
doi:10.1006/jsco.2001.0494
Available online at http://www.idealibrary.com on

J. Symbolic Computation (2002) 33, 1–12

Introduction to the GiNaC Framework for Symbolic
Computation within the C++ Programming Language

CHRISTIAN BAUER, ALEXANDER FRINK AND RICHARD KRECKEL

Institute of Physics, Johannes-Gutenberg-University, Mainz, Germany

The traditional split into a low level language and a high level language in the design

of computer algebra systems may become obsolete with the advent of more versatile
computer languages. We describe GiNaC, a special-purpose system that deliberately

denies the need for such a distinction. It is entirely written in C++ and the user can

interact with it directly in that language. It was designed to provide efficient handling
of multivariate polynomials, algebras and special functions that are needed for loop

calculations in theoretical quantum field theory. It also bears some potential to become
a more general purpose symbolic package.

c© 2002 Academic Press

1. Introduction

Historically, in the design and implementation of symbolic computation engines, the
focus has always been rather on algebraic capabilities than on language design. The need
for efficient computation in all fields of science has led to the development of powerful
algorithms. Thus, the border line between inexact numerical and exact analytical com-
putation has moved, such that more computation may be done exactly before resorting
to numerical methods. This development has had great influence on the working practice
in such fields as engineering (e.g. robotics), computer science (e.g. networks), physics
(e.g. high energy physics) and even mathematics (from group theory to automatic theo-
rem proving in geometry).

This border line between analytical and numerical methods, however, has quite often
remained a painful obstacle in the successful application of computer algebra systems
(CASs). Usually, some results are obtained with the help of a CAS and these results are
integrated later into some other program. This is not only restricted to numerical results,
where one frequently translates the output of some CAS to C or even FORTRAN. It is
questionable whether the distinction between one language for writing down symbolical
algebra, one for obtaining numerical results and maybe a third one for integrating ev-
erything in a graphical user interface has any reason other than an historical one. In our
experience it frequently leads to confusion; the xloops project (Brücher et al., 1998) has
somewhat suffered from this.

The chapter “A Critique of the Mathematical Abilities of CA Systems” in Wester
(1999) has a section called “Mathematics versus Computer Science” where some misbe-
haviours of common CASs are shown. There, the first test tries to find out if a global
variable is accessed in some local context, in particular within sums, products, limits
and integrals. Of the seven systems tested, only Derive passed the test. Even explicitly

0747–7171/02/010001 + 12 $35.00/0 c© 2002 Academic Press

2 C. Bauer et al.

declaring a variable to be local does not always spare the programmer surprises: MapleV
Releases 3 to 5 for instance do not honour local variables if they are created by con-
catenating strings using the operator dot (.), a feature people often feel tempted to use
for elegant subscripting. So created variables may be used as lvalues in assigning a local
variable within a procedure but the result is a modified global variable.† Such violations
of scope have repeatedly led to subtle bugs within xloops. They are notoriously difficult
to disentangle since they go undetected until some other part of the programme breaks.

The general picture is that most currently used CASs are linguistically rather impover-
ished and put up high obstacles to the design of combined symbolical/numerical/graphical
programmes. An incomplete look into the toolchest of a C++ developer throws some light
on the features that any professional programmer will miss from common CA systems:

• structured data types like structs and classes instead of unnamed lists of lists,
• the object oriented (OO) programming paradigm in general,
• templates, which allow for generic (i.e. type-independent) programming even in a

strongly typed language,
• the Standard Template Library (STL), which provides convenient classes for many

kinds of containers with asymptotically ideal access methods and to a large degree
container-independent algorithms (sort, etc.) to be instantiated by the program-
mer,
• modularization facilities like namespaces,
• powerful development tools like editors (e.g. with automatic indentation and syntax

highlighting), debuggers, visualization tools, documentation generators, etc.,
• flexible error handling with exceptions,
• last, but not least, an established standard (ISO/IEC 14882-1998) which guards

the programmer from arbitrary changes made by the manufacturer which break
existing code.

