]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
* ginac/pseries.cpp (pseries::compare_same_type): optimized.
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23
24 #include <stdexcept>
25
26 #include "pseries.h"
27 #include "add.h"
28 #include "inifcns.h"
29 #include "lst.h"
30 #include "mul.h"
31 #include "power.h"
32 #include "relational.h"
33 #include "symbol.h"
34 #include "archive.h"
35 #include "utils.h"
36 #include "debugmsg.h"
37
38 namespace GiNaC {
39
40 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
41
42 /*
43  *  Default ctor, dtor, copy ctor, assignment operator and helpers
44  */
45
46 pseries::pseries() : basic(TINFO_pseries)
47 {
48         debugmsg("pseries default ctor", LOGLEVEL_CONSTRUCT);
49 }
50
51 void pseries::copy(const pseries &other)
52 {
53         inherited::copy(other);
54         seq = other.seq;
55         var = other.var;
56         point = other.point;
57 }
58
59 void pseries::destroy(bool call_parent)
60 {
61         if (call_parent)
62                 inherited::destroy(call_parent);
63 }
64
65
66 /*
67  *  Other ctors
68  */
69
70 /** Construct pseries from a vector of coefficients and powers.
71  *  expair.rest holds the coefficient, expair.coeff holds the power.
72  *  The powers must be integers (positive or negative) and in ascending order;
73  *  the last coefficient can be Order(_ex1()) to represent a truncated,
74  *  non-terminating series.
75  *
76  *  @param rel_  expansion variable and point (must hold a relational)
77  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
78  *  @return newly constructed pseries */
79 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
80 {
81         debugmsg("pseries ctor from ex,epvector", LOGLEVEL_CONSTRUCT);
82         GINAC_ASSERT(is_ex_exactly_of_type(rel_, relational));
83         GINAC_ASSERT(is_ex_exactly_of_type(rel_.lhs(),symbol));
84         point = rel_.rhs();
85         var = *static_cast<symbol *>(rel_.lhs().bp);
86 }
87
88
89 /*
90  *  Archiving
91  */
92
93 /** Construct object from archive_node. */
94 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
95 {
96         debugmsg("pseries ctor from archive_node", LOGLEVEL_CONSTRUCT);
97         for (unsigned int i=0; true; ++i) {
98                 ex rest;
99                 ex coeff;
100                 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
101                         seq.push_back(expair(rest, coeff));
102                 else
103                         break;
104         }
105         n.find_ex("var", var, sym_lst);
106         n.find_ex("point", point, sym_lst);
107 }
108
109 /** Unarchive the object. */
110 ex pseries::unarchive(const archive_node &n, const lst &sym_lst)
111 {
112         return (new pseries(n, sym_lst))->setflag(status_flags::dynallocated);
113 }
114
115 /** Archive the object. */
116 void pseries::archive(archive_node &n) const
117 {
118         inherited::archive(n);
119         epvector::const_iterator i = seq.begin(), iend = seq.end();
120         while (i != iend) {
121                 n.add_ex("coeff", i->rest);
122                 n.add_ex("power", i->coeff);
123                 ++i;
124         }
125         n.add_ex("var", var);
126         n.add_ex("point", point);
127 }
128
129 //////////
130 // functions overriding virtual functions from bases classes
131 //////////
132
133 void pseries::print(std::ostream &os, unsigned upper_precedence) const
134 {
135         debugmsg("pseries print", LOGLEVEL_PRINT);
136         if (precedence<=upper_precedence) os << "(";
137         // objects of type pseries must not have any zero entries, so the
138         // trivial (zero) pseries needs a special treatment here:
139         if (seq.size()==0)
140                 os << '0';
141         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
142                 // print a sign, if needed
143                 if (i!=seq.begin())
144                         os << '+';
145                 if (!is_order_function(i->rest)) {
146                         // print 'rest', i.e. the expansion coefficient
147                         if (i->rest.info(info_flags::numeric) &&
148                                 i->rest.info(info_flags::positive)) {
149                                 os << i->rest;
150                         } else
151                                 os << "(" << i->rest << ')';
152                         // print 'coeff', something like (x-1)^42
153                         if (!i->coeff.is_zero()) {
154                                 os << '*';
155                                 if (!point.is_zero())
156                                         os << '(' << var-point << ')';
157                                 else
158                                         os << var;
159                                 if (i->coeff.compare(_ex1())) {
