3 * Implementation of GiNaC's initially known functions. */
6 * GiNaC Copyright (C) 1999-2014 Johannes Gutenberg University Mainz, Germany
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
30 #include "operators.h"
31 #include "relational.h"
46 static ex conjugate_evalf(const ex & arg)
48 if (is_exactly_a<numeric>(arg)) {
49 return ex_to<numeric>(arg).conjugate();
51 return conjugate_function(arg).hold();
54 static ex conjugate_eval(const ex & arg)
56 return arg.conjugate();
59 static void conjugate_print_latex(const ex & arg, const print_context & c)
61 c.s << "\\bar{"; arg.print(c); c.s << "}";
64 static ex conjugate_conjugate(const ex & arg)
69 static ex conjugate_real_part(const ex & arg)
71 return arg.real_part();
74 static ex conjugate_imag_part(const ex & arg)
76 return -arg.imag_part();
79 static bool func_arg_info(const ex & arg, unsigned inf)
81 // for some functions we can return the info() of its argument
82 // (think of conjugate())
84 case info_flags::polynomial:
85 case info_flags::integer_polynomial:
86 case info_flags::cinteger_polynomial:
87 case info_flags::rational_polynomial:
88 case info_flags::real:
89 case info_flags::rational:
90 case info_flags::integer:
91 case info_flags::crational:
92 case info_flags::cinteger:
93 case info_flags::even:
95 case info_flags::prime:
96 case info_flags::crational_polynomial:
97 case info_flags::rational_function:
98 case info_flags::algebraic:
99 case info_flags::positive:
100 case info_flags::negative:
101 case info_flags::nonnegative:
102 case info_flags::posint:
103 case info_flags::negint:
104 case info_flags::nonnegint:
105 case info_flags::has_indices:
106 return arg.info(inf);
111 static bool conjugate_info(const ex & arg, unsigned inf)
113 return func_arg_info(arg, inf);
116 REGISTER_FUNCTION(conjugate_function, eval_func(conjugate_eval).
117 evalf_func(conjugate_evalf).
118 info_func(conjugate_info).
119 print_func<print_latex>(conjugate_print_latex).
120 conjugate_func(conjugate_conjugate).
121 real_part_func(conjugate_real_part).
122 imag_part_func(conjugate_imag_part).
123 set_name("conjugate","conjugate"));
129 static ex real_part_evalf(const ex & arg)
131 if (is_exactly_a<numeric>(arg)) {
132 return ex_to<numeric>(arg).real();
134 return real_part_function(arg).hold();
137 static ex real_part_eval(const ex & arg)
139 return arg.real_part();
142 static void real_part_print_latex(const ex & arg, const print_context & c)
144 c.s << "\\Re"; arg.print(c); c.s << "";
147 static ex real_part_conjugate(const ex & arg)
149 return real_part_function(arg).hold();
152 static ex real_part_real_part(const ex & arg)
154 return real_part_function(arg).hold();
157 static ex real_part_imag_part(const ex & arg)
162 REGISTER_FUNCTION(real_part_function, eval_func(real_part_eval).
163 evalf_func(real_part_evalf).
164 print_func<print_latex>(real_part_print_latex).
165 conjugate_func(real_part_conjugate).
166 real_part_func(real_part_real_part).
167 imag_part_func(real_part_imag_part).
168 set_name("real_part","real_part"));
174 static ex imag_part_evalf(const ex & arg)
176 if (is_exactly_a<numeric>(arg)) {
177 return ex_to<numeric>(arg).imag();
179 return imag_part_function(arg).hold();
182 static ex imag_part_eval(const ex & arg)
184 return arg.imag_part();
187 static void imag_part_print_latex(const ex & arg, const print_context & c)
189 c.s << "\\Im"; arg.print(c); c.s << "";
192 static ex imag_part_conjugate(const ex & arg)
194 return imag_part_function(arg).hold();
197 static ex imag_part_real_part(const ex & arg)
199 return imag_part_function(arg).hold();
202 static ex imag_part_imag_part(const ex & arg)
207 REGISTER_FUNCTION(imag_part_function, eval_func(imag_part_eval).
208 evalf_func(imag_part_evalf).
209 print_func<print_latex>(imag_part_print_latex).
210 conjugate_func(imag_part_conjugate).
211 real_part_func(imag_part_real_part).
212 imag_part_func(imag_part_imag_part).
