[ssue partial fractioning with GiNaC

July 2020

1 Introduction

Let us investigate here, when the function of GiNaC, sqrfree parfrac gives wrong results.
I first noticed this error, for terms of the form

1 ab
- 1
a(x—1)° (1)
Applying this to some particular example, using partial fractioning this should give
1 ozt 1/ 4 1
dz—1 4<x LR e Tl @)
The result outputed by GiNaC was
1

(3)

(2 +2>+z+1)+

r—1"

e

As you can see, the prefactor missing in front of the ﬁ term is missing. That this is not simply an
output error can be seen from plugging a value for the = term, here I used = = 4.

I investigated this and the following terms all give wrong result.

8
=

—
S
|
—
N
o

8
w

S
w

—
8
\
—_
N
[

1,2

(@—1p

Notice however, that terms of the form (no denominator present for the numerical prefactor) give a
correct result:

QU= Wl = =
—
8
|
p—
)
w

173
3m . (8)

As you can see, there is an emerging pattern. We always see that the term 1/(...) initially present
in the expression is missing the (numerical) prefactor, if the prefactor is a ratio.

The code I used was

#include <iostream>
#include <complex>
#include <math.h>
#include <ginac/ginac.h>

using std ::cout;
using std::endl;

int main ()
{
GiNaC:: symbol x(7x”);
GiNaC::ex exl = pow(x,4)/(x—1)/4;
GiNaC::ex ex2 = GiNaC:: sqrfree_parfrac (exl,x);
cout << 7the input is exl =7 << exl << endl;
cout << 7the result after partial fractioning: "<< ex2 << endl;

cout << ”this is what you get after x=4, in exl = "<< exl.subs(x==4)<< endl;

cout << ”insert number:, say x = 4, which gives wrong result ”
<< ex2.subs(x==4) << endl;

}

And T modified the term ex1 accordingly.

