3 * Implementation of class for extended truncated power series and
4 * methods for series expansion. */
7 * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 #include "relational.h"
38 #ifndef NO_NAMESPACE_GINAC
40 #endif // ndef NO_NAMESPACE_GINAC
42 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
45 * Default constructor, destructor, copy constructor, assignment operator and helpers
48 pseries::pseries() : basic(TINFO_pseries)
50 debugmsg("pseries default constructor", LOGLEVEL_CONSTRUCT);
55 debugmsg("pseries destructor", LOGLEVEL_DESTRUCT);
59 pseries::pseries(const pseries &other)
61 debugmsg("pseries copy constructor", LOGLEVEL_CONSTRUCT);
65 const pseries &pseries::operator=(const pseries & other)
67 debugmsg("pseries operator=", LOGLEVEL_ASSIGNMENT);
75 void pseries::copy(const pseries &other)
77 inherited::copy(other);
83 void pseries::destroy(bool call_parent)
86 inherited::destroy(call_parent);
94 /** Construct pseries from a vector of coefficients and powers.
95 * expair.rest holds the coefficient, expair.coeff holds the power.
96 * The powers must be integers (positive or negative) and in ascending order;
97 * the last coefficient can be Order(_ex1()) to represent a truncated,
98 * non-terminating series.
100 * @param var_ series variable (must hold a symbol)
101 * @param point_ expansion point
102 * @param ops_ vector of {coefficient, power} pairs (coefficient must not be zero)
103 * @return newly constructed pseries */
104 pseries::pseries(const ex &var_, const ex &point_, const epvector &ops_)
105 : basic(TINFO_pseries), seq(ops_), var(var_), point(point_)
107 debugmsg("pseries constructor from ex,ex,epvector", LOGLEVEL_CONSTRUCT);
108 GINAC_ASSERT(is_ex_exactly_of_type(var_, symbol));
116 /** Construct object from archive_node. */
117 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
119 debugmsg("pseries constructor from archive_node", LOGLEVEL_CONSTRUCT);
120 for (unsigned int i=0; true; i++) {
123 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
124 seq.push_back(expair(rest, coeff));
128 n.find_ex("var", var, sym_lst);
129 n.find_ex("point", point, sym_lst);
132 /** Unarchive the object. */
133 ex pseries::unarchive(const archive_node &n, const lst &sym_lst)
135 return (new pseries(n, sym_lst))->setflag(status_flags::dynallocated);
138 /** Archive the object. */
139 void pseries::archive(archive_node &n) const
141 inherited::archive(n);
142 epvector::const_iterator i = seq.begin(), iend = seq.end();
144 n.add_ex("coeff", i->rest);
145 n.add_ex("power", i->coeff);
148 n.add_ex("var", var);
149 n.add_ex("point", point);
154 * Functions overriding virtual functions from base classes
157 basic *pseries::duplicate() const
159 debugmsg("pseries duplicate", LOGLEVEL_DUPLICATE);
160 return new pseries(*this);
163 void pseries::print(ostream &os, unsigned upper_precedence) const
165 debugmsg("pseries print", LOGLEVEL_PRINT);
166 convert_to_poly().print(os, upper_precedence);
169 void pseries::printraw(ostream &os) const
171 debugmsg("pseries printraw", LOGLEVEL_PRINT);
172 os << "pseries(" << var << ";" << point << ";";
173 for (epvector::const_iterator i=seq.begin(); i!=seq.end(); i++) {
174 os << "(" << (*i).rest << "," << (*i).coeff << "),";
179 unsigned pseries::nops(void) const
184 ex pseries::op(int i) const
186 if (i < 0 || unsigned(i) >= seq.size())
187 throw (std::out_of_range("op() out of range"));
188 return seq[i].rest * power(var - point, seq[i].coeff);
191 ex &pseries::let_op(int i)
193 throw (std::logic_error("let_op not defined for pseries"));
196 int pseries::degree(const symbol &s) const
198 if (var.is_equal(s)) {
199 // Return last exponent