213 set_name("imag_part","imag_part"));
219 static ex abs_evalf(const ex & arg)
221 if (is_exactly_a<numeric>(arg))
222 return abs(ex_to<numeric>(arg));
224 return abs(arg).hold();
227 static ex abs_eval(const ex & arg)
229 if (is_exactly_a<numeric>(arg))
230 return abs(ex_to<numeric>(arg));
232 if (arg.info(info_flags::nonnegative))
235 if (is_ex_the_function(arg, abs))
238 if (is_ex_the_function(arg, exp))
239 return exp(arg.op(0).real_part());
241 if (is_exactly_a<power>(arg)) {
242 const ex& base = arg.op(0);
243 const ex& exponent = arg.op(1);
244 if (base.info(info_flags::positive) || exponent.info(info_flags::real))
245 return pow(abs(base), exponent.real_part());
248 if (is_ex_the_function(arg, conjugate_function))
249 return abs(arg.op(0));
251 if (is_ex_the_function(arg, step))
254 return abs(arg).hold();
257 static ex abs_expand(const ex & arg, unsigned options)
259 if ((options & expand_options::expand_transcendental)
260 && is_exactly_a<mul>(arg)) {
262 prodseq.reserve(arg.nops());
263 for (const_iterator i = arg.begin(); i != arg.end(); ++i) {
264 if (options & expand_options::expand_function_args)
265 prodseq.push_back(abs(i->expand(options)));
267 prodseq.push_back(abs(*i));
269 return (new mul(prodseq))->setflag(status_flags::dynallocated | status_flags::expanded);
272 if (options & expand_options::expand_function_args)
273 return abs(arg.expand(options)).hold();
275 return abs(arg).hold();
278 static void abs_print_latex(const ex & arg, const print_context & c)
280 c.s << "{|"; arg.print(c); c.s << "|}";
283 static void abs_print_csrc_float(const ex & arg, const print_context & c)
285 c.s << "fabs("; arg.print(c); c.s << ")";
288 static ex abs_conjugate(const ex & arg)
290 return abs(arg).hold();
293 static ex abs_real_part(const ex & arg)
295 return abs(arg).hold();
298 static ex abs_imag_part(const ex& arg)
303 static ex abs_power(const ex & arg, const ex & exp)
305 if (arg.is_equal(arg.conjugate()) && ((is_a<numeric>(exp) && ex_to<numeric>(exp).is_even())
306 || exp.info(info_flags::even)))
307 return power(arg, exp);
309 return power(abs(arg), exp).hold();
312 bool abs_info(const ex & arg, unsigned inf)
315 case info_flags::integer:
316 case info_flags::even:
317 case info_flags::odd:
318 case info_flags::prime:
319 return arg.info(inf);
320 case info_flags::nonnegint:
321 return arg.info(info_flags::integer);
322 case info_flags::nonnegative:
323 case info_flags::real:
325 case info_flags::negative:
327 case info_flags::positive:
328 return arg.info(info_flags::positive) || arg.info(info_flags::negative);
329 case info_flags::has_indices: {
330 if (arg.info(info_flags::has_indices))
339 REGISTER_FUNCTION(abs, eval_func(abs_eval).
340 evalf_func(abs_evalf).
341 expand_func(abs_expand).
343 print_func<print_latex>(abs_print_latex).
344 print_func<print_csrc_float>(abs_print_csrc_float).
345 print_func<print_csrc_double>(abs_print_csrc_float).
346 conjugate_func(abs_conjugate).
347 real_part_func(abs_real_part).
348 imag_part_func(abs_imag_part).
349 power_func(abs_power));
355 static ex step_evalf(const ex & arg)
357 if (is_exactly_a<numeric>(arg))
358 return step(ex_to<numeric>(arg));
360 return step(arg).hold();
363 static ex step_eval(const ex & arg)
365 if (is_exactly_a<numeric>(arg))
366 return step(ex_to<numeric>(arg));
368 else if (is_exactly_a<mul>(arg) &&
369 is_exactly_a<numeric>(arg.op(arg.nops()-1))) {
370 numeric oc = ex_to<numeric>(arg.op(arg.nops()-1));
373 // step(42*x) -> step(x)
374 return step(arg/oc).hold();
376 // step(-42*x) -> step(-x)
377 return step(-arg/oc).hold();
379 if (oc.real().is_zero()) {
381 // step(42*I*x) -> step(I*x)
382 return step(I*arg/oc).hold();
384 // step(-42*I*x) -> step(-I*x)
385 return step(-I*arg/oc).hold();
389 return step(arg).hold();
392 static ex step_series(const ex & arg,
393 const relational & rel,
397 const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
398 if (arg_pt.info(info_flags::numeric)
399 && ex_to<numeric>(arg_pt).real().is_zero()
400 && !(options & series_options::suppress_branchcut))
401 throw (std::domain_error("step_series(): on imaginary axis"));
404 seq.push_back(expair(step(arg_pt), _ex0));
405 return pseries(rel,seq);
408 static ex step_conjugate(const ex& arg)
410 return step(arg).hold();
413 static ex step_real_part(const ex& arg)
415 return step(arg).hold();
418 static ex step_imag_part(const ex& arg)
