3 * Implementation of class for extended truncated power series and
4 * methods for series expansion. */
7 * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 #include "relational.h"
40 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
43 * Default ctor, dtor, copy ctor, assignment operator and helpers
46 pseries::pseries() : basic(TINFO_pseries)
48 debugmsg("pseries default ctor", LOGLEVEL_CONSTRUCT);
51 void pseries::copy(const pseries &other)
53 inherited::copy(other);
59 void pseries::destroy(bool call_parent)
62 inherited::destroy(call_parent);
70 /** Construct pseries from a vector of coefficients and powers.
71 * expair.rest holds the coefficient, expair.coeff holds the power.
72 * The powers must be integers (positive or negative) and in ascending order;
73 * the last coefficient can be Order(_ex1()) to represent a truncated,
74 * non-terminating series.
76 * @param rel_ expansion variable and point (must hold a relational)
77 * @param ops_ vector of {coefficient, power} pairs (coefficient must not be zero)
78 * @return newly constructed pseries */
79 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
81 debugmsg("pseries ctor from ex,epvector", LOGLEVEL_CONSTRUCT);
82 GINAC_ASSERT(is_ex_exactly_of_type(rel_, relational));
83 GINAC_ASSERT(is_ex_exactly_of_type(rel_.lhs(),symbol));
85 var = *static_cast<symbol *>(rel_.lhs().bp);
93 /** Construct object from archive_node. */
94 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
96 debugmsg("pseries ctor from archive_node", LOGLEVEL_CONSTRUCT);
97 for (unsigned int i=0; true; ++i) {
100 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
101 seq.push_back(expair(rest, coeff));
105 n.find_ex("var", var, sym_lst);
106 n.find_ex("point", point, sym_lst);
109 /** Unarchive the object. */
110 ex pseries::unarchive(const archive_node &n, const lst &sym_lst)
112 return (new pseries(n, sym_lst))->setflag(status_flags::dynallocated);
115 /** Archive the object. */
116 void pseries::archive(archive_node &n) const
118 inherited::archive(n);
119 epvector::const_iterator i = seq.begin(), iend = seq.end();
121 n.add_ex("coeff", i->rest);
122 n.add_ex("power", i->coeff);
125 n.add_ex("var", var);
126 n.add_ex("point", point);
130 // functions overriding virtual functions from bases classes
133 void pseries::print(std::ostream &os, unsigned upper_precedence) const
135 debugmsg("pseries print", LOGLEVEL_PRINT);
136 if (precedence<=upper_precedence) os << "(";
137 // objects of type pseries must not have any zero entries, so the
138 // trivial (zero) pseries needs a special treatment here:
141 for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
142 // print a sign, if needed
145 if (!is_order_function(i->rest)) {
146 // print 'rest', i.e. the expansion coefficient
147 if (i->rest.info(info_flags::numeric) &&
148 i->rest.info(info_flags::positive)) {
151 os << "(" << i->rest << ')';
152 // print 'coeff', something like (x-1)^42
153 if (!i->coeff.is_zero()) {
155 if (!point.is_zero())
156 os << '(' << var-point << ')';
159 if (i->coeff.compare(_ex1())) {
161 if (i->coeff.info(info_flags::negative))
162 os << '(' << i->coeff << ')';
168 os << Order(power(var-point,i->coeff));
171 if (precedence<=upper_precedence) os << ")";
175 void pseries::printraw(std::ostream &os) const
177 debugmsg("pseries printraw", LOGLEVEL_PRINT);
178 os << "pseries(" << var << ";" << point << ";";
179 for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i)
180 os << "(" << (*i).rest << "," << (*i).coeff << "),";
185 void pseries::printtree(std::ostream & os, unsigned indent) const
187 debugmsg("pseries printtree",LOGLEVEL_PRINT);
188 os << std::string(indent,' ') << "pseries "
189 << ", hash=" << hashvalue
190 << " (0x" << std::hex << hashvalue << std::dec << ")"
191 << ", flags=" << flags << std::endl;
192 for (unsigned i=0; i<seq.size(); ++i) {
193 seq[i].rest.printtree(os,indent+delta_indent);
194 seq[i].coeff.printtree(os,indent+delta_indent);
196 os << std::string(indent+delta_indent,' ') << "-----" << std::endl;
198 var.printtree(os, indent+delta_indent);
199 point.printtree(os, indent+delta_indent);
202 int pseries::compare_same_type(const basic & other) const
204 GINAC_ASSERT(is_of_type(other, pseries));
205 const pseries &o = static_cast<const pseries &>(other);
207 // first compare the lengths of the series...
