/** @file pseries.cpp * * Implementation of class for extended truncated power series and * methods for series expansion. */ /* * GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "pseries.h" #include "add.h" #include "inifcns.h" // for Order function #include "lst.h" #include "mul.h" #include "power.h" #include "relational.h" #include "operators.h" #include "symbol.h" #include "print.h" #include "archive.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic) /* * Default ctor, dtor, copy ctor, assignment operator and helpers */ pseries::pseries() : inherited(TINFO_pseries) { } void pseries::copy(const pseries &other) { inherited::copy(other); seq = other.seq; var = other.var; point = other.point; } DEFAULT_DESTROY(pseries) /* * Other ctors */ /** Construct pseries from a vector of coefficients and powers. * expair.rest holds the coefficient, expair.coeff holds the power. * The powers must be integers (positive or negative) and in ascending order; * the last coefficient can be Order(_ex1) to represent a truncated, * non-terminating series. * * @param rel_ expansion variable and point (must hold a relational) * @param ops_ vector of {coefficient, power} pairs (coefficient must not be zero) * @return newly constructed pseries */ pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_) { GINAC_ASSERT(is_a(rel_)); GINAC_ASSERT(is_a(rel_.lhs())); point = rel_.rhs(); var = rel_.lhs(); } /* * Archiving */ pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { for (unsigned int i=0; true; ++i) { ex rest; ex coeff; if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i)) seq.push_back(expair(rest, coeff)); else break; } n.find_ex("var", var, sym_lst); n.find_ex("point", point, sym_lst); } void pseries::archive(archive_node &n) const { inherited::archive(n); epvector::const_iterator i = seq.begin(), iend = seq.end(); while (i != iend) { n.add_ex("coeff", i->rest); n.add_ex("power", i->coeff); ++i; } n.add_ex("var", var); n.add_ex("point", point); } DEFAULT_UNARCHIVE(pseries) ////////// // functions overriding virtual functions from base classes ////////// void pseries::print(const print_context & c, unsigned level) const { if (is_a(c)) { c.s << std::string(level, ' ') << class_name() << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << std::endl; unsigned delta_indent = static_cast(c).delta_indent; unsigned num = seq.size(); for (unsigned i=0; i(c)) { c.s << class_name() << "(relational("; var.print(c); c.s << ','; point.print(c); c.s << "),["; unsigned num = seq.size(); for (unsigned i=0; i(c) ? "{(" : "("; std::string par_close = is_a(c) ? ")}" : ")"; // objects of type pseries must not have any zero entries, so the // trivial (zero) pseries needs a special treatment here: if (seq.empty()) c.s << '0'; epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { // print a sign, if needed if (i != seq.begin()) c.s << '+'; if (!is_order_function(i->rest)) { // print 'rest', i.e. the expansion coefficient if (i->rest.info(info_flags::numeric) && i->rest.info(info_flags::positive)) { i->rest.print(c); } else { c.s << par_open; i->rest.print(c); c.s << par_close; } // print 'coeff', something like (x-1)^42 if (!i->coeff.is_zero()) { if (is_a(c)) c.s << ' '; else c.s << '*'; if (!point.is_zero()) { c.s << par_open; (var-point).print(c); c.s << par_close; } else var.print(c); if (i->coeff.compare(_ex1)) { if (is_a(c)) c.s << "**"; else c.s << '^'; if (i->coeff.info(info_flags::negative)) { c.s << par_open; i->coeff.print(c); c.s << par_close; } else { if (is_a(c)) { c.s << '{'; i->coeff.print(c); c.s << '}'; } else i->coeff.print(c); } } } } else Order(power(var-point,i->coeff)).print(c); ++i; } if (precedence() <= level) c.s << ")"; } } int pseries::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const pseries &o = static_cast(other); // first compare the lengths of the series... if (seq.size()>o.seq.size()) return 1; if (seq.size()compare(*o_it); if (cmpval) return cmpval; ++it; ++o_it; } // so they are equal. return 0; } /** Return the number of operands including a possible order term. */ unsigned pseries::nops(void) const { return seq.size(); } /** Return the ith term in the series when