Solutions for those problems so far are restricted to allowing calls to CAS functionality
from other languages and the already mentioned code generators. At most, bridges are
built to cross the gap, but no unification of the two worlds is achieved.

1.1. the goal

Loop calculations in quantum field theory (QFT) are one example of such a combined
symbolical and numerical effort. The n-fold nested integrals arising there are solved with
specialized methods that demand efficient handling of order 103–106 symbolic terms. At
the one-loop level, Feynman graphs can be expressed completely analytically and so in
the early 1990s our group started to build up the program package xloops based on
Maple. The continuation of xloops with Maple up to the two-loop level turned out to
be very difficult to accomplish. There were numerous technical issues of coding such as
the ones outlined above as well as a nasty restriction built into MapleV of no more than
216 terms in sums.

An analysis of xloops showed, however, that only a small part of Maple’s capability is
actually needed: composition of expressions consisting of symbols and elementary func-
tions, replacement of symbols by expressions, non-commuting objects, arbitrarily sized

†We have been told that Maple6 still suffers from this problem.

GiNaC 3

integers and rationals and arbitrary precision floats, collecting expressions in equal terms,
power series expansion, simplification of rational expressions and solutions of symbolic
linear equation systems.

It is possible to express all this directly in C++ if one introduces some special classes of
symbols, sums, products, etc. More generally, one wishes to freely pass general expressions
to functions and back. Here is an example of how some of these things are actually
expressed in C++ using the GiNaC† framework:

1 #include <ginac/ginac.h>
2 using namespace GiNaC;
3

4 ex HermitePoly(const symbol & x, int n)
5 {
6 const ex HGen = exp(-pow(x,2));
7 // uses the identity H_n(x) == (-1)^n exp(x^2) (d/dx)^n exp(-x^2)
8 return normal(pow(-1,n) * HGen.diff(x, n) / HGen);
9 }

10

11 int main(int argc, char **argv)
12 {
13 int degree = atoi(argv[1]);
14 numeric value = numeric(argv[2]);
15 symbol z("z");
16 ex H = HermitePoly(z,degree);
17 cout << "H_" << degree << "(z) == "
18 << H << endl;
19 cout << "H_" << degree << "(" << value << ") == "
20 << H.subs(z==value) << endl;
21 return 0;
22 }

When this program is compiled and called with 11 and 0.8 as command line arguments
it will readily print out the 11th Hermite polynomial together with that polynomial
evaluated numerically at z = 0.8:

1 H_11(z) == -665280*z+2217600*z^3-1774080*z^5+506880*z^7-56320*z^9+2048*z^11
2 H_11(0.8) == 120773.8855954841959

Alternatively, it may also be called with an exact rational second argument 4/5:

1 H_11(z) == -665280*z+2217600*z^3-1774080*z^5+506880*z^7-56320*z^9+2048*z^11
2 H_11(4/5) == 5897162382592/48828125

It calls the subroutine HermitePoly with the symbolic variable z and the desired order
as arguments. There, the Hermite polynomial is computed in a straightforward way us-
ing a Rodrigues representation. The normal() call therein cancels the generators HGen
in numerator and denominator. Note that the operators * and / have been overloaded
to allow expressive construction of composite expressions and that object-style method
invocations (obj.f(arg)) as well as function-style calls (f(obj,arg)) are possible. Tech-
nically, the whole GiNaC library is hidden in a namespace that needs to be imported
(for instance with the using directive in line 2) in order to allow easy integration with
other packages without potential name clashes. This is just a crude example that invites

†GiNaC is a recursive acronym for GiNaC is Not a CAS.

4 C. Bauer et al.

obvious refinement like parameter checking or rearranging the polynomial in order to
make it less sensitive to numerical rounding errors.