423 REGISTER_FUNCTION(step, eval_func(step_eval).
424 evalf_func(step_evalf).
425 series_func(step_series).
426 conjugate_func(step_conjugate).
427 real_part_func(step_real_part).
428 imag_part_func(step_imag_part));
434 static ex csgn_evalf(const ex & arg)
436 if (is_exactly_a<numeric>(arg))
437 return csgn(ex_to<numeric>(arg));
439 return csgn(arg).hold();
442 static ex csgn_eval(const ex & arg)
444 if (is_exactly_a<numeric>(arg))
445 return csgn(ex_to<numeric>(arg));
447 else if (is_exactly_a<mul>(arg) &&
448 is_exactly_a<numeric>(arg.op(arg.nops()-1))) {
449 numeric oc = ex_to<numeric>(arg.op(arg.nops()-1));
452 // csgn(42*x) -> csgn(x)
453 return csgn(arg/oc).hold();
455 // csgn(-42*x) -> -csgn(x)
456 return -csgn(arg/oc).hold();
458 if (oc.real().is_zero()) {
460 // csgn(42*I*x) -> csgn(I*x)
461 return csgn(I*arg/oc).hold();
463 // csgn(-42*I*x) -> -csgn(I*x)
464 return -csgn(I*arg/oc).hold();
468 return csgn(arg).hold();
471 static ex csgn_series(const ex & arg,
472 const relational & rel,
476 const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
477 if (arg_pt.info(info_flags::numeric)
478 && ex_to<numeric>(arg_pt).real().is_zero()
479 && !(options & series_options::suppress_branchcut))
480 throw (std::domain_error("csgn_series(): on imaginary axis"));
483 seq.push_back(expair(csgn(arg_pt), _ex0));
484 return pseries(rel,seq);
487 static ex csgn_conjugate(const ex& arg)
489 return csgn(arg).hold();
492 static ex csgn_real_part(const ex& arg)
494 return csgn(arg).hold();
497 static ex csgn_imag_part(const ex& arg)
502 static ex csgn_power(const ex & arg, const ex & exp)
504 if (is_a<numeric>(exp) && exp.info(info_flags::positive) && ex_to<numeric>(exp).is_integer()) {
505 if (ex_to<numeric>(exp).is_odd())
506 return csgn(arg).hold();
508 return power(csgn(arg), _ex2).hold();
510 return power(csgn(arg), exp).hold();
514 REGISTER_FUNCTION(csgn, eval_func(csgn_eval).
515 evalf_func(csgn_evalf).
516 series_func(csgn_series).
517 conjugate_func(csgn_conjugate).
518 real_part_func(csgn_real_part).
519 imag_part_func(csgn_imag_part).
520 power_func(csgn_power));
524 // Eta function: eta(x,y) == log(x*y) - log(x) - log(y).
525 // This function is closely related to the unwinding number K, sometimes found
526 // in modern literature: K(z) == (z-log(exp(z)))/(2*Pi*I).
529 static ex eta_evalf(const ex &x, const ex &y)
531 // It seems like we basically have to replicate the eval function here,
532 // since the expression might not be fully evaluated yet.
533 if (x.info(info_flags::positive) || y.info(info_flags::positive))
536 if (x.info(info_flags::numeric) && y.info(info_flags::numeric)) {
537 const numeric nx = ex_to<numeric>(x);
538 const numeric ny = ex_to<numeric>(y);
539 const numeric nxy = ex_to<numeric>(x*y);
541 if (nx.is_real() && nx.is_negative())
543 if (ny.is_real() && ny.is_negative())
545 if (nxy.is_real() && nxy.is_negative())
547 return evalf(I/4*Pi)*((csgn(-imag(nx))+1)*(csgn(-imag(ny))+1)*(csgn(imag(nxy))+1)-
548 (csgn(imag(nx))+1)*(csgn(imag(ny))+1)*(csgn(-imag(nxy))+1)+cut);
551 return eta(x,y).hold();
554 static ex eta_eval(const ex &x, const ex &y)
556 // trivial: eta(x,c) -> 0 if c is real and positive
557 if (x.info(info_flags::positive) || y.info(info_flags::positive))
560 if (x.info(info_flags::numeric) && y.info(info_flags::numeric)) {
561 // don't call eta_evalf here because it would call Pi.evalf()!
