3 * Implementation of class for extended truncated power series and
4 * methods for series expansion. */
7 * GiNaC Copyright (C) 1999-2005 Johannes Gutenberg University Mainz, Germany
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 #include "inifcns.h" // for Order function
33 #include "relational.h"
34 #include "operators.h"
42 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(pseries, basic,
43 print_func<print_context>(&pseries::do_print).
44 print_func<print_latex>(&pseries::do_print_latex).
45 print_func<print_tree>(&pseries::do_print_tree).
46 print_func<print_python>(&pseries::do_print_python).
47 print_func<print_python_repr>(&pseries::do_print_python_repr))
54 pseries::pseries() : inherited(TINFO_pseries) { }
61 /** Construct pseries from a vector of coefficients and powers.
62 * expair.rest holds the coefficient, expair.coeff holds the power.
63 * The powers must be integers (positive or negative) and in ascending order;
64 * the last coefficient can be Order(_ex1) to represent a truncated,
65 * non-terminating series.
67 * @param rel_ expansion variable and point (must hold a relational)
68 * @param ops_ vector of {coefficient, power} pairs (coefficient must not be zero)
69 * @return newly constructed pseries */
70 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
72 GINAC_ASSERT(is_a<relational>(rel_));
73 GINAC_ASSERT(is_a<symbol>(rel_.lhs()));
83 pseries::pseries(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst)
85 for (unsigned int i=0; true; ++i) {
88 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
89 seq.push_back(expair(rest, coeff));
93 n.find_ex("var", var, sym_lst);
94 n.find_ex("point", point, sym_lst);
97 void pseries::archive(archive_node &n) const
99 inherited::archive(n);
100 epvector::const_iterator i = seq.begin(), iend = seq.end();
102 n.add_ex("coeff", i->rest);
103 n.add_ex("power", i->coeff);
106 n.add_ex("var", var);
107 n.add_ex("point", point);
110 DEFAULT_UNARCHIVE(pseries)
113 // functions overriding virtual functions from base classes
116 void pseries::print_series(const print_context & c, const char *openbrace, const char *closebrace, const char *mul_sym, const char *pow_sym, unsigned level) const
118 if (precedence() <= level)
121 // objects of type pseries must not have any zero entries, so the
122 // trivial (zero) pseries needs a special treatment here:
126 epvector::const_iterator i = seq.begin(), end = seq.end();
129 // print a sign, if needed
130 if (i != seq.begin())
133 if (!is_order_function(i->rest)) {
135 // print 'rest', i.e. the expansion coefficient
136 if (i->rest.info(info_flags::numeric) &&
137 i->rest.info(info_flags::positive)) {
140 c.s << openbrace << '(';
142 c.s << ')' << closebrace;
145 // print 'coeff', something like (x-1)^42
146 if (!i->coeff.is_zero()) {
148 if (!point.is_zero()) {
149 c.s << openbrace << '(';
150 (var-point).print(c);
151 c.s << ')' << closebrace;
154 if (i->coeff.compare(_ex1)) {
157 if (i->coeff.info(info_flags::negative)) {
167 Order(power(var-point,i->coeff)).print(c);
171 if (precedence() <= level)
175 void pseries::do_print(const print_context & c, unsigned level) const
177 print_series(c, "", "", "*", "^", level);
180 void pseries::do_print_latex(const print_latex & c, unsigned level) const
182 print_series(c, "{", "}", " ", "^", level);
185 void pseries::do_print_python(const print_python & c, unsigned level) const
187 print_series(c, "", "", "*", "**", level);
190 void pseries::do_print_tree(const print_tree & c, unsigned level) const
192 c.s << std::string(level, ' ') << class_name() << " @" << this
193 << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
195 size_t num = seq.size();
196 for (size_t i=0; i<num; ++i) {
197 seq[i].rest.print(c, level + c.delta_indent);
198 seq[i].coeff.print(c, level + c.delta_indent);
199 c.s << std::string(level + c.delta_indent, ' ') << "-----" << std::endl;
201 var.print(c, level + c.delta_indent);
202 point.print(c, level + c.delta_indent);
205 void pseries::do_print_python_repr(const print_python_repr & c, unsigned level) const
207 c.s << class_name() << "(relational(";
212 size_t num = seq.size();
213 for (size_t i=0; i<num; ++i) {
217 seq[i].rest.print(c);
219 seq[i].coeff.print(c);
225 int pseries::compare_same_type(const basic & other) const
227 GINAC_ASSERT(is_a<pseries>(other));
228 const pseries &o = static_cast<const pseries &>(other);
230 // first compare the lengths of the series...