208 if (seq.size()>o.seq.size())
210 if (seq.size()<o.seq.size())
213 // ...then the expansion point...
214 int cmpval = var.compare(o.var);
217 cmpval = point.compare(o.point);
221 // ...and if that failed the individual elements
222 epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
223 while (it!=seq.end() && o_it!=o.seq.end()) {
224 cmpval = it->compare(*o_it);
230 // so they are equal.
234 /** Return the number of operands including a possible order term. */
235 unsigned pseries::nops(void) const
241 /** Return the ith term in the series when represented as a sum. */
242 ex pseries::op(int i) const
244 if (i < 0 || unsigned(i) >= seq.size())
245 throw (std::out_of_range("op() out of range"));
246 return seq[i].rest * power(var - point, seq[i].coeff);
250 ex &pseries::let_op(int i)
252 throw (std::logic_error("let_op not defined for pseries"));
256 /** Return degree of highest power of the series. This is usually the exponent
257 * of the Order term. If s is not the expansion variable of the series, the
258 * series is examined termwise. */
259 int pseries::degree(const symbol &s) const
261 if (var.is_equal(s)) {
262 // Return last exponent
264 return ex_to_numeric((*(seq.end() - 1)).coeff).to_int();
268 epvector::const_iterator it = seq.begin(), itend = seq.end();
271 int max_pow = INT_MIN;
272 while (it != itend) {
273 int pow = it->rest.degree(s);
282 /** Return degree of lowest power of the series. This is usually the exponent
283 * of the leading term. If s is not the expansion variable of the series, the
284 * series is examined termwise. If s is the expansion variable but the
285 * expansion point is not zero the series is not expanded to find the degree.
286 * I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
287 int pseries::ldegree(const symbol &s) const
289 if (var.is_equal(s)) {
290 // Return first exponent
292 return ex_to_numeric((*(seq.begin())).coeff).to_int();
296 epvector::const_iterator it = seq.begin(), itend = seq.end();
299 int min_pow = INT_MAX;
300 while (it != itend) {
301 int pow = it->rest.ldegree(s);
310 /** Return coefficient of degree n in power series if s is the expansion
311 * variable. If the expansion point is nonzero, by definition the n=1
312 * coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
313 * the expansion took place in the s in the first place).
314 * If s is not the expansion variable, an attempt is made to convert the
315 * series to a polynomial and return the corresponding coefficient from
317 ex pseries::coeff(const symbol &s, int n) const
319 if (var.is_equal(s)) {
323 // Binary search in sequence for given power
324 numeric looking_for = numeric(n);
325 int lo = 0, hi = seq.size() - 1;
327 int mid = (lo + hi) / 2;
328 GINAC_ASSERT(is_ex_exactly_of_type(seq[mid].coeff, numeric));
329 int cmp = ex_to_numeric(seq[mid].coeff).compare(looking_for);
335 return seq[mid].rest;
340 throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
345 return convert_to_poly().coeff(s, n);
349 ex pseries::collect(const symbol &s) const
355 /** Evaluate coefficients. */
356 ex pseries::eval(int level) const
361 if (level == -max_recursion_level)
362 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
364 // Construct a new series with evaluated coefficients
366 new_seq.reserve(seq.size());
367 epvector::const_iterator it = seq.begin(), itend = seq.end();
368 while (it != itend) {
369 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
372 return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
376 /** Evaluate coefficients numerically. */
377 ex pseries::evalf(int level) const
382 if (level == -max_recursion_level)
383 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
385 // Construct a new series with evaluated coefficients
387 new_seq.reserve(seq.size());
388 epvector::const_iterator it = seq.begin(), itend = seq.end();
389 while (it != itend) {
390 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
393 return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
397 ex pseries::subs(const lst & ls, const lst & lr) const
399 // If expansion variable is being substituted, convert the series to a
400 // polynomial and do the substitution there because the result might
401 // no longer be a power series
403 return convert_to_poly(true).subs(ls, lr);
405 // Otherwise construct a new series with substituted coefficients and
408 newseq.reserve(seq.size());
409 epvector::const_iterator it = seq.begin(), itend = seq.end();
410 while (it != itend) {
411 newseq.push_back(expair(it->rest.subs(ls, lr), it->coeff));
414 return (new pseries(relational(var,point.subs(ls, lr)), newseq))->setflag(status_flags::dynallocated);
418 /** Implementation of ex::expand() for a power series. It expands all the
419 * terms individually and returns the resulting series as a new pseries. */
420 ex pseries::expand(unsigned options) const
423 for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
424 ex restexp = i->rest.expand();
425 if (!restexp.is_zero())
426 newseq.push_back(expair(restexp, i->coeff));
428 return (new pseries(relational(var,point), newseq))
429 ->setflag(status_flags::dynallocated | status_flags::expanded);
433 /** Implementation of ex::diff() for a power series. It treats the series as a
436 ex pseries::derivative(const symbol & s) const
440 epvector::const_iterator it = seq.begin(), itend = seq.end();
442 // FIXME: coeff might depend on var
443 while (it != itend) {
444 if (is_order_function(it->rest)) {
445 new_seq.push_back(expair(it->rest, it->coeff - 1));
447 ex c = it->rest * it->coeff;
449 new_seq.push_back(expair(c, it->coeff - 1));
453 return pseries(relational(var,point), new_seq);
460 /** Convert a pseries object to an ordinary polynomial.
