3 * Implementation of class for extended truncated power series and
4 * methods for series expansion. */
7 * GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 #include "inifcns.h" // for Order function
30 #include "relational.h"
31 #include "operators.h"
43 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(pseries, basic,
44 print_func<print_context>(&pseries::do_print).
45 print_func<print_latex>(&pseries::do_print_latex).
46 print_func<print_tree>(&pseries::do_print_tree).
47 print_func<print_python>(&pseries::do_print_python).
48 print_func<print_python_repr>(&pseries::do_print_python_repr))
55 pseries::pseries() { }
62 /** Construct pseries from a vector of coefficients and powers.
63 * expair.rest holds the coefficient, expair.coeff holds the power.
64 * The powers must be integers (positive or negative) and in ascending order;
65 * the last coefficient can be Order(_ex1) to represent a truncated,
66 * non-terminating series.
68 * @param rel_ expansion variable and point (must hold a relational)
69 * @param ops_ vector of {coefficient, power} pairs (coefficient must not be zero)
70 * @return newly constructed pseries */
71 pseries::pseries(const ex &rel_, const epvector &ops_)
74 GINAC_ASSERT(is_a<relational>(rel_));
75 GINAC_ASSERT(is_a<symbol>(rel_.lhs()));
79 pseries::pseries(const ex &rel_, epvector &&ops_)
80 : seq(std::move(ops_))
82 GINAC_ASSERT(is_a<relational>(rel_));
83 GINAC_ASSERT(is_a<symbol>(rel_.lhs()));
93 void pseries::read_archive(const archive_node &n, lst &sym_lst)
95 inherited::read_archive(n, sym_lst);
96 auto first = n.find_first("coeff");
97 auto last = n.find_last("power");
99 seq.reserve((last-first)/2);
101 for (auto loc = first; loc < last;) {
104 n.find_ex_by_loc(loc++, rest, sym_lst);
105 n.find_ex_by_loc(loc++, coeff, sym_lst);
106 seq.push_back(expair(rest, coeff));
109 n.find_ex("var", var, sym_lst);
110 n.find_ex("point", point, sym_lst);
113 void pseries::archive(archive_node &n) const
115 inherited::archive(n);
116 for (auto & it : seq) {
117 n.add_ex("coeff", it.rest);
118 n.add_ex("power", it.coeff);
120 n.add_ex("var", var);
121 n.add_ex("point", point);
126 // functions overriding virtual functions from base classes
129 void pseries::print_series(const print_context & c, const char *openbrace, const char *closebrace, const char *mul_sym, const char *pow_sym, unsigned level) const
131 if (precedence() <= level)
134 // objects of type pseries must not have any zero entries, so the
135 // trivial (zero) pseries needs a special treatment here:
139 auto i = seq.begin(), end = seq.end();
142 // print a sign, if needed
143 if (i != seq.begin())
146 if (!is_order_function(i->rest)) {
148 // print 'rest', i.e. the expansion coefficient
149 if (i->rest.info(info_flags::numeric) &&
150 i->rest.info(info_flags::positive)) {
153 c.s << openbrace << '(';
155 c.s << ')' << closebrace;
158 // print 'coeff', something like (x-1)^42
159 if (!i->coeff.is_zero()) {
161 if (!point.is_zero()) {
162 c.s << openbrace << '(';
163 (var-point).print(c);
164 c.s << ')' << closebrace;
167 if (i->coeff.compare(_ex1)) {
170 if (i->coeff.info(info_flags::negative)) {
180 Order(power(var-point,i->coeff)).print(c);
184 if (precedence() <= level)
188 void pseries::do_print(const print_context & c, unsigned level) const
190 print_series(c, "", "", "*", "^", level);
193 void pseries::do_print_latex(const print_latex & c, unsigned level) const
195 print_series(c, "{", "}", " ", "^", level);
198 void pseries::do_print_python(const print_python & c, unsigned level) const
200 print_series(c, "", "", "*", "**", level);
203 void pseries::do_print_tree(const print_tree & c, unsigned level) const
205 c.s << std::string(level, ' ') << class_name() << " @" << this
206 << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
208 size_t num = seq.size();
209 for (size_t i=0; i<num; ++i) {
210 seq[i].rest.print(c, level + c.delta_indent);
211 seq[i].coeff.print(c, level + c.delta_indent);
212 c.s << std::string(level + c.delta_indent, ' ') << "-----" << std::endl;
214 var.print(c, level + c.delta_indent);
215 point.print(c, level + c.delta_indent);
218 void pseries::do_print_python_repr(const print_python_repr & c, unsigned level) const
220 c.s << class_name() << "(relational(";
225 size_t num = seq.size();
226 for (size_t i=0; i<num; ++i) {
230 seq[i].rest.print(c);
232 seq[i].coeff.print(c);
238 int pseries::compare_same_type(const basic & other) const
240 GINAC_ASSERT(is_a<pseries>(other));
241 const pseries &o = static_cast<const pseries &>(other);
243 // first compare the lengths of the series...
