
Fast multiprecision evaluation of series of rational numbers

Bruno Haible Thomas Papanikolaou
ILOG Laboratoire A2X

9, rue de Verdun 351, cours de la Libération

F – 94253 Gentilly Cedex F – 33405 Talence Cedex

haible@ilog.fr papanik@math.u-bordeaux.fr

Abstract

We describe two techniques for fast multiple-precision eval-
uation of linearly convergent series, including power series
and Ramanujan series. The computation time for N bits is
O((log N)2M(N)), where M(N) is the time needed to multi-
ply two N -bit numbers. Applications include fast algorithms
for elementary functions, π, hypergeometric functions at ra-
tional points, ζ(3), Euler’s, Catalan’s and Apéry’s constant.
The algorithms are suitable for parallel computation.

1 Introduction

Multiple-precision evaluation of real numbers has become
efficiently possible since Schönhage and Strassen [19] have
showed that the bit complexity of the multiplication of two
N -bit numbers is M(N) = O(N log N log log N). This is
not only a theoretical result; a C++ implementation [8] can
exploit this already for N = 40000 bits. Algorithms for
computing elementary functions (exp, log, sin, cos, tan, asin,
acos, atan, sinh, cosh, tanh, arsinh, arcosh, artanh) have
appeared in [4], and a remarkable algorithm for π was found
by Brent and Salamin [18].

However, all these algorithms suffer from the fact that
calculated results are not reusable, since the computation is
done using real arithmetic (using exact rational arithmetic
would be extremely inefficient). Therefore functions or con-
stants have to be recomputed from the scratch every time
higher precision is required.

In this note, we present algorithms for fast computation
of sums of the form

S =

∞∑
n=0

R(n)F (0) · · ·F (n)

where R(n) and F (n) are rational functions in n with ra-
tional coefficients, provided that this sum is linearly conver-
gent, i.e. that the n-th term is O(c−n) with c > 1. Examples
include elementary and hypergeometric functions at rational
points in the interior of the circle of convergence, as well as
π and Euler’s, Catalan’s and Apéry’s constants.

The presented algorithms are easy to implement and ex-
tremely efficient, since they take advantage of pure integer
arithmetic. The calculated results are exact, making check-
pointing and reuse of computations possible. Finally, the
computation of our algorithms can be easily parallelised.

After publishing the present paper, we were informed
that the results of section 2 were already published by E. Karat-
suba in [9, 10, 11, 12].

2 Evaluation of linearly convergent series

The technique presented here applies to all linearly conver-
gent sums of the form

S =

∞∑
n=0

a(n)

b(n)

p(0) · · · p(n)

q(0) · · · q(n)

where a(n), b(n), p(n), q(n) are integers with O(log n) bits.
The most often used case is that a(n), b(n), p(n), q(n) are
polynomials in n with integer coefficients.

Algorithm:

Given two index bounds n1 and n2, consider the partial
sum

S =
∑

n1≤n<n2

a(n)

b(n)

p(n1) · · · p(n)

q(n1) · · · q(n)

It is not computed directly. Instead, we compute the
integers P = p(n1) · · · p(n2 − 1), Q = q(n1) · · · q(n2 − 1),
B = b(n1) · · · b(n2 − 1) and T = BQS. If n2−n1 < 5, these
are computed directly. If n2 − n1 ≥ 5, they are computed
using binary splitting: Choose an index nm in the middle of
n1 and n2, compute the components Pl, Ql, Bl, Tl belonging
to the interval n1 ≤ n < nm, compute the components Pr,
Qr, Br, Tr belonging to the interval nm ≤ n < n2, and set
P = PlPr, Q = QlQr, B = BlBr and T = BrQrTl+BlPlTr.

Finally, this algorithm is applied to n1 = 0 and n2 =
nmax = O(N), and a final floating-point division S = T

BQ
is

performed.

Complexity:

The bit complexity of computing S with N bits of pre-
cision is O((log N)2M(N)).