201 return ex_to_numeric((*(seq.end() - 1)).coeff).to_int();
205 epvector::const_iterator it = seq.begin(), itend = seq.end();
208 int max_pow = INT_MIN;
209 while (it != itend) {
210 int pow = it->rest.degree(s);
219 int pseries::ldegree(const symbol &s) const
221 if (var.is_equal(s)) {
222 // Return first exponent
224 return ex_to_numeric((*(seq.begin())).coeff).to_int();
228 epvector::const_iterator it = seq.begin(), itend = seq.end();
231 int min_pow = INT_MAX;
232 while (it != itend) {
233 int pow = it->rest.ldegree(s);
242 ex pseries::coeff(const symbol &s, int n) const
244 if (var.is_equal(s)) {
245 epvector::const_iterator it = seq.begin(), itend = seq.end();
246 while (it != itend) {
247 int pow = ex_to_numeric(it->coeff).to_int();
256 return convert_to_poly().coeff(s, n);
259 ex pseries::eval(int level) const
264 // Construct a new series with evaluated coefficients
266 new_seq.reserve(seq.size());
267 epvector::const_iterator it = seq.begin(), itend = seq.end();
268 while (it != itend) {
269 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
272 return (new pseries(var, point, new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
275 /** Evaluate numerically. The order term is dropped. */
276 ex pseries::evalf(int level) const
278 return convert_to_poly().evalf(level);
281 ex pseries::subs(const lst & ls, const lst & lr) const
283 // If expansion variable is being substituted, convert the series to a
284 // polynomial and do the substitution there because the result might
285 // no longer be a power series
287 return convert_to_poly(true).subs(ls, lr);
289 // Otherwise construct a new series with substituted coefficients and
292 new_seq.reserve(seq.size());
293 epvector::const_iterator it = seq.begin(), itend = seq.end();
294 while (it != itend) {
295 new_seq.push_back(expair(it->rest.subs(ls, lr), it->coeff));
298 return (new pseries(var, point.subs(ls, lr), new_seq))->setflag(status_flags::dynallocated);
303 * Construct ordinary polynomial out of series
306 /** Convert a pseries object to an ordinary polynomial.
308 * @param no_order flag: discard higher order terms */
309 ex pseries::convert_to_poly(bool no_order) const
312 epvector::const_iterator it = seq.begin(), itend = seq.end();
314 while (it != itend) {
315 if (is_order_function(it->rest)) {
317 e += Order(power(var - point, it->coeff));
319 e += it->rest * power(var - point, it->coeff);
327 * Implementation of series expansion
330 /** Default implementation of ex::series(). This performs Taylor expansion.
332 ex basic::series(const symbol & s, const ex & point, int order) const
337 ex coeff = deriv.subs(s == point);
338 if (!coeff.is_zero())
339 seq.push_back(expair(coeff, numeric(0)));
342 for (n=1; n<order; n++) {
343 fac = fac.mul(numeric(n));
344 deriv = deriv.diff(s).expand();
345 if (deriv.is_zero()) {
347 return pseries(s, point, seq);
349 coeff = fac.inverse() * deriv.subs(s == point);
350 if (!coeff.is_zero())
351 seq.push_back(expair(coeff, numeric(n)));
354 // Higher-order terms, if present
355 deriv = deriv.diff(s);
356 if (!deriv.is_zero())
357 seq.push_back(expair(Order(_ex1()), numeric(n)));
358 return pseries(s, point, seq);
362 /** Implementation of ex::series() for symbols.
364 ex symbol::series(const symbol & s, const ex & point, int order) const
368 if (order > 0 && !point.is_zero())
369 seq.push_back(expair(point, _ex0()));
371 seq.push_back(expair(_ex1(), _ex1()));
373 seq.push_back(expair(Order(_ex1()), numeric(order)));
375 seq.push_back(expair(*this, _ex0()));
376 return pseries(s, point, seq);
380 /** Add one series object to another, producing a pseries object that
381 * represents the sum.