160                                         os << '^';
161                                         if (i->coeff.info(info_flags::negative))
162                                                 os << '(' << i->coeff << ')';
163                                         else
164                                                 os << i->coeff;
165                                 }
166                         }
167                 } else {
168                         os << Order(power(var-point,i->coeff));
169                 }
170         }
171         if (precedence<=upper_precedence) os << ")";
172 }
173
174
175 void pseries::printraw(std::ostream &os) const
176 {
177         debugmsg("pseries printraw", LOGLEVEL_PRINT);
178         os << "pseries(" << var << ";" << point << ";";
179         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i)
180                 os << "(" << (*i).rest << "," << (*i).coeff << "),";
181         os << ")";
182 }
183
184
185 void pseries::printtree(std::ostream & os, unsigned indent) const
186 {
187         debugmsg("pseries printtree",LOGLEVEL_PRINT);
188         os << std::string(indent,' ') << "pseries " 
189            << ", hash=" << hashvalue
190            << " (0x" << std::hex << hashvalue << std::dec << ")"
191            << ", flags=" << flags << std::endl;
192         for (unsigned i=0; i<seq.size(); ++i) {
193                 seq[i].rest.printtree(os,indent+delta_indent);
194                 seq[i].coeff.printtree(os,indent+delta_indent);
195                 if (i!=seq.size()-1)
196                         os << std::string(indent+delta_indent,' ') << "-----" << std::endl;
197         }
198         var.printtree(os, indent+delta_indent);
199         point.printtree(os, indent+delta_indent);
200 }
201
202 int pseries::compare_same_type(const basic & other) const
203 {
204         GINAC_ASSERT(is_of_type(other, pseries));
205         const pseries &o = static_cast<const pseries &>(other);
206         
207         // first compare the lengths of the series...
208         if (seq.size()>o.seq.size())
209                 return 1;
210         if (seq.size()<o.seq.size())
211                 return -1;
212         
213         // ...then the expansion point...
214         int cmpval = var.compare(o.var);
215         if (cmpval)
216                 return cmpval;
217         cmpval = point.compare(o.point);
218         if (cmpval)
219                 return cmpval;
220         
221         // ...and if that failed the individual elements
222         epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
223         while (it!=seq.end() && o_it!=o.seq.end()) {
224                 cmpval = it->compare(*o_it);
225                 if (cmpval)
226                         return cmpval;
227                 ++it;
228                 ++o_it;
229         }
230         // so they are equal.
231         return 0;
232 }
233
234 /** Return the number of operands including a possible order term. */
235 unsigned pseries::nops(void) const
236 {
237         return seq.size();
238 }
239
240
241 /** Return the ith term in the series when represented as a sum. */
242 ex pseries::op(int i) const
243 {
244         if (i < 0 || unsigned(i) >= seq.size())
245                 throw (std::out_of_range("op() out of range"));
246         return seq[i].rest * power(var - point, seq[i].coeff);
247 }
248
249
250 ex &pseries::let_op(int i)
251 {
252         throw (std::logic_error("let_op not defined for pseries"));
253 }
254
255
256 /** Return degree of highest power of the series.  This is usually the exponent
257  *  of the Order term.  If s is not the expansion variable of the series, the
258  *  series is examined termwise. */
259 int pseries::degree(const symbol &s) const
260 {
261         if (var.is_equal(s)) {
262                 // Return last exponent
263                 if (seq.size())
264                         return ex_to_numeric((*(seq.end() - 1)).coeff).to_int();
265                 else
266                         return 0;
267         } else {
268                 epvector::const_iterator it = seq.begin(), itend = seq.end();
269                 if (it == itend)
270                         return 0;
271                 int max_pow = INT_MIN;
272                 while (it != itend) {
273                         int pow = it->rest.degree(s);
274                         if (pow > max_pow)
275                                 max_pow = pow;
276                         ++it;
277                 }
278                 return max_pow;
279         }
280 }
281
282 /** Return degree of lowest power of the series.  This is usually the exponent
283  *  of the leading term.  If s is not the expansion variable of the series, the
284  *  series is examined termwise.  If s is the expansion variable but the
285  *  expansion point is not zero the series is not expanded to find the degree.
