example
2451     ...
2452     ex e = indexed(A, mu_co);
2453     cout << e << " becomes " << e.subs(mu_co == nu) << endl;
2454      // -> A.mu becomes A~nu
2455     cout << e << " becomes " << e.subs(mu_co == varidx(0, 4)) << endl;
2456      // -> A.mu becomes A~0
2457     cout << e << " becomes " << e.subs(mu_co == 0) << endl;
2458      // -> A.mu becomes A.0
2459     ...
2460 @end example
2461
2462 The third example shows that trying to replace an index with something that
2463 is not an index will substitute the index value instead.
2464
2465 Alternatively, you can substitute the @emph{symbol} of a symbolic index by
2466 another expression:
2467
2468 @example
2469     ...
2470     ex e = indexed(A, mu_co);
2471     cout << e << " becomes " << e.subs(mu_sym == nu_sym) << endl;
2472      // -> A.mu becomes A.nu
2473     cout << e << " becomes " << e.subs(mu_sym == 0) << endl;
2474      // -> A.mu becomes A.0
2475     ...
2476 @end example
2477
2478 As you see, with the second method only the value of the index will get
2479 substituted. Its other properties, including its dimension, remain unchanged.
2480 If you want to change the dimension of an index you have to substitute the
2481 whole index by another one with the new dimension.
2482
2483 Finally, substituting the base expression of an indexed object works as
2484 expected:
2485
2486 @example
2487     ...
2488     ex e = indexed(A, mu_co);
2489     cout << e << " becomes " << e.subs(A == A+B) << endl;
2490      // -> A.mu becomes (B+A).mu
2491     ...
2492 @end example
2493
2494 @subsection Symmetries
2495 @cindex @code{symmetry} (class)
2496 @cindex @code{sy_none()}
2497 @cindex @code{sy_symm()}
2498 @cindex @code{sy_anti()}
2499 @cindex @code{sy_cycl()}
2500
2501 Indexed objects can have certain symmetry properties with respect to their
2502 indices. Symmetries are specified as a tree of objects of class @code{symmetry}
2503 that is constructed with the helper functions
2504
2505 @example
2506 symmetry sy_none(...);
2507 symmetry sy_symm(...);
2508 symmetry sy_anti(...);
2509 symmetry sy_cycl(...);
2510 @end example
2511
2512 @code{sy_none()} stands for no symmetry, @code{sy_symm()} and @code{sy_anti()}
2513 specify fully symmetric or antisymmetric, respectively, and @code{sy_cycl()}
2514 represents a cyclic symmetry. Each of these functions accepts up to four
2515 arguments which can be either symmetry objects themselves or unsigned integer
2516 numbers that represent an index position (counting from 0). A symmetry
2517 specification that consists of only a single @code{sy_symm()}, @code{sy_anti()}
2518 or @code{sy_cycl()} with no arguments specifies the respective symmetry for
2519 all indices.
2520
2521 Here are some examples of symmetry definitions:
2522
2523 @example
2524     ...
2525     // No symmetry:
2526     e = indexed(A, i, j);
2527     e = indexed(A, sy_none(), i, j);     // equivalent
2528     e = indexed(A, sy_none(0, 1), i, j); // equivalent
2529
2530     // Symmetric in all three indices:
2531     e = indexed(A, sy_symm(), i, j, k);
2532     e = indexed(A, sy_symm(0, 1, 2), i, j, k); // equivalent
2533     e = indexed(A, sy_symm(2, 0, 1), i, j, k); // same symmetry, but yields a
2534                                                // different canonical order
2535
2536     // Symmetric in the first two indices only:
2537     e = indexed(A, sy_symm(0, 1), i, j, k);
2538     e = indexed(A, sy_none(sy_symm(0, 1), 2), i, j, k); // equivalent
2539
2540     // Antisymmetric in the first and last index only (index ranges need not
2541     // be contiguous):
2542     e = indexed(A, sy_anti(0, 2), i, j, k);
2543     e = indexed(A, sy_none(sy_anti(0, 2), 1), i, j, k); // equivalent
2544
2545     // An example of a mixed symmetry: antisymmetric in the first two and
2546     // last two indices, symmetric when swapping the first and last index
2547     // pairs (like the Riemann curvature tensor):
2548     e = indexed(A, sy_symm(sy_anti(0, 1), sy_anti(2, 3)), i, j, k, l);
2549
2550     // Cyclic symmetry in all three indices:
2551     e = indexed(A, sy_cycl(), i, j, k);
2552     e = indexed(A, sy_cycl(0, 1, 2), i, j, k); // equivalent
2553
2554     // The following examples are invalid constructions that will throw
2555     // an exception at run time.
2556
2557     // An index may not appear multiple times:
2558     e = indexed(A, sy_symm(0, 0, 1), i, j, k); // ERROR
2559     e = indexed(A, sy_none(sy_symm(0, 1), sy_anti(0, 2)), i, j, k); // ERROR
2560
2561     // Every child of sy_symm(), sy_anti() and sy_cycl() must refer to the
2562     // same number of indices:
2563     e = indexed(A, sy_symm(sy_anti(0, 1), 2), i, j, k); // ERROR
2564
2565     // And of course, you cannot specify indices which are not there:
2566     e = indexed(A, sy_symm(0, 1, 2, 3), i, j, k); // ERROR
2567     ...
2568 @end example
2569
2570 If you need to specify more than four indices, you have to use the
2571 @code{.add()} method of the @code{symmetry} class. For example, to specify
2572 full symmetry in the first six indices you would write
2573 @code{sy_symm(0, 1, 2, 3).add(4).add(5)}.
2574
2575 If an indexed object has a symmetry, GiNaC will automatically bring the
2576 indices into a canonical order which allows for some immediate simplifications:
2577
2578 @example
2579     ...
2580     cout << indexed(A, sy_symm(), i, j)
2581           + indexed(A, sy_symm(), j, i) << endl;
2582      // -> 2*A.j.i
2583     cout << indexed(B, sy_anti(), i, j)
2584           + indexed(B, sy_anti(), j, i) << endl;
2585      // -> 0
2586     cout << indexed(B, sy_anti(), i, j, k)
2587           - indexed(B, sy_anti(), j, k, i) << endl;
2588      // -> 0
2589     ...
2590 @end example
2591
2592 @cindex @code{get_free_indices()}
2593 @cindex dummy index
2594 @subsection Dummy indices
2595
2596 GiNaC treats certain symbolic index pairs as @dfn{dummy indices} meaning
2597 that a summation over the index range is implied. Symbolic indices which are
2598 not dummy indices are called @dfn{free indices}. Numeric indices are neither
2599 dummy nor free indices.
2600
2601 To be recognized as a dummy index pair, the two indices must be of the same
2602 class and their value must be the same single symbol (an index like
2603 @samp{2*n+1} is never a dummy index). If the indices are of class
2604 @code{varidx} they must also be of opposite variance; if they are of class
2605 @code{spinidx} they must be both dotted or both undotted.
2606
2607 The method @code{.get_free_indices()} returns a vector containing the free
2608 indices of an expression. It also checks that the free indices of the terms
2609 of a sum are consistent:
2610
2611 @example
2612 @{
2613     symbol A("A"), B("B"), C("C");
2614
2615     symbol i_sym("i"), j_sym("j"), k_sym("k"), l_sym("l");
2616     idx i(i_sym, 3), j(j_sym, 3), k(k_sym, 3), l(l_sym, 3);
2617
2618     ex e = indexed(A, i, j) * indexed(B, j, k) + indexed(C, k, l, i, l);
2619     cout << exprseq(e.get_free_indices()) << endl;
2620      // -> (.i,.k)
2621      // 'j' and 'l' are dummy indices
2622
2623     symbol mu_sym("mu"), nu_sym("nu"), rho_sym("rho"), sigma_sym("sigma");
2624     varidx mu(mu_sym, 4), nu(nu_sym, 4), rho(rho_sym, 4), sigma(sigma_sym, 4);
2625
2626     e = indexed(A, mu, nu) * indexed(B, nu.toggle_variance(), rho)
2627       + indexed(C, mu, sigma, rho, sigma.toggle_variance());
2628     cout << exprseq(e.get_free_indices()) << endl;
2629      // -> (~mu,~rho)
2630      // 'nu' is a dummy index, but 'sigma' is not
2631
2632     e = indexed(A, mu, mu);
2633     cout << exprseq(e.get_free_indices()) << endl;
2634      // -> (~mu)
2635      // 'mu' is not a dummy index because it appears twice with the same
2636      // variance
2637
2638     e = indexed(A, mu, nu) + 42;
2639     cout << exprseq(e.get_free_indices()) << endl; // ERROR
2640      // this will throw an exception:
2641      // "add::get_free_indices: inconsistent indices in sum"
2642 @}
2643 @end example
2644
2645 @cindex @code{expand_dummy_sum()}
2646 A dummy index summation like 
2647 @tex
2648 $ a_i b^i$
2649 @end tex
2650 @ifnottex
2651 a.i b~i
2652 @end ifnottex
2653 can be expanded for indices with numeric
2654 dimensions (e.g. 3)  into the explicit sum like
2655 @tex
2656 $a_1b^1+a_2b^2+a_3b^3 $.
2657 @end tex
2658 @ifnottex
2659 a.1 b~1 + a.2 b~2 + a.3 b~3.
2660 @end ifnottex
2661 This is performed by the function
2662
2663 @example
2664     ex expand_dummy_sum(const ex & e, bool subs_idx = false);
2665 @end example
2666
2667 which takes an expression @code{e} and returns the expanded sum for all
2668 dummy indices with numeric dimensions. If the parameter @code{subs_idx}
2669 is set to @code{true} then all substitutions are made by @code{idx} class
2670 indices, i.e. without variance. In this case the above sum 
2671 @tex
2672 $ a_i b^i$
2673 @end tex
2674 @ifnottex
2675 a.i b~i
2676 @end ifnottex
2677 will be expanded to
2678 @tex
2679 $a_1b_1+a_2b_2+a_3b_3 $.
2680 @end tex
2681 @ifnottex
2682 a.1 b.1 + a.2 b.2 + a.3 b.3.
2683 @end ifnottex
2684
2685
2686 @cindex @code{simplify_indexed()}
2687 @subsection Simplifying indexed expressions
2688
2689 In addition to the few automatic simplifications that GiNaC performs on
2690 indexed expressions (such as re-ordering the indices of symmetric tensors
2691 and calculating traces and convolutions of matrices and predefined tensors)
2692 there is the method
2693
2694 @example
2695 ex ex::simplify_indexed();
2696 ex ex::simplify_indexed(const scalar_products & sp);
2697 @end example
2698
2699 that performs some more expensive operations:
2700
2701 @itemize @bullet
2702 @item it checks the consistency of free indices in sums in the same way
2703   @code{get_free_indices()} does
2704 @item it tries to give dummy indices that appear in different terms of a sum
2705   the same name to allow simplifications like @math{a_i*b_i-a_j*b_j=0}
2706 @item it (symbolically) calculates all possible dummy index summations/contractions
2707   with the predefined tensors (this will be explained in more detail in the
2708   next section)
2709 @item it detects contractions that vanish for symmetry reasons, for example
2710   the contraction of a symmetric and a totally antisymmetric tensor
2711 @item as a special case of dummy index summation, it can replace scalar products
2712   of two tensors with a user-defined value
2713 @end itemize
2714
2715 The last point is done with the help of the @code{scalar_products} class
2716 which is used to store scalar products with known values (this is not an
2717 arithmetic class, you just pass it to @code{simplify_indexed()}):
2718
2719 @example
2720 @{
2721     symbol A("A"), B("B"), C("C"), i_sym("i");
2722     idx i(i_sym, 3);
2723
2724     scalar_products sp;
2725     sp.add(A, B, 0); // A and B are orthogonal
2726     sp.add(A, C, 0); // A and C are orthogonal
2727     sp.add(A, A, 4); // A^2 = 4 (A has length 2)
2728
2729     e = indexed(A + B, i) * indexed(A + C, i);
2730     cout << e << endl;
2731      // -> (B+A).i*(A+C).i
2732
2733     cout << e.expand(expand_options::expand_indexed).simplify_indexed(sp)
2734          << endl;
2735      // -> 4+C.i*B.i
2736 @}
2737 @end example
2738
2739 The @code{scalar_products} object @code{sp} acts as a storage for the
2740 scalar products added to it with the @code{.add()} method. This method
2741 takes three arguments: the two expressions of which the scalar product is
2742 taken, and the expression to replace it with.
2743
2744 @cindex @code{expand()}
2745 The example above also illustrates a feature of the @code{expand()} method:
2746 if passed the @code{expand_indexed} option it will distribute indices
2747 over sums, so @samp{(A+B).i} becomes @samp{A.i+B.i}.
2748
2749 @cindex @code{tensor} (class)
2750 @subsection Predefined tensors
2751
2752 Some frequently used special tensors such as the delta, epsilon and metric
2753 tensors are predefined in GiNaC. They have special properties when
2754 contracted with other tensor expressions and some of them have constant
2755 matrix representations (they will evaluate to a number when numeric
2756 indices are specified).
2757
2758 @cindex @code{delta_tensor()}
2759 @subsubsection Delta tensor
2760
2761 The delta tensor takes two indices, is symmetric and has the matrix
2762 representation @code{diag(1, 1, 1, ...)}. It is constructed by the function
2763 @code{delta_tensor()}:
2764
2765 @example
2766 @{
2767     symbol A("A"), B("B");
2768
2769     idx i(symbol("i"), 3), j(symbol("j"), 3),
2770         k(symbol("k"), 3), l(symbol("l"), 3);
2771
2772     ex e = indexed(A, i, j) * indexed(B, k, l)
2773          * delta_tensor(i, k) * delta_tensor(j, l);
2774     cout << e.simplify_indexed() << endl;
2775      // -> B.i.j*A.i.j
2776
2777     cout << delta_tensor(i, i) << endl;
2778      // -> 3
2779 @}
2780 @end example
2781
2782 @cindex @code{metric_tensor()}
2783 @subsubsection General metric tensor
2784
2785 The function @code{metric_tensor()} creates a general symmetric metric
2786 tensor with two indices that can be used to raise/lower tensor indices. The
2787 metric tensor is denoted as @samp{g} in the output and if its indices are of
2788 mixed variance it is automatically replaced by a delta tensor:
2789
2790 @example
2791 @{
2792     symbol A("A");
2793
2794     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4);
2795
2796     ex e = metric_tensor(mu, nu) * indexed(A, nu.toggle_variance(), rho);
2797     cout << e.simplify_indexed() << endl;
2798      // -> A~mu~rho
2799
2800     e = delta_tensor(mu, nu.toggle_variance()) * metric_tensor(nu, rho);
2801     cout << e.simplify_indexed() << endl;
2802      // -> g~mu~rho
2803
2804     e = metric_tensor(mu.toggle_variance(), nu.toggle_variance())
2805       * metric_tensor(nu, rho);
2806     cout << e.simplify_indexed() << endl;
2807      // -> delta.mu~rho
2808
2809     e = metric_tensor(nu.toggle_variance(), rho.toggle_variance())
2810       * metric_tensor(mu, nu) * (delta_tensor(mu.toggle_variance(), rho)
2811         + indexed(A, mu.toggle_variance(), rho));
2812     cout << e.simplify_indexed() << endl;
2813      // -> 4+A.rho~rho
2814 @}
2815 @end example
2816
2817 @cindex @code{lorentz_g()}
2818 @subsubsection Minkowski metric tensor
2819
2820 The Minkowski metric tensor is a special metric tensor with a constant
2821 matrix representation which is either @code{diag(1, -1, -1, ...)} (negative
2822 signature, the default) or @code{diag(-1, 1, 1, ...)} (positive signature).
2823 It is created with the function @code{lorentz_g()} (although it is output as
2824 @samp{eta}):
2825
2826 @example
2827 @{
2828     varidx mu(symbol("mu"), 4);
2829
2830     e = delta_tensor(varidx(0, 4), mu.toggle_variance())
2831       * lorentz_g(mu, varidx(0, 4));       // negative signature
2832     cout << e.simplify_indexed() << endl;
2833      // -> 1
2834
2835     e = delta_tensor(varidx(0, 4), mu.toggle_variance())
2836       * lorentz_g(mu, varidx(0, 4), true); // positive signature
2837     cout << e.simplify_indexed() << endl;
2838      // -> -1
2839 @}
2840 @end example
2841
2842 @cindex @code{spinor_metric()}
2843 @subsubsection Spinor metric tensor
2844
2845 The function @code{spinor_metric()} creates an antisymmetric tensor with
2846 two indices that is used to raise/lower indices of 2-component spinors.
2847 It is output as @samp{eps}:
2848
2849 @example
2850 @{
2851     symbol psi("psi");
2852
2853     spinidx A(symbol("A")), B(symbol("B")), C(symbol("C"));
2854     ex A_co = A.toggle_variance(), B_co = B.toggle_variance();
2855
2856     e = spinor_metric(A, B) * indexed(psi, B_co);
2857     cout << e.simplify_indexed() << endl;
2858      // -> psi~A
2859
2860     e = spinor_metric(A, B) * indexed(psi, A_co);
2861     cout << e.simplify_indexed() << endl;
2862      // -> -psi~B
2863
2864     e = spinor_metric(A_co, B_co) * indexed(psi, B);
2865     cout << e.simplify_indexed() << endl;
2866      // -> -psi.A
2867
2868     e = spinor_metric(A_co, B_co) * indexed(psi, A);
2869     cout << e.simplify_indexed() << endl;
2870      // -> psi.B
2871
2872     e = spinor_metric(A_co, B_co) * spinor_metric(A, B);
2873     cout << e.simplify_indexed() << endl;
2874      // -> 2
2875
2876     e = spinor_metric(A_co, B_co) * spinor_metric(B, C);
2877     cout << e.simplify_indexed() << endl;
2878      // -> -delta.A~C
2879 @}
2880 @end example
2881
2882 The matrix representation of the spinor metric is @code{[[0, 1], [-1, 0]]}.
2883
2884 @cindex @code{epsilon_tensor()}
2885 @cindex @code{lorentz_eps()}
2886 @subsubsection Epsilon tensor
2887
2888 The epsilon tensor is totally antisymmetric, its number of indices is equal
2889 to the dimension of the index space (the indices must all be of the same
2890 numeric dimension), and @samp{eps.1.2.3...} (resp. @samp{eps~0~1~2...}) is
2891 defined to be 1. Its behavior with indices that have a variance also
2892 depends on the signature of the metric. Epsilon tensors are output as
2893 @samp{eps}.
2894
2895 There are three functions defined to create epsilon tensors in 2, 3 and 4
2896 dimensions:
2897
2898 @example
2899 ex epsilon_tensor(const ex & i1, const ex & i2);
2900 ex epsilon_tensor(const ex & i1, const ex & i2, const ex & i3);
2901 ex lorentz_eps(const ex & i1, const ex & i2, const ex & i3, const ex & i4,
2902                bool pos_sig = false);
2903 @end example
2904
2905 The first two functions create an epsilon tensor in 2 or 3 Euclidean
2906 dimensions, the last function creates an epsilon tensor in a 4-dimensional
2907 Minkowski space (the last @code{bool} argument specifies whether the metric
2908 has negative or positive signature, as in the case of the Minkowski metric
2909 tensor):
2910
2911 @example
2912 @{
2913     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4),
2914            sig(symbol("sig"), 4), lam(symbol("lam"), 4), bet(symbol("bet"), 4);
2915     e = lorentz_eps(mu, nu, rho, sig) *
2916         lorentz_eps(mu.toggle_variance(), nu.toggle_variance(), lam, bet);
2917     cout << simplify_indexed(e) << endl;
2918      // -> 2*eta~bet~rho*eta~sig~lam-2*eta~sig~bet*eta~rho~lam
2919
2920     idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3);
2921     symbol A("A"), B("B");
2922     e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(B, k);
2923     cout << simplify_indexed(e) << endl;
2924      // -> -B.k*A.j*eps.i.k.j
2925     e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(A, k);
2926     cout << simplify_indexed(e) << endl;
2927      // -> 0
2928 @}
2929 @end example
2930
2931 @subsection Linear algebra
2932
2933 The @code{matrix} class can be used with indices to do some simple linear
2934 algebra (linear combinations and products of vectors and matrices, traces
2935 and scalar products):
2936
2937 @example
2938 @{
2939     idx i(symbol("i"), 2), j(symbol("j"), 2);
2940     symbol x("x"), y("y");
2941
2942     // A is a 2x2 matrix, X is a 2x1 vector
2943     matrix A(2, 2), X(2, 1);
2944     A = 1, 2,
2945         3, 4;
2946     X = x, y;
2947
2948     cout << indexed(A, i, i) << endl;
2949      // -> 5
2950
2951     ex e = indexed(A, i, j) * indexed(X, j);
2952     cout << e.simplify_indexed() << endl;
2953      // -> [[2*y+x],[4*y+3*x]].i
2954
2955     e = indexed(A, i, j) * indexed(X, i) + indexed(X, j) * 2;
2956     cout << e.simplify_indexed() << endl;
2957      // -> [[3*y+3*x,6*y+2*x]].j
2958 @}
2959 @end example
2960
2961 You can of course obtain the same results with the @code{matrix::add()},
2962 @code{matrix::mul()} and @code{matrix::trace()} methods (@pxref{Matrices})
2963 but with indices you don't have to worry about transposing matrices.
2964
2965 Matrix indices always start at 0 and their dimension must match the number
2966 of rows/columns of the matrix. Matrices with one row or one column are
2967 vectors and can have one or two indices (it doesn't matter whether it's a
2968 row or a column vector). Other matrices must have two indices.
2969
2970 You should be careful when using indices with variance on matrices. GiNaC
2971 doesn't look at the variance and doesn't know that @samp{F~mu~nu} and
2972 @samp{F.mu.nu} are different matrices. In this case you should use only
2973 one form for @samp{F} and explicitly multiply it with a matrix representation
2974 of the metric tensor.
2975
2976
2977 @node Non-commutative objects, Hash maps, Indexed objects, Basic concepts
2978 @c    node-name, next, previous, up
2979 @section Non-commutative objects
2980
2981 GiNaC is equipped to handle certain non-commutative algebras. Three classes of
2982 non-commutative objects are built-in which are mostly of use in high energy
2983 physics:
2984
2985 @itemize
2986 @item Clifford (Dirac) algebra (class @code{clifford})
2987 @item su(3) Lie algebra (class @code{color})
2988 @item Matrices (unindexed) (class @code{matrix})
2989 @end itemize
2990
2991 The @code{clifford} and @code{color} classes are subclasses of
2992 @code{indexed} because the elements of these algebras usually carry
2993 indices. The @code{matrix} class is described in more detail in
2994 @ref{Matrices}.
2995
2996 Unlike most computer algebra systems, GiNaC does not primarily provide an
2997 operator (often denoted @samp{&*}) for representing inert products of
2998 arbitrary objects. Rather, non-commutativity in GiNaC is a property of the
2999 classes of objects involved, and non-commutative products are formed with
3000 the usual @samp{*} operator, as are ordinary products. GiNaC is capable of
3001 figuring out by itself which objects commutate and will group the factors
3002 by their class. Consider this example:
3003
3004 @example
3005     ...
3006     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);
3007     idx a(symbol("a"), 8), b(symbol("b"), 8);
3008     ex e = -dirac_gamma(mu) * (2*color_T(a)) * 8 * color_T(b) * dirac_gamma(nu);
3009     cout << e << endl;
3010      // -> -16*(gamma~mu*gamma~nu)*(T.a*T.b)
3011     ...
3012 @end example
3013
3014 As can be seen, GiNaC pulls out the overall commutative factor @samp{-16} and
3015 groups the non-commutative factors (the gammas and the su(3) generators)
3016 together while preserving the order of factors within each class (because
3017 Clifford objects commutate with color objects). The resulting expression is a
3018 @emph{commutative} product with two factors that are themselves non-commutative
3019 products (@samp{gamma~mu*gamma~nu} and @samp{T.a*T.b}). For clarification,
3020 parentheses are placed around the non-commutative products in the output.
3021
3022 @cindex @code{ncmul} (class)
3023 Non-commutative products are internally represented by objects of the class
3024 @code{ncmul}, as opposed to commutative products which are handled by the
3025 @code{mul} class. You will normally not have to worry about this distinction,
3026 though.
3027
3028 The advantage of this approach is that you never have to worry about using
3029 (or forgetting to use) a special operator when constructing non-commutative
3030 expressions. Also, non-commutative products in GiNaC are more intelligent
3031 than in other computer algebra systems; they can, for example, automatically
3032 canonicalize themselves according to rules specified in the implementation
3033 of the non-commutative classes. The drawback is that to work with other than
3034 the built-in algebras you have to implement new classes yourself. Both
3035 symbols and user-defined functions can be specified as being non-commutative.
3036
3037 @cindex @code{return_type()}
3038 @cindex @code{return_type_tinfo()}
3039 Information about the commutativity of an object or expression can be
3040 obtained with the two member functions
3041
3042 @example
3043 unsigned ex::return_type() const;
3044 unsigned ex::return_type_tinfo() const;
3045 @end example
3046
3047 The @code{return_type()} function returns one of three values (defined in
3048 the header file @file{flags.h}), corresponding to three categories of
3049 expressions in GiNaC:
3050
3051 @itemize @bullet
3052 @item @code{return_types::commutative}: Commutates with everything. Most GiNaC
3053   classes are of this kind.
3054 @item @code{return_types::noncommutative}: Non-commutative, belonging to a
3055   certain class of non-commutative objects which can be determined with the
3056   @code{return_type_tinfo()} method. Expressions of this category commutate
3057   with everything except @code{noncommutative} expressions of the same
3058   class.
3059 @item @code{return_types::noncommutative_composite}: Non-commutative, composed
3060   of non-commutative objects of different classes. Expressions of this
3061   category don't commutate with any other @code{noncommutative} or
3062   @code{noncommutative_composite} expressions.
3063 @end itemize
3064
3065 The value returned by the @code{return_type_tinfo()} method is valid only
3066 when the return type of the expression is @code{noncommutative}. It is a
3067 value that is unique to the class of the object, but may vary every time a
3068 GiNaC program is being run (it is dynamically assigned on start-up).
3069
3070 Here are a couple of examples:
3071
3072 @cartouche
3073 @multitable @columnfractions 0.33 0.33 0.34
3074 @item @strong{Expression} @tab @strong{@code{return_type()}} @tab @strong{@code{return_type_tinfo()}}
3075 @item @code{42} @tab @code{commutative} @tab -
3076 @item @code{2*x-y} @tab @code{commutative} @tab -
3077 @item @code{dirac_ONE()} @tab @code{noncommutative} @tab @code{TINFO_clifford}
3078 @item @code{dirac_gamma(mu)*dirac_gamma(nu)} @tab @code{noncommutative} @tab @code{TINFO_clifford}
3079 @item @code{2*color_T(a)} @tab @code{noncommutative} @tab @code{TINFO_color}
3080 @item @code{dirac_ONE()*color_T(a)} @tab @code{noncommutative_composite} @tab -
3081 @end multitable
3082 @end cartouche
3083
3084 Note: the @code{return_type_tinfo()} of Clifford objects is only equal to
3085 @code{TINFO_clifford} for objects with a representation label of zero.
3086 Other representation labels yield a different @code{return_type_tinfo()},
3087 but it's the same for any two objects with the same label. This is also true
3088 for color objects.
3089
3090 A last note: With the exception of matrices, positive integer powers of
3091 non-commutative objects are automatically expanded in GiNaC. For example,
3092 @code{pow(a*b, 2)} becomes @samp{a*b*a*b} if @samp{a} and @samp{b} are
3093 non-commutative expressions).
3094
3095
3096 @cindex @code{clifford} (class)
3097 @subsection Clifford algebra
3098
3099
3100 Clifford algebras are supported in two flavours: Dirac gamma
3101 matrices (more physical) and generic Clifford algebras (more
3102 mathematical). 
3103
3104 @cindex @code{dirac_gamma()}
3105 @subsubsection Dirac gamma matrices
3106 Dirac gamma matrices (note that GiNaC doesn't treat them
3107 as matrices) are designated as @samp{gamma~mu} and satisfy
3108 @samp{gamma~mu*gamma~nu + gamma~nu*gamma~mu = 2*eta~mu~nu} where
3109 @samp{eta~mu~nu} is the Minkowski metric tensor. Dirac gammas are
3110 constructed by the function
3111
3112 @example
3113 ex dirac_gamma(const ex & mu, unsigned char rl = 0);
3114 @end example
3115
3116 which takes two arguments: the index and a @dfn{representation label} in the
3117 range 0 to 255 which is used to distinguish elements of different Clifford
3118 algebras (this is also called a @dfn{spin line index}). Gammas with different
3119 labels commutate with each other. The dimension of the index can be 4 or (in
3120 the framework of dimensional regularization) any symbolic value. Spinor
3121 indices on Dirac gammas are not supported in GiNaC.
3122
3123 @cindex @code{dirac_ONE()}
3124 The unity element of a Clifford algebra is constructed by
3125
3126 @example
3127 ex dirac_ONE(unsigned char rl = 0);
3128 @end example
3129
3130 @strong{Please notice:} You must always use @code{dirac_ONE()} when referring to
3131 multiples of the unity element, even though it's customary to omit it.
3132 E.g. instead of @code{dirac_gamma(mu)*(dirac_slash(q,4)+m)} you have to
3133 write @code{dirac_gamma(mu)*(dirac_slash(q,4)+m*dirac_ONE())}. Otherwise,
3134 GiNaC will complain and/or produce incorrect results.
3135
3136 @cindex @code{dirac_gamma5()}
3137 There is a special element @samp{gamma5} that commutates with all other
3138 gammas, has a unit square, and in 4 dimensions equals
3139 @samp{gamma~0 gamma~1 gamma~2 gamma~3}, provided by
3140
3141 @example
3142 ex dirac_gamma5(unsigned char rl = 0);
3143 @end example
3144
3145 @cindex @code{dirac_gammaL()}
3146 @cindex @code{dirac_gammaR()}
3147 The chiral projectors @samp{(1+/-gamma5)/2} are also available as proper
3148 objects, constructed by
3149
3150 @example
3151 ex dirac_gammaL(unsigned char rl = 0);
3152 ex dirac_gammaR(unsigned char rl = 0);
3153 @end example
3154
3155 They observe the relations @samp{gammaL^2 = gammaL}, @samp{gammaR^2 = gammaR},
3156 and @samp{gammaL gammaR = gammaR gammaL = 0}.
3157
3158 @cindex @code{dirac_slash()}
3159 Finally, the function
3160
3161 @example
3162 ex dirac_slash(const ex & e, const ex & dim, unsigned char rl = 0);
3163 @end example
3164
3165 creates a term that represents a contraction of @samp{e} with the Dirac
3166 Lorentz vector (it behaves like a term of the form @samp{e.mu gamma~mu}
3167 with a unique index whose dimension is given by the @code{dim} argument).
3168 Such slashed expressions are printed with a trailing backslash, e.g. @samp{e\}.
3169
3170 In products of dirac gammas, superfluous unity elements are automatically
3171 removed, squares are replaced by their values, and @samp{gamma5}, @samp{gammaL}
3172 and @samp{gammaR} are moved to the front.
3173
3174 The @code{simplify_indexed()} function performs contractions in gamma strings,
3175 for example
3176
3177 @example
3178 @{
3179     ...
3180     symbol a("a"), b("b"), D("D");
3181     varidx mu(symbol("mu"), D);
3182     ex e = dirac_gamma(mu) * dirac_slash(a, D)
3183          * dirac_gamma(mu.toggle_variance());
3184     cout << e << endl;
3185      // -> gamma~mu*a\*gamma.mu
3186     e = e.simplify_indexed();
3187     cout << e << endl;
3188      // -> -D*a\+2*a\
3189     cout << e.subs(D == 4) << endl;
3190      // -> -2*a\
3191     ...