462 * @param no_order flag: discard higher order terms */
463 ex pseries::convert_to_poly(bool no_order) const
466 epvector::const_iterator it = seq.begin(), itend = seq.end();
468 while (it != itend) {
469 if (is_order_function(it->rest)) {
471 e += Order(power(var - point, it->coeff));
473 e += it->rest * power(var - point, it->coeff);
480 /** Returns true if there is no order term, i.e. the series terminates and
481 * false otherwise. */
482 bool pseries::is_terminating(void) const
484 return seq.size() == 0 || !is_order_function((seq.end()-1)->rest);
489 * Implementations of series expansion
492 /** Default implementation of ex::series(). This performs Taylor expansion.
494 ex basic::series(const relational & r, int order, unsigned options) const
499 ex coeff = deriv.subs(r);
500 const symbol *s = static_cast<symbol *>(r.lhs().bp);
502 if (!coeff.is_zero())
503 seq.push_back(expair(coeff, numeric(0)));
506 for (n=1; n<order; ++n) {
507 fac = fac.mul(numeric(n));
508 deriv = deriv.diff(*s).expand();
509 if (deriv.is_zero()) {
511 return pseries(r, seq);
513 coeff = deriv.subs(r);
514 if (!coeff.is_zero())
515 seq.push_back(expair(fac.inverse() * coeff, numeric(n)));
518 // Higher-order terms, if present
519 deriv = deriv.diff(*s);
520 if (!deriv.expand().is_zero())
521 seq.push_back(expair(Order(_ex1()), numeric(n)));
522 return pseries(r, seq);
526 /** Implementation of ex::series() for symbols.
528 ex symbol::series(const relational & r, int order, unsigned options) const
531 const ex point = r.rhs();
532 GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
533 const symbol *s = static_cast<symbol *>(r.lhs().bp);
535 if (this->is_equal(*s)) {
536 if (order > 0 && !point.is_zero())
537 seq.push_back(expair(point, _ex0()));
539 seq.push_back(expair(_ex1(), _ex1()));
541 seq.push_back(expair(Order(_ex1()), numeric(order)));
543 seq.push_back(expair(*this, _ex0()));
544 return pseries(r, seq);
548 /** Add one series object to another, producing a pseries object that
549 * represents the sum.
551 * @param other pseries object to add with
552 * @return the sum as a pseries */
553 ex pseries::add_series(const pseries &other) const
555 // Adding two series with different variables or expansion points
556 // results in an empty (constant) series
557 if (!is_compatible_to(other)) {
559 nul.push_back(expair(Order(_ex1()), _ex0()));
560 return pseries(relational(var,point), nul);
565 epvector::const_iterator a = seq.begin();
566 epvector::const_iterator b = other.seq.begin();
567 epvector::const_iterator a_end = seq.end();
568 epvector::const_iterator b_end = other.seq.end();
569 int pow_a = INT_MAX, pow_b = INT_MAX;
571 // If a is empty, fill up with elements from b and stop
574 new_seq.push_back(*b);
579 pow_a = ex_to_numeric((*a).coeff).to_int();
581 // If b is empty, fill up with elements from a and stop
584 new_seq.push_back(*a);
589 pow_b = ex_to_numeric((*b).coeff).to_int();
591 // a and b are non-empty, compare powers
593 // a has lesser power, get coefficient from a
594 new_seq.push_back(*a);
595 if (is_order_function((*a).rest))
598 } else if (pow_b < pow_a) {
599 // b has lesser power, get coefficient from b
600 new_seq.push_back(*b);
601 if (is_order_function((*b).rest))
605 // Add coefficient of a and b
606 if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
607 new_seq.push_back(expair(Order(_ex1()), (*a).coeff));
608 break; // Order term ends the sequence
610 ex sum = (*a).rest + (*b).rest;
611 if (!(sum.is_zero()))
612 new_seq.push_back(expair(sum, numeric(pow_a)));
618 return pseries(relational(var,point), new_seq);
622 /** Implementation of ex::series() for sums. This performs series addition when
623 * adding pseries objects.