286  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
287 int pseries::ldegree(const symbol &s) const
288 {
289         if (var.is_equal(s)) {
290                 // Return first exponent
291                 if (seq.size())
292                         return ex_to_numeric((*(seq.begin())).coeff).to_int();
293                 else
294                         return 0;
295         } else {
296                 epvector::const_iterator it = seq.begin(), itend = seq.end();
297                 if (it == itend)
298                         return 0;
299                 int min_pow = INT_MAX;
300                 while (it != itend) {
301                         int pow = it->rest.ldegree(s);
302                         if (pow < min_pow)
303                                 min_pow = pow;
304                         ++it;
305                 }
306                 return min_pow;
307         }
308 }
309
310 /** Return coefficient of degree n in power series if s is the expansion
311  *  variable.  If the expansion point is nonzero, by definition the n=1
312  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
313  *  the expansion took place in the s in the first place).
314  *  If s is not the expansion variable, an attempt is made to convert the
315  *  series to a polynomial and return the corresponding coefficient from
316  *  there. */
317 ex pseries::coeff(const symbol &s, int n) const
318 {
319         if (var.is_equal(s)) {
320                 if (seq.size() == 0)
321                         return _ex0();
322                 
323                 // Binary search in sequence for given power
324                 numeric looking_for = numeric(n);
325                 int lo = 0, hi = seq.size() - 1;
326                 while (lo <= hi) {
327                         int mid = (lo + hi) / 2;
328                         GINAC_ASSERT(is_ex_exactly_of_type(seq[mid].coeff, numeric));
329                         int cmp = ex_to_numeric(seq[mid].coeff).compare(looking_for);
330                         switch (cmp) {
331                                 case -1:
332                                         lo = mid + 1;
333                                         break;
334                                 case 0:
335                                         return seq[mid].rest;
336                                 case 1:
337                                         hi = mid - 1;
338                                         break;
339                                 default:
340                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
341                         }
342                 }
343                 return _ex0();
344         } else
345                 return convert_to_poly().coeff(s, n);
346 }
347
348 /** Does nothing. */
349 ex pseries::collect(const symbol &s) const
350 {
351         return *this;
352 }
353
354
355 /** Evaluate coefficients. */
356 ex pseries::eval(int level) const
357 {
358         if (level == 1)
359                 return this->hold();
360         
361         if (level == -max_recursion_level)
362                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
363         
364         // Construct a new series with evaluated coefficients
365         epvector new_seq;
366         new_seq.reserve(seq.size());
367         epvector::const_iterator it = seq.begin(), itend = seq.end();
368         while (it != itend) {
369                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
370                 ++it;
371         }
372         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
373 }
374
375
376 /** Evaluate coefficients numerically. */
377 ex pseries::evalf(int level) const
378 {
379         if (level == 1)
380                 return *this;
381         
382         if (level == -max_recursion_level)
383                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
384         
385         // Construct a new series with evaluated coefficients
386         epvector new_seq;
387         new_seq.reserve(seq.size());
388         epvector::const_iterator it = seq.begin(), itend = seq.end();
389         while (it != itend) {
390                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
391                 ++it;
392         }
393         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
394 }
395
396
397 ex pseries::subs(const lst & ls, const lst & lr) const
398 {
399         // If expansion variable is being substituted, convert the series to a
400         // polynomial and do the substitution there because the result might
401         // no longer be a power series
402         if (ls.has(var))
403                 return convert_to_poly(true).subs(ls, lr);
404         
405         // Otherwise construct a new series with substituted coefficients and
406         // expansion point
407         epvector newseq;
408         newseq.reserve(seq.size());
409         epvector::const_iterator it = seq.begin(), itend = seq.end();
410         while (it != itend) {
411                 newseq.push_back(expair(it->rest.subs(ls, lr), it->coeff));
412                 ++it;
413         }
414         return (new pseries(relational(var,point.subs(ls, lr)), newseq))->setflag(status_flags::dynallocated);
415 }
416
417
418 /** Implementation of ex::expand() for a power series.  It expands all the
419  *  terms individually and returns the resulting series as a new pseries. */
420 ex pseries::expand(unsigned options) const
421 {
422         epvector newseq;
423         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
424                 ex restexp = i->rest.expand();
425                 if (!restexp.is_zero())
426                         newseq.push_back(expair(restexp, i->coeff));
427         }
428         return (new pseries(relational(var,point), newseq))
429                 ->setflag(status_flags::dynallocated | status_flags::expanded);
430 }
431
432
433 /** Implementation of ex::diff() for a power series.  It treats the series as a
434  *  polynomial.