562 const numeric nx = ex_to<numeric>(x);
563 const numeric ny = ex_to<numeric>(y);
564 const numeric nxy = ex_to<numeric>(x*y);
566 if (nx.is_real() && nx.is_negative())
568 if (ny.is_real() && ny.is_negative())
570 if (nxy.is_real() && nxy.is_negative())
572 return (I/4)*Pi*((csgn(-imag(nx))+1)*(csgn(-imag(ny))+1)*(csgn(imag(nxy))+1)-
573 (csgn(imag(nx))+1)*(csgn(imag(ny))+1)*(csgn(-imag(nxy))+1)+cut);
576 return eta(x,y).hold();
579 static ex eta_series(const ex & x, const ex & y,
580 const relational & rel,
584 const ex x_pt = x.subs(rel, subs_options::no_pattern);
585 const ex y_pt = y.subs(rel, subs_options::no_pattern);
586 if ((x_pt.info(info_flags::numeric) && x_pt.info(info_flags::negative)) ||
587 (y_pt.info(info_flags::numeric) && y_pt.info(info_flags::negative)) ||
588 ((x_pt*y_pt).info(info_flags::numeric) && (x_pt*y_pt).info(info_flags::negative)))
589 throw (std::domain_error("eta_series(): on discontinuity"));
591 seq.push_back(expair(eta(x_pt,y_pt), _ex0));
592 return pseries(rel,seq);
595 static ex eta_conjugate(const ex & x, const ex & y)
597 return -eta(x, y).hold();
600 static ex eta_real_part(const ex & x, const ex & y)
605 static ex eta_imag_part(const ex & x, const ex & y)
607 return -I*eta(x, y).hold();
610 REGISTER_FUNCTION(eta, eval_func(eta_eval).
611 evalf_func(eta_evalf).
612 series_func(eta_series).
614 set_symmetry(sy_symm(0, 1)).
615 conjugate_func(eta_conjugate).
616 real_part_func(eta_real_part).
617 imag_part_func(eta_imag_part));
624 static ex Li2_evalf(const ex & x)
626 if (is_exactly_a<numeric>(x))
627 return Li2(ex_to<numeric>(x));
629 return Li2(x).hold();
632 static ex Li2_eval(const ex & x)
634 if (x.info(info_flags::numeric)) {
639 if (x.is_equal(_ex1))
640 return power(Pi,_ex2)/_ex6;
641 // Li2(1/2) -> Pi^2/12 - log(2)^2/2
642 if (x.is_equal(_ex1_2))
643 return power(Pi,_ex2)/_ex12 + power(log(_ex2),_ex2)*_ex_1_2;
644 // Li2(-1) -> -Pi^2/12
645 if (x.is_equal(_ex_1))
646 return -power(Pi,_ex2)/_ex12;
647 // Li2(I) -> -Pi^2/48+Catalan*I
649 return power(Pi,_ex2)/_ex_48 + Catalan*I;
650 // Li2(-I) -> -Pi^2/48-Catalan*I
652 return power(Pi,_ex2)/_ex_48 - Catalan*I;
654 if (!x.info(info_flags::crational))
655 return Li2(ex_to<numeric>(x));
658 return Li2(x).hold();
661 static ex Li2_deriv(const ex & x, unsigned deriv_param)
663 GINAC_ASSERT(deriv_param==0);
665 // d/dx Li2(x) -> -log(1-x)/x
666 return -log(_ex1-x)/x;
669 static ex Li2_series(const ex &x, const relational &rel, int order, unsigned options)
671 const ex x_pt = x.subs(rel, subs_options::no_pattern);
672 if (x_pt.info(info_flags::numeric)) {
673 // First special case: x==0 (derivatives have poles)
674 if (x_pt.is_zero()) {
676 // The problem is that in d/dx Li2(x==0) == -log(1-x)/x we cannot
677 // simply substitute x==0. The limit, however, exists: it is 1.