625 ex add::series(const relational & r, int order, unsigned options) const
627 ex acc; // Series accumulator
629 // Get first term from overall_coeff
630 acc = overall_coeff.series(r, order, options);
632 // Add remaining terms
633 epvector::const_iterator it = seq.begin();
634 epvector::const_iterator itend = seq.end();
635 for (; it!=itend; ++it) {
637 if (is_ex_exactly_of_type(it->rest, pseries))
640 op = it->rest.series(r, order, options);
641 if (!it->coeff.is_equal(_ex1()))
642 op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff));
645 acc = ex_to_pseries(acc).add_series(ex_to_pseries(op));
651 /** Multiply a pseries object with a numeric constant, producing a pseries
652 * object that represents the product.
654 * @param other constant to multiply with
655 * @return the product as a pseries */
656 ex pseries::mul_const(const numeric &other) const
659 new_seq.reserve(seq.size());
661 epvector::const_iterator it = seq.begin(), itend = seq.end();
662 while (it != itend) {
663 if (!is_order_function(it->rest))
664 new_seq.push_back(expair(it->rest * other, it->coeff));
666 new_seq.push_back(*it);
669 return pseries(relational(var,point), new_seq);
673 /** Multiply one pseries object to another, producing a pseries object that
674 * represents the product.
676 * @param other pseries object to multiply with
677 * @return the product as a pseries */
678 ex pseries::mul_series(const pseries &other) const
680 // Multiplying two series with different variables or expansion points
681 // results in an empty (constant) series
682 if (!is_compatible_to(other)) {
684 nul.push_back(expair(Order(_ex1()), _ex0()));
685 return pseries(relational(var,point), nul);
688 // Series multiplication
691 const symbol *s = static_cast<symbol *>(var.bp);
692 int a_max = degree(*s);
693 int b_max = other.degree(*s);
694 int a_min = ldegree(*s);
695 int b_min = other.ldegree(*s);
696 int cdeg_min = a_min + b_min;
697 int cdeg_max = a_max + b_max;
699 int higher_order_a = INT_MAX;
700 int higher_order_b = INT_MAX;
701 if (is_order_function(coeff(*s, a_max)))
702 higher_order_a = a_max + b_min;
703 if (is_order_function(other.coeff(*s, b_max)))
704 higher_order_b = b_max + a_min;
705 int higher_order_c = std::min(higher_order_a, higher_order_b);
706 if (cdeg_max >= higher_order_c)
707 cdeg_max = higher_order_c - 1;
709 for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
711 // c(i)=a(0)b(i)+...+a(i)b(0)
712 for (int i=a_min; cdeg-i>=b_min; ++i) {
713 ex a_coeff = coeff(*s, i);
714 ex b_coeff = other.coeff(*s, cdeg-i);
715 if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
716 co += a_coeff * b_coeff;
719 new_seq.push_back(expair(co, numeric(cdeg)));
721 if (higher_order_c < INT_MAX)
722 new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c)));
723 return pseries(relational(var,point), new_seq);
727 /** Implementation of ex::series() for product. This performs series
728 * multiplication when multiplying series.
730 ex mul::series(const relational & r, int order, unsigned options) const
732 ex acc; // Series accumulator
734 // Get first term from overall_coeff
735 acc = overall_coeff.series(r, order, options);
737 // Multiply with remaining terms
738 epvector::const_iterator it = seq.begin();
739 epvector::const_iterator itend = seq.end();
740 for (; it!=itend; ++it) {
742 if (op.info(info_flags::numeric)) {
743 // series * const (special case, faster)
744 ex f = power(op, it->coeff);
745 acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f));
747 } else if (!is_ex_exactly_of_type(op, pseries))
748 op = op.series(r, order, options);
749 if (!it->coeff.is_equal(_ex1()))
750 op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order);
752 // Series multiplication
753 acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op));
759 /** Compute the p-th power of a series.
761 * @param p power to compute
762 * @param deg truncation order of series calculation */
763 ex pseries::power_const(const numeric &p, int deg) const
766 // let A(x) be this series and for the time being let it start with a
767 // constant (later we'll generalize):
768 // A(x) = a_0 + a_1*x + a_2*x^2 + ...
769 // We want to compute
771 // C(x) = c_0 + c_1*x + c_2*x^2 + ...
772 // Taking the derivative on both sides and multiplying with A(x) one
773 // immediately arrives at
774 // C'(x)*A(x) = p*C(x)*A'(x)
775 // Multiplying this out and comparing coefficients we get the recurrence
777 // c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
778 // ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
779 // which can easily be solved given the starting value c_0 = (a_0)^p.