3192 @}
3193 @end example
3194
3195 @cindex @code{dirac_trace()}
3196 To calculate the trace of an expression containing strings of Dirac gammas
3197 you use one of the functions
3198
3199 @example
3200 ex dirac_trace(const ex & e, const std::set<unsigned char> & rls,
3201                const ex & trONE = 4);
3202 ex dirac_trace(const ex & e, const lst & rll, const ex & trONE = 4);
3203 ex dirac_trace(const ex & e, unsigned char rl = 0, const ex & trONE = 4);
3204 @end example
3205
3206 These functions take the trace over all gammas in the specified set @code{rls}
3207 or list @code{rll} of representation labels, or the single label @code{rl};
3208 gammas with other labels are left standing. The last argument to
3209 @code{dirac_trace()} is the value to be returned for the trace of the unity
3210 element, which defaults to 4.
3211
3212 The @code{dirac_trace()} function is a linear functional that is equal to the
3213 ordinary matrix trace only in @math{D = 4} dimensions. In particular, the
3214 functional is not cyclic in
3215 @tex $D \ne 4$
3216 @end tex
3217 @ifnottex
3218 @math{D != 4}
3219 @end ifnottex
3220 dimensions when acting on
3221 expressions containing @samp{gamma5}, so it's not a proper trace. This
3222 @samp{gamma5} scheme is described in greater detail in the article
3223 @cite{The Role of gamma5 in Dimensional Regularization} (@ref{Bibliography}).
3224
3225 The value of the trace itself is also usually different in 4 and in
3226 @tex $D \ne 4$
3227 @end tex
3228 @ifnottex
3229 @math{D != 4}
3230 @end ifnottex
3231 dimensions:
3232
3233 @example
3234 @{
3235     // 4 dimensions
3236     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4);
3237     ex e = dirac_gamma(mu) * dirac_gamma(nu) *
3238            dirac_gamma(mu.toggle_variance()) * dirac_gamma(rho);
3239     cout << dirac_trace(e).simplify_indexed() << endl;
3240      // -> -8*eta~rho~nu
3241 @}
3242 ...
3243 @{
3244     // D dimensions
3245     symbol D("D");
3246     varidx mu(symbol("mu"), D), nu(symbol("nu"), D), rho(symbol("rho"), D);
3247     ex e = dirac_gamma(mu) * dirac_gamma(nu) *
3248            dirac_gamma(mu.toggle_variance()) * dirac_gamma(rho);
3249     cout << dirac_trace(e).simplify_indexed() << endl;
3250      // -> 8*eta~rho~nu-4*eta~rho~nu*D
3251 @}
3252 @end example
3253
3254 Here is an example for using @code{dirac_trace()} to compute a value that
3255 appears in the calculation of the one-loop vacuum polarization amplitude in
3256 QED:
3257
3258 @example
3259 @{
3260     symbol q("q"), l("l"), m("m"), ldotq("ldotq"), D("D");
3261     varidx mu(symbol("mu"), D), nu(symbol("nu"), D);
3262
3263     scalar_products sp;
3264     sp.add(l, l, pow(l, 2));
3265     sp.add(l, q, ldotq);
3266
3267     ex e = dirac_gamma(mu) *
3268            (dirac_slash(l, D) + dirac_slash(q, D) + m * dirac_ONE()) *    
3269            dirac_gamma(mu.toggle_variance()) *
3270            (dirac_slash(l, D) + m * dirac_ONE());   
3271     e = dirac_trace(e).simplify_indexed(sp);
3272     e = e.collect(lst(l, ldotq, m));
3273     cout << e << endl;
3274      // -> (8-4*D)*l^2+(8-4*D)*ldotq+4*D*m^2
3275 @}
3276 @end example
3277
3278 The @code{canonicalize_clifford()} function reorders all gamma products that
3279 appear in an expression to a canonical (but not necessarily simple) form.
3280 You can use this to compare two expressions or for further simplifications:
3281
3282 @example
3283 @{
3284     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);
3285     ex e = dirac_gamma(mu) * dirac_gamma(nu) + dirac_gamma(nu) * dirac_gamma(mu);
3286     cout << e << endl;
3287      // -> gamma~mu*gamma~nu+gamma~nu*gamma~mu
3288
3289     e = canonicalize_clifford(e);
3290     cout << e << endl;
3291      // -> 2*ONE*eta~mu~nu
3292 @}
3293 @end example
3294
3295 @cindex @code{clifford_unit()}
3296 @subsubsection A generic Clifford algebra
3297
3298 A generic Clifford algebra, i.e. a
3299 @tex $2^n$
3300 @end tex
3301 @ifnottex
3302 2^n
3303 @end ifnottex
3304 dimensional algebra with
3305 generators 
3306 @tex $e_k$
3307 @end tex 
3308 @ifnottex
3309 e_k
3310 @end ifnottex
3311 satisfying the identities 
3312 @tex
3313 $e_i e_j + e_j e_i = M(i, j) + M(j, i)$
3314 @end tex
3315 @ifnottex
3316 e~i e~j + e~j e~i = M(i, j) + M(j, i) 
3317 @end ifnottex
3318 for some bilinear form (@code{metric})
3319 @math{M(i, j)}, which may be non-symmetric (see arXiv:math.QA/9911180) 
3320 and contain symbolic entries. Such generators are created by the
3321 function 
3322
3323 @example
3324     ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl = 0);    
3325 @end example
3326
3327 where @code{mu} should be a @code{idx} (or descendant) class object
3328 indexing the generators.
3329 Parameter @code{metr} defines the metric @math{M(i, j)} and can be
3330 represented by a square @code{matrix}, @code{tensormetric} or @code{indexed} class
3331 object. In fact, any expression either with two free indices or without
3332 indices at all is admitted as @code{metr}. In the later case an @code{indexed}
3333 object with two newly created indices with @code{metr} as its
3334 @code{op(0)} will be used.
3335 Optional parameter @code{rl} allows to distinguish different
3336 Clifford algebras, which will commute with each other. 
3337
3338 Note that the call @code{clifford_unit(mu, minkmetric())} creates
3339 something very close to @code{dirac_gamma(mu)}, although
3340 @code{dirac_gamma} have more efficient simplification mechanism. 
3341 @cindex @code{clifford::get_metric()}
3342 The method @code{clifford::get_metric()} returns a metric defining this
3343 Clifford number.
3344
3345 If the matrix @math{M(i, j)} is in fact symmetric you may prefer to create
3346 the Clifford algebra units with a call like that
3347
3348 @example
3349     ex e = clifford_unit(mu, indexed(M, sy_symm(), i, j));
3350 @end example
3351
3352 since this may yield some further automatic simplifications. Again, for a
3353 metric defined through a @code{matrix} such a symmetry is detected
3354 automatically. 
3355
3356 Individual generators of a Clifford algebra can be accessed in several
3357 ways. For example 
3358
3359 @example
3360 @{
3361     ... 
3362     idx i(symbol("i"), 4);
3363     realsymbol s("s");
3364     ex M = diag_matrix(lst(1, -1, 0, s));
3365     ex e = clifford_unit(i, M);
3366     ex e0 = e.subs(i == 0);
3367     ex e1 = e.subs(i == 1);
3368     ex e2 = e.subs(i == 2);
3369     ex e3 = e.subs(i == 3);
3370     ...
3371 @}
3372 @end example
3373
3374 will produce four anti-commuting generators of a Clifford algebra with properties
3375 @tex
3376 $e_0^2=1 $, $e_1^2=-1$,  $e_2^2=0$ and $e_3^2=s$.
3377 @end tex
3378 @ifnottex
3379 @code{pow(e0, 2) = 1}, @code{pow(e1, 2) = -1}, @code{pow(e2, 2) = 0} and
3380 @code{pow(e3, 2) = s}.
3381 @end ifnottex
3382
3383 @cindex @code{lst_to_clifford()}
3384 A similar effect can be achieved from the function
3385
3386 @example
3387     ex lst_to_clifford(const ex & v, const ex & mu,  const ex & metr,
3388                        unsigned char rl = 0);
3389     ex lst_to_clifford(const ex & v, const ex & e);
3390 @end example
3391
3392 which converts a list or vector 
3393 @tex
3394 $v = (v^0, v^1, ..., v^n)$
3395 @end tex
3396 @ifnottex
3397 @samp{v = (v~0, v~1, ..., v~n)} 
3398 @end ifnottex
3399 into the
3400 Clifford number 
3401 @tex
3402 $v^0 e_0 + v^1 e_1 + ... + v^n e_n$
3403 @end tex
3404 @ifnottex
3405 @samp{v~0 e.0 + v~1 e.1 + ... + v~n e.n}
3406 @end ifnottex
3407 with @samp{e.k}
3408 directly supplied in the second form of the procedure. In the first form
3409 the Clifford unit @samp{e.k} is generated by the call of
3410 @code{clifford_unit(mu, metr, rl)}. 
3411 @cindex pseudo-vector
3412 If the number of components supplied
3413 by @code{v} exceeds the dimensionality of the Clifford unit @code{e} by
3414 1 then function @code{lst_to_clifford()} uses the following
3415 pseudo-vector representation: 
3416 @tex
3417 $v^0 {\bf 1} + v^1 e_0 + v^2 e_1 + ... + v^{n+1} e_n$
3418 @end tex
3419 @ifnottex
3420 @samp{v~0 ONE + v~1 e.0 + v~2 e.1 + ... + v~[n+1] e.n}
3421 @end ifnottex
3422
3423 The previous code may be rewritten with the help of @code{lst_to_clifford()} as follows
3424
3425 @example
3426 @{
3427     ...
3428     idx i(symbol("i"), 4);
3429     realsymbol s("s");
3430     ex M = diag_matrix(lst(1, -1, 0, s));
3431     ex e0 = lst_to_clifford(lst(1, 0, 0, 0), i, M);
3432     ex e1 = lst_to_clifford(lst(0, 1, 0, 0), i, M);
3433     ex e2 = lst_to_clifford(lst(0, 0, 1, 0), i, M);
3434     ex e3 = lst_to_clifford(lst(0, 0, 0, 1), i, M);
3435   ...
3436 @}
3437 @end example
3438
3439 @cindex @code{clifford_to_lst()}
3440 There is the inverse function 
3441
3442 @example
3443     lst clifford_to_lst(const ex & e, const ex & c, bool algebraic = true);
3444 @end example
3445
3446 which takes an expression @code{e} and tries to find a list
3447 @tex
3448 $v = (v^0, v^1, ..., v^n)$
3449 @end tex
3450 @ifnottex
3451 @samp{v = (v~0, v~1, ..., v~n)} 
3452 @end ifnottex
3453 such that the expression is either vector 
3454 @tex
3455 $e = v^0 c_0 + v^1 c_1 + ... + v^n c_n$
3456 @end tex
3457 @ifnottex
3458 @samp{e = v~0 c.0 + v~1 c.1 + ... + v~n c.n}
3459 @end ifnottex
3460 or pseudo-vector 
3461 @tex
3462 $v^0 {\bf 1} + v^1 e_0 + v^2 e_1 + ... + v^{n+1} e_n$
3463 @end tex
3464 @ifnottex
3465 @samp{v~0 ONE + v~1 e.0 + v~2 e.1 + ... + v~[n+1] e.n}
3466 @end ifnottex
3467 with respect to the given Clifford units @code{c}. Here none of the
3468 @samp{v~k} should contain Clifford units @code{c} (of course, this
3469 may be impossible). This function can use an @code{algebraic} method
3470 (default) or a symbolic one. With the @code{algebraic} method the
3471 @samp{v~k} are calculated as 
3472 @tex
3473 $(e c_k + c_k e)/c_k^2$. If $c_k^2$
3474 @end tex
3475 @ifnottex
3476 @samp{(e c.k + c.k e)/pow(c.k, 2)}.   If @samp{pow(c.k, 2)} 
3477 @end ifnottex
3478 is zero or is not @code{numeric} for some @samp{k}
3479 then the method will be automatically changed to symbolic. The same effect
3480 is obtained by the assignment (@code{algebraic = false}) in the procedure call.
3481
3482 @cindex @code{clifford_prime()}
3483 @cindex @code{clifford_star()}
3484 @cindex @code{clifford_bar()}
3485 There are several functions for (anti-)automorphisms of Clifford algebras:
3486
3487 @example
3488     ex clifford_prime(const ex & e)
3489     inline ex clifford_star(const ex & e) @{ return e.conjugate(); @}
3490     inline ex clifford_bar(const ex & e) @{ return clifford_prime(e.conjugate()); @}
3491 @end example
3492
3493 The automorphism of a Clifford algebra @code{clifford_prime()} simply
3494 changes signs of all Clifford units in the expression. The reversion
3495 of a Clifford algebra @code{clifford_star()} coincides with the
3496 @code{conjugate()} method and effectively reverses the order of Clifford
3497 units in any product. Finally the main anti-automorphism
3498 of a Clifford algebra @code{clifford_bar()} is the composition of the
3499 previous two, i.e. it makes the reversion and changes signs of all Clifford units
3500 in a product. These functions correspond to the notations
3501 @math{e'},
3502 @tex
3503 $e^*$
3504 @end tex
3505 @ifnottex
3506 e*
3507 @end ifnottex
3508 and
3509 @tex
3510 $\overline{e}$
3511 @end tex
3512 @ifnottex
3513 @code{\bar@{e@}}
3514 @end ifnottex
3515 used in Clifford algebra textbooks.
3516
3517 @cindex @code{clifford_norm()}
3518 The function
3519
3520 @example
3521     ex clifford_norm(const ex & e);
3522 @end example
3523
3524 @cindex @code{clifford_inverse()}
3525 calculates the norm of a Clifford number from the expression
3526 @tex
3527 $||e||^2 = e\overline{e}$.
3528 @end tex
3529 @ifnottex
3530 @code{||e||^2 = e \bar@{e@}}
3531 @end ifnottex
3532  The inverse of a Clifford expression is returned by the function
3533
3534 @example
3535     ex clifford_inverse(const ex & e);
3536 @end example
3537
3538 which calculates it as 
3539 @tex
3540 $e^{-1} = \overline{e}/||e||^2$.
3541 @end tex
3542 @ifnottex
3543 @math{e^@{-1@} = \bar@{e@}/||e||^2}
3544 @end ifnottex
3545  If
3546 @tex
3547 $||e|| = 0$
3548 @end tex
3549 @ifnottex
3550 @math{||e||=0}
3551 @end ifnottex
3552 then an exception is raised.
3553
3554 @cindex @code{remove_dirac_ONE()}
3555 If a Clifford number happens to be a factor of
3556 @code{dirac_ONE()} then we can convert it to a ``real'' (non-Clifford)
3557 expression by the function
3558
3559 @example
3560     ex remove_dirac_ONE(const ex & e);
3561 @end example
3562
3563 @cindex @code{canonicalize_clifford()}
3564 The function @code{canonicalize_clifford()} works for a
3565 generic Clifford algebra in a similar way as for Dirac gammas.
3566
3567 The next provided function is
3568
3569 @cindex @code{clifford_moebius_map()}
3570 @example
3571     ex clifford_moebius_map(const ex & a, const ex & b, const ex & c,
3572                             const ex & d, const ex & v, const ex & G,
3573                             unsigned char rl = 0);
3574     ex clifford_moebius_map(const ex & M, const ex & v, const ex & G,
3575                             unsigned char rl = 0);
3576 @end example 
3577
3578 It takes a list or vector @code{v} and makes the Moebius (conformal or
3579 linear-fractional) transformation @samp{v -> (av+b)/(cv+d)} defined by
3580 the matrix @samp{M = [[a, b], [c, d]]}. The parameter @code{G} defines
3581 the metric of the surrounding (pseudo-)Euclidean space. This can be an
3582 indexed object, tensormetric, matrix or a Clifford unit, in the later
3583 case the optional parameter @code{rl} is ignored even if supplied.
3584 Depending from the type of @code{v} the returned value of this function
3585 is either a vector or a list holding vector's components.
3586
3587 @cindex @code{clifford_max_label()}
3588 Finally the function
3589
3590 @example
3591 char clifford_max_label(const ex & e, bool ignore_ONE = false);
3592 @end example
3593
3594 can detect a presence of Clifford objects in the expression @code{e}: if
3595 such objects are found it returns the maximal
3596 @code{representation_label} of them, otherwise @code{-1}. The optional
3597 parameter @code{ignore_ONE} indicates if @code{dirac_ONE} objects should
3598 be ignored during the search.
3599  
3600 LaTeX output for Clifford units looks like
3601 @code{\clifford[1]@{e@}^@{@{\nu@}@}}, where @code{1} is the
3602 @code{representation_label} and @code{\nu} is the index of the
3603 corresponding unit. This provides a flexible typesetting with a suitable
3604 definition of the @code{\clifford} command. For example, the definition
3605 @example
3606     \newcommand@{\clifford@}[1][]@{@}
3607 @end example
3608 typesets all Clifford units identically, while the alternative definition
3609 @example
3610     \newcommand@{\clifford@}[2][]@{\ifcase #1 #2\or \tilde@{#2@} \or \breve@{#2@} \fi@}
3611 @end example
3612 prints units with @code{representation_label=0} as 
3613 @tex
3614 $e$,
3615 @end tex
3616 @ifnottex
3617 @code{e},
3618 @end ifnottex
3619 with @code{representation_label=1} as 
3620 @tex
3621 $\tilde{e}$
3622 @end tex
3623 @ifnottex
3624 @code{\tilde@{e@}}
3625 @end ifnottex
3626  and with @code{representation_label=2} as 
3627 @tex
3628 $\breve{e}$.
3629 @end tex
3630 @ifnottex
3631 @code{\breve@{e@}}.
3632 @end ifnottex
3633
3634 @cindex @code{color} (class)
3635 @subsection Color algebra
3636
3637 @cindex @code{color_T()}
3638 For computations in quantum chromodynamics, GiNaC implements the base elements
3639 and structure constants of the su(3) Lie algebra (color algebra). The base
3640 elements @math{T_a} are constructed by the function
3641
3642 @example
3643 ex color_T(const ex & a, unsigned char rl = 0);
3644 @end example
3645
3646 which takes two arguments: the index and a @dfn{representation label} in the
3647 range 0 to 255 which is used to distinguish elements of different color
3648 algebras. Objects with different labels commutate with each other. The
3649 dimension of the index must be exactly 8 and it should be of class @code{idx},
3650 not @code{varidx}.
3651
3652 @cindex @code{color_ONE()}
3653 The unity element of a color algebra is constructed by
3654
3655 @example
3656 ex color_ONE(unsigned char rl = 0);
3657 @end example
3658
3659 @strong{Please notice:} You must always use @code{color_ONE()} when referring to
3660 multiples of the unity element, even though it's customary to omit it.
3661 E.g. instead of @code{color_T(a)*(color_T(b)*indexed(X,b)+1)} you have to
3662 write @code{color_T(a)*(color_T(b)*indexed(X,b)+color_ONE())}. Otherwise,
3663 GiNaC may produce incorrect results.
3664
3665 @cindex @code{color_d()}
3666 @cindex @code{color_f()}
3667 The functions
3668
3669 @example
3670 ex color_d(const ex & a, const ex & b, const ex & c);
3671 ex color_f(const ex & a, const ex & b, const ex & c);
3672 @end example
3673
3674 create the symmetric and antisymmetric structure constants @math{d_abc} and
3675 @math{f_abc} which satisfy @math{@{T_a, T_b@} = 1/3 delta_ab + d_abc T_c}
3676 and @math{[T_a, T_b] = i f_abc T_c}.
3677
3678 These functions evaluate to their numerical values,
3679 if you supply numeric indices to them. The index values should be in
3680 the range from 1 to 8, not from 0 to 7. This departure from usual conventions
3681 goes along better with the notations used in physical literature.
3682
3683 @cindex @code{color_h()}
3684 There's an additional function
3685
3686 @example
3687 ex color_h(const ex & a, const ex & b, const ex & c);
3688 @end example
3689
3690 which returns the linear combination @samp{color_d(a, b, c)+I*color_f(a, b, c)}.
3691
3692 The function @code{simplify_indexed()} performs some simplifications on
3693 expressions containing color objects:
3694
3695 @example
3696 @{
3697     ...
3698     idx a(symbol("a"), 8), b(symbol("b"), 8), c(symbol("c"), 8),
3699         k(symbol("k"), 8), l(symbol("l"), 8);
3700
3701     e = color_d(a, b, l) * color_f(a, b, k);
3702     cout << e.simplify_indexed() << endl;
3703      // -> 0
3704
3705     e = color_d(a, b, l) * color_d(a, b, k);
3706     cout << e.simplify_indexed() << endl;
3707      // -> 5/3*delta.k.l
3708
3709     e = color_f(l, a, b) * color_f(a, b, k);
3710     cout << e.simplify_indexed() << endl;
3711      // -> 3*delta.k.l
3712
3713     e = color_h(a, b, c) * color_h(a, b, c);
3714     cout << e.simplify_indexed() << endl;
3715      // -> -32/3
3716
3717     e = color_h(a, b, c) * color_T(b) * color_T(c);
3718     cout << e.simplify_indexed() << endl;
3719      // -> -2/3*T.a
3720
3721     e = color_h(a, b, c) * color_T(a) * color_T(b) * color_T(c);
3722     cout << e.simplify_indexed() << endl;
3723      // -> -8/9*ONE
3724
3725     e = color_T(k) * color_T(a) * color_T(b) * color_T(k);
3726     cout << e.simplify_indexed() << endl;
3727      // -> 1/4*delta.b.a*ONE-1/6*T.a*T.b
3728     ...
3729 @end example
3730
3731 @cindex @code{color_trace()}
3732 To calculate the trace of an expression containing color objects you use one
3733 of the functions
3734
3735 @example
3736 ex color_trace(const ex & e, const std::set<unsigned char> & rls);
3737 ex color_trace(const ex & e, const lst & rll);
3738 ex color_trace(const ex & e, unsigned char rl = 0);
3739 @end example
3740
3741 These functions take the trace over all color @samp{T} objects in the
3742 specified set @code{rls} or list @code{rll} of representation labels, or the
3743 single label @code{rl}; @samp{T}s with other labels are left standing. For
3744 example:
3745
3746 @example
3747     ...
3748     e = color_trace(4 * color_T(a) * color_T(b) * color_T(c));
3749     cout << e << endl;
3750      // -> -I*f.a.c.b+d.a.c.b
3751 @}
3752 @end example
3753
3754
3755 @node Hash maps, Methods and functions, Non-commutative objects, Basic concepts
3756 @c    node-name, next, previous, up
3757 @section Hash Maps
3758 @cindex hash maps
3759 @cindex @code{exhashmap} (class)
3760
3761 For your convenience, GiNaC offers the container template @code{exhashmap<T>}
3762 that can be used as a drop-in replacement for the STL
3763 @code{std::map<ex, T, ex_is_less>}, using hash tables to provide faster,
3764 typically constant-time, element look-up than @code{map<>}.
3765
3766 @code{exhashmap<>} supports all @code{map<>} members and operations, with the
3767 following differences:
3768
3769 @itemize @bullet
3770 @item
3771 no @code{lower_bound()} and @code{upper_bound()} methods
3772 @item
3773 no reverse iterators, no @code{rbegin()}/@code{rend()}
3774 @item 
3775 no @code{operator<(exhashmap, exhashmap)}
3776 @item
3777 the comparison function object @code{key_compare} is hardcoded to
3778 @code{ex_is_less}
3779 @item
3780 the constructor @code{exhashmap(size_t n)} allows specifying the minimum
3781 initial hash table size (the actual table size after construction may be
3782 larger than the specified value)
3783 @item
3784 the method @code{size_t bucket_count()} returns the current size of the hash
3785 table
3786 @item 
3787 @code{insert()} and @code{erase()} operations invalidate all iterators
3788 @end itemize
3789
3790
3791 @node Methods and functions, Information about expressions, Hash maps, Top
3792 @c    node-name, next, previous, up
3793 @chapter Methods and functions
3794 @cindex polynomial
3795
3796 In this chapter the most important algorithms provided by GiNaC will be
3797 described.  Some of them are implemented as functions on expressions,
3798 others are implemented as methods provided by expression objects.  If
3799 they are methods, there exists a wrapper function around it, so you can
3800 alternatively call it in a functional way as shown in the simple
3801 example:
3802
3803 @example
3804     ...
3805     cout << "As method:   " << sin(1).evalf() << endl;
3806     cout << "As function: " << evalf(sin(1)) << endl;
3807     ...
3808 @end example
3809
3810 @cindex @code{subs()}
3811 The general rule is that wherever methods accept one or more parameters
3812 (@var{arg1}, @var{arg2}, @dots{}) the order of arguments the function
3813 wrapper accepts is the same but preceded by the object to act on
3814 (@var{object}, @var{arg1}, @var{arg2}, @dots{}).  This approach is the
3815 most natural one in an OO model but it may lead to confusion for MapleV
3816 users because where they would type @code{A:=x+1; subs(x=2,A);} GiNaC
3817 would require @code{A=x+1; subs(A,x==2);} (after proper declaration of
3818 @code{A} and @code{x}).  On the other hand, since MapleV returns 3 on
3819 @code{A:=x^2+3; coeff(A,x,0);} (GiNaC: @code{A=pow(x,2)+3;
3820 coeff(A,x,0);}) it is clear that MapleV is not trying to be consistent
3821 here.  Also, users of MuPAD will in most cases feel more comfortable
3822 with GiNaC's convention.  All function wrappers are implemented
3823 as simple inline functions which just call the corresponding method and
3824 are only provided for users uncomfortable with OO who are dead set to
3825 avoid method invocations.  Generally, nested function wrappers are much
3826 harder to read than a sequence of methods and should therefore be
3827 avoided if possible.  On the other hand, not everything in GiNaC is a
3828 method on class @code{ex} and sometimes calling a function cannot be
3829 avoided.
3830
3831 @menu
3832 * Information about expressions::
3833 * Numerical evaluation::
3834 * Substituting expressions::
3835 * Pattern matching and advanced substitutions::
3836 * Applying a function on subexpressions::
3837 * Visitors and tree traversal::
3838 * Polynomial arithmetic::           Working with polynomials.
3839 * Rational expressions::            Working with rational functions.
3840 * Symbolic differentiation::
3841 * Series expansion::                Taylor and Laurent expansion.
3842 * Symmetrization::
3843 * Built-in functions::              List of predefined mathematical functions.
3844 * Multiple polylogarithms::
3845 * Complex expressions::
3846 * Solving linear systems of equations::
3847 * Input/output::                    Input and output of expressions.
3848 @end menu
3849
3850
3851 @node Information about expressions, Numerical evaluation, Methods and functions, Methods and functions
3852 @c    node-name, next, previous, up
3853 @section Getting information about expressions
3854
3855 @subsection Checking expression types
3856 @cindex @code{is_a<@dots{}>()}
3857 @cindex @code{is_exactly_a<@dots{}>()}
3858 @cindex @code{ex_to<@dots{}>()}
3859 @cindex Converting @code{ex} to other classes
3860 @cindex @code{info()}
3861 @cindex @code{return_type()}
3862 @cindex @code{return_type_tinfo()}
3863
3864 Sometimes it's useful to check whether a given expression is a plain number,
3865 a sum, a polynomial with integer coefficients, or of some other specific type.
3866 GiNaC provides a couple of functions for this:
3867
3868 @example
3869 bool is_a<T>(const ex & e);
3870 bool is_exactly_a<T>(const ex & e);
3871 bool ex::info(unsigned flag);
3872 unsigned ex::return_type() const;
3873 unsigned ex::return_type_tinfo() const;
3874 @end example
3875
3876 When the test made by @code{is_a<T>()} returns true, it is safe to call
3877 one of the functions @code{ex_to<T>()}, where @code{T} is one of the
3878 class names (@xref{The class hierarchy}, for a list of all classes). For
3879 example, assuming @code{e} is an @code{ex}:
3880
3881 @example
3882 @{
3883     @dots{}
3884     if (is_a<numeric>(e))
3885         numeric n = ex_to<numeric>(e);
3886     @dots{}
3887 @}
3888 @end example
3889
3890 @code{is_a<T>(e)} allows you to check whether the top-level object of
3891 an expression @samp{e} is an instance of the GiNaC class @samp{T}
3892 (@xref{The class hierarchy}, for a list of all classes). This is most useful,
3893 e.g., for checking whether an expression is a number, a sum, or a product:
3894
3895 @example
3896 @{
3897     symbol x("x");
3898     ex e1 = 42;
3899     ex e2 = 4*x - 3;
3900     is_a<numeric>(e1);  // true
3901     is_a<numeric>(e2);  // false
3902     is_a<add>(e1);      // false
3903     is_a<add>(e2);      // true
3904     is_a<mul>(e1);      // false
3905     is_a<mul>(e2);      // false
3906 @}
3907 @end example
3908
3909 In contrast, @code{is_exactly_a<T>(e)} allows you to check whether the
3910 top-level object of an expression @samp{e} is an instance of the GiNaC
3911 class @samp{T}, not including parent classes.
3912
3913 The @code{info()} method is used for checking certain attributes of
3914 expressions. The possible values for the @code{flag} argument are defined
3915 in @file{ginac/flags.h}, the most important being explained in the following
3916 table:
3917
3918 @cartouche
3919 @multitable @columnfractions .30 .70
3920 @item @strong{Flag} @tab @strong{Returns true if the object is@dots{}}
3921 @item @code{numeric}
3922 @tab @dots{}a number (same as @code{is_a<numeric>(...)})
3923 @item @code{real}
3924 @tab @dots{}a real number, symbol or constant (i.e. is not complex)
3925 @item @code{rational}
3926 @tab @dots{}an exact rational number (integers are rational, too)
3927 @item @code{integer}
3928 @tab @dots{}a (non-complex) integer
3929 @item @code{crational}
3930 @tab @dots{}an exact (complex) rational number (such as @math{2/3+7/2*I})
3931 @item @code{cinteger}
3932 @tab @dots{}a (complex) integer (such as @math{2-3*I})
3933 @item @code{positive}
3934 @tab @dots{}not complex and greater than 0
3935 @item @code{negative}
3936 @tab @dots{}not complex and less than 0
3937 @item @code{nonnegative}
3938 @tab @dots{}not complex and greater than or equal to 0
3939 @item @code{posint}
3940 @tab @dots{}an integer greater than 0
3941 @item @code{negint}
3942 @tab @dots{}an integer less than 0
3943 @item @code{nonnegint}
3944 @tab @dots{}an integer greater than or equal to 0
3945 @item @code{even}
3946 @tab @dots{}an even integer
3947 @item @code{odd}
3948 @tab @dots{}an odd integer
3949 @item @code{prime}
3950 @tab @dots{}a prime integer (probabilistic primality test)
3951 @item @code{relation}
3952 @tab @dots{}a relation (same as @code{is_a<relational>(...)})
3953 @item @code{relation_equal}
3954 @tab @dots{}a @code{==} relation
3955 @item @code{relation_not_equal}
3956 @tab @dots{}a @code{!=} relation
3957 @item @code{relation_less}
3958 @tab @dots{}a @code{<} relation
3959 @item @code{relation_less_or_equal}
3960 @tab @dots{}a @code{<=} relation
3961 @item @code{relation_greater}
3962 @tab @dots{}a @code{>} relation
3963 @item @code{relation_greater_or_equal}
3964 @tab @dots{}a @code{>=} relation
3965 @item @code{symbol}
3966 @tab @dots{}a symbol (same as @code{is_a<symbol>(...)})
3967 @item @code{list}
3968 @tab @dots{}a list (same as @code{is_a<lst>(...)})
3969 @item @code{polynomial}
3970 @tab @dots{}a polynomial (i.e. only consists of sums and products of numbers and symbols with positive integer powers)
3971 @item @code{integer_polynomial}
3972 @tab @dots{}a polynomial with (non-complex) integer coefficients
3973 @item @code{cinteger_polynomial}
3974 @tab @dots{}a polynomial with (possibly complex) integer coefficients (such as @math{2-3*I})
3975 @item @code{rational_polynomial}
3976 @tab @dots{}a polynomial with (non-complex) rational coefficients
3977 @item @code{crational_polynomial}
3978 @tab @dots{}a polynomial with (possibly complex) rational coefficients (such as @math{2/3+7/2*I})
3979 @item @code{rational_function}
3980 @tab @dots{}a rational function (@math{x+y}, @math{z/(x+y)})
3981 @item @code{algebraic}
3982 @tab @dots{}an algebraic object (@math{sqrt(2)}, @math{sqrt(x)-1})
3983 @end multitable
3984 @end cartouche
3985
3986 To determine whether an expression is commutative or non-commutative and if
3987 so, with which other expressions it would commutate, you use the methods
3988 @code{return_type()} and @code{return_type_tinfo()}. @xref{Non-commutative objects},
3989 for an explanation of these.