represented as a sum. */ ex pseries::op(int i) const { if (i < 0 || unsigned(i) >= seq.size()) throw (std::out_of_range("op() out of range")); return seq[i].rest * power(var - point, seq[i].coeff); } ex &pseries::let_op(int i) { throw (std::logic_error("let_op not defined for pseries")); } /** Return degree of highest power of the series. This is usually the exponent * of the Order term. If s is not the expansion variable of the series, the * series is examined termwise. */ int pseries::degree(const ex &s) const { if (var.is_equal(s)) { // Return last exponent if (seq.size()) return ex_to((seq.end()-1)->coeff).to_int(); else return 0; } else { epvector::const_iterator it = seq.begin(), itend = seq.end(); if (it == itend) return 0; int max_pow = INT_MIN; while (it != itend) { int pow = it->rest.degree(s); if (pow > max_pow) max_pow = pow; ++it; } return max_pow; } } /** Return degree of lowest power of the series. This is usually the exponent * of the leading term. If s is not the expansion variable of the series, the * series is examined termwise. If s is the expansion variable but the * expansion point is not zero the series is not expanded to find the degree. * I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */ int pseries::ldegree(const ex &s) const { if (var.is_equal(s)) { // Return first exponent if (seq.size()) return ex_to((seq.begin())->coeff).to_int(); else return 0; } else { epvector::const_iterator it = seq.begin(), itend = seq.end(); if (it == itend) return 0; int min_pow = INT_MAX; while (it != itend) { int pow = it->rest.ldegree(s); if (pow < min_pow) min_pow = pow; ++it; } return min_pow; } } /** Return coefficient of degree n in power series if s is the expansion * variable. If the expansion point is nonzero, by definition the n=1 * coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming * the expansion took place in the s in the first place). * If s is not the expansion variable, an attempt is made to convert the * series to a polynomial and return the corresponding coefficient from * there. */ ex pseries::coeff(const ex &s, int n) const { if (var.is_equal(s)) { if (seq.empty()) return _ex0; // Binary search in sequence for given power numeric looking_for = numeric(n); int lo = 0, hi = seq.size() - 1; while (lo <= hi) { int mid = (lo + hi) / 2; GINAC_ASSERT(is_exactly_a(seq[mid].coeff)); int cmp = ex_to(seq[mid].coeff).compare(looking_for); switch (cmp) { case -1: lo = mid + 1; break; case 0: return seq[mid].rest; case 1: hi = mid - 1; break; default: throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1")); } } return _ex0; } else return convert_to_poly().coeff(s, n); } /** Does nothing. */ ex pseries::collect(const ex &s, bool distributed) const { return *this; } /** Perform coefficient-wise automatic term rewriting rules in this class. */ ex pseries::eval(int level) const { if (level == 1) return this->hold(); if (level == -max_recursion_level) throw (std::runtime_error("pseries::eval(): recursion limit exceeded")); // Construct a new series with evaluated coefficients epvector new_seq; new_seq.reserve(seq.size()); epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { new_seq.push_back(expair(it->rest.eval(level-1), it->coeff)); ++it; } return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated); } /** Evaluate coefficients numerically. */ ex pseries::evalf(int level) const { if (level == 1) return *this; if (level == -max_recursion_level) throw (std::runtime_error("pseries::evalf(): recursion limit exceeded")); // Construct a new series with evaluated coefficients epvector new_seq; new_seq.reserve(seq.size()); epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff)); ++it; } return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated); } ex pseries::subs(const lst & ls, const lst & lr, unsigned options) const { // If expansion variable is being substituted, convert the series to a // polynomial and do the substitution there because the result might // no longer be a power series if (ls.has(var)) return convert_to_poly(true).subs(ls, lr, options); // Otherwise construct a new series with substituted coefficients and // expansion point epvector