231 if (seq.size()>o.seq.size())
233 if (seq.size()<o.seq.size())
236 // ...then the expansion point...
237 int cmpval = var.compare(o.var);
240 cmpval = point.compare(o.point);
244 // ...and if that failed the individual elements
245 epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
246 while (it!=seq.end() && o_it!=o.seq.end()) {
247 cmpval = it->compare(*o_it);
254 // so they are equal.
258 /** Return the number of operands including a possible order term. */
259 size_t pseries::nops() const
264 /** Return the ith term in the series when represented as a sum. */
265 ex pseries::op(size_t i) const
268 throw (std::out_of_range("op() out of range"));
270 if (is_order_function(seq[i].rest))
271 return Order(power(var-point, seq[i].coeff));
272 return seq[i].rest * power(var - point, seq[i].coeff);
275 /** Return degree of highest power of the series. This is usually the exponent
276 * of the Order term. If s is not the expansion variable of the series, the
277 * series is examined termwise. */
278 int pseries::degree(const ex &s) const
280 if (var.is_equal(s)) {
281 // Return last exponent
283 return ex_to<numeric>((seq.end()-1)->coeff).to_int();
287 epvector::const_iterator it = seq.begin(), itend = seq.end();
290 int max_pow = INT_MIN;
291 while (it != itend) {
292 int pow = it->rest.degree(s);
301 /** Return degree of lowest power of the series. This is usually the exponent
302 * of the leading term. If s is not the expansion variable of the series, the
303 * series is examined termwise. If s is the expansion variable but the
304 * expansion point is not zero the series is not expanded to find the degree.
305 * I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
306 int pseries::ldegree(const ex &s) const
308 if (var.is_equal(s)) {
309 // Return first exponent
311 return ex_to<numeric>((seq.begin())->coeff).to_int();
315 epvector::const_iterator it = seq.begin(), itend = seq.end();
318 int min_pow = INT_MAX;
319 while (it != itend) {
320 int pow = it->rest.ldegree(s);
329 /** Return coefficient of degree n in power series if s is the expansion
330 * variable. If the expansion point is nonzero, by definition the n=1
331 * coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
332 * the expansion took place in the s in the first place).
333 * If s is not the expansion variable, an attempt is made to convert the
334 * series to a polynomial and return the corresponding coefficient from
336 ex pseries::coeff(const ex &s, int n) const
338 if (var.is_equal(s)) {
342 // Binary search in sequence for given power
343 numeric looking_for = numeric(n);
344 int lo = 0, hi = seq.size() - 1;
346 int mid = (lo + hi) / 2;
347 GINAC_ASSERT(is_exactly_a<numeric>(seq[mid].coeff));
348 int cmp = ex_to<numeric>(seq[mid].coeff).compare(looking_for);
354 return seq[mid].rest;
359 throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
364 return convert_to_poly().coeff(s, n);
368 ex pseries::collect(const ex &s, bool distributed) const
373 /** Perform coefficient-wise automatic term rewriting rules in this class. */
374 ex pseries::eval(int level) const
379 if (level == -max_recursion_level)
380 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
382 // Construct a new series with evaluated coefficients
384 new_seq.reserve(seq.size());
385 epvector::const_iterator it = seq.begin(), itend = seq.end();
386 while (it != itend) {
387 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
390 return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
393 /** Evaluate coefficients numerically. */
394 ex pseries::evalf(int level) const
399 if (level == -max_recursion_level)
400 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
402 // Construct a new series with evaluated coefficients
404 new_seq.reserve(seq.size());
405 epvector::const_iterator it = seq.begin(), itend = seq.end();
406 while (it != itend) {
407 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
410 return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
413 ex pseries::conjugate() const
415 epvector * newseq = conjugateepvector(seq);
416 ex newvar = var.conjugate();
417 ex newpoint = point.conjugate();
419 if (!newseq && are_ex_trivially_equal(newvar, var) && are_ex_trivially_equal(point, newpoint)) {
423 ex result = (new pseries(newvar==newpoint, newseq ? *newseq : seq))->setflag(status_flags::dynallocated);