Since pattern matching is something that does not blend very naturally into the con-
text of a declarative language like C++ , GiNaC takes care to use term rewriting systems
which bring expressions into equivalent canonical forms as far as feasible in an economic
way. In addition, specialized transformations may be invoked by the user, for instance
an .expand() method for fully expanding polynomials or a .normal() method for poly-
nomial GCD cancellation. As for instance in Form (Vermaseren, 1991) the user alone is
responsible for deciding the order of steps to take in some application, there are only very
few rules built into GiNaC. The only kind of pattern matching we want to allow is an
atomic one, where inside an expression a symbol (or a list of symbols) is replaced by other
expressions in this fashion: (5*a).subs(a==b) ⇒ 5*b. We believe that such a conserva-
tive restriction should be acceptable to programmers of large systems since the potential
ambiguities introduced by pattern matching and overlapping rules can be rather subtle.

2. The Implementation

The implementation of GiNaC follows an OO philosophy: all algebraic classes that
may be manipulated by the system are derived from an abstract base class called basic.†

Some of the classes are atomic (symbols, numbers. . .), others are container classes (sums,
products. . .). Since at run-time container classes must be flexible enough to store different
objects whose size must, however, have already been defined at compile-time, we define
the class of all expressions, simply called ex. It is a wrapper class that stands outside
the class hierarchy and it mainly contains a pointer to some object of the class hierarchy.
The container classes thus may be restricted to hold objects of the wrapper class ex
(Figure 1). Because of this “handle” character, objects of class ex are also the ones the
user creates most of the time. Most operators have been overloaded to work within this
class and they are the most common arguments to the functions in GiNaC. Two obvious
drawbacks of this flexibility are the lack of type-safety at compile-time and possible
performance losses by additional function calls in method invocations. To some extent,
this can be remedied by carefully overloading specialized functions and operators. On the
other hand, the interplay between ex and basic (and all classes derived from it) enables
us to implement an efficient memory management using reference counting and copy-on-
write semantics: multiply occurring expressions (or subexpressions within an expression
tree) are shared in memory and copied only when they need to be modified in one part
of the program. This happens in a completely transparent way for the user. In order to
create one’s own classes managed this way it suffices to derive them from class basic.

Table 1 gives an overview of what classes are currently provided by GiNaC. We are
now going to describe some of them.

2.1. numbers

Arbitrarily sized integers, rationals and arbitrary precision floating point numbers are
all stored in the class numeric. This is an interface that encapsulates the foundation class
cl_N of Bruno Haible’s C++ library CLN (Haible, 2000) in a completely transparent way.

†Strictly speaking, GiNaC does not have any abstract base classes in the C++ sense, since there are
defaults for all methods. We therefore define an abstract base class to be one which does not make sense
to instantiate.

GiNaC 5

i
s
o
s
p
i
n

l
o
r
e
n
t
z
i
d
x

c
o
l
o
r
i
d
x

c
o
l
o
r

l
o
r
t
e
n
s
o
r

e
x
p
a
i
r
s
e
q

ex basic

i
d
x

s
y
m
b
o
l

c
o
n
s
t
a
n
t

n
u
m
e
r
i
c

m
a
t
r
i
x

r
e
l
a
t
i
o
n
a
l

m
u
l

a
d
d

p
o
w
e
r

p
s
e
r
i
e
s

l
o
r
v
e
c
t
o
r

c
l
i
f
f
o
r
d

e
x
p
r
s
e
q

l
s
t

i
n
d
e
x
e
d

n
c
m
u
l

f
u
n
c
t
i
o
n

basic

ex

wraps index
is

of

Cidx

C

B

A

is
derived
from

abstract class

container class atomic class

source of class created by Perl script

Figure 1. The GiNaC class hierarchy and some of the relations between the classes.

Table 1. List of the most important classes from Figure 1 and their purpose.