Proof:



Since we have assumed the series to be linearly conver-
gent, the n-th term is O(c−n) with c > 1. Hence choosing

nmax = N log 2
log c

+ O(1) will ensure that the round-off error is

< 2−N . By our assumption that a(n), b(n), p(n), q(n) are
integers with O(log n) bits, the integers P , Q, B, T belong-
ing to the interval n1 ≤ n < n2 all have O((n2 − n1) log n2)
bits.

The algorithm’s recursion depth is d = log nmax
log 2

+ O(1).

At recursion depth k (1 ≤ k ≤ d), integers having each
O(nmax

2k log nmax) bits are multiplied. Thus, the entire com-
putation time t is

t =

d∑
k=1

2k−1O
(
M
(

nmax

2k
log nmax

))
=

d∑
k=1

O (M (nmax log nmax))

= O(log nmaxM(nmax log nmax))

Because of nmax = O( N
log c

) and

M

(
N

log c
log

N

log c

)
= O

(
1

log c
N (log N)2 log log N

)
= O

(
1

log c
log N M(N)

)
we have

t = O

(
1

log c
(log N)2M(N)

)
Considering c as constant, this is the desired result.

Checkpointing/Parallelising:

A checkpoint can be easily done by storing the (integer)
values of n1, n2, P , Q, B and T . Similarly, if m processors
are available, then the interval [0, nmax] can be divided into
m pieces of length l = bnmax/mc. After each processor i has
computed the sum of its interval [il, (i+1)l], the partial sums
are combined to the final result using the rules described
above.

Note:

For the special case a(n) = b(n) = 1, the binary splitting
algorithm has already been documented in [3], section 6, and
[2], section 10.2.3.

Explicit computation of P , Q, B, T is only required as a
recursion base, for n2 − n1 < 2, but avoiding recursions for
n2 − n1 < 5 gains some percent of execution speed.

The binary splitting algorithm is asymptotically faster
than step-by-step evaluation of the sum – which has binary
complexity O(N2) – because it pushes as much multipli-
cation work as possible to the region where multiplication
becomes efficient. If the multiplication were implemented
as an M(N) = O(N2) algorithm, the binary splitting algo-
rithm would provide no speedup over step-by-step evalua-
tion.

Implementation:

In the following we present a simplified C++ implemen-
tation of the above algorithm1. The initialisation is done by

1A complete implementation can be found in CLN [8]. The im-
plementation of the binary-splitting method will be also available in
LiDIA-1.4

a structure abpq series containing arrays a, b, p and q of
multiprecision integers (bigints). The values of the arrays
at the index n correspond to the values of the functions a,
b, p and q at the integer point n. The (partial) results of the
algorithm are stored in the abpq series result structure.

// abpq_series is initialised by user
struct { bigint *a, *b, *p, *q;

} abpq_series;

// abpq_series_result holds the partial results
struct { bigint P, Q, B, T;

} abpq_series_result;

// binary splitting summation for abpq_series
void sum_abpq(abpq_series_result & r,

int n1, int n2,
const abpq_series & arg)

{
// check the length of the summation interval
switch (n2 - n1)
{

case 0:
error_handler("summation device",

"sum_abpq:: n2-n1 should be > 0.");
break;

case 1: // the result at the point n1
r.P = arg.p[n1];
r.Q = arg.q[n1];
r.B = arg.b[n1];
r.T = arg.a[n1] * arg.p[n1];
break;

// cases 2, 3, 4 left out for simplicity

default: // the general case

// the left and the right partial sum
abpq_series_result L, R;

// find the middle of the interval
int nm = (n1 + n2) / 2;

// sum left side
sum_abpq(L, n1, nm, arg);

// sum right side
sum_abpq(R, nm, n2, arg);

// put together
r.P = L.P * R.P;
r.Q = L.Q * R.Q;
r.B = L.B * R.B;
r.T = R.B * R.Q * L.T + L.B * L.P * R.T;
break;

}
}

Note that the multiprecision integers could be replaced
here by integer polynomials, or by any other ring providing
the operators = (assignment), + (addition) and ∗ (multipli-
cation). For example, one could regard a bivariate polyno-
mial over the integers as a series over the second variable,
with polynomials over the first variable as its coefficients.
This would result an accelerated algorithm for summing bi-
variate (and thus multivariate) polynomials.