430 ex pseries::eval_integ() const
432 epvector *newseq = NULL;
433 for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
435 newseq->push_back(expair(i->rest.eval_integ(), i->coeff));
438 ex newterm = i->rest.eval_integ();
439 if (!are_ex_trivially_equal(newterm, i->rest)) {
440 newseq = new epvector;
441 newseq->reserve(seq.size());
442 for (epvector::const_iterator j=seq.begin(); j!=i; ++j)
443 newseq->push_back(*j);
444 newseq->push_back(expair(newterm, i->coeff));
448 ex newpoint = point.eval_integ();
449 if (newseq || !are_ex_trivially_equal(newpoint, point))
450 return (new pseries(var==newpoint, *newseq))
451 ->setflag(status_flags::dynallocated);
455 ex pseries::subs(const exmap & m, unsigned options) const
457 // If expansion variable is being substituted, convert the series to a
458 // polynomial and do the substitution there because the result might
459 // no longer be a power series
460 if (m.find(var) != m.end())
461 return convert_to_poly(true).subs(m, options);
463 // Otherwise construct a new series with substituted coefficients and
466 newseq.reserve(seq.size());
467 epvector::const_iterator it = seq.begin(), itend = seq.end();
468 while (it != itend) {
469 newseq.push_back(expair(it->rest.subs(m, options), it->coeff));
472 return (new pseries(relational(var,point.subs(m, options)), newseq))->setflag(status_flags::dynallocated);
475 /** Implementation of ex::expand() for a power series. It expands all the
476 * terms individually and returns the resulting series as a new pseries. */
477 ex pseries::expand(unsigned options) const
480 epvector::const_iterator i = seq.begin(), end = seq.end();
482 ex restexp = i->rest.expand();
483 if (!restexp.is_zero())
484 newseq.push_back(expair(restexp, i->coeff));
487 return (new pseries(relational(var,point), newseq))
488 ->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
491 /** Implementation of ex::diff() for a power series.
493 ex pseries::derivative(const symbol & s) const
496 epvector::const_iterator it = seq.begin(), itend = seq.end();
500 // FIXME: coeff might depend on var
501 while (it != itend) {
502 if (is_order_function(it->rest)) {
503 new_seq.push_back(expair(it->rest, it->coeff - 1));
505 ex c = it->rest * it->coeff;
507 new_seq.push_back(expair(c, it->coeff - 1));
514 while (it != itend) {
515 if (is_order_function(it->rest)) {
516 new_seq.push_back(*it);
518 ex c = it->rest.diff(s);
520 new_seq.push_back(expair(c, it->coeff));
526 return pseries(relational(var,point), new_seq);
529 ex pseries::convert_to_poly(bool no_order) const
532 epvector::const_iterator it = seq.begin(), itend = seq.end();
534 while (it != itend) {
535 if (is_order_function(it->rest)) {
537 e += Order(power(var - point, it->coeff));
539 e += it->rest * power(var - point, it->coeff);
545 bool pseries::is_terminating() const
547 return seq.empty() || !is_order_function((seq.end()-1)->rest);
550 ex pseries::coeffop(size_t i) const
553 throw (std::out_of_range("coeffop() out of range"));
557 ex pseries::exponop(size_t i) const
560 throw (std::out_of_range("exponop() out of range"));
566 * Implementations of series expansion
569 /** Default implementation of ex::series(). This performs Taylor expansion.
571 ex basic::series(const relational & r, int order, unsigned options) const
574 const symbol &s = ex_to<symbol>(r.lhs());
576 // default for order-values that make no sense for Taylor expansion
577 if ((order <= 0) && this->has(s)) {
578 seq.push_back(expair(Order(_ex1), order));
579 return pseries(r, seq);
582 // do Taylor expansion
585 ex coeff = deriv.subs(r, subs_options::no_pattern);
587 if (!coeff.is_zero()) {
588 seq.push_back(expair(coeff, _ex0));
592 for (n=1; n<order; ++n) {
594 // We need to test for zero in order to see if the series terminates.
595 // The problem is that there is no such thing as a perfect test for
596 // zero. Expanding the term occasionally helps a little...
597 deriv = deriv.diff(s).expand();
598 if (deriv.is_zero()) // Series terminates
599 return pseries(r, seq);
601 coeff = deriv.subs(r, subs_options::no_pattern);
602 if (!coeff.is_zero())
603 seq.push_back(expair(fac.inverse() * coeff, n));
606 // Higher-order terms, if present
607 deriv = deriv.diff(s);
608 if (!deriv.expand().is_zero())
609 seq.push_back(expair(Order(_ex1), n));
610 return pseries(r, seq);
614 /** Implementation of ex::series() for symbols.