244 if (seq.size()>o.seq.size())
246 if (seq.size()<o.seq.size())
249 // ...then the expansion point...
250 int cmpval = var.compare(o.var);
253 cmpval = point.compare(o.point);
257 // ...and if that failed the individual elements
258 epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
259 while (it!=seq.end() && o_it!=o.seq.end()) {
260 cmpval = it->compare(*o_it);
267 // so they are equal.
271 /** Return the number of operands including a possible order term. */
272 size_t pseries::nops() const
277 /** Return the ith term in the series when represented as a sum. */
278 ex pseries::op(size_t i) const
281 throw (std::out_of_range("op() out of range"));
283 if (is_order_function(seq[i].rest))
284 return Order(power(var-point, seq[i].coeff));
285 return seq[i].rest * power(var - point, seq[i].coeff);
288 /** Return degree of highest power of the series. This is usually the exponent
289 * of the Order term. If s is not the expansion variable of the series, the
290 * series is examined termwise. */
291 int pseries::degree(const ex &s) const
293 if (var.is_equal(s)) {
294 // Return last exponent
296 return ex_to<numeric>((seq.end()-1)->coeff).to_int();
300 epvector::const_iterator it = seq.begin(), itend = seq.end();
303 int max_pow = std::numeric_limits<int>::min();
304 while (it != itend) {
305 int pow = it->rest.degree(s);
314 /** Return degree of lowest power of the series. This is usually the exponent
315 * of the leading term. If s is not the expansion variable of the series, the
316 * series is examined termwise. If s is the expansion variable but the
317 * expansion point is not zero the series is not expanded to find the degree.
318 * I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
319 int pseries::ldegree(const ex &s) const
321 if (var.is_equal(s)) {
322 // Return first exponent
324 return ex_to<numeric>((seq.begin())->coeff).to_int();
328 epvector::const_iterator it = seq.begin(), itend = seq.end();
331 int min_pow = std::numeric_limits<int>::max();
332 while (it != itend) {
333 int pow = it->rest.ldegree(s);
342 /** Return coefficient of degree n in power series if s is the expansion
343 * variable. If the expansion point is nonzero, by definition the n=1
344 * coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
345 * the expansion took place in the s in the first place).
346 * If s is not the expansion variable, an attempt is made to convert the
347 * series to a polynomial and return the corresponding coefficient from
349 ex pseries::coeff(const ex &s, int n) const
351 if (var.is_equal(s)) {
355 // Binary search in sequence for given power
356 numeric looking_for = numeric(n);
357 int lo = 0, hi = seq.size() - 1;
359 int mid = (lo + hi) / 2;
360 GINAC_ASSERT(is_exactly_a<numeric>(seq[mid].coeff));
361 int cmp = ex_to<numeric>(seq[mid].coeff).compare(looking_for);
367 return seq[mid].rest;
372 throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
377 return convert_to_poly().coeff(s, n);
381 ex pseries::collect(const ex &s, bool distributed) const
386 /** Perform coefficient-wise automatic term rewriting rules in this class. */
387 ex pseries::eval(int level) const
392 if (level == -max_recursion_level)
393 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
395 // Construct a new series with evaluated coefficients
397 new_seq.reserve(seq.size());
398 epvector::const_iterator it = seq.begin(), itend = seq.end();
399 while (it != itend) {
400 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
403 return (new pseries(relational(var,point), std::move(new_seq)))->setflag(status_flags::dynallocated | status_flags::evaluated);
406 /** Evaluate coefficients numerically. */
407 ex pseries::evalf(int level) const
412 if (level == -max_recursion_level)
413 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
415 // Construct a new series with evaluated coefficients
417 new_seq.reserve(seq.size());
418 epvector::const_iterator it = seq.begin(), itend = seq.end();
419 while (it != itend) {