Class Description Examples

symbol algebraic symbols x

numeric polymorphic CLN numbers 42, 7
3
i, 0.12345678

constant symbols with associated numeric π
add sums of expressions a− 2b + 3

mul products of expressions 2a2(x+y+z)/b

power exponentials x2, a(b+c),
√

2

pseries truncated power series x− 1
6
x3 +O(x5)

function symbolic functions sin(2x)
lst list of expressions [x, 2y, 3 + z]

relational relation between two expressions x==y

matrix matrices (and vectors) of expressions
(1 x

−x 1

)
ncmul container for non-commutative objects γ0γ1

color, coloridx SU(3) Lie algebra element, -index Ta, δab, fabc

lortensor, lorentzidx Lorentz tensor, -index pµ, gµν

The choice fell to CLN because it provides fast and asymptotically ideal algorithms
for all basic operations (Karatsuba and Schönhage–Strassen multiplication) and a very
flexible way of dealing with rationals and complex numbers. Also, it does not put any

6 C. Bauer et al.

burden of memory management on us since all objects are reference-counted—just like
GiNaC’s—so there is no interference with garbage collection. Its polymorphic types are
perfectly suited for implementing a CAS, and were indeed written with this intention.
For instance, it honours the injection of the naturals into the rationals and of the complex
numbers into the reals: rationals are instantaneously and efficiently normalized to coprime
integer numerator and denominator and converted to integers if the resulting denominator
is unity and complex numbers are instantaneously converted to reals if the imaginary
part vanishes. Non-exact numbers i.e. floats and complex floats are constructed with any
user-defined accuracy.

GiNaC provides functions and operators defined on class numeric to the user so the
wrapper class ex may be circumvented. This provides some level of type-safety as well
as a considerable speedup.

2.2. symbols and constants

Symbols are represented by objects of class symbol. Thus, construction of symbols
is done by statements like symbol x,y;. In a compiled language like C++ the name
of a variable is of course unavailable to the running program. For printing purposes,
therefore, a constructor from a string is provided, i.e. symbol x("x"),y("y");. This is
reminiscent of Common Lisp’s (Steele, 1990) concept of print name. The responsibility
for not mixing up names (as in symbol x("y"),y("x");) is entirely laid on the user.
The string is not used at all for identification of objects. If omitted, the system will still
deal out a unique string.

Unlike in other symbolic system evaluators, expressions may not be assigned to sym-
bols. This is a restriction we had to introduce for the sake of consistency in the non-
symbolic language C++ . It is, however, possible to substitute a symbol within an expres-
sion with some other expression by calling the .subs() method.

Objects of class constant behave much like symbols except that they must return
some specific number (if possible to arbitrary accuracy) when the method .evalf() is
called. There are several predefined constants like π, etc. which have an associated func-
tion for numerical evaluation to arbitrary accuracy. Another possibility is an associated
fixed precision numeric. Thus, physical constants are easily constructed by the user, as
in this fragment:

1 constant qe("qe",numeric(1.60219e-19)); // elementary charge
2 cout << qe << endl; // prints ’qe’
3 cout << evalf(qe) << endl; // prints ’1.60219E-19’

2.3. polynomial arithmetic: the classes add, mul and power

With the main object of interest being efficient multivariate polynomials and rational
functions, GiNaC allows the creation of such objects using the overloaded operators +, -,
* and / and the overloaded function pow(b,e) for exponentiation of expressions b and e.†

When such an object is created, the built-in term rewriting rules of the classes add and
mul are automatically invoked to bring it into a canonical form. Subsequent comparison
of such objects is then easy and further supported by hash values. Due to the similarity

†It is also possible to overload operator ^ for exponentiation in C++ , but this would lead to trouble
since it always has lower precedence than *.

GiNaC 7

d

3 2

b

5

a

4 –3

e

–1 1

add

mul

Figure 2. Internal representation of the multivariate rational function 2d3(4a + 5b− 3)/e.

in the rewriting rules for sums and products the actual implementation is mostly hidden
in class expairseq, from which add and mul are derived. The internal representation is
an unexpanded distributive one. For performance reasons numerical coefficients in front
of monomials in sums and numerical exponents in products are treated separately (as
shown in Figure 2). The term rewriting rules for class power are restricted to those
simplifications that can be done efficiently.