3990
3991
3992 @subsection Accessing subexpressions
3993 @cindex container
3994
3995 Many GiNaC classes, like @code{add}, @code{mul}, @code{lst}, and
3996 @code{function}, act as containers for subexpressions. For example, the
3997 subexpressions of a sum (an @code{add} object) are the individual terms,
3998 and the subexpressions of a @code{function} are the function's arguments.
3999
4000 @cindex @code{nops()}
4001 @cindex @code{op()}
4002 GiNaC provides several ways of accessing subexpressions. The first way is to
4003 use the two methods
4004
4005 @example
4006 size_t ex::nops();
4007 ex ex::op(size_t i);
4008 @end example
4009
4010 @code{nops()} determines the number of subexpressions (operands) contained
4011 in the expression, while @code{op(i)} returns the @code{i}-th
4012 (0..@code{nops()-1}) subexpression. In the case of a @code{power} object,
4013 @code{op(0)} will return the basis and @code{op(1)} the exponent. For
4014 @code{indexed} objects, @code{op(0)} is the base expression and @code{op(i)},
4015 @math{i>0} are the indices.
4016
4017 @cindex iterators
4018 @cindex @code{const_iterator}
4019 The second way to access subexpressions is via the STL-style random-access
4020 iterator class @code{const_iterator} and the methods
4021
4022 @example
4023 const_iterator ex::begin();
4024 const_iterator ex::end();
4025 @end example
4026
4027 @code{begin()} returns an iterator referring to the first subexpression;
4028 @code{end()} returns an iterator which is one-past the last subexpression.
4029 If the expression has no subexpressions, then @code{begin() == end()}. These
4030 iterators can also be used in conjunction with non-modifying STL algorithms.
4031
4032 Here is an example that (non-recursively) prints the subexpressions of a
4033 given expression in three different ways:
4034
4035 @example
4036 @{
4037     ex e = ...
4038
4039     // with nops()/op()
4040     for (size_t i = 0; i != e.nops(); ++i)
4041         cout << e.op(i) << endl;
4042
4043     // with iterators
4044     for (const_iterator i = e.begin(); i != e.end(); ++i)
4045         cout << *i << endl;
4046
4047     // with iterators and STL copy()
4048     std::copy(e.begin(), e.end(), std::ostream_iterator<ex>(cout, "\n"));
4049 @}
4050 @end example
4051
4052 @cindex @code{const_preorder_iterator}
4053 @cindex @code{const_postorder_iterator}
4054 @code{op()}/@code{nops()} and @code{const_iterator} only access an
4055 expression's immediate children. GiNaC provides two additional iterator
4056 classes, @code{const_preorder_iterator} and @code{const_postorder_iterator},
4057 that iterate over all objects in an expression tree, in preorder or postorder,
4058 respectively. They are STL-style forward iterators, and are created with the
4059 methods
4060
4061 @example
4062 const_preorder_iterator ex::preorder_begin();
4063 const_preorder_iterator ex::preorder_end();
4064 const_postorder_iterator ex::postorder_begin();
4065 const_postorder_iterator ex::postorder_end();
4066 @end example
4067
4068 The following example illustrates the differences between
4069 @code{const_iterator}, @code{const_preorder_iterator}, and
4070 @code{const_postorder_iterator}:
4071
4072 @example
4073 @{
4074     symbol A("A"), B("B"), C("C");
4075     ex e = lst(lst(A, B), C);
4076
4077     std::copy(e.begin(), e.end(),
4078               std::ostream_iterator<ex>(cout, "\n"));
4079     // @{A,B@}
4080     // C
4081
4082     std::copy(e.preorder_begin(), e.preorder_end(),
4083               std::ostream_iterator<ex>(cout, "\n"));
4084     // @{@{A,B@},C@}
4085     // @{A,B@}
4086     // A
4087     // B
4088     // C
4089
4090     std::copy(e.postorder_begin(), e.postorder_end(),
4091               std::ostream_iterator<ex>(cout, "\n"));
4092     // A
4093     // B
4094     // @{A,B@}
4095     // C
4096     // @{@{A,B@},C@}
4097 @}
4098 @end example
4099
4100 @cindex @code{relational} (class)
4101 Finally, the left-hand side and right-hand side expressions of objects of
4102 class @code{relational} (and only of these) can also be accessed with the
4103 methods
4104
4105 @example
4106 ex ex::lhs();
4107 ex ex::rhs();
4108 @end example
4109
4110
4111 @subsection Comparing expressions
4112 @cindex @code{is_equal()}
4113 @cindex @code{is_zero()}
4114
4115 Expressions can be compared with the usual C++ relational operators like
4116 @code{==}, @code{>}, and @code{<} but if the expressions contain symbols,
4117 the result is usually not determinable and the result will be @code{false},
4118 except in the case of the @code{!=} operator. You should also be aware that
4119 GiNaC will only do the most trivial test for equality (subtracting both
4120 expressions), so something like @code{(pow(x,2)+x)/x==x+1} will return
4121 @code{false}.
4122
4123 Actually, if you construct an expression like @code{a == b}, this will be
4124 represented by an object of the @code{relational} class (@pxref{Relations})
4125 which is not evaluated until (explicitly or implicitly) cast to a @code{bool}.
4126
4127 There are also two methods
4128
4129 @example
4130 bool ex::is_equal(const ex & other);
4131 bool ex::is_zero();
4132 @end example
4133
4134 for checking whether one expression is equal to another, or equal to zero,
4135 respectively. See also the method @code{ex::is_zero_matrix()}, 
4136 @pxref{Matrices}. 
4137
4138
4139 @subsection Ordering expressions
4140 @cindex @code{ex_is_less} (class)
4141 @cindex @code{ex_is_equal} (class)
4142 @cindex @code{compare()}
4143
4144 Sometimes it is necessary to establish a mathematically well-defined ordering
4145 on a set of arbitrary expressions, for example to use expressions as keys
4146 in a @code{std::map<>} container, or to bring a vector of expressions into
4147 a canonical order (which is done internally by GiNaC for sums and products).
4148
4149 The operators @code{<}, @code{>} etc. described in the last section cannot
4150 be used for this, as they don't implement an ordering relation in the
4151 mathematical sense. In particular, they are not guaranteed to be
4152 antisymmetric: if @samp{a} and @samp{b} are different expressions, and
4153 @code{a < b} yields @code{false}, then @code{b < a} doesn't necessarily
4154 yield @code{true}.
4155
4156 By default, STL classes and algorithms use the @code{<} and @code{==}
4157 operators to compare objects, which are unsuitable for expressions, but GiNaC
4158 provides two functors that can be supplied as proper binary comparison
4159 predicates to the STL:
4160
4161 @example
4162 class ex_is_less : public std::binary_function<ex, ex, bool> @{
4163 public:
4164     bool operator()(const ex &lh, const ex &rh) const;
4165 @};
4166
4167 class ex_is_equal : public std::binary_function<ex, ex, bool> @{
4168 public:
4169     bool operator()(const ex &lh, const ex &rh) const;
4170 @};
4171 @end example
4172
4173 For example, to define a @code{map} that maps expressions to strings you
4174 have to use
4175
4176 @example
4177 std::map<ex, std::string, ex_is_less> myMap;
4178 @end example
4179
4180 Omitting the @code{ex_is_less} template parameter will introduce spurious
4181 bugs because the map operates improperly.
4182
4183 Other examples for the use of the functors:
4184
4185 @example
4186 std::vector<ex> v;
4187 // fill vector
4188 ...
4189
4190 // sort vector
4191 std::sort(v.begin(), v.end(), ex_is_less());
4192
4193 // count the number of expressions equal to '1'
4194 unsigned num_ones = std::count_if(v.begin(), v.end(),
4195                                   std::bind2nd(ex_is_equal(), 1));
4196 @end example
4197
4198 The implementation of @code{ex_is_less} uses the member function
4199
4200 @example
4201 int ex::compare(const ex & other) const;
4202 @end example
4203
4204 which returns @math{0} if @code{*this} and @code{other} are equal, @math{-1}
4205 if @code{*this} sorts before @code{other}, and @math{1} if @code{*this} sorts
4206 after @code{other}.
4207
4208
4209 @node Numerical evaluation, Substituting expressions, Information about expressions, Methods and functions
4210 @c    node-name, next, previous, up
4211 @section Numerical evaluation
4212 @cindex @code{evalf()}
4213
4214 GiNaC keeps algebraic expressions, numbers and constants in their exact form.
4215 To evaluate them using floating-point arithmetic you need to call
4216
4217 @example
4218 ex ex::evalf(int level = 0) const;
4219 @end example
4220
4221 @cindex @code{Digits}
4222 The accuracy of the evaluation is controlled by the global object @code{Digits}
4223 which can be assigned an integer value. The default value of @code{Digits}
4224 is 17. @xref{Numbers}, for more information and examples.
4225
4226 To evaluate an expression to a @code{double} floating-point number you can
4227 call @code{evalf()} followed by @code{numeric::to_double()}, like this:
4228
4229 @example
4230 @{
4231     // Approximate sin(x/Pi)
4232     symbol x("x");
4233     ex e = series(sin(x/Pi), x == 0, 6);
4234
4235     // Evaluate numerically at x=0.1
4236     ex f = evalf(e.subs(x == 0.1));
4237
4238     // ex_to<numeric> is an unsafe cast, so check the type first
4239     if (is_a<numeric>(f)) @{
4240         double d = ex_to<numeric>(f).to_double();
4241         cout << d << endl;
4242          // -> 0.0318256
4243     @} else
4244         // error
4245 @}
4246 @end example
4247
4248
4249 @node Substituting expressions, Pattern matching and advanced substitutions, Numerical evaluation, Methods and functions
4250 @c    node-name, next, previous, up
4251 @section Substituting expressions
4252 @cindex @code{subs()}
4253
4254 Algebraic objects inside expressions can be replaced with arbitrary
4255 expressions via the @code{.subs()} method:
4256
4257 @example
4258 ex ex::subs(const ex & e, unsigned options = 0);
4259 ex ex::subs(const exmap & m, unsigned options = 0);
4260 ex ex::subs(const lst & syms, const lst & repls, unsigned options = 0);
4261 @end example
4262
4263 In the first form, @code{subs()} accepts a relational of the form
4264 @samp{object == expression} or a @code{lst} of such relationals:
4265
4266 @example
4267 @{
4268     symbol x("x"), y("y");
4269
4270     ex e1 = 2*x^2-4*x+3;
4271     cout << "e1(7) = " << e1.subs(x == 7) << endl;
4272      // -> 73
4273
4274     ex e2 = x*y + x;
4275     cout << "e2(-2, 4) = " << e2.subs(lst(x == -2, y == 4)) << endl;
4276      // -> -10
4277 @}
4278 @end example
4279
4280 If you specify multiple substitutions, they are performed in parallel, so e.g.
4281 @code{subs(lst(x == y, y == x))} exchanges @samp{x} and @samp{y}.
4282
4283 The second form of @code{subs()} takes an @code{exmap} object which is a
4284 pair associative container that maps expressions to expressions (currently
4285 implemented as a @code{std::map}). This is the most efficient one of the
4286 three @code{subs()} forms and should be used when the number of objects to
4287 be substituted is large or unknown.
4288
4289 Using this form, the second example from above would look like this:
4290
4291 @example
4292 @{
4293     symbol x("x"), y("y");
4294     ex e2 = x*y + x;
4295
4296     exmap m;
4297     m[x] = -2;
4298     m[y] = 4;
4299     cout << "e2(-2, 4) = " << e2.subs(m) << endl;
4300 @}
4301 @end example
4302
4303 The third form of @code{subs()} takes two lists, one for the objects to be
4304 replaced and one for the expressions to be substituted (both lists must
4305 contain the same number of elements). Using this form, you would write
4306
4307 @example
4308 @{
4309     symbol x("x"), y("y");
4310     ex e2 = x*y + x;
4311
4312     cout << "e2(-2, 4) = " << e2.subs(lst(x, y), lst(-2, 4)) << endl;
4313 @}
4314 @end example
4315
4316 The optional last argument to @code{subs()} is a combination of
4317 @code{subs_options} flags. There are three options available:
4318 @code{subs_options::no_pattern} disables pattern matching, which makes
4319 large @code{subs()} operations significantly faster if you are not using
4320 patterns. The second option, @code{subs_options::algebraic} enables
4321 algebraic substitutions in products and powers.
4322 @xref{Pattern matching and advanced substitutions}, for more information
4323 about patterns and algebraic substitutions. The third option,
4324 @code{subs_options::no_index_renaming} disables the feature that dummy
4325 indices are renamed if the substitution could give a result in which a
4326 dummy index occurs more than two times. This is sometimes necessary if
4327 you want to use @code{subs()} to rename your dummy indices.
4328
4329 @code{subs()} performs syntactic substitution of any complete algebraic
4330 object; it does not try to match sub-expressions as is demonstrated by the
4331 following example:
4332
4333 @example
4334 @{
4335     symbol x("x"), y("y"), z("z");
4336
4337     ex e1 = pow(x+y, 2);
4338     cout << e1.subs(x+y == 4) << endl;
4339      // -> 16
4340
4341     ex e2 = sin(x)*sin(y)*cos(x);
4342     cout << e2.subs(sin(x) == cos(x)) << endl;
4343      // -> cos(x)^2*sin(y)
4344
4345     ex e3 = x+y+z;
4346     cout << e3.subs(x+y == 4) << endl;
4347      // -> x+y+z
4348      // (and not 4+z as one might expect)
4349 @}
4350 @end example
4351
4352 A more powerful form of substitution using wildcards is described in the
4353 next section.
4354
4355
4356 @node Pattern matching and advanced substitutions, Applying a function on subexpressions, Substituting expressions, Methods and functions
4357 @c    node-name, next, previous, up
4358 @section Pattern matching and advanced substitutions
4359 @cindex @code{wildcard} (class)
4360 @cindex Pattern matching
4361
4362 GiNaC allows the use of patterns for checking whether an expression is of a
4363 certain form or contains subexpressions of a certain form, and for
4364 substituting expressions in a more general way.
4365
4366 A @dfn{pattern} is an algebraic expression that optionally contains wildcards.
4367 A @dfn{wildcard} is a special kind of object (of class @code{wildcard}) that
4368 represents an arbitrary expression. Every wildcard has a @dfn{label} which is
4369 an unsigned integer number to allow having multiple different wildcards in a
4370 pattern. Wildcards are printed as @samp{$label} (this is also the way they
4371 are specified in @command{ginsh}). In C++ code, wildcard objects are created
4372 with the call
4373
4374 @example
4375 ex wild(unsigned label = 0);
4376 @end example
4377
4378 which is simply a wrapper for the @code{wildcard()} constructor with a shorter
4379 name.
4380
4381 Some examples for patterns:
4382
4383 @multitable @columnfractions .5 .5
4384 @item @strong{Constructed as} @tab @strong{Output as}
4385 @item @code{wild()} @tab @samp{$0}
4386 @item @code{pow(x,wild())} @tab @samp{x^$0}
4387 @item @code{atan2(wild(1),wild(2))} @tab @samp{atan2($1,$2)}
4388 @item @code{indexed(A,idx(wild(),3))} @tab @samp{A.$0}
4389 @end multitable
4390
4391 Notes:
4392
4393 @itemize @bullet
4394 @item Wildcards behave like symbols and are subject to the same algebraic
4395   rules. E.g., @samp{$0+2*$0} is automatically transformed to @samp{3*$0}.
4396 @item As shown in the last example, to use wildcards for indices you have to
4397   use them as the value of an @code{idx} object. This is because indices must
4398   always be of class @code{idx} (or a subclass).
4399 @item Wildcards only represent expressions or subexpressions. It is not
4400   possible to use them as placeholders for other properties like index
4401   dimension or variance, representation labels, symmetry of indexed objects
4402   etc.
4403 @item Because wildcards are commutative, it is not possible to use wildcards
4404   as part of noncommutative products.
4405 @item A pattern does not have to contain wildcards. @samp{x} and @samp{x+y}
4406   are also valid patterns.
4407 @end itemize
4408
4409 @subsection Matching expressions
4410 @cindex @code{match()}
4411 The most basic application of patterns is to check whether an expression
4412 matches a given pattern. This is done by the function
4413
4414 @example
4415 bool ex::match(const ex & pattern);
4416 bool ex::match(const ex & pattern, lst & repls);
4417 @end example
4418
4419 This function returns @code{true} when the expression matches the pattern
4420 and @code{false} if it doesn't. If used in the second form, the actual
4421 subexpressions matched by the wildcards get returned in the @code{repls}
4422 object as a list of relations of the form @samp{wildcard == expression}.
4423 If @code{match()} returns false, the state of @code{repls} is undefined.
4424 For reproducible results, the list should be empty when passed to
4425 @code{match()}, but it is also possible to find similarities in multiple
4426 expressions by passing in the result of a previous match.
4427
4428 The matching algorithm works as follows:
4429
4430 @itemize
4431 @item A single wildcard matches any expression. If one wildcard appears
4432   multiple times in a pattern, it must match the same expression in all
4433   places (e.g. @samp{$0} matches anything, and @samp{$0*($0+1)} matches
4434   @samp{x*(x+1)} but not @samp{x*(y+1)}).
4435 @item If the expression is not of the same class as the pattern, the match
4436   fails (i.e. a sum only matches a sum, a function only matches a function,
4437   etc.).
4438 @item If the pattern is a function, it only matches the same function
4439   (i.e. @samp{sin($0)} matches @samp{sin(x)} but doesn't match @samp{exp(x)}).
4440 @item Except for sums and products, the match fails if the number of
4441   subexpressions (@code{nops()}) is not equal to the number of subexpressions
4442   of the pattern.
4443 @item If there are no subexpressions, the expressions and the pattern must
4444   be equal (in the sense of @code{is_equal()}).
4445 @item Except for sums and products, each subexpression (@code{op()}) must
4446   match the corresponding subexpression of the pattern.
4447 @end itemize
4448
4449 Sums (@code{add}) and products (@code{mul}) are treated in a special way to
4450 account for their commutativity and associativity:
4451
4452 @itemize
4453 @item If the pattern contains a term or factor that is a single wildcard,
4454   this one is used as the @dfn{global wildcard}. If there is more than one
4455   such wildcard, one of them is chosen as the global wildcard in a random
4456   way.
4457 @item Every term/factor of the pattern, except the global wildcard, is
4458   matched against every term of the expression in sequence. If no match is
4459   found, the whole match fails. Terms that did match are not considered in
4460   further matches.
4461 @item If there are no unmatched terms left, the match succeeds. Otherwise
4462   the match fails unless there is a global wildcard in the pattern, in
4463   which case this wildcard matches the remaining terms.
4464 @end itemize
4465
4466 In general, having more than one single wildcard as a term of a sum or a
4467 factor of a product (such as @samp{a+$0+$1}) will lead to unpredictable or
4468 ambiguous results.
4469
4470 Here are some examples in @command{ginsh} to demonstrate how it works (the
4471 @code{match()} function in @command{ginsh} returns @samp{FAIL} if the
4472 match fails, and the list of wildcard replacements otherwise):
4473
4474 @example
4475 > match((x+y)^a,(x+y)^a);
4476 @{@}
4477 > match((x+y)^a,(x+y)^b);
4478 FAIL
4479 > match((x+y)^a,$1^$2);
4480 @{$1==x+y,$2==a@}
4481 > match((x+y)^a,$1^$1);
4482 FAIL
4483 > match((x+y)^(x+y),$1^$1);
4484 @{$1==x+y@}
4485 > match((x+y)^(x+y),$1^$2);
4486 @{$1==x+y,$2==x+y@}
4487 > match((a+b)*(a+c),($1+b)*($1+c));
4488 @{$1==a@}
4489 > match((a+b)*(a+c),(a+$1)*(a+$2));
4490 @{$1==b,$2==c@}
4491   (Unpredictable. The result might also be [$1==c,$2==b].)
4492 > match((a+b)*(a+c),($1+$2)*($1+$3));
4493   (The result is undefined. Due to the sequential nature of the algorithm
4494    and the re-ordering of terms in GiNaC, the match for the first factor
4495    may be @{$1==a,$2==b@} in which case the match for the second factor
4496    succeeds, or it may be @{$1==b,$2==a@} which causes the second match to
4497    fail.)
4498 > match(a*(x+y)+a*z+b,a*$1+$2);
4499   (This is also ambiguous and may return either @{$1==z,$2==a*(x+y)+b@} or
4500    @{$1=x+y,$2=a*z+b@}.)
4501 > match(a+b+c+d+e+f,c);
4502 FAIL
4503 > match(a+b+c+d+e+f,c+$0);
4504 @{$0==a+e+b+f+d@}
4505 > match(a+b+c+d+e+f,c+e+$0);
4506 @{$0==a+b+f+d@}
4507 > match(a+b,a+b+$0);
4508 @{$0==0@}
4509 > match(a*b^2,a^$1*b^$2);
4510 FAIL
4511   (The matching is syntactic, not algebraic, and "a" doesn't match "a^$1"
4512    even though a==a^1.)
4513 > match(x*atan2(x,x^2),$0*atan2($0,$0^2));
4514 @{$0==x@}
4515 > match(atan2(y,x^2),atan2(y,$0));
4516 @{$0==x^2@}
4517 @end example
4518
4519 @subsection Matching parts of expressions
4520 @cindex @code{has()}
4521 A more general way to look for patterns in expressions is provided by the
4522 member function
4523
4524 @example
4525 bool ex::has(const ex & pattern);
4526 @end example
4527
4528 This function checks whether a pattern is matched by an expression itself or
4529 by any of its subexpressions.
4530
4531 Again some examples in @command{ginsh} for illustration (in @command{ginsh},
4532 @code{has()} returns @samp{1} for @code{true} and @samp{0} for @code{false}):
4533
4534 @example
4535 > has(x*sin(x+y+2*a),y);
4536 1
4537 > has(x*sin(x+y+2*a),x+y);
4538 0
4539   (This is because in GiNaC, "x+y" is not a subexpression of "x+y+2*a" (which
4540    has the subexpressions "x", "y" and "2*a".)
4541 > has(x*sin(x+y+2*a),x+y+$1);
4542 1
4543   (But this is possible.)
4544 > has(x*sin(2*(x+y)+2*a),x+y);
4545 0
4546   (This fails because "2*(x+y)" automatically gets converted to "2*x+2*y" of
4547    which "x+y" is not a subexpression.)
4548 > has(x+1,x^$1);
4549 0
4550   (Although x^1==x and x^0==1, neither "x" nor "1" are actually of the form
4551    "x^something".)
4552 > has(4*x^2-x+3,$1*x);
4553 1
4554 > has(4*x^2+x+3,$1*x);
4555 0
4556   (Another possible pitfall. The first expression matches because the term
4557    "-x" has the form "(-1)*x" in GiNaC. To check whether a polynomial
4558    contains a linear term you should use the coeff() function instead.)
4559 @end example
4560
4561 @cindex @code{find()}
4562 The method
4563
4564 @example
4565 bool ex::find(const ex & pattern, lst & found);
4566 @end example
4567
4568 works a bit like @code{has()} but it doesn't stop upon finding the first
4569 match. Instead, it appends all found matches to the specified list. If there
4570 are multiple occurrences of the same expression, it is entered only once to
4571 the list. @code{find()} returns false if no matches were found (in
4572 @command{ginsh}, it returns an empty list):
4573
4574 @example
4575 > find(1+x+x^2+x^3,x);
4576 @{x@}
4577 > find(1+x+x^2+x^3,y);
4578 @{@}
4579 > find(1+x+x^2+x^3,x^$1);
4580 @{x^3,x^2@}
4581   (Note the absence of "x".)
4582 > expand((sin(x)+sin(y))*(a+b));
4583 sin(y)*a+sin(x)*b+sin(x)*a+sin(y)*b
4584 > find(%,sin($1));
4585 @{sin(y),sin(x)@}
4586 @end example
4587
4588 @subsection Substituting expressions
4589 @cindex @code{subs()}
4590 Probably the most useful application of patterns is to use them for
4591 substituting expressions with the @code{subs()} method. Wildcards can be
4592 used in the search patterns as well as in the replacement expressions, where
4593 they get replaced by the expressions matched by them. @code{subs()} doesn't
4594 know anything about algebra; it performs purely syntactic substitutions.
4595
4596 Some examples:
4597
4598 @example
4599 > subs(a^2+b^2+(x+y)^2,$1^2==$1^3);
4600 b^3+a^3+(x+y)^3
4601 > subs(a^4+b^4+(x+y)^4,$1^2==$1^3);
4602 b^4+a^4+(x+y)^4
4603 > subs((a+b+c)^2,a+b==x);
4604 (a+b+c)^2
4605 > subs((a+b+c)^2,a+b+$1==x+$1);
4606 (x+c)^2
4607 > subs(a+2*b,a+b==x);
4608 a+2*b
4609 > subs(4*x^3-2*x^2+5*x-1,x==a);
4610 -1+5*a-2*a^2+4*a^3
4611 > subs(4*x^3-2*x^2+5*x-1,x^$0==a^$0);
4612 -1+5*x-2*a^2+4*a^3
4613 > subs(sin(1+sin(x)),sin($1)==cos($1));
4614 cos(1+cos(x))
4615 > expand(subs(a*sin(x+y)^2+a*cos(x+y)^2+b,cos($1)^2==1-sin($1)^2));
4616 a+b
4617 @end example
4618
4619 The last example would be written in C++ in this way:
4620
4621 @example
4622 @{
4623     symbol a("a"), b("b"), x("x"), y("y");
4624     e = a*pow(sin(x+y), 2) + a*pow(cos(x+y), 2) + b;
4625     e = e.subs(pow(cos(wild()), 2) == 1-pow(sin(wild()), 2));
4626     cout << e.expand() << endl;
4627      // -> a+b
4628 @}
4629 @end example
4630
4631 @subsection The option algebraic
4632 Both @code{has()} and @code{subs()} take an optional argument to pass them
4633 extra options. This section describes what happens if you give the former
4634 the option @code{has_options::algebraic} or the latter
4635 @code{subs_options::algebraic}. In that case the matching condition for
4636 powers and multiplications is changed in such a way that they become
4637 more intuitive. Intuition says that @code{x*y} is a part of @code{x*y*z}.
4638 If you use these options you will find that
4639 @code{(x*y*z).has(x*y, has_options::algebraic)} indeed returns true.
4640 Besides matching some of the factors of a product also powers match as
4641 often as is possible without getting negative exponents. For example
4642 @code{(x^5*y^2*z).subs(x^2*y^2==c, subs_options::algebraic)} will return
4643 @code{x*c^2*z}. This also works with negative powers:
4644 @code{(x^(-3)*y^(-2)*z).subs(1/(x*y)==c, subs_options::algebraic)} will
4645 return @code{x^(-1)*c^2*z}. 
4646
4647 @strong{Note:} this only works for multiplications
4648 and not for locating @code{x+y} within @code{x+y+z}.
4649
4650
4651 @node Applying a function on subexpressions, Visitors and tree traversal, Pattern matching and advanced substitutions, Methods and functions
4652 @c    node-name, next, previous, up
4653 @section Applying a function on subexpressions
4654 @cindex tree traversal
4655 @cindex @code{map()}
4656
4657 Sometimes you may want to perform an operation on specific parts of an
4658 expression while leaving the general structure of it intact. An example
4659 of this would be a matrix trace operation: the trace of a sum is the sum
4660 of the traces of the individual terms. That is, the trace should @dfn{map}
4661 on the sum, by applying itself to each of the sum's operands. It is possible
4662 to do this manually which usually results in code like this:
4663
4664 @example
4665 ex calc_trace(ex e)
4666 @{
4667     if (is_a<matrix>(e))
4668         return ex_to<matrix>(e).trace();
4669     else if (is_a<add>(e)) @{
4670         ex sum = 0;
4671         for (size_t i=0; i<e.nops(); i++)
4672             sum += calc_trace(e.op(i));
4673         return sum;
4674     @} else if (is_a<mul>)(e)) @{
4675         ...
4676     @} else @{
4677         ...
4678     @}
4679 @}
4680 @end example
4681
4682 This is, however, slightly inefficient (if the sum is very large it can take
4683 a long time to add the terms one-by-one), and its applicability is limited to
4684 a rather small class of expressions. If @code{calc_trace()} is called with
4685 a relation or a list as its argument, you will probably want the trace to
4686 be taken on both sides of the relation or of all elements of the list.
4687
4688 GiNaC offers the @code{map()} method to aid in the implementation of such
4689 operations:
4690
4691 @example
4692 ex ex::map(map_function & f) const;
4693 ex ex::map(ex (*f)(const ex & e)) const;
4694 @end example
4695
4696 In the first (preferred) form, @code{map()} takes a function object that
4697 is subclassed from the @code{map_function} class. In the second form, it
4698 takes a pointer to a function that accepts and returns an expression.
4699 @code{map()} constructs a new expression of the same type, applying the
4700 specified function on all subexpressions (in the sense of @code{op()}),
4701 non-recursively.
4702
4703 The use of a function object makes it possible to supply more arguments to
4704 the function that is being mapped, or to keep local state information.
4705 The @code{map_function} class declares a virtual function call operator
4706 that you can overload. Here is a sample implementation of @code{calc_trace()}
4707 that uses @code{map()} in a recursive fashion:
4708
4709 @example
4710 struct calc_trace : public map_function @{
4711     ex operator()(const ex &e)
4712     @{
4713         if (is_a<matrix>(e))
4714             return ex_to<matrix>(e).trace();
4715         else if (is_a<mul>(e)) @{
4716             ...
4717         @} else
4718             return e.map(*this);
4719     @}
4720 @};
4721 @end example
4722
4723 This function object could then be used like this:
4724
4725 @example
4726 @{
4727     ex M = ... // expression with matrices
4728     calc_trace do_trace;
4729     ex tr = do_trace(M);
4730 @}
4731 @end example
4732
4733 Here is another example for you to meditate over.  It removes quadratic
4734 terms in a variable from an expanded polynomial:
4735
4736 @example
4737 struct map_rem_quad : public map_function @{
4738     ex var;
4739     map_rem_quad(const ex & var_) : var(var_) @{@}
4740
4741     ex operator()(const ex & e)
4742     @{
4743         if (is_a<add>(e) || is_a<mul>(e))
4744             return e.map(*this);
4745         else if (is_a<power>(e) && 
4746                  e.op(0).is_equal(var) && e.op(1).info(info_flags::even))
4747             return 0;
4748         else
4749             return e;
4750     @}
4751 @};
4752
4753 ...
4754
4755 @{
4756     symbol x("x"), y("y");
4757
4758     ex e;
4759     for (int i=0; i<8; i++)
4760         e += pow(x, i) * pow(y, 8-i) * (i+1);
4761     cout << e << endl;
4762      // -> 4*y^5*x^3+5*y^4*x^4+8*y*x^7+7*y^2*x^6+2*y^7*x+6*y^3*x^5+3*y^6*x^2+y^8
4763
4764     map_rem_quad rem_quad(x);
4765     cout << rem_quad(e) << endl;
4766      // -> 4*y^5*x^3+8*y*x^7+2*y^7*x+6*y^3*x^5+y^8
4767 @}
4768 @end example
4769
4770 @command{ginsh} offers a slightly different implementation of @code{map()}
4771 that allows applying algebraic functions to operands. The second argument
4772 to @code{map()} is an expression containing the wildcard @samp{$0} which
4773 acts as the placeholder for the operands:
4774
4775 @example
4776 > map(a*b,sin($0));
4777 sin(a)*sin(b)
4778 > map(a+2*b,sin($0));
4779 sin(a)+sin(2*b)
4780 > map(@{a,b,c@},$0^2+$0);
4781 @{a^2+a,b^2+b,c^2+c@}
4782 @end example
4783
4784 Note that it is only possible to use algebraic functions in the second
4785 argument. You can not use functions like @samp{diff()}, @samp{op()},
4786 @samp{subs()} etc. because these are evaluated immediately:
4787
4788 @example
4789 > map(@{a,b,c@},diff($0,a));
4790 @{0,0,0@}
4791   This is because "diff($0,a)" evaluates to "0", so the command is equivalent
4792   to "map(@{a,b,c@},0)".