420 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
423 return (new pseries(relational(var,point), std::move(new_seq)))->setflag(status_flags::dynallocated | status_flags::evaluated);
426 ex pseries::conjugate() const
428 if(!var.info(info_flags::real))
429 return conjugate_function(*this).hold();
431 std::unique_ptr<epvector> newseq(conjugateepvector(seq));
432 ex newpoint = point.conjugate();
434 if (!newseq && are_ex_trivially_equal(point, newpoint)) {
438 return (new pseries(var==newpoint, newseq ? std::move(*newseq) : seq))->setflag(status_flags::dynallocated);
441 ex pseries::real_part() const
443 if(!var.info(info_flags::real))
444 return real_part_function(*this).hold();
445 ex newpoint = point.real_part();
446 if(newpoint != point)
447 return real_part_function(*this).hold();
450 v.reserve(seq.size());
451 for (auto & it : seq)
452 v.push_back(expair((it.rest).real_part(), it.coeff));
453 return (new pseries(var==point, std::move(v)))->setflag(status_flags::dynallocated);
456 ex pseries::imag_part() const
458 if(!var.info(info_flags::real))
459 return imag_part_function(*this).hold();
460 ex newpoint = point.real_part();
461 if(newpoint != point)
462 return imag_part_function(*this).hold();
465 v.reserve(seq.size());
466 for (auto & it : seq)
467 v.push_back(expair((it.rest).imag_part(), it.coeff));
468 return (new pseries(var==point, std::move(v)))->setflag(status_flags::dynallocated);
471 ex pseries::eval_integ() const
473 std::unique_ptr<epvector> newseq(nullptr);
474 for (auto i=seq.begin(); i!=seq.end(); ++i) {
476 newseq->push_back(expair(i->rest.eval_integ(), i->coeff));
479 ex newterm = i->rest.eval_integ();
480 if (!are_ex_trivially_equal(newterm, i->rest)) {
481 newseq.reset(new epvector);
482 newseq->reserve(seq.size());
483 for (auto j=seq.begin(); j!=i; ++j)
484 newseq->push_back(*j);
485 newseq->push_back(expair(newterm, i->coeff));
489 ex newpoint = point.eval_integ();
490 if (newseq || !are_ex_trivially_equal(newpoint, point))
491 return (new pseries(var==newpoint, std::move(*newseq)))
492 ->setflag(status_flags::dynallocated);
496 ex pseries::evalm() const
498 // evalm each coefficient
500 bool something_changed = false;
501 for (auto i=seq.begin(); i!=seq.end(); ++i) {
502 if (something_changed) {
503 ex newcoeff = i->rest.evalm();
504 if (!newcoeff.is_zero())
505 newseq.push_back(expair(newcoeff, i->coeff));
508 ex newcoeff = i->rest.evalm();
509 if (!are_ex_trivially_equal(newcoeff, i->rest)) {
510 something_changed = true;
511 newseq.reserve(seq.size());
512 std::copy(seq.begin(), i, std::back_inserter<epvector>(newseq));
513 if (!newcoeff.is_zero())
514 newseq.push_back(expair(newcoeff, i->coeff));
518 if (something_changed)
519 return (new pseries(var==point, std::move(newseq)))->setflag(status_flags::dynallocated);
524 ex pseries::subs(const exmap & m, unsigned options) const
526 // If expansion variable is being substituted, convert the series to a
527 // polynomial and do the substitution there because the result might
528 // no longer be a power series
529 if (m.find(var) != m.end())
530 return convert_to_poly(true).subs(m, options);
532 // Otherwise construct a new series with substituted coefficients and
535 newseq.reserve(seq.size());
536 for (auto & it : seq)
537 newseq.push_back(expair(it.rest.subs(m, options), it.coeff));
538 return (new pseries(relational(var,point.subs(m, options)), std::move(newseq)))->setflag(status_flags::dynallocated);
541 /** Implementation of ex::expand() for a power series. It expands all the
542 * terms individually and returns the resulting series as a new pseries. */
543 ex pseries::expand(unsigned options) const
546 for (auto & it : seq) {
547 ex restexp = it.rest.expand();
548 if (!restexp.is_zero())
549 newseq.push_back(expair(restexp, it.coeff));
551 return (new pseries(relational(var,point), std::move(newseq)))
552 ->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
555 /** Implementation of ex::diff() for a power series.