616 ex symbol::series(const relational & r, int order, unsigned options) const
619 const ex point = r.rhs();
620 GINAC_ASSERT(is_a<symbol>(r.lhs()));
622 if (this->is_equal_same_type(ex_to<symbol>(r.lhs()))) {
623 if (order > 0 && !point.is_zero())
624 seq.push_back(expair(point, _ex0));
626 seq.push_back(expair(_ex1, _ex1));
628 seq.push_back(expair(Order(_ex1), numeric(order)));
630 seq.push_back(expair(*this, _ex0));
631 return pseries(r, seq);
635 /** Add one series object to another, producing a pseries object that
636 * represents the sum.
638 * @param other pseries object to add with
639 * @return the sum as a pseries */
640 ex pseries::add_series(const pseries &other) const
642 // Adding two series with different variables or expansion points
643 // results in an empty (constant) series
644 if (!is_compatible_to(other)) {
646 nul.push_back(expair(Order(_ex1), _ex0));
647 return pseries(relational(var,point), nul);
652 epvector::const_iterator a = seq.begin();
653 epvector::const_iterator b = other.seq.begin();
654 epvector::const_iterator a_end = seq.end();
655 epvector::const_iterator b_end = other.seq.end();
656 int pow_a = INT_MAX, pow_b = INT_MAX;
658 // If a is empty, fill up with elements from b and stop
661 new_seq.push_back(*b);
666 pow_a = ex_to<numeric>((*a).coeff).to_int();
668 // If b is empty, fill up with elements from a and stop
671 new_seq.push_back(*a);
676 pow_b = ex_to<numeric>((*b).coeff).to_int();
678 // a and b are non-empty, compare powers
680 // a has lesser power, get coefficient from a
681 new_seq.push_back(*a);
682 if (is_order_function((*a).rest))
685 } else if (pow_b < pow_a) {
686 // b has lesser power, get coefficient from b
687 new_seq.push_back(*b);
688 if (is_order_function((*b).rest))
692 // Add coefficient of a and b
693 if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
694 new_seq.push_back(expair(Order(_ex1), (*a).coeff));
695 break; // Order term ends the sequence
697 ex sum = (*a).rest + (*b).rest;
698 if (!(sum.is_zero()))
699 new_seq.push_back(expair(sum, numeric(pow_a)));
705 return pseries(relational(var,point), new_seq);
709 /** Implementation of ex::series() for sums. This performs series addition when
710 * adding pseries objects.
712 ex add::series(const relational & r, int order, unsigned options) const
714 ex acc; // Series accumulator
716 // Get first term from overall_coeff
717 acc = overall_coeff.series(r, order, options);
719 // Add remaining terms
720 epvector::const_iterator it = seq.begin();
721 epvector::const_iterator itend = seq.end();
722 for (; it!=itend; ++it) {
724 if (is_exactly_a<pseries>(it->rest))
727 op = it->rest.series(r, order, options);
728 if (!it->coeff.is_equal(_ex1))
729 op = ex_to<pseries>(op).mul_const(ex_to<numeric>(it->coeff));
732 acc = ex_to<pseries>(acc).add_series(ex_to<pseries>(op));
738 /** Multiply a pseries object with a numeric constant, producing a pseries
739 * object that represents the product.
741 * @param other constant to multiply with
742 * @return the product as a pseries */
743 ex pseries::mul_const(const numeric &other) const
746 new_seq.reserve(seq.size());
748 epvector::const_iterator it = seq.begin(), itend = seq.end();
749 while (it != itend) {
750 if (!is_order_function(it->rest))
751 new_seq.push_back(expair(it->rest * other, it->coeff));
753 new_seq.push_back(*it);
756 return pseries(relational(var,point), new_seq);
760 /** Multiply one pseries object to another, producing a pseries object that
761 * represents the product.