678 // We also know all higher derivatives' limits:
679 // (d/dx)^n Li2(x) == n!/n^2.
680 // So the primitive series expansion is
681 // Li2(x==0) == x + x^2/4 + x^3/9 + ...
683 // We first construct such a primitive series expansion manually in
684 // a dummy symbol s and then insert the argument's series expansion
685 // for s. Reexpanding the resulting series returns the desired
689 // manually construct the primitive expansion
690 for (int i=1; i<order; ++i)
691 ser += pow(s,i) / pow(numeric(i), *_num2_p);
692 // substitute the argument's series expansion
693 ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
694 // maybe that was terminating, so add a proper order term
696 nseq.push_back(expair(Order(_ex1), order));
697 ser += pseries(rel, nseq);
698 // reexpanding it will collapse the series again
699 return ser.series(rel, order);
700 // NB: Of course, this still does not allow us to compute anything
701 // like sin(Li2(x)).series(x==0,2), since then this code here is
702 // not reached and the derivative of sin(Li2(x)) doesn't allow the
703 // substitution x==0. Probably limits *are* needed for the general
704 // cases. In case L'Hospital's rule is implemented for limits and
705 // basic::series() takes care of this, this whole block is probably
708 // second special case: x==1 (branch point)
709 if (x_pt.is_equal(_ex1)) {
711 // construct series manually in a dummy symbol s
714 // manually construct the primitive expansion
715 for (int i=1; i<order; ++i)
716 ser += pow(1-s,i) * (numeric(1,i)*(I*Pi+log(s-1)) - numeric(1,i*i));
717 // substitute the argument's series expansion
718 ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
719 // maybe that was terminating, so add a proper order term
721 nseq.push_back(expair(Order(_ex1), order));
722 ser += pseries(rel, nseq);
723 // reexpanding it will collapse the series again
724 return ser.series(rel, order);
726 // third special case: x real, >=1 (branch cut)
727 if (!(options & series_options::suppress_branchcut) &&
728 ex_to<numeric>(x_pt).is_real() && ex_to<numeric>(x_pt)>1) {
730 // This is the branch cut: assemble the primitive series manually
731 // and then add the corresponding complex step function.
732 const symbol &s = ex_to<symbol>(rel.lhs());
733 const ex point = rel.rhs();
736 // zeroth order term:
737 seq.push_back(expair(Li2(x_pt), _ex0));
738 // compute the intermediate terms:
739 ex replarg = series(Li2(x), s==foo, order);
740 for (size_t i=1; i<replarg.nops()-1; ++i)
741 seq.push_back(expair((replarg.op(i)/power(s-foo,i)).series(foo==point,1,options).op(0).subs(foo==s, subs_options::no_pattern),i));
742 // append an order term:
743 seq.push_back(expair(Order(_ex1), replarg.nops()-1));
744 return pseries(rel, seq);
747 // all other cases should be safe, by now:
748 throw do_taylor(); // caught by function::series()
751 static ex Li2_conjugate(const ex & x)
753 // conjugate(Li2(x))==Li2(conjugate(x)) unless on the branch cuts which
754 // run along the positive real axis beginning at 1.
755 if (x.info(info_flags::negative)) {
756 return Li2(x).hold();
758 if (is_exactly_a<numeric>(x) &&
759 (!x.imag_part().is_zero() || x < *_num1_p)) {
760 return Li2(x.conjugate());
762 return conjugate_function(Li2(x)).hold();
765 REGISTER_FUNCTION(Li2, eval_func(Li2_eval).
766 evalf_func(Li2_evalf).
767 derivative_func(Li2_deriv).
768 series_func(Li2_series).
769 conjugate_func(Li2_conjugate).
770 latex_name("\\mathrm{Li}_2"));
776 static ex Li3_eval(const ex & x)
780 return Li3(x).hold();
783 REGISTER_FUNCTION(Li3, eval_func(Li3_eval).
784 latex_name("\\mathrm{Li}_3"));
787 // Derivatives of Riemann's Zeta-function zetaderiv(0,x)==zeta(x)
790 static ex zetaderiv_eval(const ex & n, const ex & x)
792 if (n.info(info_flags::numeric)) {
793 // zetaderiv(0,x) -> zeta(x)
795 return zeta(x).hold();
798 return zetaderiv(n, x).hold();
801 static ex zetaderiv_deriv(const ex & n, const ex & x, unsigned deriv_param)
803 GINAC_ASSERT(deriv_param<2);
805 if (deriv_param==0) {
807 throw(std::logic_error("cannot diff zetaderiv(n,x) with respect to n"));
810 return zetaderiv(n+1,x);
813 REGISTER_FUNCTION(zetaderiv, eval_func(zetaderiv_eval).
814 derivative_func(zetaderiv_deriv).