557 ex pseries::derivative(const symbol & s) const
563 // FIXME: coeff might depend on var
564 for (auto & it : seq) {
565 if (is_order_function(it.rest)) {
566 new_seq.push_back(expair(it.rest, it.coeff - 1));
568 ex c = it.rest * it.coeff;
570 new_seq.push_back(expair(c, it.coeff - 1));
576 for (auto & it : seq) {
577 if (is_order_function(it.rest)) {
578 new_seq.push_back(it);
580 ex c = it.rest.diff(s);
582 new_seq.push_back(expair(c, it.coeff));
587 return pseries(relational(var,point), std::move(new_seq));
590 ex pseries::convert_to_poly(bool no_order) const
593 for (auto & it : seq) {
594 if (is_order_function(it.rest)) {
596 e += Order(power(var - point, it.coeff));
598 e += it.rest * power(var - point, it.coeff);
603 bool pseries::is_terminating() const
605 return seq.empty() || !is_order_function((seq.end()-1)->rest);
608 ex pseries::coeffop(size_t i) const
611 throw (std::out_of_range("coeffop() out of range"));
615 ex pseries::exponop(size_t i) const
618 throw (std::out_of_range("exponop() out of range"));
624 * Implementations of series expansion
627 /** Default implementation of ex::series(). This performs Taylor expansion.
629 ex basic::series(const relational & r, int order, unsigned options) const
632 const symbol &s = ex_to<symbol>(r.lhs());
634 // default for order-values that make no sense for Taylor expansion
635 if ((order <= 0) && this->has(s)) {
636 seq.push_back(expair(Order(_ex1), order));
637 return pseries(r, std::move(seq));
640 // do Taylor expansion
643 ex coeff = deriv.subs(r, subs_options::no_pattern);
645 if (!coeff.is_zero()) {
646 seq.push_back(expair(coeff, _ex0));
650 for (n=1; n<order; ++n) {
652 // We need to test for zero in order to see if the series terminates.
653 // The problem is that there is no such thing as a perfect test for
654 // zero. Expanding the term occasionally helps a little...
655 deriv = deriv.diff(s).expand();
656 if (deriv.is_zero()) // Series terminates
657 return pseries(r, std::move(seq));
659 coeff = deriv.subs(r, subs_options::no_pattern);
660 if (!coeff.is_zero())
661 seq.push_back(expair(fac.inverse() * coeff, n));
664 // Higher-order terms, if present
665 deriv = deriv.diff(s);
666 if (!deriv.expand().is_zero())
667 seq.push_back(expair(Order(_ex1), n));
668 return pseries(r, std::move(seq));
672 /** Implementation of ex::series() for symbols.
674 ex symbol::series(const relational & r, int order, unsigned options) const
677 const ex point = r.rhs();
678 GINAC_ASSERT(is_a<symbol>(r.lhs()));
680 if (this->is_equal_same_type(ex_to<symbol>(r.lhs()))) {
681 if (order > 0 && !point.is_zero())
682 seq.push_back(expair(point, _ex0));
684 seq.push_back(expair(_ex1, _ex1));
686 seq.push_back(expair(Order(_ex1), numeric(order)));
688 seq.push_back(expair(*this, _ex0));
689 return pseries(r, std::move(seq));
693 /** Add one series object to another, producing a pseries object that
694 * represents the sum.
696 * @param other pseries object to add with
697 * @return the sum as a pseries */
698 ex pseries::add_series(const pseries &other) const
700 // Adding two series with different variables or expansion points
701 // results in an empty (constant) series
702 if (!is_compatible_to(other)) {
703 epvector nul { expair(Order(_ex1), _ex0) };
704 return pseries(relational(var,point), std::move(nul));
709 auto a = seq.begin(), a_end = seq.end();
710 auto b = other.seq.begin(), b_end = other.seq.end();
711 int pow_a = std::numeric_limits<int>::max(), pow_b = std::numeric_limits<int>::max();
713 // If a is empty, fill up with elements from b and stop
716 new_seq.push_back(*b);
721 pow_a = ex_to<numeric>((*a).coeff).to_int();
723 // If b is empty, fill up with elements from a and stop
726 new_seq.push_back(*a);
731 pow_b = ex_to<numeric>((*b).coeff).to_int();
733 // a and b are non-empty, compare powers
735 // a has lesser power, get coefficient from a
736 new_seq.push_back(*a);
737 if (is_order_function((*a).rest))
740 } else if (pow_b < pow_a) {
741 // b has lesser power, get coefficient from b
742 new_seq.push_back(*b);
743 if (is_order_function((*b).rest))
747 // Add coefficient of a and b
748 if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
749 new_seq.push_back(expair(Order(_ex1), (*a).coeff));
750 break; // Order term ends the sequence
752 ex sum = (*a).rest + (*b).rest;
753 if (!(sum.is_zero()))
754 new_seq.push_back(expair(sum, numeric(pow_a)));
760 return pseries(relational(var,point), std::move(new_seq));
764 /** Implementation of ex::series() for sums. This performs series addition when
765 * adding pseries objects.