newseq; newseq.reserve(seq.size()); epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { newseq.push_back(expair(it->rest.subs(ls, lr, options), it->coeff)); ++it; } return (new pseries(relational(var,point.subs(ls, lr, options)), newseq))->setflag(status_flags::dynallocated); } /** Implementation of ex::expand() for a power series. It expands all the * terms individually and returns the resulting series as a new pseries. */ ex pseries::expand(unsigned options) const { epvector newseq; epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { ex restexp = i->rest.expand(); if (!restexp.is_zero()) newseq.push_back(expair(restexp, i->coeff)); ++i; } return (new pseries(relational(var,point), newseq)) ->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); } /** Implementation of ex::diff() for a power series. * @see ex::diff */ ex pseries::derivative(const symbol & s) const { epvector new_seq; epvector::const_iterator it = seq.begin(), itend = seq.end(); if (s == var) { // FIXME: coeff might depend on var while (it != itend) { if (is_order_function(it->rest)) { new_seq.push_back(expair(it->rest, it->coeff - 1)); } else { ex c = it->rest * it->coeff; if (!c.is_zero()) new_seq.push_back(expair(c, it->coeff - 1)); } ++it; } } else { while (it != itend) { if (is_order_function(it->rest)) { new_seq.push_back(*it); } else { ex c = it->rest.diff(s); if (!c.is_zero()) new_seq.push_back(expair(c, it->coeff)); } ++it; } } return pseries(relational(var,point), new_seq); } ex pseries::convert_to_poly(bool no_order) const { ex e; epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { if (is_order_function(it->rest)) { if (!no_order) e += Order(power(var - point, it->coeff)); } else e += it->rest * power(var - point, it->coeff); ++it; } return e; } bool pseries::is_terminating(void) const { return seq.empty() || !is_order_function((seq.end()-1)->rest); } /* * Implementations of series expansion */ /** Default implementation of ex::series(). This performs Taylor expansion. * @see ex::series */ ex basic::series(const relational & r, int order, unsigned options) const { epvector seq; numeric fac = 1; ex deriv = *this; ex coeff = deriv.subs(r); const symbol &s = ex_to(r.lhs()); if (!coeff.is_zero()) seq.push_back(expair(coeff, _ex0)); int n; for (n=1; n(r.lhs())); if (this->is_equal_same_type(ex_to(r.lhs()))) { if (order > 0 && !point.is_zero()) seq.push_back(expair(point, _ex0)); if (order > 1) seq.push_back(expair(_ex1, _ex1)); else seq.push_back(expair(Order(_ex1), numeric(order))); } else seq.push_back(expair(*this, _ex0)); return pseries(r, seq); } /** Add one series object to another, producing a pseries object that * represents the sum. * * @param other pseries object to add with * @return the sum as a pseries */ ex pseries::add_series(const pseries &other) const { // Adding two series with different variables or expansion points // results in an empty (constant) series if (!is_compatible_to(other)) { epvector nul; nul.push_back(expair(Order(_ex1), _ex0)); return pseries(relational(var,point), nul); } // Series addition epvector new_seq; epvector::const_iterator a = seq.begin(); epvector::const_iterator b = other.seq.begin(); epvector::const_iterator a_end = seq.end(); epvector::const_iterator b_end = other.seq.end(); int pow_a = INT_MAX, pow_b = INT_MAX; for (;;) { // If a is empty, fill up with elements from b and stop if (a == a_end) { while (b != b_end) { new_seq.push_back(*b); ++b; } break; } else pow_a = ex_to((*a).coeff).to_int(); // If b is empty, fill up with elements from a and stop if (b == b_end) { while (a != a_end) { new_seq.push_back(*a); ++a; } break; } else pow_b = ex_to((*b).coeff).to_int(); // a and b are non-empty, compare powers if (pow_a < pow_b) { // a has lesser power, get coefficient from a new_seq.push_back(*a); if (is_order_function((*a).rest)) break; ++a; } else if (pow_b < pow_a) { // b has lesser power, get coefficient from b new_seq.push_back(*b); if (is_order_function((*b).rest)) break; ++b; } else { // Add coefficient of a and b if (is_order_function((*a).rest) || is_order_function((*b).rest)) { new_seq.push_back(expair(Order(_ex1), (*a).coeff)); break; // Order term ends the sequence } else { ex sum = (*a).rest + (*b).rest; if (!