GiNaC provides the usual set of operations on multivariate polynomials: determination
of degree and coefficients, expansion of products over sums, collection of coefficients of
like powers, conversion of rational expressions to a normal form (where numerator and
denominator are relatively prime polynomials), decomposition of polynomials into unit
part, content, and primitive part, and polynomial GCD and LCM computation. For the
latter, GiNaC implements the heuristic polynomial GCD algorithm described in Liao and
Fateman (1995), augmented by additional heuristics such as cancelling trivial common
factors (e.g. xn), eliminating variables that occur only in one polynomial, and special
handling of partially factored polynomials. If the heuristic algorithm fails, GiNaC falls
back to the subresultant PRS algorithm (Geddes et al., 1992). This approach has so far
proved successful for the application in xloops.

2.4. power series: the class pseries

Expressions may be differentiated with respect to any symbol and also expanded as
Taylor series or Laurent series. There is no distinction between those two. Series are in-
ternally stored in a truncated power series representation, optionally containing an order
term, in a special class pseries. This class implements efficient addition, multiplication,
and powering (including inversion) of series and can convert the internal representation
to an ordinary GiNaC expression (polynomial) as well.

A program fragment where the mass increase from special relativity γ = (1− (v
c)2)−1/2

is first Taylor expanded and then inverted and expanded again illuminates the behaviour
and syntax of class pseries to some extent:

1 symbol v("v"), c("c");
2 ex gamma = 1/sqrt(1 - pow(v/c,2));
3 ex gamma_nr = gamma.series(v==0, 6);
4 cout << pow(gamma_nr,-2) << endl;
5 cout << pow(gamma_nr,-2).series(v==0, 6) << endl;

8 C. Bauer et al.

Raising the series γnr to the power −2 in line 4 just returns
(
1 + 1

2 (v
c)2 + 3

8 (v
c)4 +

O(v6)
)−2. Only calling the series method again in line 5 makes the output simplify to

1− v2/c2 +O(v6).

2.5. functions

C++ functions are not suited for symbolic expressions as arguments. This is so because,
if the evaluation engine is unable to evaluate the argument, one wishes to return the func-
tion itself which would lead to an infinite recursion. If x is an indeterminate, then sin(x)
is supposed to return sin(x). In order to achieve this behaviour the class function is
introduced. Each object of this class represents a single function (sin, cos. . .) and meth-
ods for evaluation, differentiation and so on may be attached to it. The C++ preprocessor
is then used to define wrapper functions that return the corresponding objects of class
function. This allows us to write functions down in C++ fashion and obtain the be-
haviour one knows from usual CASs:

1 symbol x("x"), y("y");
2 ex Do = Pi*(x+y/2);
3 cout << "sin(" << Do << ") -> " << sin(Do) << endl;
4 ex Re = Do.subs(y==1);
5 cout << "sin(" << Re << ") -> " << sin(Re) << endl;
6 ex Mi = Re.subs(x==11);
7 cout << "sin(" << Mi << ") -> " << sin(Mi) << endl;
8 ex Fa = Mi.evalf();
9 cout << "sin(" << Fa << ") -> " << sin(Fa) << endl;

The above fragment prints:

1 sin(Pi*(x+1/2*y)) -> sin(Pi*(x+1/2*y))
2 sin(Pi*(1/2+x)) -> sin(Pi*(1/2+x))
3 sin(23/2*Pi) -> -1
4 sin(36.128315516282622243) -> -1.0

A great many functions are already predefined in GiNaC, some of them, however, not
yet with the full functionality. For instance, polygamma functions may not yet be eval-
uated numerically.