767 ex add::series(const relational & r, int order, unsigned options) const
769 ex acc; // Series accumulator
771 // Get first term from overall_coeff
772 acc = overall_coeff.series(r, order, options);
774 // Add remaining terms
775 for (auto & it : seq) {
777 if (is_exactly_a<pseries>(it.rest))
780 op = it.rest.series(r, order, options);
781 if (!it.coeff.is_equal(_ex1))
782 op = ex_to<pseries>(op).mul_const(ex_to<numeric>(it.coeff));
785 acc = ex_to<pseries>(acc).add_series(ex_to<pseries>(op));
791 /** Multiply a pseries object with a numeric constant, producing a pseries
792 * object that represents the product.
794 * @param other constant to multiply with
795 * @return the product as a pseries */
796 ex pseries::mul_const(const numeric &other) const
799 new_seq.reserve(seq.size());
801 for (auto & it : seq) {
802 if (!is_order_function(it.rest))
803 new_seq.push_back(expair(it.rest * other, it.coeff));
805 new_seq.push_back(it);
807 return pseries(relational(var,point), std::move(new_seq));
811 /** Multiply one pseries object to another, producing a pseries object that
812 * represents the product.
814 * @param other pseries object to multiply with
815 * @return the product as a pseries */
816 ex pseries::mul_series(const pseries &other) const
818 // Multiplying two series with different variables or expansion points
819 // results in an empty (constant) series
820 if (!is_compatible_to(other)) {
821 epvector nul { expair(Order(_ex1), _ex0) };
822 return pseries(relational(var,point), std::move(nul));
825 if (seq.empty() || other.seq.empty()) {
826 return (new pseries(var==point, epvector()))
827 ->setflag(status_flags::dynallocated);
830 // Series multiplication
832 int a_max = degree(var);
833 int b_max = other.degree(var);
834 int a_min = ldegree(var);
835 int b_min = other.ldegree(var);
836 int cdeg_min = a_min + b_min;
837 int cdeg_max = a_max + b_max;
839 int higher_order_a = std::numeric_limits<int>::max();
840 int higher_order_b = std::numeric_limits<int>::max();
841 if (is_order_function(coeff(var, a_max)))
842 higher_order_a = a_max + b_min;
843 if (is_order_function(other.coeff(var, b_max)))
844 higher_order_b = b_max + a_min;
845 int higher_order_c = std::min(higher_order_a, higher_order_b);
846 if (cdeg_max >= higher_order_c)
847 cdeg_max = higher_order_c - 1;
849 for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
851 // c(i)=a(0)b(i)+...+a(i)b(0)
852 for (int i=a_min; cdeg-i>=b_min; ++i) {
853 ex a_coeff = coeff(var, i);
854 ex b_coeff = other.coeff(var, cdeg-i);
855 if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
856 co += a_coeff * b_coeff;
859 new_seq.push_back(expair(co, numeric(cdeg)));
861 if (higher_order_c < std::numeric_limits<int>::max())
862 new_seq.push_back(expair(Order(_ex1), numeric(higher_order_c)));
863 return pseries(relational(var, point), std::move(new_seq));
867 /** Implementation of ex::series() for product. This performs series
868 * multiplication when multiplying series.
870 ex mul::series(const relational & r, int order, unsigned options) const
872 pseries acc; // Series accumulator
874 GINAC_ASSERT(is_a<symbol>(r.lhs()));
875 const ex& sym = r.lhs();
877 // holds ldegrees of the series of individual factors
878 std::vector<int> ldegrees;
879 std::vector<bool> ldegree_redo;
881 // find minimal degrees
882 // first round: obtain a bound up to which minimal degrees have to be
884 for (auto & it : seq) {
889 if (expon.info(info_flags::integer)) {
891 factor = ex_to<numeric>(expon).to_int();
893 buf = recombine_pair_to_ex(it);
896 int real_ldegree = 0;
897 bool flag_redo = false;
899 real_ldegree = buf.expand().ldegree(sym-r.rhs());
900 } catch (std::runtime_error) {}
902 if (real_ldegree == 0) {
904 // This case must terminate, otherwise we would have division by
909 real_ldegree = buf.series(r, orderloop, options).ldegree(sym);
910 } while (real_ldegree == orderloop);
912 // Here it is possible that buf does not have a ldegree, therefore
913 // check only if ldegree is negative, otherwise reconsider the case
914 // in the second round.