4793 @end example
4794
4795
4796 @node Visitors and tree traversal, Polynomial arithmetic, Applying a function on subexpressions, Methods and functions
4797 @c    node-name, next, previous, up
4798 @section Visitors and tree traversal
4799 @cindex tree traversal
4800 @cindex @code{visitor} (class)
4801 @cindex @code{accept()}
4802 @cindex @code{visit()}
4803 @cindex @code{traverse()}
4804 @cindex @code{traverse_preorder()}
4805 @cindex @code{traverse_postorder()}
4806
4807 Suppose that you need a function that returns a list of all indices appearing
4808 in an arbitrary expression. The indices can have any dimension, and for
4809 indices with variance you always want the covariant version returned.
4810
4811 You can't use @code{get_free_indices()} because you also want to include
4812 dummy indices in the list, and you can't use @code{find()} as it needs
4813 specific index dimensions (and it would require two passes: one for indices
4814 with variance, one for plain ones).
4815
4816 The obvious solution to this problem is a tree traversal with a type switch,
4817 such as the following:
4818
4819 @example
4820 void gather_indices_helper(const ex & e, lst & l)
4821 @{
4822     if (is_a<varidx>(e)) @{
4823         const varidx & vi = ex_to<varidx>(e);
4824         l.append(vi.is_covariant() ? vi : vi.toggle_variance());
4825     @} else if (is_a<idx>(e)) @{
4826         l.append(e);
4827     @} else @{
4828         size_t n = e.nops();
4829         for (size_t i = 0; i < n; ++i)
4830             gather_indices_helper(e.op(i), l);
4831     @}
4832 @}
4833
4834 lst gather_indices(const ex & e)
4835 @{
4836     lst l;
4837     gather_indices_helper(e, l);
4838     l.sort();
4839     l.unique();
4840     return l;
4841 @}
4842 @end example
4843
4844 This works fine but fans of object-oriented programming will feel
4845 uncomfortable with the type switch. One reason is that there is a possibility
4846 for subtle bugs regarding derived classes. If we had, for example, written
4847
4848 @example
4849     if (is_a<idx>(e)) @{
4850       ...
4851     @} else if (is_a<varidx>(e)) @{
4852       ...
4853 @end example
4854
4855 in @code{gather_indices_helper}, the code wouldn't have worked because the
4856 first line "absorbs" all classes derived from @code{idx}, including
4857 @code{varidx}, so the special case for @code{varidx} would never have been
4858 executed.
4859
4860 Also, for a large number of classes, a type switch like the above can get
4861 unwieldy and inefficient (it's a linear search, after all).
4862 @code{gather_indices_helper} only checks for two classes, but if you had to
4863 write a function that required a different implementation for nearly
4864 every GiNaC class, the result would be very hard to maintain and extend.
4865
4866 The cleanest approach to the problem would be to add a new virtual function
4867 to GiNaC's class hierarchy. In our example, there would be specializations
4868 for @code{idx} and @code{varidx} while the default implementation in
4869 @code{basic} performed the tree traversal. Unfortunately, in C++ it's
4870 impossible to add virtual member functions to existing classes without
4871 changing their source and recompiling everything. GiNaC comes with source,
4872 so you could actually do this, but for a small algorithm like the one
4873 presented this would be impractical.
4874
4875 One solution to this dilemma is the @dfn{Visitor} design pattern,
4876 which is implemented in GiNaC (actually, Robert Martin's Acyclic Visitor
4877 variation, described in detail in
4878 @uref{http://objectmentor.com/publications/acv.pdf}). Instead of adding
4879 virtual functions to the class hierarchy to implement operations, GiNaC
4880 provides a single "bouncing" method @code{accept()} that takes an instance
4881 of a special @code{visitor} class and redirects execution to the one
4882 @code{visit()} virtual function of the visitor that matches the type of
4883 object that @code{accept()} was being invoked on.
4884
4885 Visitors in GiNaC must derive from the global @code{visitor} class as well
4886 as from the class @code{T::visitor} of each class @code{T} they want to
4887 visit, and implement the member functions @code{void visit(const T &)} for
4888 each class.
4889
4890 A call of
4891
4892 @example
4893 void ex::accept(visitor & v) const;
4894 @end example
4895
4896 will then dispatch to the correct @code{visit()} member function of the
4897 specified visitor @code{v} for the type of GiNaC object at the root of the
4898 expression tree (e.g. a @code{symbol}, an @code{idx} or a @code{mul}).
4899
4900 Here is an example of a visitor:
4901
4902 @example
4903 class my_visitor
4904  : public visitor,          // this is required
4905    public add::visitor,     // visit add objects
4906    public numeric::visitor, // visit numeric objects
4907    public basic::visitor    // visit basic objects
4908 @{
4909     void visit(const add & x)
4910     @{ cout << "called with an add object" << endl; @}
4911
4912     void visit(const numeric & x)
4913     @{ cout << "called with a numeric object" << endl; @}
4914
4915     void visit(const basic & x)
4916     @{ cout << "called with a basic object" << endl; @}
4917 @};
4918 @end example
4919
4920 which can be used as follows:
4921
4922 @example
4923 ...
4924     symbol x("x");
4925     ex e1 = 42;
4926     ex e2 = 4*x-3;
4927     ex e3 = 8*x;
4928
4929     my_visitor v;
4930     e1.accept(v);
4931      // prints "called with a numeric object"
4932     e2.accept(v);
4933      // prints "called with an add object"
4934     e3.accept(v);
4935      // prints "called with a basic object"
4936 ...
4937 @end example
4938
4939 The @code{visit(const basic &)} method gets called for all objects that are
4940 not @code{numeric} or @code{add} and acts as an (optional) default.
4941
4942 From a conceptual point of view, the @code{visit()} methods of the visitor
4943 behave like a newly added virtual function of the visited hierarchy.
4944 In addition, visitors can store state in member variables, and they can
4945 be extended by deriving a new visitor from an existing one, thus building
4946 hierarchies of visitors.
4947
4948 We can now rewrite our index example from above with a visitor:
4949
4950 @example
4951 class gather_indices_visitor
4952  : public visitor, public idx::visitor, public varidx::visitor
4953 @{
4954     lst l;
4955
4956     void visit(const idx & i)
4957     @{
4958         l.append(i);
4959     @}
4960
4961     void visit(const varidx & vi)
4962     @{
4963         l.append(vi.is_covariant() ? vi : vi.toggle_variance());
4964     @}
4965
4966 public:
4967     const lst & get_result() // utility function
4968     @{
4969         l.sort();
4970         l.unique();
4971         return l;
4972     @}
4973 @};
4974 @end example
4975
4976 What's missing is the tree traversal. We could implement it in
4977 @code{visit(const basic &)}, but GiNaC has predefined methods for this:
4978
4979 @example
4980 void ex::traverse_preorder(visitor & v) const;
4981 void ex::traverse_postorder(visitor & v) const;
4982 void ex::traverse(visitor & v) const;
4983 @end example
4984
4985 @code{traverse_preorder()} visits a node @emph{before} visiting its
4986 subexpressions, while @code{traverse_postorder()} visits a node @emph{after}
4987 visiting its subexpressions. @code{traverse()} is a synonym for
4988 @code{traverse_preorder()}.
4989
4990 Here is a new implementation of @code{gather_indices()} that uses the visitor
4991 and @code{traverse()}:
4992
4993 @example
4994 lst gather_indices(const ex & e)
4995 @{
4996     gather_indices_visitor v;
4997     e.traverse(v);
4998     return v.get_result();
4999 @}
5000 @end example
5001
5002 Alternatively, you could use pre- or postorder iterators for the tree
5003 traversal:
5004
5005 @example
5006 lst gather_indices(const ex & e)
5007 @{
5008     gather_indices_visitor v;
5009     for (const_preorder_iterator i = e.preorder_begin();
5010          i != e.preorder_end(); ++i) @{
5011         i->accept(v);
5012     @}
5013     return v.get_result();
5014 @}
5015 @end example
5016
5017
5018 @node Polynomial arithmetic, Rational expressions, Visitors and tree traversal, Methods and functions
5019 @c    node-name, next, previous, up
5020 @section Polynomial arithmetic
5021
5022 @subsection Testing whether an expression is a polynomial
5023 @cindex @code{is_polynomial()}
5024
5025 Testing whether an expression is a polynomial in one or more variables
5026 can be done with the method
5027 @example
5028 bool ex::is_polynomial(const ex & vars) const;
5029 @end example
5030 In the case of more than
5031 one variable, the variables are given as a list.
5032
5033 @example
5034 (x*y*sin(y)).is_polynomial(x)         // Returns true.
5035 (x*y*sin(y)).is_polynomial(lst(x,y))  // Returns false.
5036 @end example
5037
5038 @subsection Expanding and collecting
5039 @cindex @code{expand()}
5040 @cindex @code{collect()}
5041 @cindex @code{collect_common_factors()}
5042
5043 A polynomial in one or more variables has many equivalent
5044 representations.  Some useful ones serve a specific purpose.  Consider
5045 for example the trivariate polynomial @math{4*x*y + x*z + 20*y^2 +
5046 21*y*z + 4*z^2} (written down here in output-style).  It is equivalent
5047 to the factorized polynomial @math{(x + 5*y + 4*z)*(4*y + z)}.  Other
5048 representations are the recursive ones where one collects for exponents
5049 in one of the three variable.  Since the factors are themselves
5050 polynomials in the remaining two variables the procedure can be
5051 repeated.  In our example, two possibilities would be @math{(4*y + z)*x
5052 + 20*y^2 + 21*y*z + 4*z^2} and @math{20*y^2 + (21*z + 4*x)*y + 4*z^2 +
5053 x*z}.
5054
5055 To bring an expression into expanded form, its method
5056
5057 @example
5058 ex ex::expand(unsigned options = 0);
5059 @end example
5060
5061 may be called.  In our example above, this corresponds to @math{4*x*y +
5062 x*z + 20*y^2 + 21*y*z + 4*z^2}.  Again, since the canonical form in
5063 GiNaC is not easy to guess you should be prepared to see different
5064 orderings of terms in such sums!
5065
5066 Another useful representation of multivariate polynomials is as a
5067 univariate polynomial in one of the variables with the coefficients
5068 being polynomials in the remaining variables.  The method
5069 @code{collect()} accomplishes this task:
5070
5071 @example
5072 ex ex::collect(const ex & s, bool distributed = false);
5073 @end example
5074
5075 The first argument to @code{collect()} can also be a list of objects in which
5076 case the result is either a recursively collected polynomial, or a polynomial
5077 in a distributed form with terms like @math{c*x1^e1*...*xn^en}, as specified
5078 by the @code{distributed} flag.
5079
5080 Note that the original polynomial needs to be in expanded form (for the
5081 variables concerned) in order for @code{collect()} to be able to find the
5082 coefficients properly.
5083
5084 The following @command{ginsh} transcript shows an application of @code{collect()}
5085 together with @code{find()}:
5086
5087 @example
5088 > a=expand((sin(x)+sin(y))*(1+p+q)*(1+d));
5089 d*p*sin(x)+p*sin(x)+q*d*sin(x)+q*sin(y)+d*sin(x)+q*d*sin(y)+sin(y)+d*sin(y)
5090 +q*sin(x)+d*sin(y)*p+sin(x)+sin(y)*p
5091 > collect(a,@{p,q@});
5092 d*sin(x)+(d*sin(x)+sin(y)+d*sin(y)+sin(x))*p
5093 +(d*sin(x)+sin(y)+d*sin(y)+sin(x))*q+sin(y)+d*sin(y)+sin(x)
5094 > collect(a,find(a,sin($1)));
5095 (1+q+d+q*d+d*p+p)*sin(y)+(1+q+d+q*d+d*p+p)*sin(x)
5096 > collect(a,@{find(a,sin($1)),p,q@});
5097 (1+(1+d)*p+d+q*(1+d))*sin(x)+(1+(1+d)*p+d+q*(1+d))*sin(y)
5098 > collect(a,@{find(a,sin($1)),d@});
5099 (1+q+d*(1+q+p)+p)*sin(y)+(1+q+d*(1+q+p)+p)*sin(x)
5100 @end example
5101
5102 Polynomials can often be brought into a more compact form by collecting
5103 common factors from the terms of sums. This is accomplished by the function
5104
5105 @example
5106 ex collect_common_factors(const ex & e);
5107 @end example
5108
5109 This function doesn't perform a full factorization but only looks for
5110 factors which are already explicitly present:
5111
5112 @example
5113 > collect_common_factors(a*x+a*y);
5114 (x+y)*a
5115 > collect_common_factors(a*x^2+2*a*x*y+a*y^2);
5116 a*(2*x*y+y^2+x^2)
5117 > collect_common_factors(a*(b*(a+c)*x+b*((a+c)*x+(a+c)*y)*y));
5118 (c+a)*a*(x*y+y^2+x)*b
5119 @end example
5120
5121 @subsection Degree and coefficients
5122 @cindex @code{degree()}
5123 @cindex @code{ldegree()}
5124 @cindex @code{coeff()}
5125
5126 The degree and low degree of a polynomial can be obtained using the two
5127 methods
5128
5129 @example
5130 int ex::degree(const ex & s);
5131 int ex::ldegree(const ex & s);
5132 @end example
5133
5134 which also work reliably on non-expanded input polynomials (they even work
5135 on rational functions, returning the asymptotic degree). By definition, the
5136 degree of zero is zero. To extract a coefficient with a certain power from
5137 an expanded polynomial you use
5138
5139 @example
5140 ex ex::coeff(const ex & s, int n);
5141 @end example
5142
5143 You can also obtain the leading and trailing coefficients with the methods
5144
5145 @example
5146 ex ex::lcoeff(const ex & s);
5147 ex ex::tcoeff(const ex & s);
5148 @end example
5149
5150 which are equivalent to @code{coeff(s, degree(s))} and @code{coeff(s, ldegree(s))},
5151 respectively.
5152
5153 An application is illustrated in the next example, where a multivariate
5154 polynomial is analyzed:
5155
5156 @example
5157 @{
5158     symbol x("x"), y("y");
5159     ex PolyInp = 4*pow(x,3)*y + 5*x*pow(y,2) + 3*y
5160                  - pow(x+y,2) + 2*pow(y+2,2) - 8;
5161     ex Poly = PolyInp.expand();
5162     
5163     for (int i=Poly.ldegree(x); i<=Poly.degree(x); ++i) @{
5164         cout << "The x^" << i << "-coefficient is "
5165              << Poly.coeff(x,i) << endl;
5166     @}
5167     cout << "As polynomial in y: " 
5168          << Poly.collect(y) << endl;
5169 @}
5170 @end example
5171
5172 When run, it returns an output in the following fashion:
5173
5174 @example
5175 The x^0-coefficient is y^2+11*y
5176 The x^1-coefficient is 5*y^2-2*y
5177 The x^2-coefficient is -1
5178 The x^3-coefficient is 4*y
5179 As polynomial in y: -x^2+(5*x+1)*y^2+(-2*x+4*x^3+11)*y
5180 @end example
5181
5182 As always, the exact output may vary between different versions of GiNaC
5183 or even from run to run since the internal canonical ordering is not
5184 within the user's sphere of influence.
5185
5186 @code{degree()}, @code{ldegree()}, @code{coeff()}, @code{lcoeff()},
5187 @code{tcoeff()} and @code{collect()} can also be used to a certain degree
5188 with non-polynomial expressions as they not only work with symbols but with
5189 constants, functions and indexed objects as well:
5190
5191 @example
5192 @{
5193     symbol a("a"), b("b"), c("c"), x("x");
5194     idx i(symbol("i"), 3);
5195
5196     ex e = pow(sin(x) - cos(x), 4);
5197     cout << e.degree(cos(x)) << endl;
5198      // -> 4
5199     cout << e.expand().coeff(sin(x), 3) << endl;
5200      // -> -4*cos(x)
5201
5202     e = indexed(a+b, i) * indexed(b+c, i); 
5203     e = e.expand(expand_options::expand_indexed);
5204     cout << e.collect(indexed(b, i)) << endl;
5205      // -> a.i*c.i+(a.i+c.i)*b.i+b.i^2
5206 @}
5207 @end example
5208
5209
5210 @subsection Polynomial division
5211 @cindex polynomial division
5212 @cindex quotient
5213 @cindex remainder
5214 @cindex pseudo-remainder
5215 @cindex @code{quo()}
5216 @cindex @code{rem()}
5217 @cindex @code{prem()}
5218 @cindex @code{divide()}
5219
5220 The two functions
5221
5222 @example
5223 ex quo(const ex & a, const ex & b, const ex & x);
5224 ex rem(const ex & a, const ex & b, const ex & x);
5225 @end example
5226
5227 compute the quotient and remainder of univariate polynomials in the variable
5228 @samp{x}. The results satisfy @math{a = b*quo(a, b, x) + rem(a, b, x)}.
5229
5230 The additional function
5231
5232 @example
5233 ex prem(const ex & a, const ex & b, const ex & x);
5234 @end example
5235
5236 computes the pseudo-remainder of @samp{a} and @samp{b} which satisfies
5237 @math{c*a = b*q + prem(a, b, x)}, where @math{c = b.lcoeff(x) ^ (a.degree(x) - b.degree(x) + 1)}.
5238
5239 Exact division of multivariate polynomials is performed by the function
5240
5241 @example
5242 bool divide(const ex & a, const ex & b, ex & q);
5243 @end example
5244
5245 If @samp{b} divides @samp{a} over the rationals, this function returns @code{true}
5246 and returns the quotient in the variable @code{q}. Otherwise it returns @code{false}
5247 in which case the value of @code{q} is undefined.
5248
5249
5250 @subsection Unit, content and primitive part
5251 @cindex @code{unit()}
5252 @cindex @code{content()}
5253 @cindex @code{primpart()}
5254 @cindex @code{unitcontprim()}
5255
5256 The methods
5257
5258 @example
5259 ex ex::unit(const ex & x);
5260 ex ex::content(const ex & x);
5261 ex ex::primpart(const ex & x);
5262 ex ex::primpart(const ex & x, const ex & c);
5263 @end example
5264
5265 return the unit part, content part, and primitive polynomial of a multivariate
5266 polynomial with respect to the variable @samp{x} (the unit part being the sign
5267 of the leading coefficient, the content part being the GCD of the coefficients,
5268 and the primitive polynomial being the input polynomial divided by the unit and
5269 content parts). The second variant of @code{primpart()} expects the previously
5270 calculated content part of the polynomial in @code{c}, which enables it to
5271 work faster in the case where the content part has already been computed. The
5272 product of unit, content, and primitive part is the original polynomial.
5273
5274 Additionally, the method
5275
5276 @example
5277 void ex::unitcontprim(const ex & x, ex & u, ex & c, ex & p);
5278 @end example
5279
5280 computes the unit, content, and primitive parts in one go, returning them
5281 in @code{u}, @code{c}, and @code{p}, respectively.
5282
5283
5284 @subsection GCD, LCM and resultant
5285 @cindex GCD
5286 @cindex LCM
5287 @cindex @code{gcd()}
5288 @cindex @code{lcm()}
5289
5290 The functions for polynomial greatest common divisor and least common
5291 multiple have the synopsis
5292
5293 @example
5294 ex gcd(const ex & a, const ex & b);
5295 ex lcm(const ex & a, const ex & b);
5296 @end example
5297
5298 The functions @code{gcd()} and @code{lcm()} accept two expressions
5299 @code{a} and @code{b} as arguments and return a new expression, their
5300 greatest common divisor or least common multiple, respectively.  If the
5301 polynomials @code{a} and @code{b} are coprime @code{gcd(a,b)} returns 1
5302 and @code{lcm(a,b)} returns the product of @code{a} and @code{b}. Note that all
5303 the coefficients must be rationals.
5304
5305 @example
5306 #include <ginac/ginac.h>
5307 using namespace GiNaC;
5308
5309 int main()
5310 @{
5311     symbol x("x"), y("y"), z("z");
5312     ex P_a = 4*x*y + x*z + 20*pow(y, 2) + 21*y*z + 4*pow(z, 2);
5313     ex P_b = x*y + 3*x*z + 5*pow(y, 2) + 19*y*z + 12*pow(z, 2);
5314
5315     ex P_gcd = gcd(P_a, P_b);
5316     // x + 5*y + 4*z
5317     ex P_lcm = lcm(P_a, P_b);
5318     // 4*x*y^2 + 13*y*x*z + 20*y^3 + 81*y^2*z + 67*y*z^2 + 3*x*z^2 + 12*z^3
5319 @}
5320 @end example
5321
5322 @cindex resultant
5323 @cindex @code{resultant()}
5324
5325 The resultant of two expressions only makes sense with polynomials.
5326 It is always computed with respect to a specific symbol within the
5327 expressions. The function has the interface
5328
5329 @example
5330 ex resultant(const ex & a, const ex & b, const ex & s);
5331 @end example
5332
5333 Resultants are symmetric in @code{a} and @code{b}. The following example
5334 computes the resultant of two expressions with respect to @code{x} and
5335 @code{y}, respectively:
5336
5337 @example
5338 #include <ginac/ginac.h>
5339 using namespace GiNaC;
5340
5341 int main()
5342 @{
5343     symbol x("x"), y("y");
5344
5345     ex e1 = x+pow(y,2), e2 = 2*pow(x,3)-1; // x+y^2, 2*x^3-1
5346     ex r;
5347     
5348     r = resultant(e1, e2, x); 
5349     // -> 1+2*y^6
5350     r = resultant(e1, e2, y); 
5351     // -> 1-4*x^3+4*x^6
5352 @}
5353 @end example
5354
5355 @subsection Square-free decomposition
5356 @cindex square-free decomposition
5357 @cindex factorization
5358 @cindex @code{sqrfree()}
5359
5360 GiNaC still lacks proper factorization support.  Some form of
5361 factorization is, however, easily implemented by noting that factors
5362 appearing in a polynomial with power two or more also appear in the
5363 derivative and hence can easily be found by computing the GCD of the
5364 original polynomial and its derivatives.  Any decent system has an
5365 interface for this so called square-free factorization.  So we provide
5366 one, too:
5367 @example
5368 ex sqrfree(const ex & a, const lst & l = lst());
5369 @end example
5370 Here is an example that by the way illustrates how the exact form of the
5371 result may slightly depend on the order of differentiation, calling for
5372 some care with subsequent processing of the result:
5373 @example
5374     ...
5375     symbol x("x"), y("y");
5376     ex BiVarPol = expand(pow(2-2*y,3) * pow(1+x*y,2) * pow(x-2*y,2) * (x+y));
5377
5378     cout << sqrfree(BiVarPol, lst(x,y)) << endl;
5379      // -> 8*(1-y)^3*(y*x^2-2*y+x*(1-2*y^2))^2*(y+x)
5380
5381     cout << sqrfree(BiVarPol, lst(y,x)) << endl;
5382      // -> 8*(1-y)^3*(-y*x^2+2*y+x*(-1+2*y^2))^2*(y+x)
5383
5384     cout << sqrfree(BiVarPol) << endl;
5385      // -> depending on luck, any of the above
5386     ...
5387 @end example
5388 Note also, how factors with the same exponents are not fully factorized
5389 with this method.
5390
5391
5392 @node Rational expressions, Symbolic differentiation, Polynomial arithmetic, Methods and functions
5393 @c    node-name, next, previous, up
5394 @section Rational expressions
5395
5396 @subsection The @code{normal} method
5397 @cindex @code{normal()}
5398 @cindex simplification
5399 @cindex temporary replacement
5400
5401 Some basic form of simplification of expressions is called for frequently.
5402 GiNaC provides the method @code{.normal()}, which converts a rational function
5403 into an equivalent rational function of the form @samp{numerator/denominator}
5404 where numerator and denominator are coprime.  If the input expression is already
5405 a fraction, it just finds the GCD of numerator and denominator and cancels it,
5406 otherwise it performs fraction addition and multiplication.
5407
5408 @code{.normal()} can also be used on expressions which are not rational functions
5409 as it will replace all non-rational objects (like functions or non-integer
5410 powers) by temporary symbols to bring the expression to the domain of rational
5411 functions before performing the normalization, and re-substituting these
5412 symbols afterwards. This algorithm is also available as a separate method
5413 @code{.to_rational()}, described below.
5414
5415 This means that both expressions @code{t1} and @code{t2} are indeed
5416 simplified in this little code snippet:
5417
5418 @example
5419 @{
5420     symbol x("x");
5421     ex t1 = (pow(x,2) + 2*x + 1)/(x + 1);
5422     ex t2 = (pow(sin(x),2) + 2*sin(x) + 1)/(sin(x) + 1);
5423     std::cout << "t1 is " << t1.normal() << std::endl;
5424     std::cout << "t2 is " << t2.normal() << std::endl;
5425 @}
5426 @end example
5427
5428 Of course this works for multivariate polynomials too, so the ratio of
5429 the sample-polynomials from the section about GCD and LCM above would be
5430 normalized to @code{P_a/P_b} = @code{(4*y+z)/(y+3*z)}.
5431
5432
5433 @subsection Numerator and denominator
5434 @cindex numerator
5435 @cindex denominator
5436 @cindex @code{numer()}
5437 @cindex @code{denom()}
5438 @cindex @code{numer_denom()}
5439
5440 The numerator and denominator of an expression can be obtained with
5441
5442 @example
5443 ex ex::numer();
5444 ex ex::denom();
5445 ex ex::numer_denom();
5446 @end example
5447
5448 These functions will first normalize the expression as described above and
5449 then return the numerator, denominator, or both as a list, respectively.
5450 If you need both numerator and denominator, calling @code{numer_denom()} is
5451 faster than using @code{numer()} and @code{denom()} separately.
5452
5453
5454 @subsection Converting to a polynomial or rational expression
5455 @cindex @code{to_polynomial()}
5456 @cindex @code{to_rational()}
5457
5458 Some of the methods described so far only work on polynomials or rational
5459 functions. GiNaC provides a way to extend the domain of these functions to
5460 general expressions by using the temporary replacement algorithm described
5461 above. You do this by calling
5462
5463 @example
5464 ex ex::to_polynomial(exmap & m);
5465 ex ex::to_polynomial(lst & l);
5466 @end example
5467 or
5468 @example
5469 ex ex::to_rational(exmap & m);
5470 ex ex::to_rational(lst & l);
5471 @end example
5472
5473 on the expression to be converted. The supplied @code{exmap} or @code{lst}
5474 will be filled with the generated temporary symbols and their replacement
5475 expressions in a format that can be used directly for the @code{subs()}
5476 method. It can also already contain a list of replacements from an earlier
5477 application of @code{.to_polynomial()} or @code{.to_rational()}, so it's
5478 possible to use it on multiple expressions and get consistent results.
5479
5480 The difference between @code{.to_polynomial()} and @code{.to_rational()}
5481 is probably best illustrated with an example:
5482
5483 @example
5484 @{
5485     symbol x("x"), y("y");
5486     ex a = 2*x/sin(x) - y/(3*sin(x));
5487     cout << a << endl;
5488
5489     lst lp;
5490     ex p = a.to_polynomial(lp);
5491     cout << " = " << p << "\n   with " << lp << endl;
5492      // = symbol3*symbol2*y+2*symbol2*x
5493      //   with @{symbol2==sin(x)^(-1),symbol3==-1/3@}
5494
5495     lst lr;
5496     ex r = a.to_rational(lr);
5497     cout << " = " << r << "\n   with " << lr << endl;
5498      // = -1/3*symbol4^(-1)*y+2*symbol4^(-1)*x
5499      //   with @{symbol4==sin(x)@}
5500 @}
5501 @end example
5502
5503 The following more useful example will print @samp{sin(x)-cos(x)}:
5504
5505 @example
5506 @{
5507     symbol x("x");
5508     ex a = pow(sin(x), 2) - pow(cos(x), 2);
5509     ex b = sin(x) + cos(x);
5510     ex q;
5511     exmap m;
5512     divide(a.to_polynomial(m), b.to_polynomial(m), q);
5513     cout << q.subs(m) << endl;
5514 @}
5515 @end example
5516
5517
5518 @node Symbolic differentiation, Series expansion, Rational expressions, Methods and functions
5519 @c    node-name, next, previous, up
5520 @section Symbolic differentiation
5521 @cindex differentiation
5522 @cindex @code{diff()}
5523 @cindex chain rule
5524 @cindex product rule
5525
5526 GiNaC's objects know how to differentiate themselves.  Thus, a
5527 polynomial (class @code{add}) knows that its derivative is the sum of
5528 the derivatives of all the monomials:
5529
5530 @example
5531 @{
5532     symbol x("x"), y("y"), z("z");
5533     ex P = pow(x, 5) + pow(x, 2) + y;
5534
5535     cout << P.diff(x,2) << endl;
5536      // -> 20*x^3 + 2
5537     cout << P.diff(y) << endl;    // 1
5538      // -> 1
5539     cout << P.diff(z) << endl;    // 0
5540      // -> 0
5541 @}
5542 @end example
5543
5544 If a second integer parameter @var{n} is given, the @code{diff} method
5545 returns the @var{n}th derivative.
5546
5547 If @emph{every} object and every function is told what its derivative
5548 is, all derivatives of composed objects can be calculated using the
5549 chain rule and the product rule.  Consider, for instance the expression
5550 @code{1/cosh(x)}.  Since the derivative of @code{cosh(x)} is
5551 @code{sinh(x)} and the derivative of @code{pow(x,-1)} is
5552 @code{-pow(x,-2)}, GiNaC can readily compute the composition.  It turns
5553 out that the composition is the generating function for Euler Numbers,
5554 i.e. the so called @var{n}th Euler number is the coefficient of
5555 @code{x^n/n!} in the expansion of @code{1/cosh(x)}.  We may use this
5556 identity to code a function that generates Euler numbers in just three
5557 lines:
5558
5559 @cindex Euler numbers
5560 @example
5561 #include <ginac/ginac.h>
5562 using namespace GiNaC;
5563
5564 ex EulerNumber(unsigned n)
5565 @{
5566     symbol x;
5567     const ex generator = pow(cosh(x),-1);
5568     return generator.diff(x,n).subs(x==0);
5569 @}
5570
5571 int main()
5572 @{
5573     for (unsigned i=0; i<11; i+=2)
5574         std::cout << EulerNumber(i) << std::endl;
5575     return 0;
5576 @}
5577 @end example
5578
5579 When you run it, it produces the sequence @code{1}, @code{-1}, @code{5},
5580 @code{-61}, @code{1385}, @code{-50521}.  We increment the loop variable
5581 @code{i} by two since all odd Euler numbers vanish anyways.
5582
5583
5584 @node Series expansion, Symmetrization, Symbolic differentiation, Methods and functions
5585 @c    node-name, next, previous, up
5586 @section Series expansion
5587 @cindex @code{series()}
5588 @cindex Taylor expansion
5589 @cindex Laurent expansion
5590 @cindex @code{pseries} (class)
5591 @cindex @code{Order()}
5592
5593 Expressions know how to expand themselves as a Taylor series or (more
5594 generally) a Laurent series.  As in most conventional Computer Algebra
5595 Systems, no distinction is made between those two.  There is a class of
5596 its own for storing such series (@code{class pseries}) and a built-in
5597 function (called @code{Order}) for storing the order term of the series.
5598 As a consequence, if you want to work with series, i.e. multiply two
5599 series, you need to call the method @code{ex::series} again to convert
5600 it to a series object with the usual structure (expansion plus order
5601 term).  A sample application from special relativity could read:
5602
5603 @example
5604 #include <ginac/ginac.h>
5605 using namespace std;
5606 using namespace GiNaC;
5607
5608 int main()
5609 @{
5610     symbol v("v"), c("c");
5611     
5612     ex gamma = 1/sqrt(1 - pow(v/c,2));
5613     ex mass_nonrel = gamma.series(v==0, 10);
5614     
5615     cout << "the relativistic mass increase with v is " << endl
5616          << mass_nonrel << endl;
5617     
5618     cout << "the inverse square of this series is " << endl
5619          << pow(mass_nonrel,-2).series(v==0, 10) << endl;
5620 @}
5621 @end example
5622
5623 Only calling the series method makes the last output simplify to
5624 @math{1-v^2/c^2+O(v^10)}, without that call we would just have a long
5625 series raised to the power @math{-2}.