383 * @param other pseries object to add with
384 * @return the sum as a pseries */
385 ex pseries::add_series(const pseries &other) const
387 // Adding two series with different variables or expansion points
388 // results in an empty (constant) series
389 if (!is_compatible_to(other)) {
391 nul.push_back(expair(Order(_ex1()), _ex0()));
392 return pseries(var, point, nul);
397 epvector::const_iterator a = seq.begin();
398 epvector::const_iterator b = other.seq.begin();
399 epvector::const_iterator a_end = seq.end();
400 epvector::const_iterator b_end = other.seq.end();
401 int pow_a = INT_MAX, pow_b = INT_MAX;
403 // If a is empty, fill up with elements from b and stop
406 new_seq.push_back(*b);
411 pow_a = ex_to_numeric((*a).coeff).to_int();
413 // If b is empty, fill up with elements from a and stop
416 new_seq.push_back(*a);
421 pow_b = ex_to_numeric((*b).coeff).to_int();
423 // a and b are non-empty, compare powers
425 // a has lesser power, get coefficient from a
426 new_seq.push_back(*a);
427 if (is_order_function((*a).rest))
430 } else if (pow_b < pow_a) {
431 // b has lesser power, get coefficient from b
432 new_seq.push_back(*b);
433 if (is_order_function((*b).rest))
437 // Add coefficient of a and b
438 if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
439 new_seq.push_back(expair(Order(_ex1()), (*a).coeff));
440 break; // Order term ends the sequence
442 ex sum = (*a).rest + (*b).rest;
443 if (!(sum.is_zero()))
444 new_seq.push_back(expair(sum, numeric(pow_a)));
450 return pseries(var, point, new_seq);
454 /** Implementation of ex::series() for sums. This performs series addition when
455 * adding pseries objects.
457 ex add::series(const symbol & s, const ex & point, int order) const
459 ex acc; // Series accumulator
461 // Get first term from overall_coeff
462 acc = overall_coeff.series(s, point, order);
464 // Add remaining terms
465 epvector::const_iterator it = seq.begin();
466 epvector::const_iterator itend = seq.end();
467 for (; it!=itend; it++) {
469 if (is_ex_exactly_of_type(it->rest, pseries))
472 op = it->rest.series(s, point, order);
473 if (!it->coeff.is_equal(_ex1()))
474 op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff));
477 acc = ex_to_pseries(acc).add_series(ex_to_pseries(op));
483 /** Multiply a pseries object with a numeric constant, producing a pseries
484 * object that represents the product.
486 * @param other constant to multiply with
487 * @return the product as a pseries */
488 ex pseries::mul_const(const numeric &other) const
491 new_seq.reserve(seq.size());
493 epvector::const_iterator it = seq.begin(), itend = seq.end();
494 while (it != itend) {
495 if (!is_order_function(it->rest))
496 new_seq.push_back(expair(it->rest * other, it->coeff));
498 new_seq.push_back(*it);
501 return pseries(var, point, new_seq);
505 /** Multiply one pseries object to another, producing a pseries object that
506 * represents the product.
508 * @param other pseries object to multiply with
509 * @return the product as a pseries */
510 ex pseries::mul_series(const pseries &other) const
512 // Multiplying two series with different variables or expansion points
513 // results in an empty (constant) series
514 if (!is_compatible_to(other)) {
516 nul.push_back(expair(Order(_ex1()), _ex0()));
517 return pseries(var, point, nul);
520 // Series multiplication
523 const symbol *s = static_cast<symbol *>(var.bp);
524 int a_max = degree(*s);
525 int b_max = other.degree(*s);
526 int a_min = ldegree(*s);
527 int b_min = other.ldegree(*s);
528 int cdeg_min = a_min + b_min;
529 int cdeg_max = a_max + b_max;
531 int higher_order_a = INT_MAX;
532 int higher_order_b = INT_MAX;
533 if (is_order_function(coeff(*s, a_max)))
534 higher_order_a = a_max + b_min;
535 if (is_order_function(other.coeff(*s, b_max)))
536 higher_order_b = b_max + a_min;
537 int higher_order_c = min(higher_order_a, higher_order_b);
538 if (cdeg_max >= higher_order_c)
539 cdeg_max = higher_order_c - 1;
541 for (int cdeg=cdeg_min; cdeg<=cdeg_max; cdeg++) {
543 // c(i)=a(0)b(i)+...+a(i)b(0)
544 for (int i=a_min; cdeg-i>=b_min; i++) {
545 ex a_coeff = coeff(*s, i);
546 ex b_coeff = other.coeff(*s, cdeg-i);
547 if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
548 co += coeff(*s, i) * other.coeff(*s, cdeg-i);
551 new_seq.push_back(expair(co, numeric(cdeg)));
553 if (higher_order_c < INT_MAX)
554 new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c)));
555 return pseries(var, point, new_seq);
559 /** Implementation of ex::series() for product. This performs series
560 * multiplication when multiplying series.