(sum.is_zero())) new_seq.push_back(expair(sum, numeric(pow_a))); ++a; ++b; } } } return pseries(relational(var,point), new_seq); } /** Implementation of ex::series() for sums. This performs series addition when * adding pseries objects. * @see ex::series */ ex add::series(const relational & r, int order, unsigned options) const { ex acc; // Series accumulator // Get first term from overall_coeff acc = overall_coeff.series(r, order, options); // Add remaining terms epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); for (; it!=itend; ++it) { ex op; if (is_exactly_a(it->rest)) op = it->rest; else op = it->rest.series(r, order, options); if (!it->coeff.is_equal(_ex1)) op = ex_to(op).mul_const(ex_to(it->coeff)); // Series addition acc = ex_to(acc).add_series(ex_to(op)); } return acc; } /** Multiply a pseries object with a numeric constant, producing a pseries * object that represents the product. * * @param other constant to multiply with * @return the product as a pseries */ ex pseries::mul_const(const numeric &other) const { epvector new_seq; new_seq.reserve(seq.size()); epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { if (!is_order_function(it->rest)) new_seq.push_back(expair(it->rest * other, it->coeff)); else new_seq.push_back(*it); ++it; } return pseries(relational(var,point), new_seq); } /** Multiply one pseries object to another, producing a pseries object that * represents the product. * * @param other pseries object to multiply with * @return the product as a pseries */ ex pseries::mul_series(const pseries &other) const { // Multiplying two series with different variables or expansion points // results in an empty (constant) series if (!is_compatible_to(other)) { epvector nul; nul.push_back(expair(Order(_ex1), _ex0)); return pseries(relational(var,point), nul); } // Series multiplication epvector new_seq; int a_max = degree(var); int b_max = other.degree(var); int a_min = ldegree(var); int b_min = other.ldegree(var); int cdeg_min = a_min + b_min; int cdeg_max = a_max + b_max; int higher_order_a = INT_MAX; int higher_order_b = INT_MAX; if (is_order_function(coeff(var, a_max))) higher_order_a = a_max + b_min; if (is_order_function(other.coeff(var, b_max))) higher_order_b = b_max + a_min; int higher_order_c = std::min(higher_order_a, higher_order_b); if (cdeg_max >= higher_order_c) cdeg_max = higher_order_c - 1; for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) { ex co = _ex0; // c(i)=a(0)b(i)+...+a(i)b(0) for (int i=a_min; cdeg-i>=b_min; ++i) { ex a_coeff = coeff(var, i); ex b_coeff = other.coeff(var, cdeg-i); if (!is_order_function(a_coeff) && !is_order_function(b_coeff)) co += a_coeff * b_coeff; } if (!co.is_zero()) new_seq.push_back(expair(co, numeric(cdeg))); } if (higher_order_c < INT_MAX) new_seq.push_back(expair(Order(_ex1), numeric(higher_order_c))); return pseries(relational(var, point), new_seq); } /** Implementation of ex::series() for product. This performs series * multiplication when multiplying series. * @see ex::series */ ex mul::series(const relational & r, int order, unsigned options) const { pseries acc; // Series accumulator // Multiply with remaining terms const epvector::const_iterator itbeg = seq.begin(); const epvector::const_iterator itend = seq.end(); for (epvector::const_iterator it=itbeg; it!=itend; ++it) { ex op = recombine_pair_to_ex(*it).series(r, order, options); // Series multiplication if (it==itbeg) acc = ex_to(op); else acc = ex_to(acc.mul_series(ex_to(op))); } return acc.mul_const(ex_to(overall_coeff)); } /** Compute the p-th power of a series. * * @param p power to compute * @param deg truncation order of series calculation */ ex pseries::power_const(const numeric &p, int deg) const { // method: // (due to Leonhard Euler) // let A(x) be this series and for the time being let it start with a // constant (later we'll generalize): // A(x) = a_0 + a_1*x + a_2*x^2 + ... // We want to compute // C(x) = A(x)^p // C(x) = c_0 + c_1*x + c_2*x^2 + ... // Taking the derivative on both sides and multiplying with A(x) one // immediately arrives at // C'(x)*A(x) = p*C(x)*A'(x) // Multiplying this