5626
5627 @cindex Machin's formula
5628 As another instructive application, let us calculate the numerical 
5629 value of Archimedes' constant
5630 @tex
5631 $\pi$
5632 @end tex
5633 @ifnottex
5634 @math{Pi}
5635 @end ifnottex
5636 (for which there already exists the built-in constant @code{Pi}) 
5637 using John Machin's amazing formula
5638 @tex
5639 $\pi=16$~atan~$\!\left(1 \over 5 \right)-4$~atan~$\!\left(1 \over 239 \right)$.
5640 @end tex
5641 @ifnottex
5642 @math{Pi==16*atan(1/5)-4*atan(1/239)}.
5643 @end ifnottex
5644 This equation (and similar ones) were used for over 200 years for
5645 computing digits of pi (see @cite{Pi Unleashed}).  We may expand the
5646 arcus tangent around @code{0} and insert the fractions @code{1/5} and
5647 @code{1/239}.  However, as we have seen, a series in GiNaC carries an
5648 order term with it and the question arises what the system is supposed
5649 to do when the fractions are plugged into that order term.  The solution
5650 is to use the function @code{series_to_poly()} to simply strip the order
5651 term off:
5652
5653 @example
5654 #include <ginac/ginac.h>
5655 using namespace GiNaC;
5656
5657 ex machin_pi(int degr)
5658 @{
5659     symbol x;
5660     ex pi_expansion = series_to_poly(atan(x).series(x,degr));
5661     ex pi_approx = 16*pi_expansion.subs(x==numeric(1,5))
5662                    -4*pi_expansion.subs(x==numeric(1,239));
5663     return pi_approx;
5664 @}
5665
5666 int main()
5667 @{
5668     using std::cout;  // just for fun, another way of...
5669     using std::endl;  // ...dealing with this namespace std.
5670     ex pi_frac;
5671     for (int i=2; i<12; i+=2) @{
5672         pi_frac = machin_pi(i);
5673         cout << i << ":\t" << pi_frac << endl
5674              << "\t" << pi_frac.evalf() << endl;
5675     @}
5676     return 0;
5677 @}
5678 @end example
5679
5680 Note how we just called @code{.series(x,degr)} instead of
5681 @code{.series(x==0,degr)}.  This is a simple shortcut for @code{ex}'s
5682 method @code{series()}: if the first argument is a symbol the expression
5683 is expanded in that symbol around point @code{0}.  When you run this
5684 program, it will type out:
5685
5686 @example
5687 2:      3804/1195
5688         3.1832635983263598326
5689 4:      5359397032/1706489875
5690         3.1405970293260603143
5691 6:      38279241713339684/12184551018734375
5692         3.141621029325034425
5693 8:      76528487109180192540976/24359780855939418203125
5694         3.141591772182177295
5695 10:     327853873402258685803048818236/104359128170408663038552734375
5696         3.1415926824043995174
5697 @end example
5698
5699
5700 @node Symmetrization, Built-in functions, Series expansion, Methods and functions
5701 @c    node-name, next, previous, up
5702 @section Symmetrization
5703 @cindex @code{symmetrize()}
5704 @cindex @code{antisymmetrize()}
5705 @cindex @code{symmetrize_cyclic()}
5706
5707 The three methods
5708
5709 @example
5710 ex ex::symmetrize(const lst & l);
5711 ex ex::antisymmetrize(const lst & l);
5712 ex ex::symmetrize_cyclic(const lst & l);
5713 @end example
5714
5715 symmetrize an expression by returning the sum over all symmetric,
5716 antisymmetric or cyclic permutations of the specified list of objects,
5717 weighted by the number of permutations.
5718
5719 The three additional methods
5720
5721 @example
5722 ex ex::symmetrize();
5723 ex ex::antisymmetrize();
5724 ex ex::symmetrize_cyclic();
5725 @end example
5726
5727 symmetrize or antisymmetrize an expression over its free indices.
5728
5729 Symmetrization is most useful with indexed expressions but can be used with
5730 almost any kind of object (anything that is @code{subs()}able):
5731
5732 @example
5733 @{
5734     idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3);
5735     symbol A("A"), B("B"), a("a"), b("b"), c("c");
5736                                            
5737     cout << indexed(A, i, j).symmetrize() << endl;
5738      // -> 1/2*A.j.i+1/2*A.i.j
5739     cout << indexed(A, i, j, k).antisymmetrize(lst(i, j)) << endl;
5740      // -> -1/2*A.j.i.k+1/2*A.i.j.k
5741     cout << lst(a, b, c).symmetrize_cyclic(lst(a, b, c)) << endl;
5742      // -> 1/3*@{a,b,c@}+1/3*@{b,c,a@}+1/3*@{c,a,b@}
5743 @}
5744 @end example
5745
5746 @page
5747
5748 @node Built-in functions, Multiple polylogarithms, Symmetrization, Methods and functions
5749 @c    node-name, next, previous, up
5750 @section Predefined mathematical functions
5751 @c
5752 @subsection Overview
5753
5754 GiNaC contains the following predefined mathematical functions:
5755
5756 @cartouche
5757 @multitable @columnfractions .30 .70
5758 @item @strong{Name} @tab @strong{Function}
5759 @item @code{abs(x)}
5760 @tab absolute value
5761 @cindex @code{abs()}
5762 @item @code{step(x)}
5763 @tab step function
5764 @cindex @code{step()}
5765 @item @code{csgn(x)}
5766 @tab complex sign
5767 @cindex @code{conjugate()}
5768 @item @code{conjugate(x)}
5769 @tab complex conjugation
5770 @cindex @code{real_part()}
5771 @item @code{real_part(x)}
5772 @tab real part
5773 @cindex @code{imag_part()}
5774 @item @code{imag_part(x)}
5775 @tab imaginary part
5776 @item @code{sqrt(x)}
5777 @tab square root (not a GiNaC function, rather an alias for @code{pow(x, numeric(1, 2))})
5778 @cindex @code{sqrt()}
5779 @item @code{sin(x)}
5780 @tab sine
5781 @cindex @code{sin()}
5782 @item @code{cos(x)}
5783 @tab cosine
5784 @cindex @code{cos()}
5785 @item @code{tan(x)}
5786 @tab tangent
5787 @cindex @code{tan()}
5788 @item @code{asin(x)}
5789 @tab inverse sine
5790 @cindex @code{asin()}
5791 @item @code{acos(x)}
5792 @tab inverse cosine
5793 @cindex @code{acos()}
5794 @item @code{atan(x)}
5795 @tab inverse tangent
5796 @cindex @code{atan()}
5797 @item @code{atan2(y, x)}
5798 @tab inverse tangent with two arguments
5799 @item @code{sinh(x)}
5800 @tab hyperbolic sine
5801 @cindex @code{sinh()}
5802 @item @code{cosh(x)}
5803 @tab hyperbolic cosine
5804 @cindex @code{cosh()}
5805 @item @code{tanh(x)}
5806 @tab hyperbolic tangent
5807 @cindex @code{tanh()}
5808 @item @code{asinh(x)}
5809 @tab inverse hyperbolic sine
5810 @cindex @code{asinh()}
5811 @item @code{acosh(x)}
5812 @tab inverse hyperbolic cosine
5813 @cindex @code{acosh()}
5814 @item @code{atanh(x)}
5815 @tab inverse hyperbolic tangent
5816 @cindex @code{atanh()}
5817 @item @code{exp(x)}
5818 @tab exponential function
5819 @cindex @code{exp()}
5820 @item @code{log(x)}
5821 @tab natural logarithm
5822 @cindex @code{log()}
5823 @item @code{Li2(x)}
5824 @tab dilogarithm
5825 @cindex @code{Li2()}
5826 @item @code{Li(m, x)}
5827 @tab classical polylogarithm as well as multiple polylogarithm
5828 @cindex @code{Li()}
5829 @item @code{G(a, y)}
5830 @tab multiple polylogarithm
5831 @cindex @code{G()}
5832 @item @code{G(a, s, y)}
5833 @tab multiple polylogarithm with explicit signs for the imaginary parts
5834 @cindex @code{G()}
5835 @item @code{S(n, p, x)}
5836 @tab Nielsen's generalized polylogarithm
5837 @cindex @code{S()}
5838 @item @code{H(m, x)}
5839 @tab harmonic polylogarithm
5840 @cindex @code{H()}
5841 @item @code{zeta(m)}
5842 @tab Riemann's zeta function as well as multiple zeta value
5843 @cindex @code{zeta()}
5844 @item @code{zeta(m, s)}
5845 @tab alternating Euler sum
5846 @cindex @code{zeta()}
5847 @item @code{zetaderiv(n, x)}
5848 @tab derivatives of Riemann's zeta function
5849 @item @code{tgamma(x)}
5850 @tab gamma function
5851 @cindex @code{tgamma()}
5852 @cindex gamma function
5853 @item @code{lgamma(x)}
5854 @tab logarithm of gamma function
5855 @cindex @code{lgamma()}
5856 @item @code{beta(x, y)}
5857 @tab beta function (@code{tgamma(x)*tgamma(y)/tgamma(x+y)})
5858 @cindex @code{beta()}
5859 @item @code{psi(x)}
5860 @tab psi (digamma) function
5861 @cindex @code{psi()}
5862 @item @code{psi(n, x)}
5863 @tab derivatives of psi function (polygamma functions)
5864 @item @code{factorial(n)}
5865 @tab factorial function @math{n!}
5866 @cindex @code{factorial()}
5867 @item @code{binomial(n, k)}
5868 @tab binomial coefficients
5869 @cindex @code{binomial()}
5870 @item @code{Order(x)}
5871 @tab order term function in truncated power series
5872 @cindex @code{Order()}
5873 @end multitable
5874 @end cartouche
5875
5876 @cindex branch cut
5877 For functions that have a branch cut in the complex plane GiNaC follows
5878 the conventions for C++ as defined in the ANSI standard as far as
5879 possible.  In particular: the natural logarithm (@code{log}) and the
5880 square root (@code{sqrt}) both have their branch cuts running along the
5881 negative real axis where the points on the axis itself belong to the
5882 upper part (i.e. continuous with quadrant II).  The inverse
5883 trigonometric and hyperbolic functions are not defined for complex
5884 arguments by the C++ standard, however.  In GiNaC we follow the
5885 conventions used by CLN, which in turn follow the carefully designed
5886 definitions in the Common Lisp standard.  It should be noted that this
5887 convention is identical to the one used by the C99 standard and by most
5888 serious CAS.  It is to be expected that future revisions of the C++
5889 standard incorporate these functions in the complex domain in a manner
5890 compatible with C99.
5891
5892 @node Multiple polylogarithms, Complex expressions, Built-in functions, Methods and functions
5893 @c    node-name, next, previous, up
5894 @subsection Multiple polylogarithms
5895
5896 @cindex polylogarithm
5897 @cindex Nielsen's generalized polylogarithm
5898 @cindex harmonic polylogarithm
5899 @cindex multiple zeta value
5900 @cindex alternating Euler sum
5901 @cindex multiple polylogarithm
5902
5903 The multiple polylogarithm is the most generic member of a family of functions,
5904 to which others like the harmonic polylogarithm, Nielsen's generalized
5905 polylogarithm and the multiple zeta value belong.
5906 Everyone of these functions can also be written as a multiple polylogarithm with specific
5907 parameters. This whole family of functions is therefore often referred to simply as
5908 multiple polylogarithms, containing @code{Li}, @code{G}, @code{H}, @code{S} and @code{zeta}.
5909 The multiple polylogarithm itself comes in two variants: @code{Li} and @code{G}. While
5910 @code{Li} and @code{G} in principle represent the same function, the different
5911 notations are more natural to the series representation or the integral
5912 representation, respectively.
5913
5914 To facilitate the discussion of these functions we distinguish between indices and
5915 arguments as parameters. In the table above indices are printed as @code{m}, @code{s},
5916 @code{n} or @code{p}, whereas arguments are printed as @code{x}, @code{a} and @code{y}.
5917
5918 To define a @code{Li}, @code{H} or @code{zeta} with a depth greater than one, you have to
5919 pass a GiNaC @code{lst} for the indices @code{m} and @code{s}, and in the case of @code{Li}
5920 for the argument @code{x} as well. The parameter @code{a} of @code{G} must always be a @code{lst} containing
5921 the arguments in expanded form. If @code{G} is used with a third parameter @code{s}, @code{s} must
5922 have the same length as @code{a}. It contains then the signs of the imaginary parts of the arguments. If
5923 @code{s} is not given, the signs default to +1.
5924 Note that @code{Li} and @code{zeta} are polymorphic in this respect. They can stand in for
5925 the classical polylogarithm and Riemann's zeta function (if depth is one), as well as for
5926 the multiple polylogarithm and the multiple zeta value, respectively. Note also, that
5927 GiNaC doesn't check whether the @code{lst}s for two parameters do have the same length.
5928 It is up to the user to ensure this, otherwise evaluating will result in undefined behavior.
5929
5930 The functions print in LaTeX format as
5931 @tex
5932 ${\rm Li\;\!}_{m_1,m_2,\ldots,m_k}(x_1,x_2,\ldots,x_k)$, 
5933 @end tex
5934 @tex
5935 ${\rm S}_{n,p}(x)$, 
5936 @end tex
5937 @tex
5938 ${\rm H\;\!}_{m_1,m_2,\ldots,m_k}(x)$ and 
5939 @end tex
5940 @tex
5941 $\zeta(m_1,m_2,\ldots,m_k)$.
5942 @end tex
5943 @ifnottex
5944 @command{\mbox@{Li@}_@{m_1,m_2,...,m_k@}(x_1,x_2,...,x_k)},
5945 @command{\mbox@{S@}_@{n,p@}(x)},
5946 @command{\mbox@{H@}_@{m_1,m_2,...,m_k@}(x)} and 
5947 @command{\zeta(m_1,m_2,...,m_k)} (with the dots replaced by actual parameters).
5948 @end ifnottex
5949 If @code{zeta} is an alternating zeta sum, i.e. @code{zeta(m,s)}, the indices with negative sign
5950 are printed with a line above, e.g.
5951 @tex
5952 $\zeta(5,\overline{2})$.
5953 @end tex
5954 @ifnottex
5955 @command{\zeta(5,\overline@{2@})}.
5956 @end ifnottex
5957 The order of indices and arguments in the GiNaC @code{lst}s and in the output is the same.
5958
5959 Definitions and analytical as well as numerical properties of multiple polylogarithms
5960 are too numerous to be covered here. Instead, the user is referred to the publications listed at the
5961 end of this section. The implementation in GiNaC adheres to the definitions and conventions therein,
5962 except for a few differences which will be explicitly stated in the following.
5963
5964 One difference is about the order of the indices and arguments. For GiNaC we adopt the convention
5965 that the indices and arguments are understood to be in the same order as in which they appear in
5966 the series representation. This means
5967 @tex
5968 ${\rm Li\;\!}_{m_1,m_2,m_3}(x,1,1) = {\rm H\;\!}_{m_1,m_2,m_3}(x)$ and 
5969 @end tex
5970 @tex
5971 ${\rm Li\;\!}_{2,1}(1,1) = \zeta(2,1) = \zeta(3)$, but
5972 @end tex
5973 @tex
5974 $\zeta(1,2)$ evaluates to infinity.
5975 @end tex
5976 @ifnottex
5977 @code{Li_@{m_1,m_2,m_3@}(x,1,1) = H_@{m_1,m_2,m_3@}(x)} and 
5978 @code{Li_@{2,1@}(1,1) = zeta(2,1) = zeta(3)}, but
5979 @code{zeta(1,2)} evaluates to infinity.
5980 @end ifnottex
5981 So in comparison to the older ones of the referenced publications the order of
5982 indices and arguments for @code{Li} is reversed.
5983
5984 The functions only evaluate if the indices are integers greater than zero, except for the indices
5985 @code{s} in @code{zeta} and @code{G} as well as @code{m} in @code{H}. Since @code{s}
5986 will be interpreted as the sequence of signs for the corresponding indices
5987 @code{m} or the sign of the imaginary part for the
5988 corresponding arguments @code{a}, it must contain 1 or -1, e.g.
5989 @code{zeta(lst(3,4), lst(-1,1))} means
5990 @tex
5991 $\zeta(\overline{3},4)$
5992 @end tex
5993 @ifnottex
5994 @command{zeta(\overline@{3@},4)}
5995 @end ifnottex
5996 and
5997 @code{G(lst(a,b), lst(-1,1), c)} means
5998 @tex
5999 $G(a-0\epsilon,b+0\epsilon;c)$.
6000 @end tex
6001 @ifnottex
6002 @command{G(a-0\epsilon,b+0\epsilon;c)}.
6003 @end ifnottex
6004 The definition of @code{H} allows indices to be 0, 1 or -1 (in expanded notation) or equally to
6005 be any integer (in compact notation). With GiNaC expanded and compact notation can be mixed,
6006 e.g. @code{lst(0,0,-1,0,1,0,0)}, @code{lst(0,0,-1,2,0,0)} and @code{lst(-3,2,0,0)} are equivalent as
6007 indices. The anonymous evaluator @code{eval()} tries to reduce the functions, if possible, to
6008 the least-generic multiple polylogarithm. If all arguments are unit, it returns @code{zeta}.
6009 Arguments equal to zero get considered, too. Riemann's zeta function @code{zeta} (with depth one)
6010 evaluates also for negative integers and positive even integers. For example:
6011
6012 @example
6013 > Li(@{3,1@},@{x,1@});
6014 S(2,2,x)
6015 > H(@{-3,2@},1);
6016 -zeta(@{3,2@},@{-1,-1@})
6017 > S(3,1,1);
6018 1/90*Pi^4
6019 @end example
6020
6021 It is easy to tell for a given function into which other function it can be rewritten, may
6022 it be a less-generic or a more-generic one, except for harmonic polylogarithms @code{H}
6023 with negative indices or trailing zeros (the example above gives a hint). Signs can
6024 quickly be messed up, for example. Therefore GiNaC offers a C++ function
6025 @code{convert_H_to_Li()} to deal with the upgrade of a @code{H} to a multiple polylogarithm
6026 @code{Li} (@code{eval()} already cares for the possible downgrade):
6027
6028 @example
6029 > convert_H_to_Li(@{0,-2,-1,3@},x);
6030 Li(@{3,1,3@},@{-x,1,-1@})
6031 > convert_H_to_Li(@{2,-1,0@},x);
6032 -Li(@{2,1@},@{x,-1@})*log(x)+2*Li(@{3,1@},@{x,-1@})+Li(@{2,2@},@{x,-1@})
6033 @end example
6034
6035 Every function can be numerically evaluated for
6036 arbitrary real or complex arguments. The precision is arbitrary and can be set through the
6037 global variable @code{Digits}:
6038
6039 @example
6040 > Digits=100;
6041 100
6042 > evalf(zeta(@{3,1,3,1@}));
6043 0.005229569563530960100930652283899231589890420784634635522547448972148869544...
6044 @end example
6045
6046 Note that the convention for arguments on the branch cut in GiNaC as stated above is
6047 different from the one Remiddi and Vermaseren have chosen for the harmonic polylogarithm.
6048
6049 If a function evaluates to infinity, no exceptions are raised, but the function is returned
6050 unevaluated, e.g.
6051 @tex
6052 $\zeta(1)$.
6053 @end tex
6054 @ifnottex
6055 @command{zeta(1)}.
6056 @end ifnottex
6057 In long expressions this helps a lot with debugging, because you can easily spot
6058 the divergencies. But on the other hand, you have to make sure for yourself, that no illegal
6059 cancellations of divergencies happen.
6060
6061 Useful publications:
6062
6063 @cite{Nested Sums, Expansion of Transcendental Functions and Multi-Scale Multi-Loop Integrals}, 
6064 S.Moch, P.Uwer, S.Weinzierl, hep-ph/0110083
6065
6066 @cite{Harmonic Polylogarithms}, 
6067 E.Remiddi, J.A.M.Vermaseren, Int.J.Mod.Phys. A15 (2000), pp. 725-754
6068
6069 @cite{Special Values of Multiple Polylogarithms}, 
6070 J.Borwein, D.Bradley, D.Broadhurst, P.Lisonek, Trans.Amer.Math.Soc. 353/3 (2001), pp. 907-941
6071
6072 @cite{Numerical Evaluation of Multiple Polylogarithms}, 
6073 J.Vollinga, S.Weinzierl, hep-ph/0410259
6074
6075 @node Complex expressions, Solving linear systems of equations, Multiple polylogarithms, Methods and functions
6076 @c    node-name, next, previous, up
6077 @section Complex expressions
6078 @c
6079 @cindex @code{conjugate()}
6080
6081 For dealing with complex expressions there are the methods
6082
6083 @example
6084 ex ex::conjugate();
6085 ex ex::real_part();
6086 ex ex::imag_part();
6087 @end example
6088
6089 that return respectively the complex conjugate, the real part and the
6090 imaginary part of an expression. Complex conjugation works as expected
6091 for all built-in functions and objects. Taking real and imaginary
6092 parts has not yet been implemented for all built-in functions. In cases where
6093 it is not known how to conjugate or take a real/imaginary part one
6094 of the functions @code{conjugate}, @code{real_part} or @code{imag_part}
6095 is returned. For instance, in case of a complex symbol @code{x}
6096 (symbols are complex by default), one could not simplify
6097 @code{conjugate(x)}. In the case of strings of gamma matrices,
6098 the @code{conjugate} method takes the Dirac conjugate.
6099
6100 For example,
6101 @example
6102 @{
6103     varidx a(symbol("a"), 4), b(symbol("b"), 4);
6104     symbol x("x");
6105     realsymbol y("y");
6106                                            
6107     cout << (3*I*x*y + sin(2*Pi*I*y)).conjugate() << endl;
6108      // -> -3*I*conjugate(x)*y+sin(-2*I*Pi*y)
6109     cout << (dirac_gamma(a)*dirac_gamma(b)*dirac_gamma5()).conjugate() << endl;
6110      // -> -gamma5*gamma~b*gamma~a
6111 @}
6112 @end example
6113
6114 If you declare your own GiNaC functions, then they will conjugate themselves
6115 by conjugating their arguments. This is the default strategy. If you want to
6116 change this behavior, you have to supply a specialized conjugation method
6117 for your function (see @ref{Symbolic functions} and the GiNaC source-code
6118 for @code{abs} as an example). Also, specialized methods can be provided
6119 to take real and imaginary parts of user-defined functions.
6120
6121 @node Solving linear systems of equations, Input/output, Complex expressions, Methods and functions
6122 @c    node-name, next, previous, up
6123 @section Solving linear systems of equations
6124 @cindex @code{lsolve()}
6125
6126 The function @code{lsolve()} provides a convenient wrapper around some
6127 matrix operations that comes in handy when a system of linear equations
6128 needs to be solved:
6129
6130 @example
6131 ex lsolve(const ex & eqns, const ex & symbols,
6132           unsigned options = solve_algo::automatic);
6133 @end example
6134
6135 Here, @code{eqns} is a @code{lst} of equalities (i.e. class
6136 @code{relational}) while @code{symbols} is a @code{lst} of
6137 indeterminates.  (@xref{The class hierarchy}, for an exposition of class
6138 @code{lst}).
6139
6140 It returns the @code{lst} of solutions as an expression.  As an example,
6141 let us solve the two equations @code{a*x+b*y==3} and @code{x-y==b}:
6142
6143 @example
6144 @{
6145     symbol a("a"), b("b"), x("x"), y("y");
6146     lst eqns, vars;
6147     eqns = a*x+b*y==3, x-y==b;
6148     vars = x, y;
6149     cout << lsolve(eqns, vars) << endl;
6150      // -> @{x==(3+b^2)/(b+a),y==(3-b*a)/(b+a)@}
6151 @end example
6152
6153 When the linear equations @code{eqns} are underdetermined, the solution
6154 will contain one or more tautological entries like @code{x==x},
6155 depending on the rank of the system.  When they are overdetermined, the
6156 solution will be an empty @code{lst}.  Note the third optional parameter
6157 to @code{lsolve()}: it accepts the same parameters as
6158 @code{matrix::solve()}.  This is because @code{lsolve} is just a wrapper
6159 around that method.
6160
6161
6162 @node Input/output, Extending GiNaC, Solving linear systems of equations, Methods and functions
6163 @c    node-name, next, previous, up
6164 @section Input and output of expressions
6165 @cindex I/O
6166
6167 @subsection Expression output
6168 @cindex printing
6169 @cindex output of expressions
6170
6171 Expressions can simply be written to any stream:
6172
6173 @example
6174 @{
6175     symbol x("x");
6176     ex e = 4.5*I+pow(x,2)*3/2;
6177     cout << e << endl;    // prints '4.5*I+3/2*x^2'
6178     // ...
6179 @end example
6180
6181 The default output format is identical to the @command{ginsh} input syntax and
6182 to that used by most computer algebra systems, but not directly pastable
6183 into a GiNaC C++ program (note that in the above example, @code{pow(x,2)}
6184 is printed as @samp{x^2}).
6185
6186 It is possible to print expressions in a number of different formats with
6187 a set of stream manipulators;
6188
6189 @example
6190 std::ostream & dflt(std::ostream & os);
6191 std::ostream & latex(std::ostream & os);
6192 std::ostream & tree(std::ostream & os);
6193 std::ostream & csrc(std::ostream & os);
6194 std::ostream & csrc_float(std::ostream & os);
6195 std::ostream & csrc_double(std::ostream & os);
6196 std::ostream & csrc_cl_N(std::ostream & os);
6197 std::ostream & index_dimensions(std::ostream & os);
6198 std::ostream & no_index_dimensions(std::ostream & os);
6199 @end example
6200
6201 The @code{tree}, @code{latex} and @code{csrc} formats are also available in
6202 @command{ginsh} via the @code{print()}, @code{print_latex()} and
6203 @code{print_csrc()} functions, respectively.
6204
6205 @cindex @code{dflt}
6206 All manipulators affect the stream state permanently. To reset the output
6207 format to the default, use the @code{dflt} manipulator:
6208
6209 @example
6210     // ...
6211     cout << latex;            // all output to cout will be in LaTeX format from
6212                               // now on
6213     cout << e << endl;        // prints '4.5 i+\frac@{3@}@{2@} x^@{2@}'
6214     cout << sin(x/2) << endl; // prints '\sin(\frac@{1@}@{2@} x)'
6215     cout << dflt;             // revert to default output format
6216     cout << e << endl;        // prints '4.5*I+3/2*x^2'
6217     // ...
6218 @end example
6219
6220 If you don't want to affect the format of the stream you're working with,
6221 you can output to a temporary @code{ostringstream} like this:
6222
6223 @example
6224     // ...
6225     ostringstream s;
6226     s << latex << e;         // format of cout remains unchanged
6227     cout << s.str() << endl; // prints '4.5 i+\frac@{3@}@{2@} x^@{2@}'
6228     // ...
6229 @end example
6230
6231 @anchor{csrc printing}
6232 @cindex @code{csrc}
6233 @cindex @code{csrc_float}
6234 @cindex @code{csrc_double}
6235 @cindex @code{csrc_cl_N}
6236 The @code{csrc} (an alias for @code{csrc_double}), @code{csrc_float},
6237 @code{csrc_double} and @code{csrc_cl_N} manipulators set the output to a
6238 format that can be directly used in a C or C++ program. The three possible
6239 formats select the data types used for numbers (@code{csrc_cl_N} uses the
6240 classes provided by the CLN library):
6241
6242 @example
6243     // ...
6244     cout << "f = " << csrc_float << e << ";\n";
6245     cout << "d = " << csrc_double << e << ";\n";
6246     cout << "n = " << csrc_cl_N << e << ";\n";
6247     // ...
6248 @end example
6249
6250 The above example will produce (note the @code{x^2} being converted to
6251 @code{x*x}):
6252
6253 @example
6254 f = (3.0/2.0)*(x*x)+std::complex<float>(0.0,4.5000000e+00);
6255 d = (3.0/2.0)*(x*x)+std::complex<double>(0.0,4.5000000000000000e+00);
6256 n = cln::cl_RA("3/2")*(x*x)+cln::complex(cln::cl_I("0"),cln::cl_F("4.5_17"));
6257 @end example
6258
6259 @cindex @code{tree}
6260 The @code{tree} manipulator allows dumping the internal structure of an
6261 expression for debugging purposes:
6262
6263 @example
6264     // ...
6265     cout << tree << e;
6266 @}
6267 @end example
6268
6269 produces
6270
6271 @example
6272 add, hash=0x0, flags=0x3, nops=2
6273     power, hash=0x0, flags=0x3, nops=2
6274         x (symbol), serial=0, hash=0xc8d5bcdd, flags=0xf
6275         2 (numeric), hash=0x6526b0fa, flags=0xf
6276     3/2 (numeric), hash=0xf9828fbd, flags=0xf
6277     -----
6278     overall_coeff
6279     4.5L0i (numeric), hash=0xa40a97e0, flags=0xf
6280     =====
6281 @end example
6282
6283 @cindex @code{latex}
6284 The @code{latex} output format is for LaTeX parsing in mathematical mode.
6285 It is rather similar to the default format but provides some braces needed
6286 by LaTeX for delimiting boxes and also converts some common objects to
6287 conventional LaTeX names. It is possible to give symbols a special name for
6288 LaTeX output by supplying it as a second argument to the @code{symbol}
6289 constructor.
6290
6291 For example, the code snippet
6292
6293 @example
6294 @{
6295     symbol x("x", "\\circ");
6296     ex e = lgamma(x).series(x==0,3);
6297     cout << latex << e << endl;
6298 @}
6299 @end example
6300
6301 will print
6302
6303 @example
6304     @{(-\ln(\circ))@}+@{(-\gamma_E)@} \circ+@{(\frac@{1@}@{12@} \pi^@{2@})@} \circ^@{2@}
6305     +\mathcal@{O@}(\circ^@{3@})
6306 @end example
6307
6308 @cindex @code{index_dimensions}
6309 @cindex @code{no_index_dimensions}
6310 Index dimensions are normally hidden in the output. To make them visible, use
6311 the @code{index_dimensions} manipulator. The dimensions will be written in
6312 square brackets behind each index value in the default and LaTeX output
6313 formats:
6314
6315 @example
6316 @{
6317     symbol x("x"), y("y");
6318     varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);
6319     ex e = indexed(x, mu) * indexed(y, nu);
6320
6321     cout << e << endl;
6322      // prints 'x~mu*y~nu'
6323     cout << index_dimensions << e << endl;
6324      // prints 'x~mu[4]*y~nu[4]'
6325     cout << no_index_dimensions << e << endl;
6326      // prints 'x~mu*y~nu'
6327 @}
6328 @end example
6329
6330
6331 @cindex Tree traversal
6332 If you need any fancy special output format, e.g. for interfacing GiNaC
6333 with other algebra systems or for producing code for different
6334 programming languages, you can always traverse the expression tree yourself:
6335
6336 @example
6337 static void my_print(const ex & e)
6338 @{
6339     if (is_a<function>(e))
6340         cout << ex_to<function>(e).get_name();
6341     else
6342         cout << ex_to<basic>(e).class_name();
6343     cout << "(";
6344     size_t n = e.nops();
6345     if (n)
6346         for (size_t i=0; i<n; i++) @{
6347             my_print(e.op(i));
6348             if (i != n-1)
6349                 cout << ",";
6350         @}
6351     else
6352         cout << e;
6353     cout << ")";
6354 @}
6355
6356 int main()
6357 @{
6358     my_print(pow(3, x) - 2 * sin(y / Pi)); cout << endl;
6359     return 0;
6360 @}
6361 @end example
6362
6363 This will produce
6364
6365 @example
6366 add(power(numeric(3),symbol(x)),mul(sin(mul(power(constant(Pi),numeric(-1)),
6367 symbol(y))),numeric(-2)))
6368 @end example
6369
6370 If you need an output format that makes it possible to accurately
6371 reconstruct an expression by feeding the output to a suitable parser or
6372 object factory, you should consider storing the expression in an
6373 @code{archive} object and reading the object properties from there.
6374 See the section on archiving for more information.
6375
6376
6377 @subsection Expression input
6378 @cindex input of expressions
6379
6380 GiNaC provides no way to directly read an expression from a stream because
6381 you will usually want the user to be able to enter something like @samp{2*x+sin(y)}
6382 and have the @samp{x} and @samp{y} correspond to the symbols @code{x} and
6383 @code{y} you defined in your program and there is no way to specify the
6384 desired symbols to the @code{>>} stream input operator.