2.1 Example: The factorial

This is the most classical example of the binary splitting
algorithm and was probably known long before [2].

Computation of the factorial is best done using the bi-
nary splitting algorithm, combined with a reduction of the
even factors into odd factors and multiplication with a power
of 2, according to the formula

n! = 2n−σ2(n) ·
∏
k≥1

 ∏
n

2k
<2m+1≤ n

2k−1

(2m + 1)

k

and where the products

P (n1, n2) =
∏

n1<m≤n2

(2m + 1)

are evaluated according to the binary splitting algorithm:
P (n1, n2) = P (n1, nm)P (nm, n2) with nm =

⌊
n1+n2

2

⌋
if

n2 − n1 ≥ 5.

2.2 Example: Elementary functions at rational points

The binary splitting algorithm can be applied to the fast
computation of the elementary functions at rational points
x = u

v
, simply by using the power series. We present how

this can be done for exp(x), ln(x), sin(x), cos(x), arctan(x),
sinh(x) and cosh(x). The calculation of other elementary
functions is similar (or it can be reduced to the calculation
of these functions).

2.2.1 exp(x) for rational x

This is a direct application of the above algorithm with
a(n) = 1, b(n) = 1, p(0) = q(0) = 1, and p(n) = u,
q(n) = nv for n > 0. Because the series is not only lin-
early convergent – exp(x) is an entire function –, nmax =
O( N

log N+log 1
|x|

), hence the bit complexity is

O

(
(log N)2

log N + log 1
|x|

M(N)

)
Considering x as constant, this is O(log N M(N)).

2.2.2 exp(x) for real x

This can be computed using the addition theorem for exp,
by a trick due to Brent [3] (see also [2], section 10.2, exercise
8). Write

x = x0 +

∞∑
k=0

uk

vk

with x0 integer, vk = 22k

and |uk| < 22k−1
, and compute

exp(x) = exp(x0) ·
∏
k≥0

exp
(

uk

vk

)
This algorithm has bit complexity

O

(
O(log N)∑

k=0

(log N)2

log N + 2k
M(N)

)
= O((log N)2M(N))

2.2.3 ln(x) for rational x

For rational |x − 1| < 1, the binary splitting algorithm can
also be applied directly to the power series for ln(x). Write
x−1 = u

v
and compute the series with a(n) = 1, b(n) = n+1,

q(n) = v, p(0) = u, and p(n) = −u for n > 0.
This algorithm has bit complexity O((log N)2M(N)).

2.2.4 ln(x) for real x

This can be computed using the “inverse” Brent trick:
Start with y := 0.
As long as x 6= 1 within the actual precision, choose k

maximal with |x− 1| < 2−k. Put z = 2−2k
[
22k(x− 1)

]
, i.e.

let z contain the first k significant bits of x− 1. z is a good
approximation for ln(x). Set y := y+z and x := x ·exp(−z).

Since x · exp(y) is an invariant of the algorithm, the final
y is the desired value ln(x).

This algorithm has bit complexity

O

(
O(log N)∑

k=0

(log N)2

log N + 2k
M(N)

)
= O((log N)2M(N))

2.2.5 sin(x), cos(x) for rational x

These are direct applications of the binary splitting algo-
rithm: For sin(x), put a(n) = 1, b(n) = 1, p(0) = u,
q(0) = v, and p(n) = −u2, q(n) = (2n)(2n + 1)v2 for
n > 0. For cos(x), put a(n) = 1, b(n) = 1, p(0) = 1,
q(0) = 1, and p(n) = −u2, q(n) = (2n− 1)(2n)v2 for n > 0.
Of course, when both sin(x) and cos(x) are needed, one
should only compute sin(x) this way, and then set cos(x) =

±
√

1− sin(x)2. This is a 20% speedup at least.
The bit complexity of these algorithms is O(log NM(N)).