763 * @param other pseries object to multiply with
764 * @return the product as a pseries */
765 ex pseries::mul_series(const pseries &other) const
767 // Multiplying two series with different variables or expansion points
768 // results in an empty (constant) series
769 if (!is_compatible_to(other)) {
771 nul.push_back(expair(Order(_ex1), _ex0));
772 return pseries(relational(var,point), nul);
775 if (seq.empty() || other.seq.empty()) {
776 return (new pseries(var==point, epvector()))
777 ->setflag(status_flags::dynallocated);
780 // Series multiplication
782 int a_max = degree(var);
783 int b_max = other.degree(var);
784 int a_min = ldegree(var);
785 int b_min = other.ldegree(var);
786 int cdeg_min = a_min + b_min;
787 int cdeg_max = a_max + b_max;
789 int higher_order_a = INT_MAX;
790 int higher_order_b = INT_MAX;
791 if (is_order_function(coeff(var, a_max)))
792 higher_order_a = a_max + b_min;
793 if (is_order_function(other.coeff(var, b_max)))
794 higher_order_b = b_max + a_min;
795 int higher_order_c = std::min(higher_order_a, higher_order_b);
796 if (cdeg_max >= higher_order_c)
797 cdeg_max = higher_order_c - 1;
799 for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
801 // c(i)=a(0)b(i)+...+a(i)b(0)
802 for (int i=a_min; cdeg-i>=b_min; ++i) {
803 ex a_coeff = coeff(var, i);
804 ex b_coeff = other.coeff(var, cdeg-i);
805 if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
806 co += a_coeff * b_coeff;
809 new_seq.push_back(expair(co, numeric(cdeg)));
811 if (higher_order_c < INT_MAX)
812 new_seq.push_back(expair(Order(_ex1), numeric(higher_order_c)));
813 return pseries(relational(var, point), new_seq);
817 /** Implementation of ex::series() for product. This performs series
818 * multiplication when multiplying series.
820 ex mul::series(const relational & r, int order, unsigned options) const
822 pseries acc; // Series accumulator
824 GINAC_ASSERT(is_a<symbol>(r.lhs()));
825 const ex& sym = r.lhs();
827 // holds ldegrees of the series of individual factors
828 std::vector<int> ldegrees;
830 // find minimal degrees
831 const epvector::const_iterator itbeg = seq.begin();
832 const epvector::const_iterator itend = seq.end();
833 for (epvector::const_iterator it=itbeg; it!=itend; ++it) {
835 ex expon = it->coeff;
838 if (expon.info(info_flags::integer)) {
840 factor = ex_to<numeric>(expon).to_int();
842 buf = recombine_pair_to_ex(*it);
845 int real_ldegree = 0;
847 real_ldegree = buf.expand().ldegree(sym-r.rhs());
848 } catch (std::runtime_error) {}
850 if (real_ldegree == 0) {
854 real_ldegree = buf.series(r, orderloop, options).ldegree(sym);
855 } while (real_ldegree == orderloop);
858 ldegrees.push_back(factor * real_ldegree);
861 int degsum = std::accumulate(ldegrees.begin(), ldegrees.end(), 0);
863 if (degsum >= order) {
865 epv.push_back(expair(Order(_ex1), order));
866 return (new pseries(r, epv))->setflag(status_flags::dynallocated);
869 // Multiply with remaining terms
870 std::vector<int>::const_iterator itd = ldegrees.begin();
871 for (epvector::const_iterator it=itbeg; it!=itend; ++it, ++itd) {
873 // do series expansion with adjusted order
874 ex op = recombine_pair_to_ex(*it).series(r, order-degsum+(*itd), options);
876 // Series multiplication
878 acc = ex_to<pseries>(op);
880 acc = ex_to<pseries>(acc.mul_series(ex_to<pseries>(op)));
883 return acc.mul_const(ex_to<numeric>(overall_coeff));
887 /** Compute the p-th power of a series.
889 * @param p power to compute
890 * @param deg truncation order of series calculation */
891 ex pseries::power_const(const numeric &p, int deg) const
894 // (due to Leonhard Euler)
895 // let A(x) be this series and for the time being let it start with a
896 // constant (later we'll generalize):
897 // A(x) = a_0 + a_1*x + a_2*x^2 + ...
898 // We want to compute
900 // C(x) = c_0 + c_1*x + c_2*x^2 + ...
901 // Taking the derivative on both sides and multiplying with A(x) one
902 // immediately arrives at
903 // C'(x)*A(x) = p*C(x)*A'(x)
904 // Multiplying this out and comparing coefficients we get the recurrence
906 // c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
907 // ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
908 // which can easily be solved given the starting value c_0 = (a_0)^p.
909 // For the more general case where the leading coefficient of A(x) is not
910 // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
911 // repeat the above derivation. The leading power of C2(x) = A2(x)^2 is
912 // then of course x^(p*m) but the recurrence formula still holds.
