
Issue partial fractioning with GiNaC

July 2020

1 Introduction

Let us investigate here, when the function of GiNaC, sqrfree parfrac gives wrong results.
I first noticed this error, for terms of the form

1

a

xb

(x− 1)c
. (1)

Applying this to some particular example, using partial fractioning this should give

1

4

x4

x− 1
=

1

4

(
x3 + x2 + x +

1

x− 1
+ 1

)
. (2)

The result outputed by GiNaC was

1

4

(
x3 + x2 + x + 1

)
+

1

x− 1
. (3)

As you can see, the prefactor missing in front of the 1
x−1 term is missing. That this is not simply an

output error can be seen from plugging a value for the x term, here I used x = 4.

I investigated this and the following terms all give wrong result.

1

4

x4

(x− 1)2
, (4)

1

4

x3

(x− 1)3
, (5)

1

3

x3

(x− 1)2
, (6)

1

5

x2

(x− 1)3
. (7)

Notice however, that terms of the form (no denominator present for the numerical prefactor) give a
correct result:

3
x3

(x− 1)2
. (8)

As you can see, there is an emerging pattern. We always see that the term 1/(...) initially present
ı́n the expression is missing the (numerical) prefactor, if the prefactor is a ratio.

1

The code I used was

#inc lude <iostream>
#inc lude <complex>
#inc lude <math . h>
#inc lude <g inac / g inac . h>

us ing std : : cout ;
us ing std : : endl ;

i n t main ()
{

GiNaC : : symbol x (” x ”) ;

GiNaC : : ex ex1 = pow(x , 4) / (x−1)/4;

GiNaC : : ex ex2 = GiNaC : : s q r f r e e p a r f r a c (ex1 , x) ;

cout << ” the input i s ex1 = ” << ex1 << endl ;

cout << ” the r e s u l t a f t e r p a r t i a l f r a c t i o n i n g : ”<< ex2 << endl ;

cout << ” t h i s i s what you get a f t e r x=4, in ex1 = ”<< ex1 . subs (x==4)<< endl ;

cout << ” i n s e r t number : , say x = 4 , which g i v e s wrong r e s u l t ”
<< ex2 . subs (x==4) << endl ;

}

And I modified the term ex1 accordingly.

2