435  *  @see ex::diff */
436 ex pseries::derivative(const symbol & s) const
437 {
438         if (s == var) {
439                 epvector new_seq;
440                 epvector::const_iterator it = seq.begin(), itend = seq.end();
441                 
442                 // FIXME: coeff might depend on var
443                 while (it != itend) {
444                         if (is_order_function(it->rest)) {
445                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
446                         } else {
447                                 ex c = it->rest * it->coeff;
448                                 if (!c.is_zero())
449                                         new_seq.push_back(expair(c, it->coeff - 1));
450                         }
451                         ++it;
452                 }
453                 return pseries(relational(var,point), new_seq);
454         } else {
455                 return *this;
456         }
457 }
458
459
460 /** Convert a pseries object to an ordinary polynomial.
461  *
462  *  @param no_order flag: discard higher order terms */
463 ex pseries::convert_to_poly(bool no_order) const
464 {
465         ex e;
466         epvector::const_iterator it = seq.begin(), itend = seq.end();
467         
468         while (it != itend) {
469                 if (is_order_function(it->rest)) {
470                         if (!no_order)
471                                 e += Order(power(var - point, it->coeff));
472                 } else
473                         e += it->rest * power(var - point, it->coeff);
474                 ++it;
475         }
476         return e;
477 }
478
479
480 /** Returns true if there is no order term, i.e. the series terminates and
481  *  false otherwise. */
482 bool pseries::is_terminating(void) const
483 {
484         return seq.size() == 0 || !is_order_function((seq.end()-1)->rest);
485 }
486
487
488 /*
489  *  Implementations of series expansion
490  */
491
492 /** Default implementation of ex::series(). This performs Taylor expansion.
493  *  @see ex::series */
494 ex basic::series(const relational & r, int order, unsigned options) const
495 {
496         epvector seq;
497         numeric fac(1);
498         ex deriv = *this;
499         ex coeff = deriv.subs(r);
500         const symbol *s = static_cast<symbol *>(r.lhs().bp);
501         
502         if (!coeff.is_zero())
503                 seq.push_back(expair(coeff, numeric(0)));
504         
505         int n;
506         for (n=1; n<order; ++n) {
507                 fac = fac.mul(numeric(n));
508                 deriv = deriv.diff(*s).expand();
509                 if (deriv.is_zero()) {
510                         // Series terminates
511                         return pseries(r, seq);
512                 }
513                 coeff = deriv.subs(r);
514                 if (!coeff.is_zero())
515                         seq.push_back(expair(fac.inverse() * coeff, numeric(n)));
516         }
517         
518         // Higher-order terms, if present
519         deriv = deriv.diff(*s);
520         if (!deriv.expand().is_zero())
521                 seq.push_back(expair(Order(_ex1()), numeric(n)));
522         return pseries(r, seq);
523 }
524
525
526 /** Implementation of ex::series() for symbols.
527  *  @see ex::series */
528 ex symbol::series(const relational & r, int order, unsigned options) const
529 {
530         epvector seq;
531         const ex point = r.rhs();
532         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
533         const symbol *s = static_cast<symbol *>(r.lhs().bp);
534         
535         if (this->is_equal(*s)) {
536                 if (order > 0 && !point.is_zero())
537                         seq.push_back(expair(point, _ex0()));
538                 if (order > 1)
539                         seq.push_back(expair(_ex1(), _ex1()));
540                 else
541                         seq.push_back(expair(Order(_ex1()), numeric(order)));
542         } else
543                 seq.push_back(expair(*this, _ex0()));
544         return pseries(r, seq);
545 }
546
547
548 /** Add one series object to another, producing a pseries object that
549  *  represents the sum.