3. Benchmarks

Naturally, we want to know how GiNaC performs in comparison with other systems.
Therefore we subject it and some other symbolic manipulators to several stress tests on
different hardware architectures. All tests concentrate on non-C++ arithmetics (arbitrary
precision instead of hardware-near int, double) and symbolic expressions. GiNaC is
superior when it comes to algorithms that largely rely on machine-near data types. The
first two tests were inspired by typical operation patterns in elementary particle physics
where many different symbols and deeply nested functions need to be handled. They
are designed to detect flaws in the memory management and the implementation of
algorithms for manipulation of large container classes (products, sums. . .). This is done
by having a close look at the asymptotic runtime behaviour.

The first test (Figure 3, left) consists of three steps:

GiNaC 9

0.1

1

10

100

100 1000

R
un

tim
e

t/s

Size n

GiNaC 0.7
Mathematica 4

MapleV R5
MuPAD 1.3
Reduce 3.6

0.1

1

10

100

1000

10000

10 15 20 25 30 35 40 45

Order n

GiNaC 0.7
Mathematica 4

MapleV R5
MuPAD 1.4.1

Figure 3. Runtimes for a substitute-expand consistency test (left) and for series expansion of Γ(x)|x=0

(right). The tests are described in the text. The left graph was produced on an Alphaserver 8400, the

right one on an Intel P-III.

(1) let e be the expanded sum of n symbols {a0, . . . an−1} squared: e←
(∑n−1

i=0 ai

)2;

(2) in e substitute a0 ← −
∑n−1

i=2 ai;
(3) expand e again, it collapses to a1

2.

The third step is the computationally expensive one. The system has to match terms
in a sum of ≈2n2 elements and eliminate all but one. The timings are taken on an
Alphaserver 8400 with CPUs of type EV5 running at 300 MHz under Digital Unix 4.
This architecture was chosen specifically in order to give MapleV a chance, which has an
internal limitation of 216−1 terms in a sum on any other architecture.† This turns out to
limit the test to n < 182. This also forced us to resort to a rather old version of MuPAD
because no newer one is available for the Alpha platform. The tests were run until we
got bored (which we defined to be 400 s). Further continuation would also have required
more memory since some systems (particularly MuPAD) were allocating extraordinary
amounts of RAM. The slopes of the curves are interesting: those systems that base their
memory management on reference counts exhibit the quadratic scaling one would expect
from the nature of the test while systems with a garbage collector (Maple and Reduce)
start off faster and saturate earlier.

Next, we do a mixed test which, besides handling symbols, also involves the handling
of large rational numbers and the evaluation of functions at certain points (Figure 3,
right). We calculate the expansion of the gamma function around the pole at x = 0. The

†We do not have access to any newer version than MapleVR5. We were informed that the new release
Maple6 does not suffer from the 216 − 1 limitation any longer.

10 C. Bauer et al.

result up to order x2 is:

Γ(x) =
1
x
− γ +

(π2

12
+
γ2

2

)
x−

(π2γ

12
+
γ3

6
+
ζ(3)
3

)
x2 + · · · .

It is not completely clear what other systems are doing internally but GiNaC’s implemen-
tation is simple and lacks any optimization. It falls back to the evaluation of polygamma
functions ψn(1) which in turn requires the evaluation of Riemann’s Zeta function if their
argument is even and, hence, to Bernoulli numbers. We show two curves for Mathemat-
ica, since this system decides to return the result in the form of unevaluated polygamma
functions ψn(1). If one insists on a result comparable with the other systems one is forced
to introduce calls to FunctionExpand[], which slows the system down more than an or-
der of magnitude (upper curve). Without FunctionExpand[] its performance is only
slightly worse than GiNaC’s but with a funny excursion at high orders for which we do
not have an explanation. It should, however, be mentioned that for Mathematica that
ugly result in terms of ψn(1) can, under certain circumstances, be acceptable since it
may be handled further without resorting to ζ-functions. This becomes apparent when
one tries to evaluate the coefficients in the resulting series numerically. Maple’s internal
limitation results in the breakdown at order n = 35 in this test.