815 latex_name("\\zeta^\\prime"));
821 static ex factorial_evalf(const ex & x)
823 return factorial(x).hold();
826 static ex factorial_eval(const ex & x)
828 if (is_exactly_a<numeric>(x))
829 return factorial(ex_to<numeric>(x));
831 return factorial(x).hold();
834 static void factorial_print_dflt_latex(const ex & x, const print_context & c)
836 if (is_exactly_a<symbol>(x) ||
837 is_exactly_a<constant>(x) ||
838 is_exactly_a<function>(x)) {
839 x.print(c); c.s << "!";
841 c.s << "("; x.print(c); c.s << ")!";
845 static ex factorial_conjugate(const ex & x)
847 return factorial(x).hold();
850 static ex factorial_real_part(const ex & x)
852 return factorial(x).hold();
855 static ex factorial_imag_part(const ex & x)
860 REGISTER_FUNCTION(factorial, eval_func(factorial_eval).
861 evalf_func(factorial_evalf).
862 print_func<print_dflt>(factorial_print_dflt_latex).
863 print_func<print_latex>(factorial_print_dflt_latex).
864 conjugate_func(factorial_conjugate).
865 real_part_func(factorial_real_part).
866 imag_part_func(factorial_imag_part));
872 static ex binomial_evalf(const ex & x, const ex & y)
874 return binomial(x, y).hold();
877 static ex binomial_sym(const ex & x, const numeric & y)
879 if (y.is_integer()) {
880 if (y.is_nonneg_integer()) {
881 const unsigned N = y.to_int();
882 if (N == 0) return _ex1;
883 if (N == 1) return x;
885 for (unsigned i = 2; i <= N; ++i)
886 t = (t * (x + i - y - 1)).expand() / i;
892 return binomial(x, y).hold();
895 static ex binomial_eval(const ex & x, const ex &y)
897 if (is_exactly_a<numeric>(y)) {
898 if (is_exactly_a<numeric>(x) && ex_to<numeric>(x).is_integer())
899 return binomial(ex_to<numeric>(x), ex_to<numeric>(y));
901 return binomial_sym(x, ex_to<numeric>(y));
903 return binomial(x, y).hold();
906 // At the moment the numeric evaluation of a binomail function always
907 // gives a real number, but if this would be implemented using the gamma
908 // function, also complex conjugation should be changed (or rather, deleted).
909 static ex binomial_conjugate(const ex & x, const ex & y)
911 return binomial(x,y).hold();
914 static ex binomial_real_part(const ex & x, const ex & y)
916 return binomial(x,y).hold();
919 static ex binomial_imag_part(const ex & x, const ex & y)
924 REGISTER_FUNCTION(binomial, eval_func(binomial_eval).
925 evalf_func(binomial_evalf).
926 conjugate_func(binomial_conjugate).
927 real_part_func(binomial_real_part).
928 imag_part_func(binomial_imag_part));
931 // Order term function (for truncated power series)
934 static ex Order_eval(const ex & x)
936 if (is_exactly_a<numeric>(x)) {
939 return Order(_ex1).hold();
942 } else if (is_exactly_a<mul>(x)) {
943 const mul &m = ex_to<mul>(x);
944 // O(c*expr) -> O(expr)
945 if (is_exactly_a<numeric>(m.op(m.nops() - 1)))
946 return Order(x / m.op(m.nops() - 1)).hold();
948 return Order(x).hold();
951 static ex Order_series(const ex & x, const relational & r, int order, unsigned options)
953 // Just wrap the function into a pseries object
955 GINAC_ASSERT(is_a<symbol>(r.lhs()));
956 const symbol &s = ex_to<symbol>(r.lhs());
957 new_seq.push_back(expair(Order(_ex1), numeric(std::min(x.ldegree(s), order))));
958 return pseries(r, new_seq);
961 static ex Order_conjugate(const ex & x)
963 return Order(x).hold();
966 static ex Order_real_part(const ex & x)
968 return Order(x).hold();
971 static ex Order_imag_part(const ex & x)
973 if(x.info(info_flags::real))
975 return Order(x).hold();
978 // Differentiation is handled in function::derivative because of its special requirements
980 REGISTER_FUNCTION(Order, eval_func(Order_eval).
981 series_func(Order_series).