6385
6386 Instead, GiNaC lets you construct an expression from a string, specifying the
6387 list of symbols to be used:
6388
6389 @example
6390 @{
6391     symbol x("x"), y("y");
6392     ex e("2*x+sin(y)", lst(x, y));
6393 @}
6394 @end example
6395
6396 The input syntax is the same as that used by @command{ginsh} and the stream
6397 output operator @code{<<}. The symbols in the string are matched by name to
6398 the symbols in the list and if GiNaC encounters a symbol not specified in
6399 the list it will throw an exception.
6400
6401 With this constructor, it's also easy to implement interactive GiNaC programs:
6402
6403 @example
6404 #include <iostream>
6405 #include <string>
6406 #include <stdexcept>
6407 #include <ginac/ginac.h>
6408 using namespace std;
6409 using namespace GiNaC;
6410
6411 int main()
6412 @{
6413     symbol x("x");
6414     string s;
6415
6416     cout << "Enter an expression containing 'x': ";
6417     getline(cin, s);
6418
6419     try @{
6420         ex e(s, lst(x));
6421         cout << "The derivative of " << e << " with respect to x is ";
6422         cout << e.diff(x) << ".\n";
6423     @} catch (exception &p) @{
6424         cerr << p.what() << endl;
6425     @}
6426 @}
6427 @end example
6428
6429 @subsection Compiling expressions to C function pointers
6430 @cindex compiling expressions
6431
6432 Numerical evaluation of algebraic expressions is seamlessly integrated into
6433 GiNaC by help of the CLN library. While CLN allows for very fast arbitrary
6434 precision numerics, which is more than sufficient for most users, sometimes only
6435 the speed of built-in floating point numbers is fast enough, e.g. for Monte
6436 Carlo integration. The only viable option then is the following: print the
6437 expression in C syntax format, manually add necessary C code, compile that
6438 program and run is as a separate application. This is not only cumbersome and
6439 involves a lot of manual intervention, but it also separates the algebraic and
6440 the numerical evaluation into different execution stages.
6441
6442 GiNaC offers a couple of functions that help to avoid these inconveniences and
6443 problems. The functions automatically perform the printing of a GiNaC expression
6444 and the subsequent compiling of its associated C code. The created object code
6445 is then dynamically linked to the currently running program. A function pointer
6446 to the C function that performs the numerical evaluation is returned and can be
6447 used instantly. This all happens automatically, no user intervention is needed.
6448
6449 The following example demonstrates the use of @code{compile_ex}:
6450
6451 @example
6452     // ...
6453     symbol x("x");
6454     ex myexpr = sin(x) / x;
6455
6456     FUNCP_1P fp;
6457     compile_ex(myexpr, x, fp);
6458
6459     cout << fp(3.2) << endl;
6460     // ...
6461 @end example
6462
6463 The function @code{compile_ex} is called with the expression to be compiled and
6464 its only free variable @code{x}. Upon successful completion the third parameter
6465 contains a valid function pointer to the corresponding C code module. If called
6466 like in the last line only built-in double precision numerics is involved.
6467
6468 @cindex FUNCP_1P
6469 @cindex FUNCP_2P
6470 @cindex FUNCP_CUBA
6471 The function pointer has to be defined in advance. GiNaC offers three function
6472 pointer types at the moment:
6473
6474 @example
6475     typedef double (*FUNCP_1P) (double);
6476     typedef double (*FUNCP_2P) (double, double);
6477     typedef void (*FUNCP_CUBA) (const int*, const double[], const int*, double[]);
6478 @end example
6479
6480 @cindex CUBA library
6481 @cindex Monte Carlo integration
6482 @code{FUNCP_2P} allows for two variables in the expression. @code{FUNCP_CUBA} is
6483 the correct type to be used with the CUBA library
6484 (@uref{http://www.feynarts/cuba}) for numerical integrations. The details for the
6485 parameters of @code{FUNCP_CUBA} are explained in the CUBA manual.
6486
6487 @cindex compile_ex
6488 For every function pointer type there is a matching @code{compile_ex} available:
6489
6490 @example
6491     void compile_ex(const ex& expr, const symbol& sym, FUNCP_1P& fp,
6492                     const std::string filename = "");
6493     void compile_ex(const ex& expr, const symbol& sym1, const symbol& sym2,
6494                     FUNCP_2P& fp, const std::string filename = "");
6495     void compile_ex(const lst& exprs, const lst& syms, FUNCP_CUBA& fp,
6496                     const std::string filename = "");
6497 @end example
6498
6499 When the last parameter @code{filename} is not supplied, @code{compile_ex} will
6500 choose a unique random name for the intermediate source and object files it
6501 produces. On program termination these files will be deleted. If one wishes to
6502 keep the C code and the object files, one can supply the @code{filename}
6503 parameter. The intermediate files will use that filename and will not be
6504 deleted.
6505
6506 @cindex link_ex
6507 @code{link_ex} is a function that allows to dynamically link an existing object
6508 file and to make it available via a function pointer. This is useful if you
6509 have already used @code{compile_ex} on an expression and want to avoid the
6510 compilation step to be performed over and over again when you restart your
6511 program. The precondition for this is of course, that you have chosen a
6512 filename when you did call @code{compile_ex}. For every above mentioned
6513 function pointer type there exists a corresponding @code{link_ex} function:
6514
6515 @example
6516     void link_ex(const std::string filename, FUNCP_1P& fp);
6517     void link_ex(const std::string filename, FUNCP_2P& fp);
6518     void link_ex(const std::string filename, FUNCP_CUBA& fp);
6519 @end example
6520
6521 The complete filename (including the suffix @code{.so}) of the object file has
6522 to be supplied.
6523
6524 The function
6525
6526 @cindex unlink_ex
6527 @example
6528     void unlink_ex(const std::string filename);
6529 @end example
6530
6531 is supplied for the rare cases when one wishes to close the dynamically linked
6532 object files directly and have the intermediate files (only if filename has not
6533 been given) deleted. Normally one doesn't need this function, because all the
6534 clean-up will be done automatically upon (regular) program termination.
6535
6536 All the described functions will throw an exception in case they cannot perform
6537 correctly, like for example when writing the file or starting the compiler
6538 fails. Since internally the same printing methods as described in section
6539 @ref{csrc printing} are used, only functions and objects that are available in
6540 standard C will compile successfully (that excludes polylogarithms for example
6541 at the moment). Another precondition for success is, of course, that it must be
6542 possible to evaluate the expression numerically. No free variables despite the
6543 ones supplied to @code{compile_ex} should appear in the expression.
6544
6545 @cindex ginac-excompiler
6546 @code{compile_ex} uses the shell script @code{ginac-excompiler} to start the C
6547 compiler and produce the object files. This shell script comes with GiNaC and
6548 will be installed together with GiNaC in the configured @code{$PREFIX/bin}
6549 directory.
6550
6551 @subsection Archiving
6552 @cindex @code{archive} (class)
6553 @cindex archiving
6554
6555 GiNaC allows creating @dfn{archives} of expressions which can be stored
6556 to or retrieved from files. To create an archive, you declare an object
6557 of class @code{archive} and archive expressions in it, giving each
6558 expression a unique name:
6559
6560 @example
6561 #include <fstream>
6562 using namespace std;
6563 #include <ginac/ginac.h>
6564 using namespace GiNaC;
6565
6566 int main()
6567 @{
6568     symbol x("x"), y("y"), z("z");
6569
6570     ex foo = sin(x + 2*y) + 3*z + 41;
6571     ex bar = foo + 1;
6572
6573     archive a;
6574     a.archive_ex(foo, "foo");
6575     a.archive_ex(bar, "the second one");
6576     // ...
6577 @end example
6578
6579 The archive can then be written to a file:
6580
6581 @example
6582     // ...
6583     ofstream out("foobar.gar");
6584     out << a;
6585     out.close();
6586     // ...
6587 @end example
6588
6589 The file @file{foobar.gar} contains all information that is needed to
6590 reconstruct the expressions @code{foo} and @code{bar}.
6591
6592 @cindex @command{viewgar}
6593 The tool @command{viewgar} that comes with GiNaC can be used to view
6594 the contents of GiNaC archive files:
6595
6596 @example
6597 $ viewgar foobar.gar
6598 foo = 41+sin(x+2*y)+3*z
6599 the second one = 42+sin(x+2*y)+3*z
6600 @end example
6601
6602 The point of writing archive files is of course that they can later be
6603 read in again:
6604
6605 @example
6606     // ...
6607     archive a2;
6608     ifstream in("foobar.gar");
6609     in >> a2;
6610     // ...
6611 @end example
6612
6613 And the stored expressions can be retrieved by their name:
6614
6615 @example
6616     // ...
6617     lst syms;
6618     syms = x, y;
6619
6620     ex ex1 = a2.unarchive_ex(syms, "foo");
6621     ex ex2 = a2.unarchive_ex(syms, "the second one");
6622
6623     cout << ex1 << endl;              // prints "41+sin(x+2*y)+3*z"
6624     cout << ex2 << endl;              // prints "42+sin(x+2*y)+3*z"
6625     cout << ex1.subs(x == 2) << endl; // prints "41+sin(2+2*y)+3*z"
6626 @}
6627 @end example
6628
6629 Note that you have to supply a list of the symbols which are to be inserted
6630 in the expressions. Symbols in archives are stored by their name only and
6631 if you don't specify which symbols you have, unarchiving the expression will
6632 create new symbols with that name. E.g. if you hadn't included @code{x} in
6633 the @code{syms} list above, the @code{ex1.subs(x == 2)} statement would
6634 have had no effect because the @code{x} in @code{ex1} would have been a
6635 different symbol than the @code{x} which was defined at the beginning of
6636 the program, although both would appear as @samp{x} when printed.
6637
6638 You can also use the information stored in an @code{archive} object to
6639 output expressions in a format suitable for exact reconstruction. The
6640 @code{archive} and @code{archive_node} classes have a couple of member
6641 functions that let you access the stored properties:
6642
6643 @example
6644 static void my_print2(const archive_node & n)
6645 @{
6646     string class_name;
6647     n.find_string("class", class_name);
6648     cout << class_name << "(";
6649
6650     archive_node::propinfovector p;
6651     n.get_properties(p);
6652
6653     size_t num = p.size();
6654     for (size_t i=0; i<num; i++) @{
6655         const string &name = p[i].name;
6656         if (name == "class")
6657             continue;
6658         cout << name << "=";
6659
6660         unsigned count = p[i].count;
6661         if (count > 1)
6662             cout << "@{";
6663
6664         for (unsigned j=0; j<count; j++) @{
6665             switch (p[i].type) @{
6666                 case archive_node::PTYPE_BOOL: @{
6667                     bool x;
6668                     n.find_bool(name, x, j);
6669                     cout << (x ? "true" : "false");
6670                     break;
6671                 @}
6672                 case archive_node::PTYPE_UNSIGNED: @{
6673                     unsigned x;
6674                     n.find_unsigned(name, x, j);
6675                     cout << x;
6676                     break;
6677                 @}
6678                 case archive_node::PTYPE_STRING: @{
6679                     string x;
6680                     n.find_string(name, x, j);
6681                     cout << '\"' << x << '\"';
6682                     break;
6683                 @}
6684                 case archive_node::PTYPE_NODE: @{
6685                     const archive_node &x = n.find_ex_node(name, j);
6686                     my_print2(x);
6687                     break;
6688                 @}
6689             @}
6690
6691             if (j != count-1)
6692                 cout << ",";
6693         @}
6694
6695         if (count > 1)
6696             cout << "@}";
6697
6698         if (i != num-1)
6699             cout << ",";
6700     @}
6701
6702     cout << ")";
6703 @}
6704
6705 int main()
6706 @{
6707     ex e = pow(2, x) - y;
6708     archive ar(e, "e");
6709     my_print2(ar.get_top_node(0)); cout << endl;
6710     return 0;
6711 @}
6712 @end example
6713
6714 This will produce:
6715
6716 @example
6717 add(rest=@{power(basis=numeric(number="2"),exponent=symbol(name="x")),
6718 symbol(name="y")@},coeff=@{numeric(number="1"),numeric(number="-1")@},
6719 overall_coeff=numeric(number="0"))
6720 @end example
6721
6722 Be warned, however, that the set of properties and their meaning for each
6723 class may change between GiNaC versions.
6724
6725
6726 @node Extending GiNaC, What does not belong into GiNaC, Input/output, Top
6727 @c    node-name, next, previous, up
6728 @chapter Extending GiNaC
6729
6730 By reading so far you should have gotten a fairly good understanding of
6731 GiNaC's design patterns.  From here on you should start reading the
6732 sources.  All we can do now is issue some recommendations how to tackle
6733 GiNaC's many loose ends in order to fulfill everybody's dreams.  If you
6734 develop some useful extension please don't hesitate to contact the GiNaC
6735 authors---they will happily incorporate them into future versions.
6736
6737 @menu
6738 * What does not belong into GiNaC::  What to avoid.
6739 * Symbolic functions::               Implementing symbolic functions.
6740 * Printing::                         Adding new output formats.
6741 * Structures::                       Defining new algebraic classes (the easy way).
6742 * Adding classes::                   Defining new algebraic classes (the hard way).
6743 @end menu
6744
6745
6746 @node What does not belong into GiNaC, Symbolic functions, Extending GiNaC, Extending GiNaC
6747 @c    node-name, next, previous, up
6748 @section What doesn't belong into GiNaC
6749
6750 @cindex @command{ginsh}
6751 First of all, GiNaC's name must be read literally.  It is designed to be
6752 a library for use within C++.  The tiny @command{ginsh} accompanying
6753 GiNaC makes this even more clear: it doesn't even attempt to provide a
6754 language.  There are no loops or conditional expressions in
6755 @command{ginsh}, it is merely a window into the library for the
6756 programmer to test stuff (or to show off).  Still, the design of a
6757 complete CAS with a language of its own, graphical capabilities and all
6758 this on top of GiNaC is possible and is without doubt a nice project for
6759 the future.
6760
6761 There are many built-in functions in GiNaC that do not know how to
6762 evaluate themselves numerically to a precision declared at runtime
6763 (using @code{Digits}).  Some may be evaluated at certain points, but not
6764 generally.  This ought to be fixed.  However, doing numerical
6765 computations with GiNaC's quite abstract classes is doomed to be
6766 inefficient.  For this purpose, the underlying foundation classes
6767 provided by CLN are much better suited.
6768
6769
6770 @node Symbolic functions, Printing, What does not belong into GiNaC, Extending GiNaC
6771 @c    node-name, next, previous, up
6772 @section Symbolic functions
6773
6774 The easiest and most instructive way to start extending GiNaC is probably to
6775 create your own symbolic functions. These are implemented with the help of
6776 two preprocessor macros:
6777
6778 @cindex @code{DECLARE_FUNCTION}
6779 @cindex @code{REGISTER_FUNCTION}
6780 @example
6781 DECLARE_FUNCTION_<n>P(<name>)
6782 REGISTER_FUNCTION(<name>, <options>)
6783 @end example
6784
6785 The @code{DECLARE_FUNCTION} macro will usually appear in a header file. It
6786 declares a C++ function with the given @samp{name} that takes exactly @samp{n}
6787 parameters of type @code{ex} and returns a newly constructed GiNaC
6788 @code{function} object that represents your function.
6789
6790 The @code{REGISTER_FUNCTION} macro implements the function. It must be passed
6791 the same @samp{name} as the respective @code{DECLARE_FUNCTION} macro, and a
6792 set of options that associate the symbolic function with C++ functions you
6793 provide to implement the various methods such as evaluation, derivative,
6794 series expansion etc. They also describe additional attributes the function
6795 might have, such as symmetry and commutation properties, and a name for
6796 LaTeX output. Multiple options are separated by the member access operator
6797 @samp{.} and can be given in an arbitrary order.
6798
6799 (By the way: in case you are worrying about all the macros above we can
6800 assure you that functions are GiNaC's most macro-intense classes. We have
6801 done our best to avoid macros where we can.)
6802
6803 @subsection A minimal example
6804
6805 Here is an example for the implementation of a function with two arguments
6806 that is not further evaluated:
6807
6808 @example
6809 DECLARE_FUNCTION_2P(myfcn)
6810
6811 REGISTER_FUNCTION(myfcn, dummy())
6812 @end example
6813
6814 Any code that has seen the @code{DECLARE_FUNCTION} line can use @code{myfcn()}
6815 in algebraic expressions:
6816
6817 @example
6818 @{
6819     ...
6820     symbol x("x");
6821     ex e = 2*myfcn(42, 1+3*x) - x;
6822     cout << e << endl;
6823      // prints '2*myfcn(42,1+3*x)-x'
6824     ...
6825 @}
6826 @end example
6827
6828 The @code{dummy()} option in the @code{REGISTER_FUNCTION} line signifies
6829 "no options". A function with no options specified merely acts as a kind of
6830 container for its arguments. It is a pure "dummy" function with no associated
6831 logic (which is, however, sometimes perfectly sufficient).
6832
6833 Let's now have a look at the implementation of GiNaC's cosine function for an
6834 example of how to make an "intelligent" function.
6835
6836 @subsection The cosine function
6837
6838 The GiNaC header file @file{inifcns.h} contains the line
6839
6840 @example
6841 DECLARE_FUNCTION_1P(cos)
6842 @end example
6843
6844 which declares to all programs using GiNaC that there is a function @samp{cos}
6845 that takes one @code{ex} as an argument. This is all they need to know to use
6846 this function in expressions.
6847
6848 The implementation of the cosine function is in @file{inifcns_trans.cpp}. Here
6849 is its @code{REGISTER_FUNCTION} line:
6850
6851 @example
6852 REGISTER_FUNCTION(cos, eval_func(cos_eval).
6853                        evalf_func(cos_evalf).
6854                        derivative_func(cos_deriv).
6855                        latex_name("\\cos"));
6856 @end example
6857
6858 There are four options defined for the cosine function. One of them
6859 (@code{latex_name}) gives the function a proper name for LaTeX output; the
6860 other three indicate the C++ functions in which the "brains" of the cosine
6861 function are defined.
6862
6863 @cindex @code{hold()}
6864 @cindex evaluation
6865 The @code{eval_func()} option specifies the C++ function that implements
6866 the @code{eval()} method, GiNaC's anonymous evaluator. This function takes
6867 the same number of arguments as the associated symbolic function (one in this
6868 case) and returns the (possibly transformed or in some way simplified)
6869 symbolically evaluated function (@xref{Automatic evaluation}, for a description
6870 of the automatic evaluation process). If no (further) evaluation is to take
6871 place, the @code{eval_func()} function must return the original function
6872 with @code{.hold()}, to avoid a potential infinite recursion. If your
6873 symbolic functions produce a segmentation fault or stack overflow when
6874 using them in expressions, you are probably missing a @code{.hold()}
6875 somewhere.
6876
6877 The @code{eval_func()} function for the cosine looks something like this
6878 (actually, it doesn't look like this at all, but it should give you an idea
6879 what is going on):
6880
6881 @example
6882 static ex cos_eval(const ex & x)
6883 @{
6884     if ("x is a multiple of 2*Pi")
6885         return 1;
6886     else if ("x is a multiple of Pi")
6887         return -1;
6888     else if ("x is a multiple of Pi/2")
6889         return 0;
6890     // more rules...
6891
6892     else if ("x has the form 'acos(y)'")
6893         return y;
6894     else if ("x has the form 'asin(y)'")
6895         return sqrt(1-y^2);
6896     // more rules...
6897
6898     else
6899         return cos(x).hold();
6900 @}
6901 @end example
6902
6903 This function is called every time the cosine is used in a symbolic expression:
6904
6905 @example
6906 @{
6907     ...
6908     e = cos(Pi);
6909      // this calls cos_eval(Pi), and inserts its return value into
6910      // the actual expression
6911     cout << e << endl;
6912      // prints '-1'
6913     ...
6914 @}
6915 @end example
6916
6917 In this way, @code{cos(4*Pi)} automatically becomes @math{1},
6918 @code{cos(asin(a+b))} becomes @code{sqrt(1-(a+b)^2)}, etc. If no reasonable
6919 symbolic transformation can be done, the unmodified function is returned
6920 with @code{.hold()}.
6921
6922 GiNaC doesn't automatically transform @code{cos(2)} to @samp{-0.416146...}.
6923 The user has to call @code{evalf()} for that. This is implemented in a
6924 different function:
6925
6926 @example
6927 static ex cos_evalf(const ex & x)
6928 @{
6929     if (is_a<numeric>(x))
6930         return cos(ex_to<numeric>(x));
6931     else
6932         return cos(x).hold();
6933 @}
6934 @end example
6935
6936 Since we are lazy we defer the problem of numeric evaluation to somebody else,
6937 in this case the @code{cos()} function for @code{numeric} objects, which in
6938 turn hands it over to the @code{cos()} function in CLN. The @code{.hold()}
6939 isn't really needed here, but reminds us that the corresponding @code{eval()}
6940 function would require it in this place.
6941
6942 Differentiation will surely turn up and so we need to tell @code{cos}
6943 what its first derivative is (higher derivatives, @code{.diff(x,3)} for
6944 instance, are then handled automatically by @code{basic::diff} and
6945 @code{ex::diff}):
6946
6947 @example
6948 static ex cos_deriv(const ex & x, unsigned diff_param)
6949 @{
6950     return -sin(x);
6951 @}
6952 @end example
6953
6954 @cindex product rule
6955 The second parameter is obligatory but uninteresting at this point.  It
6956 specifies which parameter to differentiate in a partial derivative in
6957 case the function has more than one parameter, and its main application
6958 is for correct handling of the chain rule.
6959
6960 An implementation of the series expansion is not needed for @code{cos()} as
6961 it doesn't have any poles and GiNaC can do Taylor expansion by itself (as
6962 long as it knows what the derivative of @code{cos()} is). @code{tan()}, on
6963 the other hand, does have poles and may need to do Laurent expansion:
6964
6965 @example
6966 static ex tan_series(const ex & x, const relational & rel,
6967                      int order, unsigned options)
6968 @{
6969     // Find the actual expansion point
6970     const ex x_pt = x.subs(rel);
6971
6972     if ("x_pt is not an odd multiple of Pi/2")
6973         throw do_taylor();  // tell function::series() to do Taylor expansion
6974
6975     // On a pole, expand sin()/cos()
6976     return (sin(x)/cos(x)).series(rel, order+2, options);
6977 @}
6978 @end example
6979
6980 The @code{series()} implementation of a function @emph{must} return a
6981 @code{pseries} object, otherwise your code will crash.
6982
6983 @subsection Function options
6984
6985 GiNaC functions understand several more options which are always
6986 specified as @code{.option(params)}. None of them are required, but you
6987 need to specify at least one option to @code{REGISTER_FUNCTION()}. There
6988 is a do-nothing option called @code{dummy()} which you can use to define
6989 functions without any special options.
6990
6991 @example
6992 eval_func(<C++ function>)
6993 evalf_func(<C++ function>)
6994 derivative_func(<C++ function>)
6995 series_func(<C++ function>)
6996 conjugate_func(<C++ function>)
6997 @end example
6998
6999 These specify the C++ functions that implement symbolic evaluation,
7000 numeric evaluation, partial derivatives, and series expansion, respectively.
7001 They correspond to the GiNaC methods @code{eval()}, @code{evalf()},
7002 @code{diff()} and @code{series()}.
7003
7004 The @code{eval_func()} function needs to use @code{.hold()} if no further
7005 automatic evaluation is desired or possible.
7006
7007 If no @code{series_func()} is given, GiNaC defaults to simple Taylor
7008 expansion, which is correct if there are no poles involved. If the function
7009 has poles in the complex plane, the @code{series_func()} needs to check
7010 whether the expansion point is on a pole and fall back to Taylor expansion
7011 if it isn't. Otherwise, the pole usually needs to be regularized by some
7012 suitable transformation.
7013
7014 @example
7015 latex_name(const string & n)
7016 @end example
7017
7018 specifies the LaTeX code that represents the name of the function in LaTeX
7019 output. The default is to put the function name in an @code{\mbox@{@}}.
7020
7021 @example
7022 do_not_evalf_params()
7023 @end example
7024
7025 This tells @code{evalf()} to not recursively evaluate the parameters of the
7026 function before calling the @code{evalf_func()}.
7027
7028 @example
7029 set_return_type(unsigned return_type, unsigned return_type_tinfo)
7030 @end example
7031
7032 This allows you to explicitly specify the commutation properties of the
7033 function (@xref{Non-commutative objects}, for an explanation of
7034 (non)commutativity in GiNaC). For example, you can use
7035 @code{set_return_type(return_types::noncommutative, TINFO_matrix)} to make
7036 GiNaC treat your function like a matrix. By default, functions inherit the
7037 commutation properties of their first argument.
7038
7039 @example
7040 set_symmetry(const symmetry & s)
7041 @end example
7042
7043 specifies the symmetry properties of the function with respect to its
7044 arguments. @xref{Indexed objects}, for an explanation of symmetry
7045 specifications. GiNaC will automatically rearrange the arguments of
7046 symmetric functions into a canonical order.
7047
7048 Sometimes you may want to have finer control over how functions are
7049 displayed in the output. For example, the @code{abs()} function prints
7050 itself as @samp{abs(x)} in the default output format, but as @samp{|x|}
7051 in LaTeX mode, and @code{fabs(x)} in C source output. This is achieved
7052 with the
7053
7054 @example
7055 print_func<C>(<C++ function>)
7056 @end example
7057
7058 option which is explained in the next section.
7059
7060 @subsection Functions with a variable number of arguments
7061
7062 The @code{DECLARE_FUNCTION} and @code{REGISTER_FUNCTION} macros define
7063 functions with a fixed number of arguments. Sometimes, though, you may need
7064 to have a function that accepts a variable number of expressions. One way to
7065 accomplish this is to pass variable-length lists as arguments. The
7066 @code{Li()} function uses this method for multiple polylogarithms.
7067
7068 It is also possible to define functions that accept a different number of
7069 parameters under the same function name, such as the @code{psi()} function
7070 which can be called either as @code{psi(z)} (the digamma function) or as
7071 @code{psi(n, z)} (polygamma functions). These are actually two different
7072 functions in GiNaC that, however, have the same name. Defining such
7073 functions is not possible with the macros but requires manually fiddling
7074 with GiNaC internals. If you are interested, please consult the GiNaC source
7075 code for the @code{psi()} function (@file{inifcns.h} and
7076 @file{inifcns_gamma.cpp}).
7077
7078
7079 @node Printing, Structures, Symbolic functions, Extending GiNaC
7080 @c    node-name, next, previous, up
7081 @section GiNaC's expression output system
7082
7083 GiNaC allows the output of expressions in a variety of different formats
7084 (@pxref{Input/output}). This section will explain how expression output
7085 is implemented internally, and how to define your own output formats or
7086 change the output format of built-in algebraic objects. You will also want
7087 to read this section if you plan to write your own algebraic classes or
7088 functions.
7089
7090 @cindex @code{print_context} (class)
7091 @cindex @code{print_dflt} (class)
7092 @cindex @code{print_latex} (class)
7093 @cindex @code{print_tree} (class)
7094 @cindex @code{print_csrc} (class)
7095 All the different output formats are represented by a hierarchy of classes
7096 rooted in the @code{print_context} class, defined in the @file{print.h}
7097 header file:
7098
7099 @table @code
7100 @item print_dflt
7101 the default output format
7102 @item print_latex
7103 output in LaTeX mathematical mode
7104 @item print_tree
7105 a dump of the internal expression structure (for debugging)
7106 @item print_csrc
7107 the base class for C source output
7108 @item print_csrc_float
7109 C source output using the @code{float} type
7110 @item print_csrc_double
7111 C source output using the @code{double} type
7112 @item print_csrc_cl_N
7113 C source output using CLN types
7114 @end table
7115
7116 The @code{print_context} base class provides two public data members:
7117
7118 @example
7119 class print_context
7120 @{
7121     ...
7122 public:
7123     std::ostream & s;
7124     unsigned options;
7125 @};
7126 @end example
7127
7128 @code{s} is a reference to the stream to output to, while @code{options}
7129 holds flags and modifiers. Currently, there is only one flag defined:
7130 @code{print_options::print_index_dimensions} instructs the @code{idx} class
7131 to print the index dimension which is normally hidden.
7132
7133 When you write something like @code{std::cout << e}, where @code{e} is
7134 an object of class @code{ex}, GiNaC will construct an appropriate
7135 @code{print_context} object (of a class depending on the selected output
7136 format), fill in the @code{s} and @code{options} members, and call
7137
7138 @cindex @code{print()}
7139 @example
7140 void ex::print(const print_context & c, unsigned level = 0) const;
7141 @end example
7142
7143 which in turn forwards the call to the @code{print()} method of the
7144 top-level algebraic object contained in the expression.
7145
7146 Unlike other methods, GiNaC classes don't usually override their
7147 @code{print()} method to implement expression output. Instead, the default
7148 implementation @code{basic::print(c, level)} performs a run-time double
7149 dispatch to a function selected by the dynamic type of the object and the
7150 passed @code{print_context}. To this end, GiNaC maintains a separate method
7151 table for each class, similar to the virtual function table used for ordinary
7152 (single) virtual function dispatch.
7153
7154 The method table contains one slot for each possible @code{print_context}
7155 type, indexed by the (internally assigned) serial number of the type. Slots
7156 may be empty, in which case GiNaC will retry the method lookup with the
7157 @code{print_context} object's parent class, possibly repeating the process
7158 until it reaches the @code{print_context} base class. If there's still no
7159 method defined, the method table of the algebraic object's parent class
7160 is consulted, and so on, until a matching method is found (eventually it
7161 will reach the combination @code{basic/print_context}, which prints the
7162 object's class name enclosed in square brackets).
7163
7164 You can think of the print methods of all the different classes and output
7165 formats as being arranged in a two-dimensional matrix with one axis listing
7166 the algebraic classes and the other axis listing the @code{print_context}
7167 classes.
7168
7169 Subclasses of @code{basic} can, of course, also overload @code{basic::print()}
7170 to implement printing, but then they won't get any of the benefits of the
7171 double dispatch mechanism (such as the ability for derived classes to
7172 inherit only certain print methods from its parent, or the replacement of
7173 methods at run-time).
7174
7175 @subsection Print methods for classes
7176
7177 The method table for a class is set up either in the definition of the class,
7178 by passing the appropriate @code{print_func<C>()} option to
7179 @code{GINAC_IMPLEMENT_REGISTERED_CLASS_OPT()} (@xref{Adding classes}, for
7180 an example), or at run-time using @code{set_print_func<T, C>()}. The latter
7181 can also be used to override existing methods dynamically.
7182
7183 The argument to @code{print_func<C>()} and @code{set_print_func<T, C>()} can
7184 be a member function of the class (or one of its parent classes), a static
7185 member function, or an ordinary (global) C++ function. The @code{C} template
7186 parameter specifies the appropriate @code{print_context} type for which the
7187 method should be invoked, while, in the case of @code{set_print_func<>()}, the
7188 @code{T} parameter specifies the algebraic class (for @code{print_func<>()},
7189 the class is the one being implemented by
7190 @code{GINAC_IMPLEMENT_REGISTERED_CLASS_OPT}).
7191
7192 For print methods that are member functions, their first argument must be of
7193 a type convertible to a @code{const C &}, and the second argument must be an
7194 @code{unsigned}.
7195
7196 For static members and global functions, the first argument must be of a type
7197 convertible to a @code{const T &}, the second argument must be of a type
7198 convertible to a @code{const C &}, and the third argument must be an
7199 @code{unsigned}. A global function will, of course, not have access to
7200 private and protected members of @code{T}.
7201
7202 The @code{unsigned} argument of the print methods (and of @code{ex::print()}
7203 and @code{basic::print()}) is used for proper parenthesizing of the output
7204 (and by @code{print_tree} for proper indentation). It can be used for similar
7205 purposes if you write your own output formats.