Next, we apply GiNaC to a number of tests invented by Lewis and Wester (1999).
Strictly speaking, these tests are very much geared towards the particular capabilities
of the system Fermat. This explains the abundance of benchmarks on Smith and Her-
mite normal forms of matrices with numerical entries. Nevertheless, we tried to subject
GiNaC to these tests where applicable.† The benchmarks were rerun on the same ma-
chine for those systems available to us and the rules of the game were slightly simplified:
each system was given the chance to run as long as it needed but it was not allowed to
allocate more than the physical memory available. The tests involving finite fields and
the ones involving Smith and Hermite forms were skipped, since they are not applica-
ble to GiNaC. Tests D and E were slightly rearranged in order to give a meaningful
and comparable result: Maple and MuPAD were forced to cancel common factors in
the result (using normal), something Pari-GP does automatically. The results shown in
Table 2 are encouraging but show room for optimization. They also demonstrate some
improvement of the other systems (notably Singular) over the original test performed
by Lewis and Wester. The reader interested in a detailed description of the tests may
consult Lewis and Wester (1999).

4. Conclusions and Further Work

Although the GiNaC framework was built specifically to become a symbolic engine for
complex computations in quantum field theory it is our hope that it turns out to be useful
for other applications, too. It provides only modest algebraic knowledge; instead it aims
at being a fast and reliable foundation for combined symbolical/numerical/graphical
projects in C++ . It may be downloaded and distributed under the terms of the GNU
general public license from http://www.ginac.de/. A tutorial introduction and complete
cross references of the source code can also be found there.

Because the cycle edit-compile-execute common for all compiled languages may be
rather tedious during development, care has been taken in the design of GiNaC to permit

†A fair number of these tests even found their way into the suite of GiNaC’s regression tests.

http://www.ginac.de/

GiNaC 11

Table 2. Runtimes in seconds for the tests proposed by Lewis and Wester (only as far as applicable to

GiNaC) on an Intel P-III 450 MHz, 384 MB RAM running under Linux. Abbreviations used: GU (gave

up), CR (crashed, out of memory), NA (not available), UN (unable, a prerequisite test failed).

GiNaC MapleV MuPAD Pari-GP Singular
Benchmark 0.7 R5 1.4.1 2.0.19β 1-3-7

A: divide factorials
(1000+i)!
(900+i)!

∣∣∣100
i=1

0.20 6.66 1.13 0.37 19.0

B:
∑1000

i=1 1/i 0.019 0.08 0.10 0.041 0.54

C: gcd(big integers) 0.25 10.2 3.01 1.65 0.11

D:
∑10

i=1 iyti/(y + it)i 0.78 0.13 1.21 0.20 NAa

E:
∑10

i=1 iyti/(y + |5− i|t)i 0.63 0.05 2.33 0.11 NAa

F: gcd(2-var polys) 0.08 0.08 0.21 0.057 0.13
G: gcd(3-var polys) 2.50 2.89 3.31 99.5 0.38

H: det(rank 80 Hilbert) 10.0 33.5 42.5 3.97 CR
I: invert rank 40 Hilbert 3.38 6.41 12.0 0.62 CR
J: check rank 40 Hilbert 1.61 2.28 2.95 0.22 UN

K: invert rank 70 Hilbert 22.1 92.0 74.0 5.90 CR
L: check rank 70 Hilbert 9.19 21.6 14.2 1.57 UN

M1: rank 26 symbolic sparse, det 0.36 0.40 0.75 0.016 0.003

M2: rank 101 symbolic sparse, det 1903.3 GU CR CR 251.2
N: eval poly at rational functions CR GU CR CR NA