562 ex mul::series(const symbol & s, const ex & point, int order) const
564 ex acc; // Series accumulator
566 // Get first term from overall_coeff
567 acc = overall_coeff.series(s, point, order);
569 // Multiply with remaining terms
570 epvector::const_iterator it = seq.begin();
571 epvector::const_iterator itend = seq.end();
572 for (; it!=itend; it++) {
574 if (op.info(info_flags::numeric)) {
575 // series * const (special case, faster)
576 ex f = power(op, it->coeff);
577 acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f));
579 } else if (!is_ex_exactly_of_type(op, pseries))
580 op = op.series(s, point, order);
581 if (!it->coeff.is_equal(_ex1()))
582 op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order);
584 // Series multiplication
585 acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op));
591 /** Compute the p-th power of a series.
593 * @param p power to compute
594 * @param deg truncation order of series calculation */
595 ex pseries::power_const(const numeric &p, int deg) const
598 const symbol *s = static_cast<symbol *>(var.bp);
599 int ldeg = ldegree(*s);
601 // Calculate coefficients of powered series
605 co.push_back(co0 = power(coeff(*s, ldeg), p));
606 bool all_sums_zero = true;
607 for (i=1; i<deg; i++) {
609 for (int j=1; j<=i; j++) {
610 ex c = coeff(*s, j + ldeg);
611 if (is_order_function(c)) {
612 co.push_back(Order(_ex1()));
615 sum += (p * j - (i - j)) * co[i - j] * c;
618 all_sums_zero = false;
619 co.push_back(co0 * sum / numeric(i));
622 // Construct new series (of non-zero coefficients)
624 bool higher_order = false;
625 for (i=0; i<deg; i++) {
626 if (!co[i].is_zero())
627 new_seq.push_back(expair(co[i], numeric(i) + p * ldeg));
628 if (is_order_function(co[i])) {
633 if (!higher_order && !all_sums_zero)
634 new_seq.push_back(expair(Order(_ex1()), numeric(deg) + p * ldeg));
635 return pseries(var, point, new_seq);
639 /** Implementation of ex::series() for powers. This performs Laurent expansion
640 * of reciprocals of series at singularities.
642 ex power::series(const symbol & s, const ex & point, int order) const
645 if (!is_ex_exactly_of_type(basis, pseries)) {
646 // Basis is not a series, may there be a singulary?
647 if (!exponent.info(info_flags::negint))
648 return basic::series(s, point, order);
650 // Expression is of type something^(-int), check for singularity
651 if (!basis.subs(s == point).is_zero())
652 return basic::series(s, point, order);
654 // Singularity encountered, expand basis into series
655 e = basis.series(s, point, order);
662 return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order);
666 /** Compute the truncated series expansion of an expression.
667 * This function returns an expression containing an object of class pseries to
668 * represent the series. If the series does not terminate within the given
669 * truncation order, the last term of the series will be an order term.
671 * @param s expansion variable
672 * @param point expansion point
673 * @param order truncation order of series calculations
674 * @return an expression holding a pseries object */
675 ex ex::series(const symbol &s, const ex &point, int order) const
678 return bp->series(s, point, order);
683 const pseries some_pseries;
684 const type_info & typeid_pseries = typeid(some_pseries);
686 #ifndef NO_NAMESPACE_GINAC
688 #endif // ndef NO_NAMESPACE_GINAC