7206
7207 The explanations given above may seem complicated, but in practice it's
7208 really simple, as shown in the following example. Suppose that we want to
7209 display exponents in LaTeX output not as superscripts but with little
7210 upwards-pointing arrows. This can be achieved in the following way:
7211
7212 @example
7213 void my_print_power_as_latex(const power & p,
7214                              const print_latex & c,
7215                              unsigned level)
7216 @{
7217     // get the precedence of the 'power' class
7218     unsigned power_prec = p.precedence();
7219
7220     // if the parent operator has the same or a higher precedence
7221     // we need parentheses around the power
7222     if (level >= power_prec)
7223         c.s << '(';
7224
7225     // print the basis and exponent, each enclosed in braces, and
7226     // separated by an uparrow
7227     c.s << '@{';
7228     p.op(0).print(c, power_prec);
7229     c.s << "@}\\uparrow@{";
7230     p.op(1).print(c, power_prec);
7231     c.s << '@}';
7232
7233     // don't forget the closing parenthesis
7234     if (level >= power_prec)
7235         c.s << ')';
7236 @}
7237                                                                                 
7238 int main()
7239 @{
7240     // a sample expression
7241     symbol x("x"), y("y");
7242     ex e = -3*pow(x, 3)*pow(y, -2) + pow(x+y, 2) - 1;
7243
7244     // switch to LaTeX mode
7245     cout << latex;
7246
7247     // this prints "-1+@{(y+x)@}^@{2@}-3 \frac@{x^@{3@}@}@{y^@{2@}@}"
7248     cout << e << endl;
7249
7250     // now we replace the method for the LaTeX output of powers with
7251     // our own one
7252     set_print_func<power, print_latex>(my_print_power_as_latex);
7253
7254     // this prints "-1+@{@{(y+x)@}@}\uparrow@{2@}-3 \frac@{@{x@}\uparrow@{3@}@}@{@{y@}
7255     //              \uparrow@{2@}@}"
7256     cout << e << endl;
7257 @}
7258 @end example
7259
7260 Some notes:
7261
7262 @itemize
7263
7264 @item
7265 The first argument of @code{my_print_power_as_latex} could also have been
7266 a @code{const basic &}, the second one a @code{const print_context &}.
7267
7268 @item
7269 The above code depends on @code{mul} objects converting their operands to
7270 @code{power} objects for the purpose of printing.
7271
7272 @item
7273 The output of products including negative powers as fractions is also
7274 controlled by the @code{mul} class.
7275
7276 @item
7277 The @code{power/print_latex} method provided by GiNaC prints square roots
7278 using @code{\sqrt}, but the above code doesn't.
7279
7280 @end itemize
7281
7282 It's not possible to restore a method table entry to its previous or default
7283 value. Once you have called @code{set_print_func()}, you can only override
7284 it with another call to @code{set_print_func()}, but you can't easily go back
7285 to the default behavior again (you can, of course, dig around in the GiNaC
7286 sources, find the method that is installed at startup
7287 (@code{power::do_print_latex} in this case), and @code{set_print_func} that
7288 one; that is, after you circumvent the C++ member access control@dots{}).
7289
7290 @subsection Print methods for functions
7291
7292 Symbolic functions employ a print method dispatch mechanism similar to the
7293 one used for classes. The methods are specified with @code{print_func<C>()}
7294 function options. If you don't specify any special print methods, the function
7295 will be printed with its name (or LaTeX name, if supplied), followed by a
7296 comma-separated list of arguments enclosed in parentheses.
7297
7298 For example, this is what GiNaC's @samp{abs()} function is defined like:
7299
7300 @example
7301 static ex abs_eval(const ex & arg) @{ ... @}
7302 static ex abs_evalf(const ex & arg) @{ ... @}
7303                                                                                 
7304 static void abs_print_latex(const ex & arg, const print_context & c)
7305 @{
7306     c.s << "@{|"; arg.print(c); c.s << "|@}";
7307 @}
7308                                                                                 
7309 static void abs_print_csrc_float(const ex & arg, const print_context & c)
7310 @{
7311     c.s << "fabs("; arg.print(c); c.s << ")";
7312 @}
7313                                                                                 
7314 REGISTER_FUNCTION(abs, eval_func(abs_eval).
7315                        evalf_func(abs_evalf).
7316                        print_func<print_latex>(abs_print_latex).
7317                        print_func<print_csrc_float>(abs_print_csrc_float).
7318                        print_func<print_csrc_double>(abs_print_csrc_float));
7319 @end example
7320
7321 This will display @samp{abs(x)} as @samp{|x|} in LaTeX mode and @code{fabs(x)}
7322 in non-CLN C source output, but as @code{abs(x)} in all other formats.
7323
7324 There is currently no equivalent of @code{set_print_func()} for functions.
7325
7326 @subsection Adding new output formats
7327
7328 Creating a new output format involves subclassing @code{print_context},
7329 which is somewhat similar to adding a new algebraic class
7330 (@pxref{Adding classes}). There is a macro @code{GINAC_DECLARE_PRINT_CONTEXT}
7331 that needs to go into the class definition, and a corresponding macro
7332 @code{GINAC_IMPLEMENT_PRINT_CONTEXT} that has to appear at global scope.
7333 Every @code{print_context} class needs to provide a default constructor
7334 and a constructor from an @code{std::ostream} and an @code{unsigned}
7335 options value.
7336
7337 Here is an example for a user-defined @code{print_context} class:
7338
7339 @example
7340 class print_myformat : public print_dflt
7341 @{
7342     GINAC_DECLARE_PRINT_CONTEXT(print_myformat, print_dflt)
7343 public:
7344     print_myformat(std::ostream & os, unsigned opt = 0)
7345      : print_dflt(os, opt) @{@}
7346 @};
7347
7348 print_myformat::print_myformat() : print_dflt(std::cout) @{@}
7349
7350 GINAC_IMPLEMENT_PRINT_CONTEXT(print_myformat, print_dflt)
7351 @end example
7352
7353 That's all there is to it. None of the actual expression output logic is
7354 implemented in this class. It merely serves as a selector for choosing
7355 a particular format. The algorithms for printing expressions in the new
7356 format are implemented as print methods, as described above.
7357
7358 @code{print_myformat} is a subclass of @code{print_dflt}, so it behaves
7359 exactly like GiNaC's default output format:
7360
7361 @example
7362 @{
7363     symbol x("x");
7364     ex e = pow(x, 2) + 1;
7365
7366     // this prints "1+x^2"
7367     cout << e << endl;
7368     
7369     // this also prints "1+x^2"
7370     e.print(print_myformat()); cout << endl;
7371
7372     ...
7373 @}
7374 @end example
7375
7376 To fill @code{print_myformat} with life, we need to supply appropriate
7377 print methods with @code{set_print_func()}, like this:
7378
7379 @example
7380 // This prints powers with '**' instead of '^'. See the LaTeX output
7381 // example above for explanations.
7382 void print_power_as_myformat(const power & p,
7383                              const print_myformat & c,
7384                              unsigned level)
7385 @{
7386     unsigned power_prec = p.precedence();
7387     if (level >= power_prec)
7388         c.s << '(';
7389     p.op(0).print(c, power_prec);
7390     c.s << "**";
7391     p.op(1).print(c, power_prec);
7392     if (level >= power_prec)
7393         c.s << ')';
7394 @}
7395
7396 @{
7397     ...
7398     // install a new print method for power objects
7399     set_print_func<power, print_myformat>(print_power_as_myformat);
7400
7401     // now this prints "1+x**2"
7402     e.print(print_myformat()); cout << endl;
7403
7404     // but the default format is still "1+x^2"
7405     cout << e << endl;
7406 @}
7407 @end example
7408
7409
7410 @node Structures, Adding classes, Printing, Extending GiNaC
7411 @c    node-name, next, previous, up
7412 @section Structures
7413
7414 If you are doing some very specialized things with GiNaC, or if you just
7415 need some more organized way to store data in your expressions instead of
7416 anonymous lists, you may want to implement your own algebraic classes.
7417 ('algebraic class' means any class directly or indirectly derived from
7418 @code{basic} that can be used in GiNaC expressions).
7419
7420 GiNaC offers two ways of accomplishing this: either by using the
7421 @code{structure<T>} template class, or by rolling your own class from
7422 scratch. This section will discuss the @code{structure<T>} template which
7423 is easier to use but more limited, while the implementation of custom
7424 GiNaC classes is the topic of the next section. However, you may want to
7425 read both sections because many common concepts and member functions are
7426 shared by both concepts, and it will also allow you to decide which approach
7427 is most suited to your needs.
7428
7429 The @code{structure<T>} template, defined in the GiNaC header file
7430 @file{structure.h}, wraps a type that you supply (usually a C++ @code{struct}
7431 or @code{class}) into a GiNaC object that can be used in expressions.
7432
7433 @subsection Example: scalar products
7434
7435 Let's suppose that we need a way to handle some kind of abstract scalar
7436 product of the form @samp{<x|y>} in expressions. Objects of the scalar
7437 product class have to store their left and right operands, which can in turn
7438 be arbitrary expressions. Here is a possible way to represent such a
7439 product in a C++ @code{struct}:
7440
7441 @example
7442 #include <iostream>
7443 using namespace std;
7444
7445 #include <ginac/ginac.h>
7446 using namespace GiNaC;
7447
7448 struct sprod_s @{
7449     ex left, right;
7450
7451     sprod_s() @{@}
7452     sprod_s(ex l, ex r) : left(l), right(r) @{@}
7453 @};
7454 @end example
7455
7456 The default constructor is required. Now, to make a GiNaC class out of this
7457 data structure, we need only one line:
7458
7459 @example
7460 typedef structure<sprod_s> sprod;
7461 @end example
7462
7463 That's it. This line constructs an algebraic class @code{sprod} which
7464 contains objects of type @code{sprod_s}. We can now use @code{sprod} in
7465 expressions like any other GiNaC class:
7466
7467 @example
7468 ...
7469     symbol a("a"), b("b");
7470     ex e = sprod(sprod_s(a, b));
7471 ...
7472 @end example
7473
7474 Note the difference between @code{sprod} which is the algebraic class, and
7475 @code{sprod_s} which is the unadorned C++ structure containing the @code{left}
7476 and @code{right} data members. As shown above, an @code{sprod} can be
7477 constructed from an @code{sprod_s} object.
7478
7479 If you find the nested @code{sprod(sprod_s())} constructor too unwieldy,
7480 you could define a little wrapper function like this:
7481
7482 @example
7483 inline ex make_sprod(ex left, ex right)
7484 @{
7485     return sprod(sprod_s(left, right));
7486 @}
7487 @end example
7488
7489 The @code{sprod_s} object contained in @code{sprod} can be accessed with
7490 the GiNaC @code{ex_to<>()} function followed by the @code{->} operator or
7491 @code{get_struct()}:
7492
7493 @example
7494 ...
7495     cout << ex_to<sprod>(e)->left << endl;
7496      // -> a
7497     cout << ex_to<sprod>(e).get_struct().right << endl;
7498      // -> b
7499 ...
7500 @end example
7501
7502 You only have read access to the members of @code{sprod_s}.
7503
7504 The type definition of @code{sprod} is enough to write your own algorithms
7505 that deal with scalar products, for example:
7506
7507 @example
7508 ex swap_sprod(ex p)
7509 @{
7510     if (is_a<sprod>(p)) @{
7511         const sprod_s & sp = ex_to<sprod>(p).get_struct();
7512         return make_sprod(sp.right, sp.left);
7513     @} else
7514         return p;
7515 @}
7516
7517 ...
7518     f = swap_sprod(e);
7519      // f is now <b|a>
7520 ...
7521 @end example
7522
7523 @subsection Structure output
7524
7525 While the @code{sprod} type is useable it still leaves something to be
7526 desired, most notably proper output:
7527
7528 @example
7529 ...
7530     cout << e << endl;
7531      // -> [structure object]
7532 ...
7533 @end example
7534
7535 By default, any structure types you define will be printed as
7536 @samp{[structure object]}. To override this you can either specialize the
7537 template's @code{print()} member function, or specify print methods with
7538 @code{set_print_func<>()}, as described in @ref{Printing}. Unfortunately,
7539 it's not possible to supply class options like @code{print_func<>()} to
7540 structures, so for a self-contained structure type you need to resort to
7541 overriding the @code{print()} function, which is also what we will do here.
7542
7543 The member functions of GiNaC classes are described in more detail in the
7544 next section, but it shouldn't be hard to figure out what's going on here:
7545
7546 @example
7547 void sprod::print(const print_context & c, unsigned level) const
7548 @{
7549     // tree debug output handled by superclass
7550     if (is_a<print_tree>(c))
7551         inherited::print(c, level);
7552
7553     // get the contained sprod_s object
7554     const sprod_s & sp = get_struct();
7555
7556     // print_context::s is a reference to an ostream
7557     c.s << "<" << sp.left << "|" << sp.right << ">";
7558 @}
7559 @end example
7560
7561 Now we can print expressions containing scalar products:
7562
7563 @example
7564 ...
7565     cout << e << endl;
7566      // -> <a|b>
7567     cout << swap_sprod(e) << endl;
7568      // -> <b|a>
7569 ...
7570 @end example
7571
7572 @subsection Comparing structures
7573
7574 The @code{sprod} class defined so far still has one important drawback: all
7575 scalar products are treated as being equal because GiNaC doesn't know how to
7576 compare objects of type @code{sprod_s}. This can lead to some confusing
7577 and undesired behavior:
7578
7579 @example
7580 ...
7581     cout << make_sprod(a, b) - make_sprod(a*a, b*b) << endl;
7582      // -> 0
7583     cout << make_sprod(a, b) + make_sprod(a*a, b*b) << endl;
7584      // -> 2*<a|b> or 2*<a^2|b^2> (which one is undefined)
7585 ...
7586 @end example
7587
7588 To remedy this, we first need to define the operators @code{==} and @code{<}
7589 for objects of type @code{sprod_s}:
7590
7591 @example
7592 inline bool operator==(const sprod_s & lhs, const sprod_s & rhs)
7593 @{
7594     return lhs.left.is_equal(rhs.left) && lhs.right.is_equal(rhs.right);
7595 @}
7596
7597 inline bool operator<(const sprod_s & lhs, const sprod_s & rhs)
7598 @{
7599     return lhs.left.compare(rhs.left) < 0
7600            ? true : lhs.right.compare(rhs.right) < 0;
7601 @}
7602 @end example
7603
7604 The ordering established by the @code{<} operator doesn't have to make any
7605 algebraic sense, but it needs to be well defined. Note that we can't use
7606 expressions like @code{lhs.left == rhs.left} or @code{lhs.left < rhs.left}
7607 in the implementation of these operators because they would construct
7608 GiNaC @code{relational} objects which in the case of @code{<} do not
7609 establish a well defined ordering (for arbitrary expressions, GiNaC can't
7610 decide which one is algebraically 'less').
7611
7612 Next, we need to change our definition of the @code{sprod} type to let
7613 GiNaC know that an ordering relation exists for the embedded objects:
7614
7615 @example
7616 typedef structure<sprod_s, compare_std_less> sprod;
7617 @end example
7618
7619 @code{sprod} objects then behave as expected:
7620
7621 @example
7622 ...
7623     cout << make_sprod(a, b) - make_sprod(a*a, b*b) << endl;
7624      // -> <a|b>-<a^2|b^2>
7625     cout << make_sprod(a, b) + make_sprod(a*a, b*b) << endl;
7626      // -> <a|b>+<a^2|b^2>
7627     cout << make_sprod(a, b) - make_sprod(a, b) << endl;
7628      // -> 0
7629     cout << make_sprod(a, b) + make_sprod(a, b) << endl;
7630      // -> 2*<a|b>
7631 ...
7632 @end example
7633
7634 The @code{compare_std_less} policy parameter tells GiNaC to use the
7635 @code{std::less} and @code{std::equal_to} functors to compare objects of
7636 type @code{sprod_s}. By default, these functors forward their work to the
7637 standard @code{<} and @code{==} operators, which we have overloaded.
7638 Alternatively, we could have specialized @code{std::less} and
7639 @code{std::equal_to} for class @code{sprod_s}.
7640
7641 GiNaC provides two other comparison policies for @code{structure<T>}
7642 objects: the default @code{compare_all_equal}, and @code{compare_bitwise}
7643 which does a bit-wise comparison of the contained @code{T} objects.
7644 This should be used with extreme care because it only works reliably with
7645 built-in integral types, and it also compares any padding (filler bytes of
7646 undefined value) that the @code{T} class might have.
7647
7648 @subsection Subexpressions
7649
7650 Our scalar product class has two subexpressions: the left and right
7651 operands. It might be a good idea to make them accessible via the standard
7652 @code{nops()} and @code{op()} methods:
7653
7654 @example
7655 size_t sprod::nops() const
7656 @{
7657     return 2;
7658 @}
7659
7660 ex sprod::op(size_t i) const
7661 @{
7662     switch (i) @{
7663     case 0:
7664         return get_struct().left;
7665     case 1:
7666         return get_struct().right;
7667     default:
7668         throw std::range_error("sprod::op(): no such operand");
7669     @}
7670 @}
7671 @end example
7672
7673 Implementing @code{nops()} and @code{op()} for container types such as
7674 @code{sprod} has two other nice side effects:
7675
7676 @itemize @bullet
7677 @item
7678 @code{has()} works as expected
7679 @item
7680 GiNaC generates better hash keys for the objects (the default implementation
7681 of @code{calchash()} takes subexpressions into account)
7682 @end itemize
7683
7684 @cindex @code{let_op()}
7685 There is a non-const variant of @code{op()} called @code{let_op()} that
7686 allows replacing subexpressions:
7687
7688 @example
7689 ex & sprod::let_op(size_t i)
7690 @{
7691     // every non-const member function must call this
7692     ensure_if_modifiable();
7693
7694     switch (i) @{
7695     case 0:
7696         return get_struct().left;
7697     case 1:
7698         return get_struct().right;
7699     default:
7700         throw std::range_error("sprod::let_op(): no such operand");
7701     @}
7702 @}
7703 @end example
7704
7705 Once we have provided @code{let_op()} we also get @code{subs()} and
7706 @code{map()} for free. In fact, every container class that returns a non-null
7707 @code{nops()} value must either implement @code{let_op()} or provide custom
7708 implementations of @code{subs()} and @code{map()}.
7709
7710 In turn, the availability of @code{map()} enables the recursive behavior of a
7711 couple of other default method implementations, in particular @code{evalf()},
7712 @code{evalm()}, @code{normal()}, @code{diff()} and @code{expand()}. Although
7713 we probably want to provide our own version of @code{expand()} for scalar
7714 products that turns expressions like @samp{<a+b|c>} into @samp{<a|c>+<b|c>}.
7715 This is left as an exercise for the reader.
7716
7717 The @code{structure<T>} template defines many more member functions that
7718 you can override by specialization to customize the behavior of your
7719 structures. You are referred to the next section for a description of
7720 some of these (especially @code{eval()}). There is, however, one topic
7721 that shall be addressed here, as it demonstrates one peculiarity of the
7722 @code{structure<T>} template: archiving.
7723
7724 @subsection Archiving structures
7725
7726 If you don't know how the archiving of GiNaC objects is implemented, you
7727 should first read the next section and then come back here. You're back?
7728 Good.
7729
7730 To implement archiving for structures it is not enough to provide
7731 specializations for the @code{archive()} member function and the
7732 unarchiving constructor (the @code{unarchive()} function has a default
7733 implementation). You also need to provide a unique name (as a string literal)
7734 for each structure type you define. This is because in GiNaC archives,
7735 the class of an object is stored as a string, the class name.
7736
7737 By default, this class name (as returned by the @code{class_name()} member
7738 function) is @samp{structure} for all structure classes. This works as long
7739 as you have only defined one structure type, but if you use two or more you
7740 need to provide a different name for each by specializing the
7741 @code{get_class_name()} member function. Here is a sample implementation
7742 for enabling archiving of the scalar product type defined above:
7743
7744 @example
7745 const char *sprod::get_class_name() @{ return "sprod"; @}
7746
7747 void sprod::archive(archive_node & n) const
7748 @{
7749     inherited::archive(n);
7750     n.add_ex("left", get_struct().left);
7751     n.add_ex("right", get_struct().right);
7752 @}
7753
7754 sprod::structure(const archive_node & n, lst & sym_lst) : inherited(n, sym_lst)
7755 @{
7756     n.find_ex("left", get_struct().left, sym_lst);
7757     n.find_ex("right", get_struct().right, sym_lst);
7758 @}
7759 @end example
7760
7761 Note that the unarchiving constructor is @code{sprod::structure} and not
7762 @code{sprod::sprod}, and that we don't need to supply an
7763 @code{sprod::unarchive()} function.
7764
7765
7766 @node Adding classes, A comparison with other CAS, Structures, Extending GiNaC
7767 @c    node-name, next, previous, up
7768 @section Adding classes
7769
7770 The @code{structure<T>} template provides an way to extend GiNaC with custom
7771 algebraic classes that is easy to use but has its limitations, the most
7772 severe of which being that you can't add any new member functions to
7773 structures. To be able to do this, you need to write a new class definition
7774 from scratch.
7775
7776 This section will explain how to implement new algebraic classes in GiNaC by
7777 giving the example of a simple 'string' class. After reading this section
7778 you will know how to properly declare a GiNaC class and what the minimum
7779 required member functions are that you have to implement. We only cover the
7780 implementation of a 'leaf' class here (i.e. one that doesn't contain
7781 subexpressions). Creating a container class like, for example, a class
7782 representing tensor products is more involved but this section should give
7783 you enough information so you can consult the source to GiNaC's predefined
7784 classes if you want to implement something more complicated.
7785
7786 @subsection GiNaC's run-time type information system
7787
7788 @cindex hierarchy of classes
7789 @cindex RTTI
7790 All algebraic classes (that is, all classes that can appear in expressions)
7791 in GiNaC are direct or indirect subclasses of the class @code{basic}. So a
7792 @code{basic *} (which is essentially what an @code{ex} is) represents a
7793 generic pointer to an algebraic class. Occasionally it is necessary to find
7794 out what the class of an object pointed to by a @code{basic *} really is.
7795 Also, for the unarchiving of expressions it must be possible to find the
7796 @code{unarchive()} function of a class given the class name (as a string). A
7797 system that provides this kind of information is called a run-time type
7798 information (RTTI) system. The C++ language provides such a thing (see the
7799 standard header file @file{<typeinfo>}) but for efficiency reasons GiNaC
7800 implements its own, simpler RTTI.
7801
7802 The RTTI in GiNaC is based on two mechanisms:
7803
7804 @itemize @bullet
7805
7806 @item
7807 The @code{basic} class declares a member variable @code{tinfo_key} which
7808 holds a variable of @code{tinfo_t} type (which is actually just
7809 @code{const void*}) that identifies the object's class.
7810
7811 @item
7812 By means of some clever tricks with static members, GiNaC maintains a list
7813 of information for all classes derived from @code{basic}. The information
7814 available includes the class names, the @code{tinfo_key}s, and pointers
7815 to the unarchiving functions. This class registry is defined in the
7816 @file{registrar.h} header file.
7817
7818 @end itemize
7819
7820 The disadvantage of this proprietary RTTI implementation is that there's
7821 a little more to do when implementing new classes (C++'s RTTI works more
7822 or less automatically) but don't worry, most of the work is simplified by
7823 macros.
7824
7825 @subsection A minimalistic example
7826
7827 Now we will start implementing a new class @code{mystring} that allows
7828 placing character strings in algebraic expressions (this is not very useful,
7829 but it's just an example). This class will be a direct subclass of
7830 @code{basic}. You can use this sample implementation as a starting point
7831 for your own classes @footnote{The self-contained source for this example is
7832 included in GiNaC, see the @file{doc/examples/mystring.cpp} file.}.
7833
7834 The code snippets given here assume that you have included some header files
7835 as follows:
7836
7837 @example
7838 #include <iostream>
7839 #include <string>   
7840 #include <stdexcept>
7841 using namespace std;
7842
7843 #include <ginac/ginac.h>
7844 using namespace GiNaC;
7845 @end example
7846
7847 Now we can write down the class declaration. The class stores a C++
7848 @code{string} and the user shall be able to construct a @code{mystring}
7849 object from a C or C++ string:
7850
7851 @example
7852 class mystring : public basic
7853 @{
7854     GINAC_DECLARE_REGISTERED_CLASS(mystring, basic)
7855   
7856 public:
7857     mystring(const string & s);
7858     mystring(const char * s);
7859
7860 private:
7861     string str;
7862 @};
7863
7864 GINAC_IMPLEMENT_REGISTERED_CLASS(mystring, basic)
7865 @end example
7866
7867 The @code{GINAC_DECLARE_REGISTERED_CLASS} and @code{GINAC_IMPLEMENT_REGISTERED_CLASS}
7868 macros are defined in @file{registrar.h}. They take the name of the class
7869 and its direct superclass as arguments and insert all required declarations
7870 for the RTTI system. The @code{GINAC_DECLARE_REGISTERED_CLASS} should be
7871 the first line after the opening brace of the class definition. The
7872 @code{GINAC_IMPLEMENT_REGISTERED_CLASS} may appear anywhere else in the
7873 source (at global scope, of course, not inside a function).
7874
7875 @code{GINAC_DECLARE_REGISTERED_CLASS} contains, among other things the
7876 declarations of the default constructor and a couple of other functions that
7877 are required. It also defines a type @code{inherited} which refers to the
7878 superclass so you don't have to modify your code every time you shuffle around
7879 the class hierarchy. @code{GINAC_IMPLEMENT_REGISTERED_CLASS} registers the
7880 class with the GiNaC RTTI (there is also a
7881 @code{GINAC_IMPLEMENT_REGISTERED_CLASS_OPT} which allows specifying additional
7882 options for the class, and which we will be using instead in a few minutes).
7883
7884 Now there are seven member functions we have to implement to get a working
7885 class:
7886
7887 @itemize
7888
7889 @item
7890 @code{mystring()}, the default constructor.
7891
7892 @item
7893 @code{void archive(archive_node & n)}, the archiving function. This stores all
7894 information needed to reconstruct an object of this class inside an
7895 @code{archive_node}.
7896
7897 @item
7898 @code{mystring(const archive_node & n, lst & sym_lst)}, the unarchiving
7899 constructor. This constructs an instance of the class from the information
7900 found in an @code{archive_node}.
7901
7902 @item
7903 @code{ex unarchive(const archive_node & n, lst & sym_lst)}, the static
7904 unarchiving function. It constructs a new instance by calling the unarchiving
7905 constructor.
7906
7907 @item
7908 @cindex @code{compare_same_type()}
7909 @code{int compare_same_type(const basic & other)}, which is used internally
7910 by GiNaC to establish a canonical sort order for terms. It returns 0, +1 or
7911 -1, depending on the relative order of this object and the @code{other}
7912 object. If it returns 0, the objects are considered equal.
7913 @strong{Please notice:} This has nothing to do with the (numeric) ordering
7914 relationship expressed by @code{<}, @code{>=} etc (which cannot be defined
7915 for non-numeric classes). For example, @code{numeric(1).compare_same_type(numeric(2))}
7916 may return +1 even though 1 is clearly smaller than 2. Every GiNaC class
7917 must provide a @code{compare_same_type()} function, even those representing
7918 objects for which no reasonable algebraic ordering relationship can be
7919 defined.
7920
7921 @item
7922 And, of course, @code{mystring(const string & s)} and @code{mystring(const char * s)}
7923 which are the two constructors we declared.
7924
7925 @end itemize
7926
7927 Let's proceed step-by-step. The default constructor looks like this:
7928
7929 @example
7930 mystring::mystring() : inherited(&mystring::tinfo_static) @{@}
7931 @end example
7932
7933 The golden rule is that in all constructors you have to set the
7934 @code{tinfo_key} member to the @code{&your_class_name::tinfo_static}
7935 @footnote{Each GiNaC class has a static member called tinfo_static.
7936 This member is declared by the GINAC_DECLARE_REGISTERED_CLASS macros
7937 and defined by the GINAC_IMPLEMENT_REGISTERED_CLASS macros.}. Otherwise
7938 it will be set by the constructor of the superclass and all hell will break
7939 loose in the RTTI. For your convenience, the @code{basic} class provides
7940 a constructor that takes a @code{tinfo_key} value, which we are using here
7941 (remember that in our case @code{inherited == basic}).  If the superclass
7942 didn't have such a constructor, we would have to set the @code{tinfo_key}
7943 to the right value manually.
7944
7945 In the default constructor you should set all other member variables to
7946 reasonable default values (we don't need that here since our @code{str}
7947 member gets set to an empty string automatically).
7948
7949 Next are the three functions for archiving. You have to implement them even
7950 if you don't plan to use archives, but the minimum required implementation
7951 is really simple.  First, the archiving function:
7952
7953 @example
7954 void mystring::archive(archive_node & n) const
7955 @{
7956     inherited::archive(n);
7957     n.add_string("string", str);
7958 @}
7959 @end example
7960
7961 The only thing that is really required is calling the @code{archive()}
7962 function of the superclass. Optionally, you can store all information you
7963 deem necessary for representing the object into the passed
7964 @code{archive_node}.  We are just storing our string here. For more
7965 information on how the archiving works, consult the @file{archive.h} header
7966 file.
7967
7968 The unarchiving constructor is basically the inverse of the archiving
7969 function:
7970
7971 @example
7972 mystring::mystring(const archive_node & n, lst & sym_lst) : inherited(n, sym_lst)
7973 @{
7974     n.find_string("string", str);
7975 @}
7976 @end example
7977
7978 If you don't need archiving, just leave this function empty (but you must
7979 invoke the unarchiving constructor of the superclass). Note that we don't
7980 have to set the @code{tinfo_key} here because it is done automatically
7981 by the unarchiving constructor of the @code{basic} class.
7982
7983 Finally, the unarchiving function:
7984
7985 @example
7986 ex mystring::unarchive(const archive_node & n, lst & sym_lst)
7987 @{
7988     return (new mystring(n, sym_lst))->setflag(status_flags::dynallocated);
7989 @}
7990 @end example
7991
7992 You don't have to understand how exactly this works. Just copy these
7993 four lines into your code literally (replacing the class name, of
7994 course).  It calls the unarchiving constructor of the class and unless
7995 you are doing something very special (like matching @code{archive_node}s
7996 to global objects) you don't need a different implementation. For those
7997 who are interested: setting the @code{dynallocated} flag puts the object
7998 under the control of GiNaC's garbage collection.  It will get deleted
7999 automatically once it is no longer referenced.
8000
8001 Our @code{compare_same_type()} function uses a provided function to compare
8002 the string members:
8003
8004 @example
8005 int mystring::compare_same_type(const basic & other) const
8006 @{
8007     const mystring &o = static_cast<const mystring &>(other);
8008     int cmpval = str.compare(o.str);
8009     if (cmpval == 0)
8010         return 0;
8011     else if (cmpval < 0)
8012         return -1;
8013     else
8014         return 1;
8015 @}
8016 @end example
8017
8018 Although this function takes a @code{basic &}, it will always be a reference
8019 to an object of exactly the same class (objects of different classes are not
8020 comparable), so the cast is safe. If this function returns 0, the two objects
8021 are considered equal (in the sense that @math{A-B=0}), so you should compare
8022 all relevant member variables.
8023
8024 Now the only thing missing is our two new constructors:
8025
8026 @example
8027 mystring::mystring(const string & s)
8028     : inherited(&mystring::tinfo_static), str(s) @{@}
8029 mystring::mystring(const char * s)
8030     : inherited(&mystring::tinfo_static), str(s) @{@}
8031 @end example
8032
8033 No surprises here. We set the @code{str} member from the argument and
8034 remember to pass the right @code{tinfo_key} to the @code{basic} constructor.
8035
8036 That's it! We now have a minimal working GiNaC class that can store
8037 strings in algebraic expressions. Let's confirm that the RTTI works:
8038
8039 @example
8040 ex e = mystring("Hello, world!");
8041 cout << is_a<mystring>(e) << endl;
8042  // -> 1 (true)
8043
8044 cout << ex_to<basic>(e).class_name() << endl;
8045  // -> mystring
8046 @end example
8047
8048 Obviously it does. Let's see what the expression @code{e} looks like:
8049
8050 @example
8051 cout << e << endl;
8052  // -> [mystring object]
8053 @end example
8054
8055 Hm, not exactly what we expect, but of course the @code{mystring} class
8056 doesn't yet know how to print itself. This can be done either by implementing
8057 the @code{print()} member function, or, preferably, by specifying a
8058 @code{print_func<>()} class option. Let's say that we want to print the string
8059 surrounded by double quotes:
8060
8061 @example
8062 class mystring : public basic
8063 @{
8064     ...