550  *
551  *  @param other  pseries object to add with
552  *  @return the sum as a pseries */
553 ex pseries::add_series(const pseries &other) const
554 {
555         // Adding two series with different variables or expansion points
556         // results in an empty (constant) series 
557         if (!is_compatible_to(other)) {
558                 epvector nul;
559                 nul.push_back(expair(Order(_ex1()), _ex0()));
560                 return pseries(relational(var,point), nul);
561         }
562         
563         // Series addition
564         epvector new_seq;
565         epvector::const_iterator a = seq.begin();
566         epvector::const_iterator b = other.seq.begin();
567         epvector::const_iterator a_end = seq.end();
568         epvector::const_iterator b_end = other.seq.end();
569         int pow_a = INT_MAX, pow_b = INT_MAX;
570         for (;;) {
571                 // If a is empty, fill up with elements from b and stop
572                 if (a == a_end) {
573                         while (b != b_end) {
574                                 new_seq.push_back(*b);
575                                 ++b;
576                         }
577                         break;
578                 } else
579                         pow_a = ex_to_numeric((*a).coeff).to_int();
580                 
581                 // If b is empty, fill up with elements from a and stop
582                 if (b == b_end) {
583                         while (a != a_end) {
584                                 new_seq.push_back(*a);
585                                 ++a;
586                         }
587                         break;
588                 } else
589                         pow_b = ex_to_numeric((*b).coeff).to_int();
590                 
591                 // a and b are non-empty, compare powers
592                 if (pow_a < pow_b) {
593                         // a has lesser power, get coefficient from a
594                         new_seq.push_back(*a);
595                         if (is_order_function((*a).rest))
596                                 break;
597                         ++a;
598                 } else if (pow_b < pow_a) {
599                         // b has lesser power, get coefficient from b
600                         new_seq.push_back(*b);
601                         if (is_order_function((*b).rest))
602                                 break;
603                         ++b;
604                 } else {
605                         // Add coefficient of a and b
606                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
607                                 new_seq.push_back(expair(Order(_ex1()), (*a).coeff));
608                                 break;  // Order term ends the sequence
609                         } else {
610                                 ex sum = (*a).rest + (*b).rest;
611                                 if (!(sum.is_zero()))
612                                         new_seq.push_back(expair(sum, numeric(pow_a)));
613                                 ++a;
614                                 ++b;
615                         }
616                 }
617         }
618         return pseries(relational(var,point), new_seq);
619 }
620
621
622 /** Implementation of ex::series() for sums. This performs series addition when
623  *  adding pseries objects.
624  *  @see ex::series */
625 ex add::series(const relational & r, int order, unsigned options) const
626 {
627         ex acc; // Series accumulator
628         
629         // Get first term from overall_coeff
630         acc = overall_coeff.series(r, order, options);
631         
632         // Add remaining terms
633         epvector::const_iterator it = seq.begin();
634         epvector::const_iterator itend = seq.end();
635         for (; it!=itend; ++it) {
636                 ex op;
637                 if (is_ex_exactly_of_type(it->rest, pseries))
638                         op = it->rest;
639                 else
640                         op = it->rest.series(r, order, options);
641                 if (!it->coeff.is_equal(_ex1()))
642                         op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff));
643                 
644                 // Series addition
645                 acc = ex_to_pseries(acc).add_series(ex_to_pseries(op));
646         }
647         return acc;
648 }
649
650
651 /** Multiply a pseries object with a numeric constant, producing a pseries
652  *  object that represents the product.
653  *
654  *  @param other  constant to multiply with
655  *  @return the product as a pseries */
656 ex pseries::mul_const(const numeric &other) const
657 {
658         epvector new_seq;
659         new_seq.reserve(seq.size());
660         
661         epvector::const_iterator it = seq.begin(), itend = seq.end();
662         while (it != itend) {
663                 if (!is_order_function(it->rest))
664                         new_seq.push_back(expair(it->rest * other, it->coeff));
665                 else
666                         new_seq.push_back(*it);
667                 ++it;
668         }
669         return pseries(relational(var,point), new_seq);
670 }
671
672
673 /** Multiply one pseries object to another, producing a pseries object that
674  *  represents the product.