915 real_ldegree = buf.series(r, 0, options).ldegree(sym);
916 if (real_ldegree == 0)
921 ldegrees.push_back(factor * real_ldegree);
922 ldegree_redo.push_back(flag_redo);
925 int degbound = order-std::accumulate(ldegrees.begin(), ldegrees.end(), 0);
926 // Second round: determine the remaining positive ldegrees by the series
928 // here we can ignore ldegrees larger than degbound
930 for (auto & it : seq) {
931 if ( ldegree_redo[j] ) {
935 if (expon.info(info_flags::integer)) {
937 factor = ex_to<numeric>(expon).to_int();
939 buf = recombine_pair_to_ex(it);
941 int real_ldegree = 0;
945 real_ldegree = buf.series(r, orderloop, options).ldegree(sym);
946 } while ((real_ldegree == orderloop)
947 && (factor*real_ldegree < degbound));
948 ldegrees[j] = factor * real_ldegree;
949 degbound -= factor * real_ldegree;
954 int degsum = std::accumulate(ldegrees.begin(), ldegrees.end(), 0);
956 if (degsum >= order) {
957 epvector epv { expair(Order(_ex1), order) };
958 return (new pseries(r, std::move(epv)))->setflag(status_flags::dynallocated);
961 // Multiply with remaining terms
962 auto itd = ldegrees.begin();
963 for (auto it=seq.begin(), itend=seq.end(); it!=itend; ++it, ++itd) {
965 // do series expansion with adjusted order
966 ex op = recombine_pair_to_ex(*it).series(r, order-degsum+(*itd), options);
968 // Series multiplication
969 if (it == seq.begin())
970 acc = ex_to<pseries>(op);
972 acc = ex_to<pseries>(acc.mul_series(ex_to<pseries>(op)));
975 return acc.mul_const(ex_to<numeric>(overall_coeff));
979 /** Compute the p-th power of a series.
981 * @param p power to compute
982 * @param deg truncation order of series calculation */
983 ex pseries::power_const(const numeric &p, int deg) const
986 // (due to Leonhard Euler)
987 // let A(x) be this series and for the time being let it start with a
988 // constant (later we'll generalize):
989 // A(x) = a_0 + a_1*x + a_2*x^2 + ...
990 // We want to compute
992 // C(x) = c_0 + c_1*x + c_2*x^2 + ...
993 // Taking the derivative on both sides and multiplying with A(x) one
994 // immediately arrives at
995 // C'(x)*A(x) = p*C(x)*A'(x)
996 // Multiplying this out and comparing coefficients we get the recurrence
998 // c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
999 // ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
1000 // which can easily be solved given the starting value c_0 = (a_0)^p.
1001 // For the more general case where the leading coefficient of A(x) is not
1002 // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
1003 // repeat the above derivation. The leading power of C2(x) = A2(x)^2 is
1004 // then of course x^(p*m) but the recurrence formula still holds.