2.2.6 sin(x), cos(x) for real x

To compute cos(x) + i sin(x) = exp(ix) for real x, again
the addition theorems and Brent’s trick can be used. The
resulting algorithm has bit complexity O((log N)2M(N)).

2.2.7 arctan(x) for rational x

For rational |x| < 1, the fastest way to compute arctan(x)
with bit complexity O((log N)2M(N)) is to apply the binary
splitting algorithm directly to the power series for arctan(x).
Put a(n) = 1, b(n) = 2n + 1, q(n) = 1, p(0) = x and
p(n) = −x2 for n > 0.

2.2.8 arctan(x) for real x

This again can be computed using the “inverse” Brent trick:
Start out with z := 1√

1+x2
+ i x√

1+x2
and ϕ := 0. During

the algorithm z will be a complex number with |z| = 1 and
Re(z) > 0.

As long as Im(z) 6= 0 within the actual precision, choose

k maximal with | Im(z)| < 2−k. Put α = 2−2k
[
22k Im(z)

]
,

i.e. let α contain the first k significant bits of Im(z). α is a
good approximation for arcsin(Im(z)). Set ϕ := ϕ + α and
z := z · exp(−iα).

Since z ·exp(iϕ) is an invariant of the algorithm, the final
ϕ is the desired value arcsin x√

1+x2
.



This algorithm has bit complexity

O

(
O(log N)∑

k=0

(log N)2

log N + 2k
M(N)

)
= O((log N)2M(N))

2.2.9 sinh(x), cosh(x) for rational and real x

These can be computed by similar algorithms as sin(x) and
cos(x) above, with the same asymptotic bit complexity. The
standard computation, using exp(x) and its reciprocal (cal-
culated by the Newton method) results also to the same
complexity and works equally well in practice.

The bit complexity of these algorithms is O(log NM(N))
for rational x and O((log N)2M(N)) for real x.

2.3 Example: Hypergeometric functions at rational points

The binary splitting algorithm is well suited for the evalua-
tion of a hypergeometric series

F

(
a1, . . . , ar

b1, . . . , bs

∣∣x) =

∞∑
n=0

an
1 · · · an

r

bn
1 · · · bn

s

xn

with rational coefficients a1, ..., ar, b1, ..., bs at a rational
point x in the interior of the circle of convergence. Just

put a(n) = 1, b(n) = 1, p(0) = q(0) = 1, and p(n)
q(n)

=
(a1+n−1)···(ar+n−1)x
(b1+n−1)···(bs+n−1)

for n > 0. The evaluation can thus be

done with bit complexity O((log N)2M(N)) for r = s and
O(log N M(N)) for r < s.

2.4 Example: π

The Ramanujan series for π

1

π
=

12

C3/2

∞∑
n=0

(−1)n(6n)!(A + nB)

(3n)!n!3C3n

with A = 13591409, B = 545140134, C = 640320 found
by the Chudnovsky’s 2 and which is used by the LiDIA
[16, 15, 13] and the Pari [7] system to compute π, is usu-
ally written as an algorithm of bit complexity O(N2). It
is, however, possible to apply binary splitting to the sum.
Put a(n) = A + nB, b(n) = 1, p(0) = 1, q(0) = 1, and
p(n) = −(6n − 5)(2n − 1)(6n − 1), q(n) = n3C3/24 for
n > 0. This reduces the complexity to O((log N)2M(N)).
Although this is theoretically slower than Brent-Salamin’s
quadratically convergent iteration, which has a bit com-
plexity of O(log N M(N)), in practice the binary splitted
Ramanujan sum is three times faster than Brent-Salamin,
at least in the range from N = 1000 bits to N = 1000000
bits.