out and comparing coefficients we get the recurrence // formula // c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ... // ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i) // which can easily be solved given the starting value c_0 = (a_0)^p. // For the more general case where the leading coefficient of A(x) is not // a constant, just consider A2(x) = A(x)*x^m, with some integer m and // repeat the above derivation. The leading power of C2(x) = A2(x)^2 is // then of course x^(p*m) but the recurrence formula still holds. if (seq.empty()) { // as a special case, handle the empty (zero) series honoring the // usual power laws such as implemented in power::eval() if (p.real().is_zero()) throw std::domain_error("pseries::power_const(): pow(0,I) is undefined"); else if (p.real().is_negative()) throw pole_error("pseries::power_const(): division by zero",1); else return *this; } const int ldeg = ldegree(var); if (!(p*ldeg).is_integer()) throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series"); // O(x^n)^(-m) is undefined if (seq.size() == 1 && is_order_function(seq[0].rest) && p.real().is_negative()) throw pole_error("pseries::power_const(): division by zero",1); // Compute coefficients of the powered series exvector co; co.reserve(deg); co.push_back(power(coeff(var, ldeg), p)); bool all_sums_zero = true; for (int i=1; icoeff += deg; ++i; } return pseries(relational(var, point), newseq); } /** Implementation of ex::series() for powers. This performs Laurent expansion * of reciprocals of series at singularities. * @see ex::series */ ex power::series(const relational & r, int order, unsigned options) const { // If basis is already a series, just power it if (is_exactly_a(basis)) return ex_to(basis).power_const(ex_to(exponent), order); // Basis is not a series, may there be a singularity? bool must_expand_basis = false; try { basis.subs(r); } catch (pole_error) { must_expand_basis = true; } // Is the expression of type something^(-int)? if (!must_expand_basis && !exponent.info(info_flags::negint)) return basic::series(r, order, options); // Is the expression of type 0^something? if (!must_expand_basis && !basis.subs(r).is_zero()) return basic::series(r, order, options); // Singularity encountered, is the basis equal to (var - point)? if (basis.is_equal(r.lhs() - r.rhs())) { epvector new_seq; if (ex_to(exponent).to_int() < order) new_seq.push_back(expair(_ex1, exponent)); else new_seq.push_back(expair(Order(_ex1), exponent)); return pseries(r, new_seq); } // No, expand basis into series ex e = basis.series(r, order, options); return ex_to(e).power_const(ex_to(exponent), order); } /** Re-expansion of a pseries object. */ ex pseries::series(const relational & r, int order, unsigned options) const { const ex p = r.rhs(); GINAC_ASSERT(is_a(r.lhs())); const symbol &s = ex_to(r.lhs()); if (var.is_equal(s) && point.is_equal(p)) { if (order > degree(s)) return *this; else { epvector new_seq; epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { int o = ex_to(it->coeff).to_int(); if (o >= order) { new_seq.push_back(expair(Order(_ex1), o)); break; } new_seq.push_back(*it); ++it; } return pseries(r, new_seq); } } else return convert_to_poly().series(r, order, options); } /** Compute the truncated series expansion of an expression. * This function returns an expression containing an object of class pseries * to represent the series. If the series does not terminate within the given * truncation order, the last term of the series will be an order term. * * @param r expansion relation, lhs holds variable and rhs holds point * @param order truncation order of series calculations * @param options of class series_options * @return an expression holding a pseries object */ ex ex::series(const ex & r, int order, unsigned options) const { GINAC_ASSERT(bp!=0); ex e; relational rel_; if (is_a(r)) rel_ = ex_to(r); else if (is_a(r)) rel_ = relational(r,_ex0); else throw (std::logic_error("ex::series(): expansion point has unknown type")); try { e = bp->series(rel_, order, options); } catch (std::exception &x) { throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")")); } return e; } } // namespace GiNaC