675  *
676  *  @param other  pseries object to multiply with
677  *  @return the product as a pseries */
678 ex pseries::mul_series(const pseries &other) const
679 {
680         // Multiplying two series with different variables or expansion points
681         // results in an empty (constant) series 
682         if (!is_compatible_to(other)) {
683                 epvector nul;
684                 nul.push_back(expair(Order(_ex1()), _ex0()));
685                 return pseries(relational(var,point), nul);
686         }
687         
688         // Series multiplication
689         epvector new_seq;
690         
691         const symbol *s = static_cast<symbol *>(var.bp);
692         int a_max = degree(*s);
693         int b_max = other.degree(*s);
694         int a_min = ldegree(*s);
695         int b_min = other.ldegree(*s);
696         int cdeg_min = a_min + b_min;
697         int cdeg_max = a_max + b_max;
698         
699         int higher_order_a = INT_MAX;
700         int higher_order_b = INT_MAX;
701         if (is_order_function(coeff(*s, a_max)))
702                 higher_order_a = a_max + b_min;
703         if (is_order_function(other.coeff(*s, b_max)))
704                 higher_order_b = b_max + a_min;
705         int higher_order_c = std::min(higher_order_a, higher_order_b);
706         if (cdeg_max >= higher_order_c)
707                 cdeg_max = higher_order_c - 1;
708         
709         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
710                 ex co = _ex0();
711                 // c(i)=a(0)b(i)+...+a(i)b(0)
712                 for (int i=a_min; cdeg-i>=b_min; ++i) {
713                         ex a_coeff = coeff(*s, i);
714                         ex b_coeff = other.coeff(*s, cdeg-i);
715                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
716                                 co += a_coeff * b_coeff;
717                 }
718                 if (!co.is_zero())
719                         new_seq.push_back(expair(co, numeric(cdeg)));
720         }
721         if (higher_order_c < INT_MAX)
722                 new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c)));
723         return pseries(relational(var,point), new_seq);
724 }
725
726
727 /** Implementation of ex::series() for product. This performs series
728  *  multiplication when multiplying series.
729  *  @see ex::series */
730 ex mul::series(const relational & r, int order, unsigned options) const
731 {
732         ex acc; // Series accumulator
733         
734         // Get first term from overall_coeff
735         acc = overall_coeff.series(r, order, options);
736         
737         // Multiply with remaining terms
738         epvector::const_iterator it = seq.begin();
739         epvector::const_iterator itend = seq.end();
740         for (; it!=itend; ++it) {
741                 ex op = it->rest;
742                 if (op.info(info_flags::numeric)) {
743                         // series * const (special case, faster)
744                         ex f = power(op, it->coeff);
745                         acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f));
746                         continue;
747                 } else if (!is_ex_exactly_of_type(op, pseries))
748                         op = op.series(r, order, options);
749                 if (!it->coeff.is_equal(_ex1()))
750                         op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order);
751
752                 // Series multiplication
753                 acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op));
754         }
755         return acc;
756 }
757
758
759 /** Compute the p-th power of a series.
760  *
761  *  @param p  power to compute
762  *  @param deg  truncation order of series calculation */
763 ex pseries::power_const(const numeric &p, int deg) const
764 {
765         // method:
766         // let A(x) be this series and for the time being let it start with a
767         // constant (later we'll generalize):
768         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
769         // We want to compute
770         //     C(x) = A(x)^p
771         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
772         // Taking the derivative on both sides and multiplying with A(x) one
773         // immediately arrives at
774         //     C'(x)*A(x) = p*C(x)*A'(x)
775         // Multiplying this out and comparing coefficients we get the recurrence
776         // formula
777         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
778         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
779         // which can easily be solved given the starting value c_0 = (a_0)^p.
780         // For the more general case where the leading coefficient of A(x) is not
781         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
782         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
783         // then of course x^(p*m) but the recurrence formula still holds.