1007 // as a special case, handle the empty (zero) series honoring the
1008 // usual power laws such as implemented in power::eval()
1009 if (p.real().is_zero())
1010 throw std::domain_error("pseries::power_const(): pow(0,I) is undefined");
1011 else if (p.real().is_negative())
1012 throw pole_error("pseries::power_const(): division by zero",1);
1017 const int ldeg = ldegree(var);
1018 if (!(p*ldeg).is_integer())
1019 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
1021 // adjust number of coefficients
1022 int numcoeff = deg - (p*ldeg).to_int();
1023 if (numcoeff <= 0) {
1024 epvector epv { expair(Order(_ex1), deg) };
1025 return (new pseries(relational(var,point), std::move(epv)))
1026 ->setflag(status_flags::dynallocated);
1029 // O(x^n)^(-m) is undefined
1030 if (seq.size() == 1 && is_order_function(seq[0].rest) && p.real().is_negative())
1031 throw pole_error("pseries::power_const(): division by zero",1);
1033 // Compute coefficients of the powered series
1035 co.reserve(numcoeff);
1036 co.push_back(power(coeff(var, ldeg), p));
1037 for (int i=1; i<numcoeff; ++i) {
1039 for (int j=1; j<=i; ++j) {
1040 ex c = coeff(var, j + ldeg);
1041 if (is_order_function(c)) {
1042 co.push_back(Order(_ex1));
1045 sum += (p * j - (i - j)) * co[i - j] * c;
1047 co.push_back(sum / coeff(var, ldeg) / i);
1050 // Construct new series (of non-zero coefficients)
1052 bool higher_order = false;
1053 for (int i=0; i<numcoeff; ++i) {
1054 if (!co[i].is_zero())
1055 new_seq.push_back(expair(co[i], p * ldeg + i));
1056 if (is_order_function(co[i])) {
1057 higher_order = true;
1062 new_seq.push_back(expair(Order(_ex1), p * ldeg + numcoeff));
1064 return pseries(relational(var,point), std::move(new_seq));
1068 /** Return a new pseries object with the powers shifted by deg. */
1069 pseries pseries::shift_exponents(int deg) const
1071 epvector newseq = seq;
1072 for (auto & it : newseq)
1074 return pseries(relational(var, point), std::move(newseq));
1078 /** Implementation of ex::series() for powers. This performs Laurent expansion
1079 * of reciprocals of series at singularities.
1080 * @see ex::series */
1081 ex power::series(const relational & r, int order, unsigned options) const
1083 // If basis is already a series, just power it
1084 if (is_exactly_a<pseries>(basis))
1085 return ex_to<pseries>(basis).power_const(ex_to<numeric>(exponent), order);
1087 // Basis is not a series, may there be a singularity?
1088 bool must_expand_basis = false;
1090 basis.subs(r, subs_options::no_pattern);
1091 } catch (pole_error) {
1092 must_expand_basis = true;
1095 bool exponent_is_regular = true;
1097 exponent.subs(r, subs_options::no_pattern);
1098 } catch (pole_error) {
1099 exponent_is_regular = false;
1102 if (!exponent_is_regular) {
1103 ex l = exponent*log(basis);
1105 ex le = l.series(r, order, options);
1106 // Note: expanding exp(l) won't help, since that will attempt
1107 // Taylor expansion, and fail (because exponent is "singular")
1108 // Still l itself might be expanded in Taylor series.
1110 // sin(x)/x*log(cos(x))
1112 return exp(le).series(r, order, options);
1113 // Note: if l happens to have a Laurent expansion (with
1114 // negative powers of (var - point)), expanding exp(le)
1115 // will barf (which is The Right Thing).
1118 // Is the expression of type something^(-int)?
1119 if (!must_expand_basis && !exponent.info(info_flags::negint)
1120 && (!is_a<add>(basis) || !is_a<numeric>(exponent)))
1121 return basic::series(r, order, options);
1123 // Is the expression of type 0^something?
1124 if (!must_expand_basis && !basis.subs(r, subs_options::no_pattern).is_zero()
1125 && (!is_a<add>(basis) || !is_a<numeric>(exponent)))
1126 return basic::series(r, order, options);
1128 // Singularity encountered, is the basis equal to (var - point)?
1129 if (basis.is_equal(r.lhs() - r.rhs())) {
1131 if (ex_to<numeric>(exponent).to_int() < order)
1132 new_seq.push_back(expair(_ex1, exponent));
1134 new_seq.push_back(expair(Order(_ex1), exponent));
1135 return pseries(r, std::move(new_seq));
1138 // No, expand basis into series
1141 if (is_a<numeric>(exponent)) {
1142 numexp = ex_to<numeric>(exponent);
1146 const ex& sym = r.lhs();
1147 // find existing minimal degree
1148 ex eb = basis.expand();
1149 int real_ldegree = 0;
1150 if (eb.info(info_flags::rational_function))
1151 real_ldegree = eb.ldegree(sym-r.rhs());
1152 if (real_ldegree == 0) {
1156 real_ldegree = basis.series(r, orderloop, options).ldegree(sym);
1157 } while (real_ldegree == orderloop);
1160 if (!(real_ldegree*numexp).is_integer())
1161 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
1162 ex e = basis.series(r, (order + real_ldegree*(1-numexp)).to_int(), options);
1166 result = ex_to<pseries>(e).power_const(numexp, order);
1167 } catch (pole_error) {
1168 epvector ser { expair(Order(_ex1), order) };
1169 result = pseries(r, std::move(ser));
1176 /** Re-expansion of a pseries object. */
1177 ex pseries::series(const relational & r, int order, unsigned options) const
1179 const ex p = r.rhs();
1180 GINAC_ASSERT(is_a<symbol>(r.lhs()));
1181 const symbol &s = ex_to<symbol>(r.lhs());
1183 if (var.is_equal(s) && point.is_equal(p)) {
1184 if (order > degree(s))
1188 for (auto & it : seq) {
1189 int o = ex_to<numeric>(it.coeff).to_int();
1191 new_seq.push_back(expair(Order(_ex1), o));
1194 new_seq.push_back(it);
1196 return pseries(r, std::move(new_seq));
1199 return convert_to_poly().series(r, order, options);
1202 ex integral::series(const relational & r, int order, unsigned options) const
1205 throw std::logic_error("Cannot series expand wrt dummy variable");
1207 // Expanding integrand with r substituted taken in boundaries.