982 latex_name("\\mathcal{O}").
983 conjugate_func(Order_conjugate).
984 real_part_func(Order_real_part).
985 imag_part_func(Order_imag_part));
988 // Solve linear system
991 ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
993 // solve a system of linear equations
994 if (eqns.info(info_flags::relation_equal)) {
995 if (!symbols.info(info_flags::symbol))
996 throw(std::invalid_argument("lsolve(): 2nd argument must be a symbol"));
997 const ex sol = lsolve(lst(eqns),lst(symbols));
999 GINAC_ASSERT(sol.nops()==1);
1000 GINAC_ASSERT(is_exactly_a<relational>(sol.op(0)));
1002 return sol.op(0).op(1); // return rhs of first solution
1006 if (!eqns.info(info_flags::list)) {
1007 throw(std::invalid_argument("lsolve(): 1st argument must be a list or an equation"));
1009 for (size_t i=0; i<eqns.nops(); i++) {
1010 if (!eqns.op(i).info(info_flags::relation_equal)) {
1011 throw(std::invalid_argument("lsolve(): 1st argument must be a list of equations"));
1014 if (!symbols.info(info_flags::list)) {
1015 throw(std::invalid_argument("lsolve(): 2nd argument must be a list or a symbol"));
1017 for (size_t i=0; i<symbols.nops(); i++) {
1018 if (!symbols.op(i).info(info_flags::symbol)) {
1019 throw(std::invalid_argument("lsolve(): 2nd argument must be a list of symbols"));
1023 // build matrix from equation system
1024 matrix sys(eqns.nops(),symbols.nops());
1025 matrix rhs(eqns.nops(),1);
1026 matrix vars(symbols.nops(),1);
1028 for (size_t r=0; r<eqns.nops(); r++) {
1029 const ex eq = eqns.op(r).op(0)-eqns.op(r).op(1); // lhs-rhs==0
1031 for (size_t c=0; c<symbols.nops(); c++) {
1032 const ex co = eq.coeff(ex_to<symbol>(symbols.op(c)),1);
1033 linpart -= co*symbols.op(c);
1036 linpart = linpart.expand();
1037 rhs(r,0) = -linpart;
1040 // test if system is linear and fill vars matrix
1041 for (size_t i=0; i<symbols.nops(); i++) {
1042 vars(i,0) = symbols.op(i);
1043 if (sys.has(symbols.op(i)))
1044 throw(std::logic_error("lsolve: system is not linear"));
1045 if (rhs.has(symbols.op(i)))
1046 throw(std::logic_error("lsolve: system is not linear"));
1051 solution = sys.solve(vars,rhs,options);
1052 } catch (const std::runtime_error & e) {
1053 // Probably singular matrix or otherwise overdetermined system:
1054 // It is consistent to return an empty list
1057 GINAC_ASSERT(solution.cols()==1);
1058 GINAC_ASSERT(solution.rows()==symbols.nops());
1060 // return list of equations of the form lst(var1==sol1,var2==sol2,...)
1062 for (size_t i=0; i<symbols.nops(); i++)
1063 sollist.append(symbols.op(i)==solution(i,0));
1069 // Find real root of f(x) numerically
1073 fsolve(const ex& f_in, const symbol& x, const numeric& x1, const numeric& x2)
1075 if (!x1.is_real() || !x2.is_real()) {
1076 throw std::runtime_error("fsolve(): interval not bounded by real numbers");
1079 throw std::runtime_error("fsolve(): vanishing interval");
1081 // xx[0] == left interval limit, xx[1] == right interval limit.
1082 // fx[0] == f(xx[0]), fx[1] == f(xx[1]).
1083 // We keep the root bracketed: xx[0]<xx[1] and fx[0]*fx[1]<0.