8065 protected:
8066     void do_print(const print_context & c, unsigned level = 0) const;
8067     ...
8068 @};
8069
8070 void mystring::do_print(const print_context & c, unsigned level) const
8071 @{
8072     // print_context::s is a reference to an ostream
8073     c.s << '\"' << str << '\"';
8074 @}
8075 @end example
8076
8077 The @code{level} argument is only required for container classes to
8078 correctly parenthesize the output.
8079
8080 Now we need to tell GiNaC that @code{mystring} objects should use the
8081 @code{do_print()} member function for printing themselves. For this, we
8082 replace the line
8083
8084 @example
8085 GINAC_IMPLEMENT_REGISTERED_CLASS(mystring, basic)
8086 @end example
8087
8088 with
8089
8090 @example
8091 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(mystring, basic,
8092   print_func<print_context>(&mystring::do_print))
8093 @end example
8094
8095 Let's try again to print the expression:
8096
8097 @example
8098 cout << e << endl;
8099  // -> "Hello, world!"
8100 @end example
8101
8102 Much better. If we wanted to have @code{mystring} objects displayed in a
8103 different way depending on the output format (default, LaTeX, etc.), we
8104 would have supplied multiple @code{print_func<>()} options with different
8105 template parameters (@code{print_dflt}, @code{print_latex}, etc.),
8106 separated by dots. This is similar to the way options are specified for
8107 symbolic functions. @xref{Printing}, for a more in-depth description of the
8108 way expression output is implemented in GiNaC.
8109
8110 The @code{mystring} class can be used in arbitrary expressions:
8111
8112 @example
8113 e += mystring("GiNaC rulez"); 
8114 cout << e << endl;
8115  // -> "GiNaC rulez"+"Hello, world!"
8116 @end example
8117
8118 (GiNaC's automatic term reordering is in effect here), or even
8119
8120 @example
8121 e = pow(mystring("One string"), 2*sin(Pi-mystring("Another string")));
8122 cout << e << endl;
8123  // -> "One string"^(2*sin(-"Another string"+Pi))
8124 @end example
8125
8126 Whether this makes sense is debatable but remember that this is only an
8127 example. At least it allows you to implement your own symbolic algorithms
8128 for your objects.
8129
8130 Note that GiNaC's algebraic rules remain unchanged:
8131
8132 @example
8133 e = mystring("Wow") * mystring("Wow");
8134 cout << e << endl;
8135  // -> "Wow"^2
8136
8137 e = pow(mystring("First")-mystring("Second"), 2);
8138 cout << e.expand() << endl;
8139  // -> -2*"First"*"Second"+"First"^2+"Second"^2
8140 @end example
8141
8142 There's no way to, for example, make GiNaC's @code{add} class perform string
8143 concatenation. You would have to implement this yourself.
8144
8145 @subsection Automatic evaluation
8146
8147 @cindex evaluation
8148 @cindex @code{eval()}
8149 @cindex @code{hold()}
8150 When dealing with objects that are just a little more complicated than the
8151 simple string objects we have implemented, chances are that you will want to
8152 have some automatic simplifications or canonicalizations performed on them.
8153 This is done in the evaluation member function @code{eval()}. Let's say that
8154 we wanted all strings automatically converted to lowercase with
8155 non-alphabetic characters stripped, and empty strings removed:
8156
8157 @example
8158 class mystring : public basic
8159 @{
8160     ...
8161 public:
8162     ex eval(int level = 0) const;
8163     ...
8164 @};
8165
8166 ex mystring::eval(int level) const
8167 @{
8168     string new_str;
8169     for (size_t i=0; i<str.length(); i++) @{
8170         char c = str[i];
8171         if (c >= 'A' && c <= 'Z') 
8172             new_str += tolower(c);
8173         else if (c >= 'a' && c <= 'z')
8174             new_str += c;
8175     @}
8176
8177     if (new_str.length() == 0)
8178         return 0;
8179     else
8180         return mystring(new_str).hold();
8181 @}
8182 @end example
8183
8184 The @code{level} argument is used to limit the recursion depth of the
8185 evaluation.  We don't have any subexpressions in the @code{mystring}
8186 class so we are not concerned with this.  If we had, we would call the
8187 @code{eval()} functions of the subexpressions with @code{level - 1} as
8188 the argument if @code{level != 1}.  The @code{hold()} member function
8189 sets a flag in the object that prevents further evaluation.  Otherwise
8190 we might end up in an endless loop.  When you want to return the object
8191 unmodified, use @code{return this->hold();}.
8192
8193 Let's confirm that it works:
8194
8195 @example
8196 ex e = mystring("Hello, world!") + mystring("!?#");
8197 cout << e << endl;
8198  // -> "helloworld"
8199
8200 e = mystring("Wow!") + mystring("WOW") + mystring(" W ** o ** W");  
8201 cout << e << endl;
8202  // -> 3*"wow"
8203 @end example
8204
8205 @subsection Optional member functions
8206
8207 We have implemented only a small set of member functions to make the class
8208 work in the GiNaC framework. There are two functions that are not strictly
8209 required but will make operations with objects of the class more efficient:
8210
8211 @cindex @code{calchash()}
8212 @cindex @code{is_equal_same_type()}
8213 @example
8214 unsigned calchash() const;
8215 bool is_equal_same_type(const basic & other) const;
8216 @end example
8217
8218 The @code{calchash()} method returns an @code{unsigned} hash value for the
8219 object which will allow GiNaC to compare and canonicalize expressions much
8220 more efficiently. You should consult the implementation of some of the built-in
8221 GiNaC classes for examples of hash functions. The default implementation of
8222 @code{calchash()} calculates a hash value out of the @code{tinfo_key} of the
8223 class and all subexpressions that are accessible via @code{op()}.
8224
8225 @code{is_equal_same_type()} works like @code{compare_same_type()} but only
8226 tests for equality without establishing an ordering relation, which is often
8227 faster. The default implementation of @code{is_equal_same_type()} just calls
8228 @code{compare_same_type()} and tests its result for zero.
8229
8230 @subsection Other member functions
8231
8232 For a real algebraic class, there are probably some more functions that you
8233 might want to provide:
8234
8235 @example
8236 bool info(unsigned inf) const;
8237 ex evalf(int level = 0) const;
8238 ex series(const relational & r, int order, unsigned options = 0) const;
8239 ex derivative(const symbol & s) const;
8240 @end example
8241
8242 If your class stores sub-expressions (see the scalar product example in the
8243 previous section) you will probably want to override
8244
8245 @cindex @code{let_op()}
8246 @example
8247 size_t nops() cont;
8248 ex op(size_t i) const;
8249 ex & let_op(size_t i);
8250 ex subs(const lst & ls, const lst & lr, unsigned options = 0) const;
8251 ex map(map_function & f) const;
8252 @end example
8253
8254 @code{let_op()} is a variant of @code{op()} that allows write access. The
8255 default implementations of @code{subs()} and @code{map()} use it, so you have
8256 to implement either @code{let_op()}, or @code{subs()} and @code{map()}.
8257
8258 You can, of course, also add your own new member functions. Remember
8259 that the RTTI may be used to get information about what kinds of objects
8260 you are dealing with (the position in the class hierarchy) and that you
8261 can always extract the bare object from an @code{ex} by stripping the
8262 @code{ex} off using the @code{ex_to<mystring>(e)} function when that
8263 should become a need.
8264
8265 That's it. May the source be with you!
8266
8267 @subsection Upgrading extension classes from older version of GiNaC
8268
8269 If you got some extension classes for GiNaC 1.3.X some changes are
8270 necessary in order to make your code work with GiNaC 1.4.
8271
8272 @itemize @bullet
8273 @item constructors which set @code{tinfo_key} such as
8274
8275 @example
8276 myclass::myclass() : inherited(TINFO_myclass) @{@}
8277 @end example
8278
8279 need to be rewritten as
8280
8281 @example
8282 myclass::myclass() : inherited(&myclass::tinfo_static) @{@}
8283 @end example
8284
8285 @item TINO_myclass is not necessary any more and can be removed.
8286
8287 @end itemize
8288
8289
8290 @node A comparison with other CAS, Advantages, Adding classes, Top
8291 @c    node-name, next, previous, up
8292 @chapter A Comparison With Other CAS
8293 @cindex advocacy
8294
8295 This chapter will give you some information on how GiNaC compares to
8296 other, traditional Computer Algebra Systems, like @emph{Maple},
8297 @emph{Mathematica} or @emph{Reduce}, where it has advantages and
8298 disadvantages over these systems.
8299
8300 @menu
8301 * Advantages::                       Strengths of the GiNaC approach.
8302 * Disadvantages::                    Weaknesses of the GiNaC approach.
8303 * Why C++?::                         Attractiveness of C++.
8304 @end menu
8305
8306 @node Advantages, Disadvantages, A comparison with other CAS, A comparison with other CAS
8307 @c    node-name, next, previous, up
8308 @section Advantages
8309
8310 GiNaC has several advantages over traditional Computer
8311 Algebra Systems, like 
8312
8313 @itemize @bullet
8314
8315 @item
8316 familiar language: all common CAS implement their own proprietary
8317 grammar which you have to learn first (and maybe learn again when your
8318 vendor decides to `enhance' it).  With GiNaC you can write your program
8319 in common C++, which is standardized.
8320
8321 @cindex STL
8322 @item
8323 structured data types: you can build up structured data types using
8324 @code{struct}s or @code{class}es together with STL features instead of
8325 using unnamed lists of lists of lists.
8326
8327 @item
8328 strongly typed: in CAS, you usually have only one kind of variables
8329 which can hold contents of an arbitrary type.  This 4GL like feature is
8330 nice for novice programmers, but dangerous.
8331     
8332 @item
8333 development tools: powerful development tools exist for C++, like fancy
8334 editors (e.g. with automatic indentation and syntax highlighting),
8335 debuggers, visualization tools, documentation generators@dots{}
8336
8337 @item
8338 modularization: C++ programs can easily be split into modules by
8339 separating interface and implementation.
8340
8341 @item
8342 price: GiNaC is distributed under the GNU Public License which means
8343 that it is free and available with source code.  And there are excellent
8344 C++-compilers for free, too.
8345     
8346 @item
8347 extendable: you can add your own classes to GiNaC, thus extending it on
8348 a very low level.  Compare this to a traditional CAS that you can
8349 usually only extend on a high level by writing in the language defined
8350 by the parser.  In particular, it turns out to be almost impossible to
8351 fix bugs in a traditional system.
8352
8353 @item
8354 multiple interfaces: Though real GiNaC programs have to be written in
8355 some editor, then be compiled, linked and executed, there are more ways
8356 to work with the GiNaC engine.  Many people want to play with
8357 expressions interactively, as in traditional CASs.  Currently, two such
8358 windows into GiNaC have been implemented and many more are possible: the
8359 tiny @command{ginsh} that is part of the distribution exposes GiNaC's
8360 types to a command line and second, as a more consistent approach, an
8361 interactive interface to the Cint C++ interpreter has been put together
8362 (called GiNaC-cint) that allows an interactive scripting interface
8363 consistent with the C++ language.  It is available from the usual GiNaC
8364 FTP-site.
8365
8366 @item
8367 seamless integration: it is somewhere between difficult and impossible
8368 to call CAS functions from within a program written in C++ or any other
8369 programming language and vice versa.  With GiNaC, your symbolic routines
8370 are part of your program.  You can easily call third party libraries,
8371 e.g. for numerical evaluation or graphical interaction.  All other
8372 approaches are much more cumbersome: they range from simply ignoring the
8373 problem (i.e. @emph{Maple}) to providing a method for `embedding' the
8374 system (i.e. @emph{Yacas}).
8375
8376 @item
8377 efficiency: often large parts of a program do not need symbolic
8378 calculations at all.  Why use large integers for loop variables or
8379 arbitrary precision arithmetics where @code{int} and @code{double} are
8380 sufficient?  For pure symbolic applications, GiNaC is comparable in
8381 speed with other CAS.
8382
8383 @end itemize
8384
8385
8386 @node Disadvantages, Why C++?, Advantages, A comparison with other CAS
8387 @c    node-name, next, previous, up
8388 @section Disadvantages
8389
8390 Of course it also has some disadvantages:
8391
8392 @itemize @bullet
8393
8394 @item
8395 advanced features: GiNaC cannot compete with a program like
8396 @emph{Reduce} which exists for more than 30 years now or @emph{Maple}
8397 which grows since 1981 by the work of dozens of programmers, with
8398 respect to mathematical features.  Integration, factorization,
8399 non-trivial simplifications, limits etc. are missing in GiNaC (and are
8400 not planned for the near future).
8401
8402 @item
8403 portability: While the GiNaC library itself is designed to avoid any
8404 platform dependent features (it should compile on any ANSI compliant C++
8405 compiler), the currently used version of the CLN library (fast large
8406 integer and arbitrary precision arithmetics) can only by compiled
8407 without hassle on systems with the C++ compiler from the GNU Compiler
8408 Collection (GCC).@footnote{This is because CLN uses PROVIDE/REQUIRE like
8409 macros to let the compiler gather all static initializations, which
8410 works for GNU C++ only.  Feel free to contact the authors in case you
8411 really believe that you need to use a different compiler.  We have
8412 occasionally used other compilers and may be able to give you advice.}
8413 GiNaC uses recent language features like explicit constructors, mutable
8414 members, RTTI, @code{dynamic_cast}s and STL, so ANSI compliance is meant
8415 literally.  Recent GCC versions starting at 2.95.3, although itself not
8416 yet ANSI compliant, support all needed features.
8417     
8418 @end itemize
8419
8420
8421 @node Why C++?, Internal structures, Disadvantages, A comparison with other CAS
8422 @c    node-name, next, previous, up
8423 @section Why C++?
8424
8425 Why did we choose to implement GiNaC in C++ instead of Java or any other
8426 language?  C++ is not perfect: type checking is not strict (casting is
8427 possible), separation between interface and implementation is not
8428 complete, object oriented design is not enforced.  The main reason is
8429 the often scolded feature of operator overloading in C++.  While it may
8430 be true that operating on classes with a @code{+} operator is rarely
8431 meaningful, it is perfectly suited for algebraic expressions.  Writing
8432 @math{3x+5y} as @code{3*x+5*y} instead of
8433 @code{x.times(3).plus(y.times(5))} looks much more natural.
8434 Furthermore, the main developers are more familiar with C++ than with
8435 any other programming language.
8436
8437
8438 @node Internal structures, Expressions are reference counted, Why C++? , Top
8439 @c    node-name, next, previous, up
8440 @appendix Internal structures
8441
8442 @menu
8443 * Expressions are reference counted::
8444 * Internal representation of products and sums::
8445 @end menu
8446
8447 @node Expressions are reference counted, Internal representation of products and sums, Internal structures, Internal structures
8448 @c    node-name, next, previous, up
8449 @appendixsection Expressions are reference counted
8450
8451 @cindex reference counting
8452 @cindex copy-on-write
8453 @cindex garbage collection
8454 In GiNaC, there is an @emph{intrusive reference-counting} mechanism at work
8455 where the counter belongs to the algebraic objects derived from class
8456 @code{basic} but is maintained by the smart pointer class @code{ptr}, of
8457 which @code{ex} contains an instance. If you understood that, you can safely
8458 skip the rest of this passage.
8459
8460 Expressions are extremely light-weight since internally they work like
8461 handles to the actual representation.  They really hold nothing more
8462 than a pointer to some other object.  What this means in practice is
8463 that whenever you create two @code{ex} and set the second equal to the
8464 first no copying process is involved. Instead, the copying takes place
8465 as soon as you try to change the second.  Consider the simple sequence
8466 of code:
8467
8468 @example
8469 #include <iostream>
8470 #include <ginac/ginac.h>
8471 using namespace std;
8472 using namespace GiNaC;
8473
8474 int main()
8475 @{
8476     symbol x("x"), y("y"), z("z");
8477     ex e1, e2;
8478
8479     e1 = sin(x + 2*y) + 3*z + 41;
8480     e2 = e1;                // e2 points to same object as e1
8481     cout << e2 << endl;     // prints sin(x+2*y)+3*z+41
8482     e2 += 1;                // e2 is copied into a new object
8483     cout << e2 << endl;     // prints sin(x+2*y)+3*z+42
8484 @}
8485 @end example
8486
8487 The line @code{e2 = e1;} creates a second expression pointing to the
8488 object held already by @code{e1}.  The time involved for this operation
8489 is therefore constant, no matter how large @code{e1} was.  Actual
8490 copying, however, must take place in the line @code{e2 += 1;} because
8491 @code{e1} and @code{e2} are not handles for the same object any more.
8492 This concept is called @dfn{copy-on-write semantics}.  It increases
8493 performance considerably whenever one object occurs multiple times and
8494 represents a simple garbage collection scheme because when an @code{ex}
8495 runs out of scope its destructor checks whether other expressions handle
8496 the object it points to too and deletes the object from memory if that
8497 turns out not to be the case.  A slightly less trivial example of
8498 differentiation using the chain-rule should make clear how powerful this
8499 can be:
8500
8501 @example
8502 @{
8503     symbol x("x"), y("y");
8504
8505     ex e1 = x + 3*y;
8506     ex e2 = pow(e1, 3);
8507     ex e3 = diff(sin(e2), x);   // first derivative of sin(e2) by x
8508     cout << e1 << endl          // prints x+3*y
8509          << e2 << endl          // prints (x+3*y)^3
8510          << e3 << endl;         // prints 3*(x+3*y)^2*cos((x+3*y)^3)
8511 @}
8512 @end example
8513
8514 Here, @code{e1} will actually be referenced three times while @code{e2}
8515 will be referenced two times.  When the power of an expression is built,
8516 that expression needs not be copied.  Likewise, since the derivative of
8517 a power of an expression can be easily expressed in terms of that
8518 expression, no copying of @code{e1} is involved when @code{e3} is
8519 constructed.  So, when @code{e3} is constructed it will print as
8520 @code{3*(x+3*y)^2*cos((x+3*y)^3)} but the argument of @code{cos()} only
8521 holds a reference to @code{e2} and the factor in front is just
8522 @code{3*e1^2}.
8523
8524 As a user of GiNaC, you cannot see this mechanism of copy-on-write
8525 semantics.  When you insert an expression into a second expression, the
8526 result behaves exactly as if the contents of the first expression were
8527 inserted.  But it may be useful to remember that this is not what
8528 happens.  Knowing this will enable you to write much more efficient
8529 code.  If you still have an uncertain feeling with copy-on-write
8530 semantics, we recommend you have a look at the
8531 @uref{http://www.parashift.com/c++-faq-lite/, C++-FAQ lite} by
8532 Marshall Cline.  Chapter 16 covers this issue and presents an
8533 implementation which is pretty close to the one in GiNaC.
8534
8535
8536 @node Internal representation of products and sums, Package tools, Expressions are reference counted, Internal structures
8537 @c    node-name, next, previous, up
8538 @appendixsection Internal representation of products and sums
8539
8540 @cindex representation
8541 @cindex @code{add}
8542 @cindex @code{mul}
8543 @cindex @code{power}
8544 Although it should be completely transparent for the user of
8545 GiNaC a short discussion of this topic helps to understand the sources
8546 and also explain performance to a large degree.  Consider the 
8547 unexpanded symbolic expression 
8548 @tex
8549 $2d^3 \left( 4a + 5b - 3 \right)$
8550 @end tex
8551 @ifnottex
8552 @math{2*d^3*(4*a+5*b-3)}
8553 @end ifnottex
8554 which could naively be represented by a tree of linear containers for
8555 addition and multiplication, one container for exponentiation with base
8556 and exponent and some atomic leaves of symbols and numbers in this
8557 fashion:
8558
8559 @ifnotinfo
8560 @image{repnaive}
8561 @end ifnotinfo
8562 @ifinfo
8563 <PICTURE MISSING>
8564 @end ifinfo
8565
8566 @cindex pair-wise representation
8567 However, doing so results in a rather deeply nested tree which will
8568 quickly become inefficient to manipulate.  We can improve on this by
8569 representing the sum as a sequence of terms, each one being a pair of a
8570 purely numeric multiplicative coefficient and its rest.  In the same
8571 spirit we can store the multiplication as a sequence of terms, each
8572 having a numeric exponent and a possibly complicated base, the tree
8573 becomes much more flat:
8574
8575 @ifnotinfo
8576 @image{reppair}
8577 @end ifnotinfo
8578 @ifinfo
8579 <PICTURE MISSING>
8580 @end ifinfo
8581
8582 The number @code{3} above the symbol @code{d} shows that @code{mul}
8583 objects are treated similarly where the coefficients are interpreted as
8584 @emph{exponents} now.  Addition of sums of terms or multiplication of
8585 products with numerical exponents can be coded to be very efficient with
8586 such a pair-wise representation.  Internally, this handling is performed
8587 by most CAS in this way.  It typically speeds up manipulations by an
8588 order of magnitude.  The overall multiplicative factor @code{2} and the
8589 additive term @code{-3} look somewhat out of place in this
8590 representation, however, since they are still carrying a trivial
8591 exponent and multiplicative factor @code{1} respectively.  Within GiNaC,
8592 this is avoided by adding a field that carries an overall numeric
8593 coefficient.  This results in the realistic picture of internal
8594 representation for
8595 @tex
8596 $2d^3 \left( 4a + 5b - 3 \right)$:
8597 @end tex
8598 @ifnottex
8599 @math{2*d^3*(4*a+5*b-3)}:
8600 @end ifnottex
8601
8602 @ifnotinfo
8603 @image{repreal}
8604 @end ifnotinfo
8605 @ifinfo
8606 <PICTURE MISSING>
8607 @end ifinfo
8608
8609 @cindex radical
8610 This also allows for a better handling of numeric radicals, since
8611 @code{sqrt(2)} can now be carried along calculations.  Now it should be
8612 clear, why both classes @code{add} and @code{mul} are derived from the
8613 same abstract class: the data representation is the same, only the
8614 semantics differs.  In the class hierarchy, methods for polynomial
8615 expansion and the like are reimplemented for @code{add} and @code{mul},
8616 but the data structure is inherited from @code{expairseq}.
8617
8618
8619 @node Package tools, Configure script options, Internal representation of products and sums, Top
8620 @c    node-name, next, previous, up
8621 @appendix Package tools
8622
8623 If you are creating a software package that uses the GiNaC library,
8624 setting the correct command line options for the compiler and linker can
8625 be difficult.  The @command{pkg-config} utility makes this process
8626 easier.  GiNaC supplies all necessary data in @file{ginac.pc} (installed
8627 into @code{/usr/local/lib/pkgconfig} by default). To compile a simple
8628 program use @footnote{If GiNaC is installed into some non-standard
8629 directory @var{prefix} one should set the @var{PKG_CONFIG_PATH}
8630 environment variable to @var{prefix}/lib/pkgconfig for this to work.}
8631 @example
8632 g++ -o simple `pkg-config --cflags --libs ginac` simple.cpp
8633 @end example
8634
8635 This command line might expand to (for example):
8636 @example
8637 g++ -o simple -lginac -lcln simple.cpp
8638 @end example
8639
8640 Not only is the form using @command{pkg-config} easier to type, it will
8641 work on any system, no matter how GiNaC was configured.
8642
8643 For packages configured using GNU automake, @command{pkg-config} also
8644 provides the @code{PKG_CHECK_MODULES} macro to automate the process of
8645 checking for libraries
8646
8647 @example
8648 PKG_CHECK_MODULES(MYAPP, ginac >= MINIMUM_VERSION, 
8649                   [@var{ACTION-IF-FOUND}],
8650                   [@var{ACTION-IF-NOT-FOUND}])
8651 @end example
8652
8653 This macro:
8654
8655 @itemize @bullet
8656
8657 @item
8658 Determines the location of GiNaC using data from @file{ginac.pc}, which is
8659 either found in the default @command{pkg-config} search path, or from 
8660 the environment variable @env{PKG_CONFIG_PATH}.
8661
8662 @item
8663 Tests the installed libraries to make sure that their version
8664 is later than @var{MINIMUM-VERSION}.
8665
8666 @item
8667 If the required version was found, sets the @env{MYAPP_CFLAGS} variable
8668 to the output of @command{pkg-config --cflags ginac} and the @env{MYAPP_LIBS}
8669 variable to the output of @command{pkg-config --libs ginac}, and calls
8670 @samp{AC_SUBST()} for these variables so they can be used in generated
8671 makefiles, and then executes @var{ACTION-IF-FOUND}.
8672
8673 @item
8674 If the required version was not found, executes @var{ACTION-IF-NOT-FOUND}.
8675
8676 @end itemize
8677
8678 @menu
8679 * Configure script options::  Configuring a package that uses GiNaC
8680 * Example package::           Example of a package using GiNaC
8681 @end menu
8682
8683
8684 @node Configure script options, Example package, Package tools, Package tools 
8685 @c    node-name, next, previous, up
8686 @subsection Configuring a package that uses GiNaC
8687
8688 The directory where the GiNaC libraries are installed needs
8689 to be found by your system's dynamic linkers (both compile- and run-time
8690 ones).  See the documentation of your system linker for details.  Also
8691 make sure that @file{ginac.pc} is in @command{pkg-config}'s search path,
8692 @xref{pkg-config, ,pkg-config, *manpages*}.
8693
8694 The short summary below describes how to do this on a GNU/Linux
8695 system.
8696
8697 Suppose GiNaC is installed into the directory @samp{PREFIX}. To tell
8698 the linkers where to find the library one should
8699
8700 @itemize @bullet
8701 @item
8702 edit @file{/etc/ld.so.conf} and run @command{ldconfig}. For example,
8703 @example
8704 # echo PREFIX/lib >> /etc/ld.so.conf
8705 # ldconfig
8706 @end example
8707
8708 @item
8709 or set the environment variables @env{LD_LIBRARY_PATH} and @env{LD_RUN_PATH}
8710 @example
8711 $ export LD_LIBRARY_PATH=PREFIX/lib
8712 $ export LD_RUN_PATH=PREFIX/lib
8713 @end example
8714
8715 @item
8716 or give a @samp{-L} and @samp{--rpath} flags when running configure,
8717 for instance:
8718
8719 @example
8720 $ LDFLAGS='-Wl,-LPREFIX/lib -Wl,--rpath=PREFIX/lib' ./configure
8721 @end example
8722 @end itemize
8723
8724 To tell @command{pkg-config} where the @file{ginac.pc} file is,
8725 set the @env{PKG_CONFIG_PATH} environment variable:
8726 @example
8727 $ export PKG_CONFIG_PATH=PREFIX/lib/pkgconfig
8728 @end example
8729
8730 Finally, run the @command{configure} script
8731 @example
8732 $ ./configure 
8733 @end example
8734
8735 @c There are many other ways to do the same, @xref{Options, ,Command Line Options, ld, GNU ld manual}.
8736
8737 @node Example package, Bibliography, Configure script options, Package tools
8738 @c    node-name, next, previous, up
8739 @subsection Example of a package using GiNaC
8740
8741 The following shows how to build a simple package using automake
8742 and the @samp{PKG_CHECK_MODULES} macro. The program used here is @file{simple.cpp}:
8743
8744 @example
8745 #include <iostream>
8746 #include <ginac/ginac.h>
8747
8748 int main()
8749 @{
8750     GiNaC::symbol x("x");
8751     GiNaC::ex a = GiNaC::sin(x);
8752     std::cout << "Derivative of " << a 
8753               << " is " << a.diff(x) << std::endl;
8754     return 0;
8755 @}
8756 @end example
8757
8758 You should first read the introductory portions of the automake
8759 Manual, if you are not already familiar with it.
8760
8761 Two files are needed, @file{configure.ac}, which is used to build the
8762 configure script:
8763
8764 @example
8765 dnl Process this file with autoreconf to produce a configure script.
8766 AC_INIT([simple], 1.0.0, bogus@@example.net)
8767 AC_CONFIG_SRCDIR(simple.cpp)
8768 AM_INIT_AUTOMAKE([foreign 1.8])
8769
8770 AC_PROG_CXX
8771 AC_PROG_INSTALL
8772 AC_LANG([C++])
8773
8774 PKG_CHECK_MODULES(SIMPLE, ginac >= 1.3.7)
8775
8776 AC_OUTPUT(Makefile)
8777 @end example
8778
8779 The @samp{PKG_CHECK_MODULES} macro does the following: If a GiNaC version
8780 greater or equal than 1.3.7 is found, then it defines @var{SIMPLE_CFLAGS}
8781 and @var{SIMPLE_LIBS}. Otherwise, it dies with the error message like
8782 @example
8783 configure: error: Package requirements (ginac >= 1.3.7) were not met:
8784
8785 Requested 'ginac >= 1.3.7' but version of GiNaC is 1.3.5
8786
8787 Consider adjusting the PKG_CONFIG_PATH environment variable if you
8788 installed software in a non-standard prefix.
8789
8790 Alternatively, you may set the environment variables SIMPLE_CFLAGS
8791 and SIMPLE_LIBS to avoid the need to call pkg-config.
8792 See the pkg-config man page for more details.
8793 @end example
8794
8795 And the @file{Makefile.am}, which will be used to build the Makefile.
8796
8797 @example
8798 ## Process this file with automake to produce Makefile.in
8799 bin_PROGRAMS = simple
8800 simple_SOURCES = simple.cpp
8801 simple_CPPFLAGS = $(SIMPLE_CFLAGS)
8802 simple_LDADD = $(SIMPLE_LIBS)
8803 @end example
8804
8805 This @file{Makefile.am}, says that we are building a single executable,
8806 from a single source file @file{simple.cpp}. Since every program
8807 we are building uses GiNaC we could have simply added @var{SIMPLE_CFLAGS}
8808 to @var{CPPFLAGS} and @var{SIMPLE_LIBS} to @var{LIBS}. However, it is
8809 more flexible to specify libraries and complier options on a per-program
8810 basis.
8811
8812 To try this example out, create a new directory and add the three
8813 files above to it.
8814
8815 Now execute the following command:
8816
8817 @example
8818 $ autoreconf -i
8819 @end example
8820
8821 You now have a package that can be built in the normal fashion
8822
8823 @example
8824 $ ./configure
8825 $ make
8826 $ make install
8827 @end example
8828
8829
8830 @node Bibliography, Concept index, Example package, Top
8831 @c    node-name, next, previous, up
8832 @appendix Bibliography
8833
8834 @itemize @minus{}
8835
8836 @item
8837 @cite{ISO/IEC 14882:1998: Programming Languages: C++}
8838
8839 @item
8840 @cite{CLN: A Class Library for Numbers}, @email{haible@@ilog.fr, Bruno Haible}
8841
8842 @item
8843 @cite{The C++ Programming Language}, Bjarne Stroustrup, 3rd Edition, ISBN 0-201-88954-4, Addison Wesley
8844
8845 @item
8846 @cite{C++ FAQs}, Marshall Cline, ISBN 0-201-58958-3, 1995, Addison Wesley
8847
8848 @item
8849 @cite{Algorithms for Computer Algebra}, Keith O. Geddes, Stephen R. Czapor,
8850 and George Labahn, ISBN 0-7923-9259-0, 1992, Kluwer Academic Publishers, Norwell, Massachusetts
8851
8852 @item
8853 @cite{Computer Algebra: Systems and Algorithms for Algebraic Computation},
8854 James H. Davenport, Yvon Siret and Evelyne Tournier, ISBN 0-12-204230-1, 1988, 
8855 Academic Press, London
8856
8857 @item
8858 @cite{Computer Algebra Systems - A Practical Guide},
8859 Michael J. Wester (editor), ISBN 0-471-98353-5, 1999, Wiley, Chichester
8860
8861 @item
8862 @cite{The Art of Computer Programming, Vol 2: Seminumerical Algorithms},
8863 Donald E. Knuth, ISBN 0-201-89684-2, 1998, Addison Wesley
8864
8865 @item
8866 @cite{Pi Unleashed}, J@"org Arndt and Christoph Haenel,
8867 ISBN 3-540-66572-2, 2001, Springer, Heidelberg
8868
8869 @item
8870 @cite{The Role of gamma5 in Dimensional Regularization}, Dirk Kreimer, hep-ph/9401354
8871
8872 @end itemize
8873
8874
8875 @node Concept index, , Bibliography, Top
8876 @c    node-name, next, previous, up
8877 @unnumbered Concept index
8878
8879 @printindex cp
8880
8881 @bye