O1: three rank 15 dets (average) 43.2 GU CR CR CR
O2: two GCDs CR UN UN UN UN
P: det(rank 101 numeric) 1.10 12.6 44.3 0.09 0.85
P’: det(less sparse rank 101) 6.07 13.3 46.2 0.38 1.25
Q: charpoly(P) 103.9 1429.7 741.7 0.15 4.4
Q’: charpoly(P’) 212.8 1497.3 243.1 CR 5.0

aWe were informed that benchmarks D and E can indeed be performed with Singular—it is just not
obvious what the right syntax is.

an interactive frontend to the library. Currently, there are two such interfaces. The first is
the tiny GiNaC interactive shell ginsh for quickly manipulating some expressions. It does
not provide any programming constructs, only back-reference to the last printed expres-
sions. The second is an interface to the Cint C++ interpreter used extensively at CERN
in the object-oriented data analysis framework ROOT (Brun and Rademakers, 1996).

Though at this stage GiNaC is already fully functional for the applications it was orig-
inally built for, numerous extensions are imaginable. The web page gives some hints in
this direction and further suggestions are more than welcome, as are third-party contri-
butions.

Acknowledgements

Part of this work was supported by ‘Graduiertenkolleg Eichtheorien–Experimentelle
Tests und theoretische Grundlagen’ at University of Mainz. The authors wish to thank
Oliver Welzel for fruitful discussions in the early phase of the project and Do Hoang Son
for extensive testing. Stimulating comments came from Richard Fateman about efficiency
in general, Michael Wester about his benchmarks, Stephen Watt about practical experi-
ences with memory management schemes and from Dirk Kreimer and Hubert Spiesberger
who contributed considerably by asking tons of good questions.

12 C. Bauer et al.

References

Brücher, L., Franzkowski, J., Kreimer, D. (1998). XLoops: Automated Feynman diagram calculation.
Comput. Phys. Commun., 115, 140–160.

Brun, R., Rademakers, F. (1996). ROOT—an object oriented data analysis framework. In Proceedings
of AIHENP 97. Lausanne, 1996, available from URL: ftp://root.cern.ch/root/laussanne.ps.gz.

Geddes, K. O., Czapor, S. R., Labahn, G. (1992). Algorithms for Computer Algebra. Boston, Kluwer
Academic Publishers.

Haible, B. (2000). CLN, a class library for numbers. see URL: http://clisp.cons.org/~haible/
packages-cln.html.

ISO/IEC 14882-1998(E) (1998). Programming Languages—C++ . American National Standards Insti-
tute.

Lewis, R. H., Wester, M. (1999). Comparison of polynomial-oriented computer algebra systems. SIGSAM
Bulletin, 33/4, 5–13, available from URL: http://www.fordham.edu/lewis/cacomp.html.

Liao, H.-C., Fateman, R. (1995). Evaluation of the heuristic polynomial GCD. In Proceedings of ISSAC
95 . Montreal, ACM Press, available from URL: http://http.cs.berkeley.edu/~fateman/papers/
phil8.ps.

Steele, G. L. (1990). Common Lisp the Language, 2nd edn. Woburn, MA, Digital Press.
Vermaseren, J. A. M. (1991). Symbolic Manipulation with Form, Version 2—Tutorial and Reference

Manual. Amsterdam, Computer Algebra Nederland.
Wester, M. ed. (1999). Computer Algebra Systems: A Practical Guide. Chichester, John Wiley & Sons.

Received 27 April 2000
Accepted 12 July 2001

ftp://root.cern.ch/root/laussanne.ps.gz
http://clisp.cons.org/~haible/packages-cln.html
http://clisp.cons.org/~haible/packages-cln.html
http://www.fordham.edu/lewis/cacomp.html
http://http.cs.berkeley.edu/~fateman/papers/phil8.ps
http://http.cs.berkeley.edu/~fateman/papers/phil8.ps

	Introduction
	The Implementation
	Fig. 1
	Table 1
	Fig. 2

	Benchmarks
	Fig. 3
	Table 2

	Conclusions and Further Work
	References