1208 ex fseries = f.series(r, order, options);
1209 epvector fexpansion;
1210 fexpansion.reserve(fseries.nops());
1211 for (size_t i=0; i<fseries.nops(); ++i) {
1212 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1213 currcoeff = (currcoeff == Order(_ex1))
1215 : integral(x, a.subs(r), b.subs(r), currcoeff);
1217 fexpansion.push_back(
1218 expair(currcoeff, ex_to<pseries>(fseries).exponop(i)));
1221 // Expanding lower boundary
1222 ex result = (new pseries(r, fexpansion))->setflag(status_flags::dynallocated);
1223 ex aseries = (a-a.subs(r)).series(r, order, options);
1224 fseries = f.series(x == (a.subs(r)), order, options);
1225 for (size_t i=0; i<fseries.nops(); ++i) {
1226 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1227 if (is_order_function(currcoeff))
1229 ex currexpon = ex_to<pseries>(fseries).exponop(i);
1230 int orderforf = order-ex_to<numeric>(currexpon).to_int()-1;
1231 currcoeff = currcoeff.series(r, orderforf);
1232 ex term = ex_to<pseries>(aseries).power_const(ex_to<numeric>(currexpon+1),order);
1233 term = ex_to<pseries>(term).mul_const(ex_to<numeric>(-1/(currexpon+1)));
1234 term = ex_to<pseries>(term).mul_series(ex_to<pseries>(currcoeff));
1235 result = ex_to<pseries>(result).add_series(ex_to<pseries>(term));
1238 // Expanding upper boundary
1239 ex bseries = (b-b.subs(r)).series(r, order, options);
1240 fseries = f.series(x == (b.subs(r)), order, options);
1241 for (size_t i=0; i<fseries.nops(); ++i) {
1242 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1243 if (is_order_function(currcoeff))
1245 ex currexpon = ex_to<pseries>(fseries).exponop(i);
1246 int orderforf = order-ex_to<numeric>(currexpon).to_int()-1;
1247 currcoeff = currcoeff.series(r, orderforf);
1248 ex term = ex_to<pseries>(bseries).power_const(ex_to<numeric>(currexpon+1),order);
1249 term = ex_to<pseries>(term).mul_const(ex_to<numeric>(1/(currexpon+1)));
1250 term = ex_to<pseries>(term).mul_series(ex_to<pseries>(currcoeff));
1251 result = ex_to<pseries>(result).add_series(ex_to<pseries>(term));
1258 /** Compute the truncated series expansion of an expression.
1259 * This function returns an expression containing an object of class pseries
1260 * to represent the series. If the series does not terminate within the given
1261 * truncation order, the last term of the series will be an order term.
1263 * @param r expansion relation, lhs holds variable and rhs holds point
1264 * @param order truncation order of series calculations
1265 * @param options of class series_options
1266 * @return an expression holding a pseries object */
1267 ex ex::series(const ex & r, int order, unsigned options) const
1272 if (is_a<relational>(r))
1273 rel_ = ex_to<relational>(r);
1274 else if (is_a<symbol>(r))
1275 rel_ = relational(r,_ex0);
1277 throw (std::logic_error("ex::series(): expansion point has unknown type"));
1279 e = bp->series(rel_, order, options);
1283 GINAC_BIND_UNARCHIVER(pseries);
1285 } // namespace GiNaC