// Computation of artanh(1/m) (m integer) to high precision. #include "cln/integer.h" #include "cln/rational.h" #include "cln/real.h" #include "cln/complex.h" #include "cln/lfloat.h" #include "cl_LF.h" #include "cl_LF_tran.h" #include "cl_alloca.h" #include #include #include "cln/timing.h" #undef floor #include #define floor cln_floor // Method 1: atanh(1/m) = sum(n=0..infty, 1/(2n+1) * 1/m^(2n+1)) // Method 2: atanh(1/m) = sum(n=0..infty, (-4)^n*n!^2/(2n+1)! * m/(m^2-1)^(n+1)) // a. Using long floats. [N^2] // b. Simulating long floats using integers. [N^2] // c. Using integers, no binary splitting. [N^2] // d. Using integers, with binary splitting. [FAST] // Method 3: general built-in algorithm. [FAST] // Method 4: atanh(x) = 1/2 ln((1+x)/(1-x)), // using the general built-in algorithm [FAST] // Method 1: atanh(1/m) = sum(n=0..infty, 1/(2n+1) * 1/m^(2n+1)) const cl_LF atanh_recip_1a (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_LF eps = scale_float(cl_I_to_LF(1,actuallen),-intDsize*(sintL)actuallen); var cl_I m2 = m*m; var cl_LF fterm = cl_I_to_LF(1,actuallen)/m; var cl_LF fsum = fterm; for (var uintL n = 1; fterm >= eps; n++) { fterm = fterm/m2; fterm = cl_LF_shortenwith(fterm,eps); fsum = fsum + LF_to_LF(fterm/(2*n+1),actuallen); } return shorten(fsum,len); } const cl_LF atanh_recip_1b (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_I m2 = m*m; var cl_I fterm = floor1((cl_I)1 << (intDsize*actuallen), m); var cl_I fsum = fterm; for (var uintL n = 1; fterm > 0; n++) { fterm = floor1(fterm,m2); fsum = fsum + floor1(fterm,2*n+1); } return scale_float(cl_I_to_LF(fsum,len),-intDsize*(sintL)actuallen); } const cl_LF atanh_recip_1c (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_I m2 = m*m; var sintL N = (sintL)(0.69314718*intDsize/2*actuallen/log(double_approx(m))) + 1; var cl_I num = 0, den = 1; // "lazy rational number" for (sintL n = N-1; n>=0; n--) { // Multiply sum with 1/m^2: den = den * m2; // Add 1/(2n+1): num = num*(2*n+1) + den; den = den*(2*n+1); } den = den*m; var cl_LF result = cl_I_to_LF(num,actuallen)/cl_I_to_LF(den,actuallen); return shorten(result,len); } const cl_LF atanh_recip_1d (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_I m2 = m*m; var uintL N = (uintL)(0.69314718*intDsize/2*actuallen/log(double_approx(m))) + 1; CL_ALLOCA_STACK; var cl_I* bv = (cl_I*) cl_alloca(N*sizeof(cl_I)); var cl_I* qv = (cl_I*) cl_alloca(N*sizeof(cl_I)); var uintL n; for (n = 0; n < N; n++) { new (&bv[n]) cl_I ((cl_I)(2*n+1)); new (&qv[n]) cl_I (n==0 ? m : m2); } var cl_rational_series series; series.av = NULL; series.bv = bv; series.pv = NULL; series.qv = qv; series.qsv = NULL; var cl_LF result = eval_rational_series(N,series,actuallen); for (n = 0; n < N; n++) { bv[n].~cl_I(); qv[n].~cl_I(); } return shorten(result,len); } // Method 2: atanh(1/m) = sum(n=0..infty, (-4)^n*n!^2/(2n+1)! * m/(m^2-1)^(n+1)) const cl_LF atanh_recip_2a (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_LF eps = scale_float(cl_I_to_LF(1,actuallen),-intDsize*(sintL)actuallen); var cl_I m2 = m*m-1; var cl_LF fterm = cl_I_to_LF(m,actuallen)/m2; var cl_LF fsum = fterm; for (var uintL n = 1; fterm >= eps; n++) { fterm = The(cl_LF)((2*n)*fterm)/((2*n+1)*m2); fterm = cl_LF_shortenwith(fterm,eps); if ((n % 2) == 0) fsum = fsum + LF_to_LF(fterm,actuallen); else fsum = fsum - LF_to_LF(fterm,actuallen); } return shorten(fsum,len); } const cl_LF atanh_recip_2b (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_I m2 = m*m-1; var cl_I fterm = floor1((cl_I)m << (intDsize*actuallen), m2); var cl_I fsum = fterm; for (var uintL n = 1; fterm > 0; n++) { fterm = floor1((2*n)*fterm,(2*n+1)*m2); if ((n % 2) == 0) fsum = fsum + fterm; else fsum = fsum - fterm; } return scale_float(cl_I_to_LF(fsum,len),-intDsize*(sintL)actuallen); } const cl_LF