2.5 Example: Catalan’s constant G

A linearly convergent sum for Catalan’s constant

G :=

∞∑
n=0

(−1)n

(2n + 1)2

is given in [2], p. 386:

G =
3

8

∞∑
n=0

1(
2n
n

)
(2n + 1)2

+
π

8
log(2 +

√
3)

2A special case of [2], formula (5.5.18), with N=163.

The series is summed using binary splitting, putting a(n) =
1, b(n) = 2n + 1, p(0) = 1, q(0) = 1, and p(n) = n,
q(n) = 2(2n + 1) for n > 0. Thus G can be computed
with bit complexity O((log N)2M(N)).

2.6 Example: The Gamma function at rational points

For evaluating Γ(s) for rational s, we first reduce s to the
range 1 ≤ s ≤ 2 by the formula Γ(s + 1) = sΓ(s). To
compute Γ(s) with a precision of N bits, choose a positive
integer x with xe−x < 2−N . Partial integration lets us write

Γ(s) =

∫ ∞

0

e−tts−1dt

= xse−x

∞∑
n=0

xn

s(s + 1) · · · (s + n)
+

∫ ∞

x

e−tts−1dt

The last integral is < xe−x < 2−N . The series is evalu-
ated as a hypergeometric function (see above); the num-
ber of terms to be summed up is O(N), since x = O(N).
Thus the entire computation can be done with bit complex-
ity O((log N)2M(N)).

Note:

This result is already mentioned in [4].
E. Karatsuba [9] extends this result to Γ(s) for algebraic

s.
For Γ(s) there is no checkpointing possible because of

the dependency on x in the binary splitting.

2.7 Example: The Riemann Zeta value ζ(3)

Recently, Doron Zeilberger’s method of “creative telescop-
ing” has been applied to Riemann’s zeta function at s = 3
(see [1]), which is also known as Apéry’s constant:

ζ(3) =
1

2

∞∑
n=1

(−1)n−1(205n2 − 160n + 32)

n5
(
2n
n

)5
This sum consists of three hypergeometric series. Binary

splitting can also be applied directly, by putting a(n) =
205n2 + 250n + 77, b(n) = 1, p(0) = 1, p(n) = −n5 for
n > 0, and q(n) = 32(2n + 1)5. Thus the bit complexity of
computing ζ(3) is O((log N)2M(N)).

Note:

Using this the authors were able to establish a new record
in the calculation of ζ(3) by computing 1,000,000 decimals
[17]. The computation took 8 hours on a Hewlett Packard
9000/712 machine. After distributing on a cluster of 4 HP
9000/712 machines the same computation required only 2.5
hours. The half hour was necessary for reading the par-
tial results from disk and for recombining them. Again, we
have used binary-splitting for recombining: the 4 partial re-
sult produced 2 results which were combined to the final
1,000,000 decimals value of ζ(3).

This example shows the importance of checkpointing.
Even if a machine crashes through the calculation, the re-
sults of the other machines are still usable. Additionally,
being able to parallelise the computation reduced the com-
puting time dramatically.



3 Evaluation of linearly convergent series of sums

The technique presented in the previous section also applies
to all linearly convergent sums of the form

U =

∞∑
n=0

a(n)

b(n)

(
c(0)

d(0)
+ · · ·+ c(n)

d(n)

)
p(0) · · · p(n)

q(0) · · · q(n)

where a(n), b(n), c(n), d(n), p(n), q(n) are integers with
O(log n) bits. The most often used case is again that a(n),
b(n), c(n), d(n), p(n), q(n) are polynomials in n with integer
coefficients.