915 // as a special case, handle the empty (zero) series honoring the
916 // usual power laws such as implemented in power::eval()
917 if (p.real().is_zero())
918 throw std::domain_error("pseries::power_const(): pow(0,I) is undefined");
919 else if (p.real().is_negative())
920 throw pole_error("pseries::power_const(): division by zero",1);
925 const int ldeg = ldegree(var);
926 if (!(p*ldeg).is_integer())
927 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
929 // adjust number of coefficients
930 int numcoeff = deg - (p*ldeg).to_int();
934 epv.push_back(expair(Order(_ex1), deg));
935 return (new pseries(relational(var,point), epv))
936 ->setflag(status_flags::dynallocated);
939 // O(x^n)^(-m) is undefined
940 if (seq.size() == 1 && is_order_function(seq[0].rest) && p.real().is_negative())
941 throw pole_error("pseries::power_const(): division by zero",1);
943 // Compute coefficients of the powered series
945 co.reserve(numcoeff);
946 co.push_back(power(coeff(var, ldeg), p));
947 for (int i=1; i<numcoeff; ++i) {
949 for (int j=1; j<=i; ++j) {
950 ex c = coeff(var, j + ldeg);
951 if (is_order_function(c)) {
952 co.push_back(Order(_ex1));
955 sum += (p * j - (i - j)) * co[i - j] * c;
957 co.push_back(sum / coeff(var, ldeg) / i);
960 // Construct new series (of non-zero coefficients)
962 bool higher_order = false;
963 for (int i=0; i<numcoeff; ++i) {
964 if (!co[i].is_zero())
965 new_seq.push_back(expair(co[i], p * ldeg + i));
966 if (is_order_function(co[i])) {
972 new_seq.push_back(expair(Order(_ex1), p * ldeg + numcoeff));
974 return pseries(relational(var,point), new_seq);
978 /** Return a new pseries object with the powers shifted by deg. */
979 pseries pseries::shift_exponents(int deg) const
981 epvector newseq = seq;
982 epvector::iterator i = newseq.begin(), end = newseq.end();
987 return pseries(relational(var, point), newseq);
991 /** Implementation of ex::series() for powers. This performs Laurent expansion
992 * of reciprocals of series at singularities.
994 ex power::series(const relational & r, int order, unsigned options) const
996 // If basis is already a series, just power it
997 if (is_exactly_a<pseries>(basis))
998 return ex_to<pseries>(basis).power_const(ex_to<numeric>(exponent), order);
1000 // Basis is not a series, may there be a singularity?
1001 bool must_expand_basis = false;
1003 basis.subs(r, subs_options::no_pattern);
1004 } catch (pole_error) {
1005 must_expand_basis = true;
1008 // Is the expression of type something^(-int)?
1009 if (!must_expand_basis && !exponent.info(info_flags::negint)
1010 && (!is_a<add>(basis) || !is_a<numeric>(exponent)))
1011 return basic::series(r, order, options);
1013 // Is the expression of type 0^something?
1014 if (!must_expand_basis && !basis.subs(r, subs_options::no_pattern).is_zero()
1015 && (!is_a<add>(basis) || !is_a<numeric>(exponent)))
1016 return basic::series(r, order, options);
1018 // Singularity encountered, is the basis equal to (var - point)?
