1 /** @file series_expansion.cpp
3 * Series expansion test (Laurent and Taylor series). */
6 * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #ifndef NO_NAMESPACE_GINAC
26 using namespace GiNaC;
27 #endif // ndef NO_NAMESPACE_GINAC
31 static unsigned check_series(const ex &e, const ex &point, const ex &d, int order = 8)
33 ex es = e.series(x, point, order);
34 ex ep = ex_to_pseries(es).convert_to_poly();
35 if (!(ep - d).is_zero()) {
36 clog << "series expansion of " << e << " at " << point
37 << " erroneously returned " << ep << " (instead of " << d
39 (ep-d).printtree(clog);
46 static unsigned series1(void)
52 d = x - pow(x, 3) / 6 + pow(x, 5) / 120 - pow(x, 7) / 5040 + Order(pow(x, 8));
53 result += check_series(e, 0, d);
56 d = 1 - pow(x, 2) / 2 + pow(x, 4) / 24 - pow(x, 6) / 720 + Order(pow(x, 8));
57 result += check_series(e, 0, d);
60 d = 1 + x + pow(x, 2) / 2 + pow(x, 3) / 6 + pow(x, 4) / 24 + pow(x, 5) / 120 + pow(x, 6) / 720 + pow(x, 7) / 5040 + Order(pow(x, 8));
61 result += check_series(e, 0, d);
64 d = 1 + x + pow(x, 2) + pow(x, 3) + pow(x, 4) + pow(x, 5) + pow(x, 6) + pow(x, 7) + Order(pow(x, 8));
65 result += check_series(e, 0, d);
69 result += check_series(e, 0, d);
72 d = 2 + pow(x-1, 2) - pow(x-1, 3) + pow(x-1, 4) - pow(x-1, 5) + pow(x-1, 6) - pow(x-1, 7) + Order(pow(x-1, 8));
73 result += check_series(e, 1, d);
75 e = pow(x + pow(x, 3), -1);
76 d = pow(x, -1) - x + pow(x, 3) - pow(x, 5) + Order(pow(x, 7));
77 result += check_series(e, 0, d);
79 e = pow(pow(x, 2) + pow(x, 4), -1);
80 d = pow(x, -2) - 1 + pow(x, 2) - pow(x, 4) + Order(pow(x, 6));
81 result += check_series(e, 0, d);
84 d = pow(x, -2) + numeric(1,3) + pow(x, 2) / 15 + pow(x, 4) * 2/189 + Order(pow(x, 5));
85 result += check_series(e, 0, d);
88 d = x + pow(x, 3) / 3 + pow(x, 5) * 2/15 + pow(x, 7) * 17/315 + Order(pow(x, 8));
89 result += check_series(e, 0, d);
92 d = pow(x, -1) - x / 3 - pow(x, 3) / 45 - pow(x, 5) * 2/945 + Order(pow(x, 6));
93 result += check_series(e, 0, d);
95 e = pow(numeric(2), x);
96 ex t = log(ex(2)) * x;
97 d = 1 + t + pow(t, 2) / 2 + pow(t, 3) / 6 + pow(t, 4) / 24 + pow(t, 5) / 120 + pow(t, 6) / 720 + pow(t, 7) / 5040 + Order(pow(x, 8));
98 result += check_series(e, 0, d.expand());
102 d = 1 + t + pow(t, 2) / 2 + pow(t, 3) / 6 + pow(t, 4) / 24 + pow(t, 5) / 120 + pow(t, 6) / 720 + pow(t, 7) / 5040 + Order(pow(x, 8));
103 result += check_series(e, 0, d.expand());
109 static unsigned series2(void)
114 e = pow(sin(x), -1).series(x, 0, 8) + pow(sin(-x), -1).series(x, 0, 12);
115 d = Order(pow(x, 6));
116 result += check_series(e, 0, d);
121 // Series multiplication
122 static unsigned series3(void)
127 e = sin(x).series(x, 0, 8) * pow(sin(x), -1).series(x, 0, 12);
128 d = 1 + Order(pow(x, 7));
129 result += check_series(e, 0, d);
134 // Order term handling
135 static unsigned series4(void)
140 e = 1 + x + pow(x, 2) + pow(x, 3);
142 result += check_series(e, 0, d, 0);
144 result += check_series(e, 0, d, 1);
145 d = 1 + x + Order(pow(x, 2));
146 result += check_series(e, 0, d, 2);
147 d = 1 + x + pow(x, 2) + Order(pow(x, 3));
148 result += check_series(e, 0, d, 3);
149 d = 1 + x + pow(x, 2) + pow(x, 3);
150 result += check_series(e, 0, d, 4);
154 // Series of special functions
155 static unsigned series5(void)
162 d = pow(x+1,-1)*numeric(1,4) +
163 pow(x+1,0)*(numeric(3,4) -
164 numeric(1,2)*EulerGamma) +
165 pow(x+1,1)*(numeric(7,4) -
166 numeric(3,2)*EulerGamma +
167 numeric(1,2)*pow(EulerGamma,2) +
168 numeric(1,12)*pow(Pi,2)) +
169 pow(x+1,2)*(numeric(15,4) -
170 numeric(7,2)*EulerGamma -
171 numeric(1,3)*pow(EulerGamma,3) +
172 numeric(1,4)*pow(Pi,2) +
173 numeric(3,2)*pow(EulerGamma,2) -
174 numeric(1,6)*pow(Pi,2)*EulerGamma -
175 numeric(2,3)*zeta(3)) +
176 pow(x+1,3)*(numeric(31,4) - pow(EulerGamma,3) -
177 numeric(15,2)*EulerGamma +
178 numeric(1,6)*pow(EulerGamma,4) +
179 numeric(7,2)*pow(EulerGamma,2) +
180 numeric(7,12)*pow(Pi,2) -
181 numeric(1,2)*pow(Pi,2)*EulerGamma -
183 numeric(1,6)*pow(EulerGamma,2)*pow(Pi,2) +
184 numeric(1,40)*pow(Pi,4) +
185 numeric(4,3)*zeta(3)*EulerGamma) +
187 result += check_series(e, -1, d, 4);
191 d = pow(x-1,-1)/Pi*(-2) +
193 pow(x-1,3)*pow(Pi,3)/360 +
194 pow(x-1,5)*pow(Pi,5)/15120 +
195 pow(x-1,7)*pow(Pi,7)/604800 +
197 result += check_series(e,1,d,8);
202 unsigned series_expansion(void)
206 cout << "checking series expansion..." << flush;
207 clog << "---------series expansion:" << endl;
217 clog << "(no output)" << endl;