Algorithm:

Given two index bounds n1and n2, consider the partial
sums

S =
∑

n1≤n<n2

a(n)

b(n)

p(n1) · · · p(n)

q(n1) · · · q(n)

and

U =
∑

n1≤n<n2

a(n)

b(n)

(
c(n1)

d(n1)
+ · · ·+ c(n)

d(n)

)
p(n1) · · · p(n)

q(n1) · · · q(n)

As above, we compute the integers P = p(n1) · · · p(n2 − 1),
Q = q(n1) · · · q(n2 − 1), B = b(n1) · · · b(n2 − 1), T = BQS,

D = d(n1) · · · d(n2 − 1), C = D
(

c(n1)
d(n1)

+ · · ·+ c(n2−1)
d(n2−1)

)
and

V = DBQU . If n2 − n1 < 4, these are computed di-
rectly. If n2 − n1 ≥ 4, they are computed using binary
splitting: Choose an index nm in the middle of n1and n2,
compute the components Pl, Ql, Bl, Tl, Dl, Cl, Vl belong-
ing to the interval n1 ≤ n < nm, compute the compo-
nents Pr, Qr, Br, Tr, Dr, Cr, Vr belonging to the interval
nm ≤ n < n2, and set P = PlPr, Q = QlQr, B = BlBr,
T = BrQrTl + BlPlTr, D = DlDr, C = ClDr + CrDl and
V = DrBrQrVl + DrClBlPlTr + DlBlPlVr.

Finally, this algorithm is applied to n1 = 0 and n2 =
nmax = O(N), and final floating-point divisions S = T

BQ

and U = V
DBQ

are performed.

Complexity:

The bit complexity of computing S and U with N bits
of precision is O((log N)2M(N)).

Proof:

By our assumption that a(n), b(n), c(n), d(n), p(n), q(n)
are integers with O(log n) bits, the integers P , Q, B, T ,
D, C, V belonging to the interval n1 ≤ n < n2 all have
O((n2 − n1) log n2) bits. The rest of the proof is as in the
previous section.

Checkpointing/Parallelising:

A checkpoint can be easily done by storing the (integer)
values of n1, n2, P , Q, B, T and additionally D, C, V . Simi-
larly, if m processors are available, then the interval [0, nmax]
can be divided into m pieces of length l = bnmax/mc. Af-
ter each processor i has computed the sum of its interval
[il, (i+1)l], the partial sums are combined to the final result
using the rules described above.

Implementation:

The C++ implementation of the above algorithm is very
similar to the previous one. The initialisation is done now
by a structure abpqcd series containing arrays a, b, p, q,
c and d of multiprecision integers. The values of the arrays
at the index n correspond to the values of the functions a,
b, p, q, c and d at the integer point n. The (partial) results
of the algorithm are stored in the abpqcd series result
structure, which now contains 3 new elements (C, D and V).

// abpqcd_series is initialised by user
struct { bigint *a, *b, *p, *q, *c, *d;

} abpqcd_series;

// abpqcd_series_result holds the partial results
struct { bigint P, Q, B, T, C, D, V;

} abpqcd_series_result;

void sum_abpqcd(abpqcd_series_result & r,
int n1, int n2,
const abpqcd_series & arg)

{
switch (n2 - n1)
{

case 0:
error_handler("summation device",

"sum_abpqcd:: n2-n1 should be > 0.");
break;

case 1: // the result at the point n1
r.P = arg.p[n1];
r.Q = arg.q[n1];
r.B = arg.b[n1];
r.T = arg.a[n1] * arg.p[n1];
r.D = arg.d[n1];
r.C = arg.c[n1];
r.V = arg.a[n1] * arg.c[n1] * arg.p[n1];
break;

// cases 2, 3, 4 left out for simplicity

default: // general case

// the left and the right partial sum
abpqcd_series_result L, R;

// find the middle of the interval
int nm = (n1 + n2) / 2;

// sum left side
sum_abpqcd(L, n1, nm, arg);

// sum right side
sum_abpqcd(R, nm, n2, arg);