1084 numeric xx[2] = { x1<x2 ? x1 : x2,
1087 if (is_a<relational>(f_in)) {
1088 f = f_in.lhs()-f_in.rhs();
1092 const ex fx_[2] = { f.subs(x==xx[0]).evalf(),
1093 f.subs(x==xx[1]).evalf() };
1094 if (!is_a<numeric>(fx_[0]) || !is_a<numeric>(fx_[1])) {
1095 throw std::runtime_error("fsolve(): function does not evaluate numerically");
1097 numeric fx[2] = { ex_to<numeric>(fx_[0]),
1098 ex_to<numeric>(fx_[1]) };
1099 if (!fx[0].is_real() || !fx[1].is_real()) {
1100 throw std::runtime_error("fsolve(): function evaluates to complex values at interval boundaries");
1102 if (fx[0]*fx[1]>=0) {
1103 throw std::runtime_error("fsolve(): function does not change sign at interval boundaries");
1106 // The Newton-Raphson method has quadratic convergence! Simply put, it
1107 // replaces x with x-f(x)/f'(x) at each step. -f/f' is the delta:
1108 const ex ff = normal(-f/f.diff(x));
1109 int side = 0; // Start at left interval limit.
1115 ex dx_ = ff.subs(x == xx[side]).evalf();
1116 if (!is_a<numeric>(dx_))
1117 throw std::runtime_error("fsolve(): function derivative does not evaluate numerically");
1118 xx[side] += ex_to<numeric>(dx_);
1119 // Now check if Newton-Raphson method shot out of the interval
1120 bool bad_shot = (side == 0 && xx[0] < xxprev) ||
1121 (side == 1 && xx[1] > xxprev) || xx[0] > xx[1];
1123 // Compute f(x) only if new x is inside the interval.
1124 // The function might be difficult to compute numerically
1125 // or even ill defined outside the interval. Also it's
1126 // a small optimization.
1127 ex f_x = f.subs(x == xx[side]).evalf();
1128 if (!is_a<numeric>(f_x))
1129 throw std::runtime_error("fsolve(): function does not evaluate numerically");
1130 fx[side] = ex_to<numeric>(f_x);
1133 // Oops, Newton-Raphson method shot out of the interval.
1134 // Restore, and try again with the other side instead!
1141 ex dx_ = ff.subs(x == xx[side]).evalf();
1142 if (!is_a<numeric>(dx_))
1143 throw std::runtime_error("fsolve(): function derivative does not evaluate numerically [2]");
1144 xx[side] += ex_to<numeric>(dx_);
1146 ex f_x = f.subs(x==xx[side]).evalf();
1147 if (!is_a<numeric>(f_x))
1148 throw std::runtime_error("fsolve(): function does not evaluate numerically [2]");
1149 fx[side] = ex_to<numeric>(f_x);
1151 if ((fx[side]<0 && fx[!side]<0) || (fx[side]>0 && fx[!side]>0)) {
1152 // Oops, the root isn't bracketed any more.
1153 // Restore, and perform a bisection!
1157 // Ah, the bisection! Bisections converge linearly. Unfortunately,
1158 // they occur pretty often when Newton-Raphson arrives at an x too
1159 // close to the result on one side of the interval and
1160 // f(x-f(x)/f'(x)) turns out to have the same sign as f(x) due to
1161 // precision errors! Recall that this function does not have a
1162 // precision goal as one of its arguments but instead relies on
1163 // x converging to a fixed point. We speed up the (safe but slow)
1164 // bisection method by mixing in a dash of the (unsafer but faster)
1165 // secant method: Instead of splitting the interval at the
1166 // arithmetic mean (bisection), we split it nearer to the root as
1167 // determined by the secant between the values xx[0] and xx[1].
1168 // Don't set the secant_weight to one because that could disturb
1169 // the convergence in some corner cases!
1170 static const double secant_weight = 0.984375; // == 63/64 < 1
1171 numeric xxmid = (1-secant_weight)*0.5*(xx[0]+xx[1])
1172 + secant_weight*(xx[0]+fx[0]*(xx[0]-xx[1])/(fx[1]-fx[0]));
1173 ex fxmid_ = f.subs(x == xxmid).evalf();
1174 if (!is_a<numeric>(fxmid_))
1175 throw std::runtime_error("fsolve(): function does not evaluate numerically [3]");
1176 numeric fxmid = ex_to<numeric>(fxmid_);
1177 if (fxmid.is_zero()) {
1181 if ((fxmid<0 && fx[side]>0) || (fxmid>0 && fx[side]<0)) {
1189 } while (xxprev!=xx[side]);
1194 /* Force inclusion of functions from inifcns_gamma and inifcns_zeta
1195 * for static lib (so ginsh will see them). */
1196 unsigned force_include_tgamma = tgamma_SERIAL::serial;
1197 unsigned force_include_zeta1 = zeta1_SERIAL::serial;
1199 } // namespace GiNaC