784         
785         if (seq.size()==0) {
786                 // as a spacial case, handle the empty (zero) series honoring the
787                 // usual power laws such as implemented in power::eval()
788                 if (p.real().is_zero())
789                         throw (std::domain_error("pseries::power_const(): pow(0,I) is undefined"));
790                 else if (p.real().is_negative())
791                         throw (pole_error("pseries::power_const(): division by zero",1));
792                 else
793                         return *this;
794         }
795         
796         const symbol *s = static_cast<symbol *>(var.bp);
797         int ldeg = ldegree(*s);
798         
799         // Compute coefficients of the powered series
800         exvector co;
801         co.reserve(deg);
802         co.push_back(power(coeff(*s, ldeg), p));
803         bool all_sums_zero = true;
804         for (int i=1; i<deg; ++i) {
805                 ex sum = _ex0();
806                 for (int j=1; j<=i; ++j) {
807                         ex c = coeff(*s, j + ldeg);
808                         if (is_order_function(c)) {
809                                 co.push_back(Order(_ex1()));
810                                 break;
811                         } else
812                                 sum += (p * j - (i - j)) * co[i - j] * c;
813                 }
814                 if (!sum.is_zero())
815                         all_sums_zero = false;
816                 co.push_back(sum / coeff(*s, ldeg) / numeric(i));
817         }
818         
819         // Construct new series (of non-zero coefficients)
820         epvector new_seq;
821         bool higher_order = false;
822         for (int i=0; i<deg; ++i) {
823                 if (!co[i].is_zero())
824                         new_seq.push_back(expair(co[i], numeric(i) + p * ldeg));
825                 if (is_order_function(co[i])) {
826                         higher_order = true;
827                         break;
828                 }
829         }
830         if (!higher_order && !all_sums_zero)
831                 new_seq.push_back(expair(Order(_ex1()), numeric(deg) + p * ldeg));
832         return pseries(relational(var,point), new_seq);
833 }
834
835
836 /** Return a new pseries object with the powers shifted by deg. */
837 pseries pseries::shift_exponents(int deg) const
838 {
839         epvector newseq(seq);
840         for (epvector::iterator i=newseq.begin(); i!=newseq.end(); ++i)
841                 i->coeff = i->coeff + deg;
842         return pseries(relational(var, point), newseq);
843 }
844
845
846 /** Implementation of ex::series() for powers. This performs Laurent expansion
847  *  of reciprocals of series at singularities.
848  *  @see ex::series */
849 ex power::series(const relational & r, int order, unsigned options) const
850 {
851         ex e;
852         if (!is_ex_exactly_of_type(basis, pseries)) {
853                 // Basis is not a series, may there be a singularity?
854                 bool must_expand_basis = false;
855                 try {
856                         basis.subs(r);
857                 } catch (pole_error) {
858                         must_expand_basis = true;
859                 }
860                 
861                 // Is the expression of type something^(-int)?
862                 if (!must_expand_basis && !exponent.info(info_flags::negint))
863                         return basic::series(r, order, options);
864                 
865                 // Is the expression of type 0^something?
866                 if (!must_expand_basis && !basis.subs(r).is_zero())
867                         return basic::series(r, order, options);
868                 
869                 // Singularity encountered, expand basis into series
870                 e = basis.series(r, order, options);
871         } else {
872                 // Basis is a series
873                 e = basis;
874         }
875         
876         // Power e
877         return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order);
878 }
879
880
881 /** Re-expansion of a pseries object. */
882 ex pseries::series(const relational & r, int order, unsigned options) const
883 {
884         const ex p = r.rhs();
885         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
886         const symbol *s = static_cast<symbol *>(r.lhs().bp);
887         
888         if (var.is_equal(*s) && point.is_equal(p)) {
889                 if (order > degree(*s))
890                         return *this;
891                 else {
892                         epvector new_seq;
893                         epvector::const_iterator it = seq.begin(), itend = seq.end();
894                         while (it != itend) {
895                                 int o = ex_to_numeric(it->coeff).to_int();
896                                 if (o >= order) {
897                                         new_seq.push_back(expair(Order(_ex1()), o));
898                                         break;
899                                 }
900                                 new_seq.push_back(*it);
901                                 ++it;
902                         }
903                         return pseries(r, new_seq);
904                 }
905         } else
906                 return convert_to_poly().series(r, order, options);
907 }
908
909
910 /** Compute the truncated series expansion of an expression.
911  *  This function returns an expression containing an object of class pseries 
912  *  to represent the series. If the series does not terminate within the given
913  *  truncation order, the last term of the series will be an order term.
914  *
915  *  @param r  expansion relation, lhs holds variable and rhs holds point
916  *  @param order  truncation order of series calculations
917  *  @param options  of class series_options
918  *  @return an expression holding a pseries object */
919 ex ex::series(const ex & r, int order, unsigned options) const
920 {
921         GINAC_ASSERT(bp!=0);
922         ex e;
923         relational rel_;
924         
925         if (is_ex_exactly_of_type(r,relational))
926                 rel_ = ex_to_relational(r);
927         else if (is_ex_exactly_of_type(r,symbol))
928                 rel_ = relational(r,_ex0());
929         else
930                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
931         
932         try {
933                 e = bp->series(rel_, order, options);
934         } catch (std::exception &x) {
935                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
936         }
937         return e;
938 }
939
940 //////////
941 // static member variables
942 //////////
943
944 // protected
945
946 unsigned pseries::precedence = 38;  // for clarity just below add::precedence
947
948 } // namespace GiNaC