// put together
r.P = L.P * R.P;
r.Q = R.Q * L.Q;
r.B = L.B * R.B;
bigint tmp = L.B * L.P * R.T;
r.T = R.B * R.Q * L.T + tmp;
r.D = L.D * R.D;
r.C = L.C * R.D + R.C * L.D;
r.V = R.D * (R.B * R.Q * L.V + L.C * tmp)

+ L.D * L.B * L.P * R.V;
break;

}
}



3.1 Example: Euler’s constant C

Theorem:

Let f(x) =
∑∞

n=0
xn

n!2
and g(x) =

∑∞
n=0

Hn
xn

n!2
. Then

for x →∞, g(x)
f(x)

= 1
2

log x + C + O
(
e−4

√
x
)
.

Proof:

The Laplace method for asymptotic evaluation of expo-
nentially growing sums and integrals yields

f(x) = e2
√

xx−
1
4

1

2
√

π
(1 + O(x−

1
4 ))

and

g(x) = e2
√

xx−
1
4

1

2
√

π

(
1

2
log x + C + O(log x · x−

1
4 )
)

On the other hand, h(x) := g(x)
f(x)

satisfies the differential

equation

xf(x) · h′′(x) + (2xf ′(x) + f(x)) · h′(x) = f ′(x)

hence

h(x) =
1

2
log x+C+c2

∫ ∞

x

1

tf(t)2
dt =

1

2
log x+C+O(e−4

√
x)

Algorithm:

To compute C with a precision of N bits, set

x =
⌈
(N + 2)

log 2

4

⌉2

and evaluate the series for g(x) and f(x) simultaneously,
using the binary-splitting algorithm, with a(n) = 1, b(n) =
1, c(n) = 1, d(n) = n+1, p(n) = x, q(n) = (n+1)2. Let α =
3.591121477 . . . be the solution of the equation −α log α +
α + 1 = 0. Then α

√
x − 1

4 log α
log

√
x + O(1) terms of the

series suffice for the relative error to be bounded by 2−N .

Complexity:

The bit complexity of this algorithm is O((log N)2M(N)).

Note:

This algorithm was first mentioned in [5]. It is by far the
fastest known algorithm for computing Euler’s constant.

For Euler’s constant there is no checkpointing possible
because of the dependency on x in the binary splitting.

4 Computational results

In this section we present some computational results of our
CLN and LiDIA implementation of the algorithms presented
in this note. We use the official version (1.3) and an exper-
imental version (1.4a) of LiDIA. We have taken advantage
of LiDIA’s ability to replace its kernel (multiprecision arith-
metic and memory management) [16, 15, 13], so we were able
to use in both cases CLN’s fast integer arithmetic routines.

D exp(1) log(2) π C G ζ(3)

102 0.0005 0.0020 0.0014 0.0309 0.0179 0.0027
103 0.0069 0.0474 0.0141 0.8110 0.3580 0.0696
104 0.2566 1.9100 0.6750 33.190 13.370 2.5600
105 5.5549 45.640 17.430 784.93 340.33 72.970

Figure 1: LiDIA-1.4a timings of computation of constants
using binary-splitting

4.1 Timings

The table in Figure 1 shows the running times for the cal-
culation of exp(1), log(2), π, C, G and ζ(3) to precision
100, 1000, 10000 and 100000 decimal digits. The timings
are given in seconds and they denote the real time needed,
i.e. system and user time. The computation was done on
an Intel Pentium with 133Hz and 32MB of RAM.

The second table (Figure 2) summarizes the performance
of exp(x) in various Computer Algebra systems3. For a fair
comparison of the algorithms, both argument and precision
are chosen in such a way, that system–specific optimizations
(BCD arithmetic in Maple, FFT multiplication in CLN, spe-
cial exact argument handling in LiDIA) do not work. We use

x = −
√

2 and precision 10(i/3), with i running from 4 to 15.