1019 if (basis.is_equal(r.lhs() - r.rhs())) {
1021 if (ex_to<numeric>(exponent).to_int() < order)
1022 new_seq.push_back(expair(_ex1, exponent));
1024 new_seq.push_back(expair(Order(_ex1), exponent));
1025 return pseries(r, new_seq);
1028 // No, expand basis into series
1031 if (is_a<numeric>(exponent)) {
1032 numexp = ex_to<numeric>(exponent);
1036 const ex& sym = r.lhs();
1037 // find existing minimal degree
1038 int real_ldegree = basis.expand().ldegree(sym-r.rhs());
1039 if (real_ldegree == 0) {
1043 real_ldegree = basis.series(r, orderloop, options).ldegree(sym);
1044 } while (real_ldegree == orderloop);
1047 if (!(real_ldegree*numexp).is_integer())
1048 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
1049 ex e = basis.series(r, (order + real_ldegree*(1-numexp)).to_int(), options);
1053 result = ex_to<pseries>(e).power_const(numexp, order);
1054 } catch (pole_error) {
1056 ser.push_back(expair(Order(_ex1), order));
1057 result = pseries(r, ser);
1064 /** Re-expansion of a pseries object. */
1065 ex pseries::series(const relational & r, int order, unsigned options) const
1067 const ex p = r.rhs();
1068 GINAC_ASSERT(is_a<symbol>(r.lhs()));
1069 const symbol &s = ex_to<symbol>(r.lhs());
1071 if (var.is_equal(s) && point.is_equal(p)) {
1072 if (order > degree(s))
1076 epvector::const_iterator it = seq.begin(), itend = seq.end();
1077 while (it != itend) {
1078 int o = ex_to<numeric>(it->coeff).to_int();
1080 new_seq.push_back(expair(Order(_ex1), o));
1083 new_seq.push_back(*it);
1086 return pseries(r, new_seq);
1089 return convert_to_poly().series(r, order, options);
1092 ex integral::series(const relational & r, int order, unsigned options) const
1095 throw std::logic_error("Cannot series expand wrt dummy variable");
1097 // Expanding integrant with r substituted taken in boundaries.
1098 ex fseries = f.series(r, order, options);
1099 epvector fexpansion;
1100 fexpansion.reserve(fseries.nops());
1101 for (size_t i=0; i<fseries.nops(); ++i) {
1102 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1103 currcoeff = (currcoeff == Order(_ex1))
1105 : integral(x, a.subs(r), b.subs(r), currcoeff);
1107 fexpansion.push_back(
1108 expair(currcoeff, ex_to<pseries>(fseries).exponop(i)));
1111 // Expanding lower boundary
1112 ex result = (new pseries(r, fexpansion))->setflag(status_flags::dynallocated);
1113 ex aseries = (a-a.subs(r)).series(r, order, options);
1114 fseries = f.series(x == (a.subs(r)), order, options);
1115 for (size_t i=0; i<fseries.nops(); ++i) {
1116 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1117 if (is_order_function(currcoeff))
1119 ex currexpon = ex_to<pseries>(fseries).exponop(i);
1120 int orderforf = order-ex_to<numeric>(currexpon).to_int()-1;
1121 currcoeff = currcoeff.series(r, orderforf);
1122 ex term = ex_to<pseries>(aseries).power_const(ex_to<numeric>(currexpon+1),order);
1123 term = ex_to<pseries>(term).mul_const(ex_to<numeric>(-1/(currexpon+1)));
1124 term = ex_to<pseries>(term).mul_series(ex_to<pseries>(currcoeff));
1125 result = ex_to<pseries>(result).add_series(ex_to<pseries>(term));
1128 // Expanding upper boundary
1129 ex bseries = (b-b.subs(r)).series(r, order, options);
1130 fseries = f.series(x == (b.subs(r)), order, options);
1131 for (size_t i=0; i<fseries.nops(); ++i) {
1132 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1133 if (is_order_function(currcoeff))
1135 ex currexpon = ex_to<pseries>(fseries).exponop(i);
1136 int orderforf = order-ex_to<numeric>(currexpon).to_int()-1;
1137 currcoeff = currcoeff.series(r, orderforf);
1138 ex term = ex_to<pseries>(bseries).power_const(ex_to<numeric>(currexpon+1),order);
1139 term = ex_to<pseries>(term).mul_const(ex_to<numeric>(1/(currexpon+1)));
1140 term = ex_to<pseries>(term).mul_series(ex_to<pseries>(currcoeff));
1141 result = ex_to<pseries>(result).add_series(ex_to<pseries>(term));
1148 /** Compute the truncated series expansion of an expression.
1149 * This function returns an expression containing an object of class pseries
1150 * to represent the series. If the series does not terminate within the given
1151 * truncation order, the last term of the series will be an order term.
1153 * @param r expansion relation, lhs holds variable and rhs holds point
1154 * @param order truncation order of series calculations
1155 * @param options of class series_options
1156 * @return an expression holding a pseries object */
1157 ex ex::series(const ex & r, int order, unsigned options) const
1162 if (is_a<relational>(r))
1163 rel_ = ex_to<relational>(r);
1164 else if (is_a<symbol>(r))
1165 rel_ = relational(r,_ex0);
1167 throw (std::logic_error("ex::series(): expansion point has unknown type"));
1170 e = bp->series(rel_, order, options);
1171 } catch (std::exception &x) {
1172 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
1177 } // namespace GiNaC