780 // For the more general case where the leading coefficient of A(x) is not
781 // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
782 // repeat the above derivation. The leading power of C2(x) = A2(x)^2 is
783 // then of course x^(p*m) but the recurrence formula still holds.
786 // as a spacial case, handle the empty (zero) series honoring the
787 // usual power laws such as implemented in power::eval()
788 if (p.real().is_zero())
789 throw (std::domain_error("pseries::power_const(): pow(0,I) is undefined"));
790 else if (p.real().is_negative())
791 throw (pole_error("pseries::power_const(): division by zero",1));
796 const symbol *s = static_cast<symbol *>(var.bp);
797 int ldeg = ldegree(*s);
799 // Compute coefficients of the powered series
802 co.push_back(power(coeff(*s, ldeg), p));
803 bool all_sums_zero = true;
804 for (int i=1; i<deg; ++i) {
806 for (int j=1; j<=i; ++j) {
807 ex c = coeff(*s, j + ldeg);
808 if (is_order_function(c)) {
809 co.push_back(Order(_ex1()));
812 sum += (p * j - (i - j)) * co[i - j] * c;
815 all_sums_zero = false;
816 co.push_back(sum / coeff(*s, ldeg) / numeric(i));
819 // Construct new series (of non-zero coefficients)
821 bool higher_order = false;
822 for (int i=0; i<deg; ++i) {
823 if (!co[i].is_zero())
824 new_seq.push_back(expair(co[i], numeric(i) + p * ldeg));
825 if (is_order_function(co[i])) {
830 if (!higher_order && !all_sums_zero)
831 new_seq.push_back(expair(Order(_ex1()), numeric(deg) + p * ldeg));
832 return pseries(relational(var,point), new_seq);
836 /** Return a new pseries object with the powers shifted by deg. */
837 pseries pseries::shift_exponents(int deg) const
839 epvector newseq(seq);
840 for (epvector::iterator i=newseq.begin(); i!=newseq.end(); ++i)
841 i->coeff = i->coeff + deg;
842 return pseries(relational(var, point), newseq);
846 /** Implementation of ex::series() for powers. This performs Laurent expansion
847 * of reciprocals of series at singularities.
849 ex power::series(const relational & r, int order, unsigned options) const
852 if (!is_ex_exactly_of_type(basis, pseries)) {
853 // Basis is not a series, may there be a singularity?
854 bool must_expand_basis = false;
857 } catch (pole_error) {
858 must_expand_basis = true;
861 // Is the expression of type something^(-int)?
862 if (!must_expand_basis && !exponent.info(info_flags::negint))
863 return basic::series(r, order, options);
865 // Is the expression of type 0^something?
866 if (!must_expand_basis && !basis.subs(r).is_zero())
867 return basic::series(r, order, options);
869 // Singularity encountered, expand basis into series
870 e = basis.series(r, order, options);
877 return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order);
881 /** Re-expansion of a pseries object. */
882 ex pseries::series(const relational & r, int order, unsigned options) const
884 const ex p = r.rhs();
885 GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
886 const symbol *s = static_cast<symbol *>(r.lhs().bp);
888 if (var.is_equal(*s) && point.is_equal(p)) {
889 if (order > degree(*s))
893 epvector::const_iterator it = seq.begin(), itend = seq.end();
894 while (it != itend) {
895 int o = ex_to_numeric(it->coeff).to_int();
897 new_seq.push_back(expair(Order(_ex1()), o));
900 new_seq.push_back(*it);
903 return pseries(r, new_seq);
906 return convert_to_poly().series(r, order, options);
910 /** Compute the truncated series expansion of an expression.
911 * This function returns an expression containing an object of class pseries
912 * to represent the series. If the series does not terminate within the given
913 * truncation order, the last term of the series will be an order term.
915 * @param r expansion relation, lhs holds variable and rhs holds point
916 * @param order truncation order of series calculations
917 * @param options of class series_options
918 * @return an expression holding a pseries object */
919 ex ex::series(const ex & r, int order, unsigned options) const
925 if (is_ex_exactly_of_type(r,relational))
926 rel_ = ex_to_relational(r);
927 else if (is_ex_exactly_of_type(r,symbol))
928 rel_ = relational(r,_ex0());
930 throw (std::logic_error("ex::series(): expansion point has unknown type"));
933 e = bp->series(rel_, order, options);
934 } catch (std::exception &x) {
935 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
941 // static member variables
946 unsigned pseries::precedence = 38; // for clarity just below add::precedence