D Maple Pari LiDIA-1.3 CLN

21 0.00090 0.00047 0.00191 0.00075
46 0.00250 0.00065 0.00239 0.00109

100 0.01000 0.00160 0.00389 0.00239
215 0.03100 0.00530 0.00750 0.00690
464 0.11000 0.02500 0.02050 0.02991

1000 0.4000 0.2940 0.0704 0.0861
2154 1.7190 0.8980 0.2990 0.2527
4641 8.121 5.941 1.510 0.906

10000 39.340 39.776 7.360 4.059
21544 172.499 280.207 39.900 15.010
46415 868.841 1972.184 129.000 39.848

100000 4873.829 21369.197 437.000 106.990

Figure 2: Timings of computation of exp(−
√

2)

MapleV R3 is the slowest system in this comparison.
This is probably due to the BCD arithmetic it uses. How-
ever, Maple seems to have an asymptotically better algo-
rithm for exp(x) for numbers having more than 10000 deci-
mals. In this range it outperforms Pari-1.39.03, which is the
fastest system in the 0–200 decimals range.

The comparison indicating the strength of binary-splitting
is between LiDIA-1.3 and CLN itself. Having the same ker-
nel, the only difference is here that LiDIA-1.3 uses Brent’s
O(
√

nM(n)) for exp(x), whereas CLN changes from Brent’s
method to a binary-splitting version for large numbers.

As expected in the range of 1000–100000 decimals CLN
outperforms LiDIA-1.3 by far. The fact that LiDIA-1.2.1 is
faster in the range of 200–1000 decimals (also in some trig.
functions) is probably due to a better optimized O(

√
nM(n))

method for exp(x).

3We do not list the timings of LiDIA-1.4a since these are comparable
to those of CLN.



4.2 Distributed computing of ζ(3)

Using the method described in 2.7 the authors were the first
to compute 1,000,000 decimals of ζ(3) [17]. The computa-
tion took 8 hours on a Hewlett Packard 9000/712 machine.
After distributing on a cluster of 4 HP 9000/712 machines
the same computation required only 2.5 hours. The half
hour was necessary for reading the partial results from disk
and for recombining them. Again, we have used binary-
splitting for recombining: the 4 partial result produced 2
results which were combined to the final 1,000,000 decimals
value of ζ(3).

This example shows the importance of checkpointing.
Even if a machine crashes through the calculation, the re-
sults of the other machines are still usable. Additionally,
being able to parallelise the computation reduced the com-
puting time dramatically.

4.3 Euler’s constant C

We have implemented a version of Brent’s and McMillan’s
algorithm [5] and a version accelerated by binary-splitting
as shown in 3.1.

The computation of C was done twice on a SPARC-
Ultra machine with 167 MHz and 256 MB of RAM. The
first computation using the non-acellerated version required
160 hours. The result of this computation was then verified
by the binary splitting version in (only) 14 hours.

The first 475006 partial quotients of the continued frac-
tion of C were computed on an Intel Pentium with 133 MHz
and 32 MB of RAM in 3 hours using a programm by H. te
Riele based on [6], which was translated to LiDIA for effi-
ciency reasons. Computing the 475006th convergent pro-
duced the following improved theorem:

If C is a rational number, C = p/q, then |q| > 10244663

Details of this computation (including statistics on the
partial quotients) can be found in [14].

5 Conclusions

Although powerful, the binary splitting method has not been
widely used. Especially, no information existed on the ap-
plicability of this method.

In this note we presented a generic binary-splitting sum-
mation device for evaluating two types of linearly convergent
series. From this we derived simple and computationally ef-
ficient algorithms for the evaluation of elementary functions
and constants. These algorithms work with exact objects,
making them suitable for use within Computer Algebra sys-
tems.

We have shown that the practical performance of our
algorithms is superior to current system implementations.
In addition to existing methods, our algorithms provide the
possibility of checkpointing and parallelising. These features
can be useful for huge calculations, such as those done in
analytic number theory research.
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