atanh_recip_2c (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_I m2 = m*m-1; var uintL N = (uintL)(0.69314718*intDsize*actuallen/log(double_approx(m2))) + 1; var cl_I num = 0, den = 1; // "lazy rational number" for (uintL n = N; n>0; n--) { // Multiply sum with -(2n)/(2n+1)(m^2+1): num = num * (2*n); den = - den * ((2*n+1)*m2); // Add 1: num = num + den; } num = num*m; den = den*m2; var cl_LF result = cl_I_to_LF(num,actuallen)/cl_I_to_LF(den,actuallen); return shorten(result,len); } const cl_LF atanh_recip_2d (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_I m2 = m*m-1; var uintL N = (uintL)(0.69314718*intDsize*actuallen/log(double_approx(m2))) + 1; CL_ALLOCA_STACK; var cl_I* pv = (cl_I*) cl_alloca(N*sizeof(cl_I)); var cl_I* qv = (cl_I*) cl_alloca(N*sizeof(cl_I)); var uintL n; new (&pv[0]) cl_I (m); new (&qv[0]) cl_I (m2); for (n = 1; n < N; n++) { new (&pv[n]) cl_I (-(cl_I)(2*n)); new (&qv[n]) cl_I ((2*n+1)*m2); } var cl_rational_series series; series.av = NULL; series.bv = NULL; series.pv = pv; series.qv = qv; series.qsv = NULL; var cl_LF result = eval_rational_series(N,series,actuallen); for (n = 0; n < N; n++) { pv[n].~cl_I(); qv[n].~cl_I(); } return shorten(result,len); } // Main program: Compute and display the timings. int main (int argc, char * argv[]) { int repetitions = 1; if ((argc >= 3) && !strcmp(argv[1],"-r")) { repetitions = atoi(argv[2]); argc -= 2; argv += 2; } if (argc < 2) exit(1); cl_I m = (cl_I)argv[1]; uintL len = atoi(argv[2]); cl_LF p; ln(cl_I_to_LF(1000,len+10)); // fill cache // Method 1. { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atanh_recip_1a(m,len); } } cout << p << endl; { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atanh_recip_1b(m,len); } } cout << p << endl; { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atanh_recip_1c(m,len); } } cout << p << endl; { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atanh_recip_1d(m,len); } } cout << p << endl; // Method 2. { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atanh_recip_2a(m,len); } } cout << p << endl; { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atanh_recip_2b(m,len); } } cout << p << endl; { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atanh_recip_2c(m,len); } } cout << p << endl; { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atanh_recip_2d(m,len); } } cout << p << endl; // Method 3. { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = The(cl_LF)(atanh(cl_RA_to_LF(1/(cl_RA)m,len))); } } cout << p << endl; // Method 4. { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = The(cl_LF)(scale_float(ln(cl_RA_to_LF((cl_RA)(m+1)/(cl_RA)(m-1),len)),-1)); } } cout << p << endl; } // Timings of the above algorithms, on an i486 33 MHz, running Linux. // m = 3 -> 1/2 ln(2) // N 1a 1b 1c 1d 2a 2b 2c 2d 3 // 10 0.021 0.014 0.019 0.012 0.029 0.015 0.023 0.015 0.015 // 25 0.060 0.041 0.073 0.041 0.082 0.046 0.086 0.051 0.066 // 50 0.164 0.110 0.258 0.120 0.203 0.124 0.295 0.142 // 100 0.49 0.35 1.05 0.37 0.60 0.35 1.19 0.42 // 250 2.5 1.9 7.2 1.7 2.9 1.9 8.0 1.8 // 500 10.1 7.2 33.4 5.5 10.7 7.3 36.5 5.9 // 1000 38 30 145 16.1 39 29 158 16.8 // 2500 231 188 976 53 237 186 1081 58 // asymp. N^2 N^2 N^2 FAST N^2 N^2 N^2 FAST // // m = 9 -> 1/2 ln(5/4) // N 1a 1b 1c 1d 2a 2b 2c 2d 3 4 // 10 0.0106 0.0072 0.0084 0.0061 0.0139 0.0073 0.0098 0.0073 0.0140 0.0211 // 25 0.031 0.021 0.029 0.019 0.039 0.022 0.031 0.022 0.063 0.081 // 50 0.083 0.057 0.091 0.056 0.098 0.058 0.098 0.060 0.232 0.212 // 100 0.25 0.17 0.32 0.16 0.28 0.17 0.34 0.17 0.60 0.59 // 250 1.28 0.94 2.11 0.77 1.40 0.91 2.18 0.76 2.76 2.76 // 500 5.1 3.6 9.4 2.5 5.2 3.4 9.3 2.4 10.4 9.7 // 1000 19.1 14.7 42 7.8 18.5 13.6 42 7.4 31 30 // 2500 116 93 279 29.6 113 86 278 30.0 129 125 // asymp. N^2 N^2 N^2 FAST N^2 N^2 N^2 FAST FAST FAST